WO2021129430A1 - 一种三联合循环系统、交通工具、充电系统 - Google Patents

一种三联合循环系统、交通工具、充电系统 Download PDF

Info

Publication number
WO2021129430A1
WO2021129430A1 PCT/CN2020/135898 CN2020135898W WO2021129430A1 WO 2021129430 A1 WO2021129430 A1 WO 2021129430A1 CN 2020135898 W CN2020135898 W CN 2020135898W WO 2021129430 A1 WO2021129430 A1 WO 2021129430A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
outlet
cylinder
cylinder block
turbine
Prior art date
Application number
PCT/CN2020/135898
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2021129430A1 publication Critical patent/WO2021129430A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/08Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with cylinders arranged oppositely relative to main shaft and of "flat" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of energy recovery and utilization, in particular to a three combined cycle system of gas turbine, fuel cell and steam power generation, a vehicle, and a charging system.
  • Solid oxide fuel cells can be used for power generation, and heat recovery can be achieved through regenerators.
  • Solid oxide fuel cell Solid Oxide Fuel Cell, referred to as SOFC
  • SOFC Solid Oxide Fuel Cell
  • SOFC operates at high temperatures (800-1000°C) and has the following characteristics: no noble metal catalyst is required; it is highly adaptable to fuel and can operate under various fuel conditions ; Using all solid components, there is no leakage or corrosion; it can be built at will, and the scale and installation location are flexible. These characteristics greatly improve the efficiency of fuel power generation. Because part of the gas-phase fuel that is not completely reacted is contained during the reaction, this part of the gas can continue to burn to generate heat, but it is often used as exhaust gas for evacuating or burning, which leads to waste of energy and is not conducive to environmental protection.
  • a regenerator In the field of micro gas turbine technology, in the prior art, a regenerator is usually used to recover the heat of the micro gas turbine exhaust, and then the exhaust gas that passes through the regenerator is discharged to the atmosphere; however, the exhaust gas that passes through the regenerator still has a certain amount of waste heat. In the prior art, there is also recovery and utilization of the exhaust gas energy discharged from the regenerator.
  • rotating machinery such as a turbine, is used to recover and utilize the exhaust gas energy.
  • the rotating machinery cannot effectively recover this part of energy.
  • the purpose of the present invention is to provide a three combined cycle system of gas turbine, fuel cell and steam power generation, a vehicle, and a charging system, which can simultaneously solve the problem of recovery of waste heat from SOFC power generation and exhaust heat from regenerators.
  • the heat generated by each link in the system can be recycled to improve the power generation and recovery efficiency of the entire system.
  • it can be integrated and occupies a small space.
  • a three combined cycle system including:
  • the gas turbine system includes a heuristic integrated motor, an air compressor, a turbine, and a regenerator.
  • the regenerator includes a first inlet, a first outlet, a second inlet, and a second outlet.
  • the first inlet and the air compressor The outlet of the turbine is connected to heat the compressed gas and output the compressed gas from the first outlet.
  • the second inlet and the second outlet are respectively connected to the turbine outlet and the outside atmosphere for cooling the working gas flowing out of the turbine and then exhausting the gas turbine system;
  • a fuel cell system including a fuel cell, the first outlet of the regenerator is connected to the fuel cell inlet to provide combustion gas for the fuel cell, and the fuel cell tail gas outlet is connected to the turbine inlet to provide working gas for the turbine;
  • the first outlet of the regenerator is connected to the steam power generation system for providing a heat source for the steam power generation system.
  • the steam power generation system is a steam turbine system
  • the steam turbine system includes a heat exchange unit, a circulating water tank, an engine, and a first generator.
  • the first outlet of the regenerator is connected to the air inlet of the heat exchange unit, and the water inlet of the heat exchange unit is connected to the outlet of the circulating water tank.
  • the water outlet is connected, the steam outlet of the heat exchange unit is connected with the engine to provide working steam for the engine, the engine is connected to the first generator for driving the first generator to generate electricity, and the circulating water tank is connected to the engine for recovering the working steam after performing work.
  • the converted water or water vapor mixture is connected to the air inlet of the heat exchange unit, and the water inlet of the heat exchange unit is connected to the outlet of the circulating water tank.
  • the engine is a single-side intake spring return type piston engine or a double-side intake type piston engine or a horizontally opposed two-cylinder controlled piston engine;
  • the unilateral air intake spring return type piston engine includes:
  • the piston is installed in the cylinder body, one end of the piston rod is connected to the piston, the other end extends out of the cylinder body and is connected to the crank slider mechanism, the crank slider mechanism is connected to the output shaft, and the output shaft is connected to the first generator;
  • the rodless cavity side of the cylinder block is provided with a first air inlet, a first air outlet, the first air inlet is connected to the heat exchange unit, the first air outlet is connected to the circulating water tank, and the cylinder block has a rod cavity.
  • a spring is set on the side to reset the piston after it has done work;
  • the double-side air-intake piston engine includes:
  • the piston is installed in the cylinder body, one end of the piston rod is connected to the piston, the other end extends out of the cylinder body and is connected to the crank slider mechanism, the crank slider mechanism is connected to the output shaft, and the output shaft is connected to the first generator;
  • the rodless cavity side of the cylinder block is provided with a first intake port, a first exhaust port, and the rod cavity side of the cylinder block is provided with a second intake port, a second exhaust port, and a first intake port.
  • the second air inlet and the second air inlet are connected to the heat exchange unit, and the first air outlet and the second air outlet are connected to the circulating water tank;
  • the horizontally opposed dual-cylinder controlled piston engine includes:
  • crank slider mechanism and a first cylinder and a second cylinder opposite to the crank slider mechanism
  • the crank slider mechanism is a double slider structure, which includes a crank, a first slider, a first connecting rod, a second slider, a second connecting rod, and an output shaft;
  • the output shaft is connected to the first generator, and the output shaft passes through Set at the center of the crank, one end of the first connecting rod and one end of the second connecting rod are respectively connected to the two end faces of the crank, and the connecting points are distributed on both sides of the output shaft.
  • the other end of the first connecting rod is connected to the first sliding shaft.
  • the other end of the block and the second connecting rod is connected to the second slider;
  • the first cylinder includes a first cylinder block, a first piston, and a first piston rod.
  • the first piston is installed in the first cylinder block.
  • One end of the first piston rod is connected to the first piston, and the other end extends out of the first cylinder block.
  • And connected with the first slider; the rodless cavity side of the first cylinder block is provided with a first air inlet and a first air outlet, the first air inlet is connected to the heat exchange unit, and the first air outlet is connected to the circulation Water tank
  • the second cylinder includes a second cylinder block, a second piston, a second piston rod, and a second piston rod installed in the second cylinder block.
  • One end of the second piston rod is connected to the second piston, and the other end extends out of the second cylinder cylinder.
  • the second cylinder block is provided with a second air inlet and a second air outlet on the rod cavity side, the second air inlet is connected to the heat exchange unit, and the second air outlet is connected Circulating water tank.
  • the first generator is a linear generator
  • the engine is a single-side intake spring return type piston engine or a double-side intake type piston engine or a horizontally opposed two-cylinder control type piston engine;
  • the unilateral air intake spring return type piston engine includes:
  • the piston is installed in the cylinder body, one end of the piston rod is connected to the piston, and the other end extends out of the cylinder body and is connected to the linear motor;
  • the rodless cavity side of the cylinder block is provided with a first air inlet, a first air outlet, the first air inlet is connected to the heat exchange unit, the first air outlet is connected to the circulating water tank, and the cylinder block has a rod cavity.
  • a spring is set on the side to reset the piston after it has done work;
  • the double-side air-intake piston engine includes:
  • the piston is installed in the cylinder body, one end of the piston rod is connected to the piston, and the other end extends out of the cylinder body and is connected to the linear motor;
  • the rodless cavity side of the cylinder block is provided with a first intake port and a first exhaust port, and the rod cavity side of the cylinder block is provided with a second intake port, a second exhaust port, and a first intake port.
  • the second air inlet and the second air inlet are connected to the heat exchange unit, and the first air outlet and the second air outlet are connected to the circulating water tank;
  • the horizontally opposed dual-cylinder controlled piston engine includes:
  • the first cylinder includes a first cylinder block, a first piston, and a first piston rod.
  • the first piston is installed in the first cylinder block.
  • One end of the first piston rod is connected to the first piston, and the other end extends out of the first cylinder.
  • the cylinder block is connected to the linear first generator end; the rodless cavity side of the first cylinder block is provided with a first intake port and a first exhaust port.
  • the first intake port is connected to the heat exchange unit.
  • An exhaust port is connected to the circulating water tank;
  • the second cylinder includes a second cylinder block, a second piston, a second piston rod, and a second piston rod installed in the second cylinder block.
  • One end of the second piston rod is connected to the second piston, and the other end extends out of the second cylinder cylinder.
  • the second cylinder block is connected to the other end of the linear motor; a second air inlet and a second air outlet are provided on the rod cavity side of the second cylinder block.
  • the second air inlet is connected to the heat exchange unit, and the second air outlet ⁇ Connect the circulating water tank.
  • the steam power generation system is an organic Rankine cycle system
  • the organic Rankine cycle system includes a condenser, an evaporator, a second generator, a turbo expander, and a liquid pump.
  • the first outlet of the regenerator is connected to the air inlet of the evaporator, and the condenser passes through the liquid
  • the pump is connected to the water inlet of the evaporator, the steam outlet of the evaporator is connected with a turboexpander for providing working steam for the turboexpander, and the turboexpander is connected with a second generator for driving the second generator
  • the condenser is connected to a turbo expander for recovering the water or water-steam mixture converted into the working steam after the work is done.
  • the fuel cell system further includes an afterburner
  • the fuel cell tail gas outlet is connected to the afterburner, and the afterburner outlet is connected to the air inlet end of the air pressure impeller.
  • the air pressure impeller is a radial turbine
  • the fuel cell is a solid fuel cell or a proton exchange membrane fuel cell.
  • a cooling module is arranged on the passage between the turbine and the regenerator.
  • a vehicle including the above-mentioned three combined cycle system
  • the steam power generation system of the three-combined cycle system is connected to the heating element in the vehicle, and is used to recover the heat emitted by the heating element.
  • a charging system including the above-mentioned three combined cycle system;
  • the steam power generation system of the three combined cycle system is connected to the heating element in the charging system, and is used to recover the heat emitted by the heating element.
  • the present invention has the following beneficial effects:
  • the three-combined cycle system of gas turbine, fuel cell and steam power generation provided by the present invention is a three-combined system, which can solve the problem of recovery of waste heat of SOFC power generation and exhaust heat of regenerator at the same time. Heat recycling, its recovery efficiency can reach 50%-80%; the steam power generation system in the three-combined system can choose a steam turbine system or an ORC system (organic Rankine cycle system), which has strong versatility.
  • ORC system organic Rankine cycle system
  • the fuel cell needs to react at 900°C-1000°C, which is exactly the temperature at which the gas turbine combustion chamber works. Therefore, the present invention uses a fuel cell to replace the traditional gas turbine combustion chamber. At the same time, the fuel cell can be used as an independent power generation device, can generate a lot of heat, not only plays the role of replacing the combustion chamber, but also can be used as one of the power sources of the circulation system. The fuel cell and the gas turbine system promote each other, and the combined work effect is greater than the superimposed effect of the original systems.
  • Cold start at low temperature is one of the important factors that affect the commercial application of fuel cells.
  • the present invention puts the fuel cell in a complete cycle system, which can make the fuel cell start only when the temperature of the outlet gas from the regenerator reaches an appropriate value. , So that the fuel cell is fully utilized, resources are saved, and the use efficiency is high, which is conducive to commercialization.
  • the three combined cycle system of the present invention can be applied to vehicles or power generation systems.
  • the circulating water of the steam power generation system can further recover the heat of the heating elements in the vehicles or power generation systems, such as engine casings, battery packs, and generators. The heat emitted, etc.
  • FIG. 1 is a working schematic diagram of Embodiment 1 of the circulatory system of the present invention.
  • FIG. 2 is a working schematic diagram of the second embodiment of the circulatory system of the present invention.
  • Figure 3 is a schematic diagram of the engine structure of the present invention.
  • Figure 4 is a second schematic diagram of the engine structure of the present invention.
  • Figure 5 is three schematic diagrams of the engine structure of the present invention.
  • Figure 6 is a fourth schematic diagram of the engine structure of the present invention.
  • Figure 7 is a five schematic diagram of the engine structure of the present invention.
  • Figure 8 is a sixth schematic diagram of the engine structure of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the present invention when the vacuum pump is set in FIG. 5;
  • Fig. 10 is a schematic diagram of the structure of the present invention when the vacuum pump is set in Fig. 8;
  • FIG 11 is a working schematic diagram of Embodiment 3 of the circulatory system of the present invention.
  • Figure 12 is a working schematic diagram of the fourth embodiment of the circulatory system of the present invention.
  • Fig. 13 is a working schematic diagram of Embodiment 5 of the circulatory system of the present invention.
  • This embodiment provides a three combined cycle system of gas turbine, fuel cell and steam power generation. As shown in Figure 1, the three combined cycle system includes:
  • the gas turbine system 1 includes a regenerator 101, an air compressor 102, a turbine 104, and a heuristic integrated motor 103.
  • the regenerator 101 includes a first inlet, a first outlet, a second inlet, and a second outlet.
  • the inlet is connected with the outlet of the air compressor 102 to heat the gas compressed by the air compressor 102 and output it from the first outlet. Temperature, thereby improving the utilization rate of fuel; the other way is connected to the heat exchange unit 302 in the steam power generation system to convert the water in the circulating water tank 301 into steam.
  • the second inlet and the second outlet of the regenerator 101 are respectively communicated with the outlet of the turbine 104 and the outside atmosphere, so as to reduce the temperature of the high-temperature gas flowing out of the turbine 104 and discharge it as tail gas to the outside of the gas turbine system 1.
  • the air compressor 102 When the air compressor 102 is started, it is driven by the heuristic integrated motor 103.
  • the heuristic integrated motor 103 first acts as a motor to drive the air compressor 102 to rotate, and when it is accelerated to be able to operate independently, it acts as a generator to generate electricity.
  • the fuel cell system 2 includes a fuel cell 201.
  • the outlet of the regenerator 101 is connected to the fuel cell 201 to provide the fuel cell 201 with high-temperature gas required for combustion.
  • the fuel cell 201 outputs electrical energy.
  • the high-temperature and high-pressure exhaust produced by the fuel cell 201 drives the turbine 104 to perform work, and the turbine 104 drives the integrated inspiration
  • the motor 103 rotates at a high speed to generate electricity.
  • Steam power generation system select steam turbine system 3, including heat exchange unit 302, circulating water tank 301, engine 303, first generator 304, part of the gas discharged from regenerator 101 is delivered to heat exchange unit 302, while circulating water tank 301 will circulate water It is sent to the heat exchange unit 302.
  • the circulating water absorbs the heat in the exhaust gas and vaporizes in the heat exchange unit 302 to form high-pressure steam.
  • the high-pressure steam enters the engine 303 to drive the first generator 304 to generate electricity.
  • the high-pressure steam becomes atmospheric steam or a water-steam mixture after doing work and enters the circulating water tank 301 to realize recycling.
  • the heat in the exhaust gas of the regenerator 101 is effectively used, and the overall efficiency of the circulation system is improved.
  • the gas flowing out of the first outlet of the regenerator 101 is divided into two paths, one path enters the heat exchange unit 302 of the steam turbine system 3, and the other path enters the fuel cell system 2 to promote the reaction of the fuel cell 201 together with the fuel gas Start and maintain:
  • Part of the gas discharged from the first outlet of the regenerator 101 is delivered to the heat exchange unit 302, while the circulating water tank 301 delivers the circulating water to the heat exchange unit 302.
  • the circulating water absorbs the heat in the exhaust gas and collects
  • the heat exchange unit 302 is vaporized to form high-pressure steam, and the high-pressure steam enters the engine 303 to perform work to drive the first generator 304 to generate electricity.
  • the high-pressure steam becomes atmospheric steam or a water-steam mixture after doing work and enters the circulating water tank 301 to realize recycling.
  • the fuel cell 201 After the fuel cell 201 is started, it gradually generates heat and generates a small amount of electric energy.
  • the exhaust gas generated by the fuel cell 201 flows into the turbine 104.
  • the turbine 104 rotates at a high speed and drives the inspired integrated motor 103 that is converted into a generator to generate electricity.
  • the high-temperature gas is introduced into the regenerator 101 from the second inlet of the regenerator 101, and the cycle is repeated until the fuel cell 201 reacts stably at the optimal temperature.
  • the fuel cell 201 generates heat after startup, and gradually rises to the optimal reaction temperature, and reacts stably at 800-950°C (preferably 900°C) to stably output electric energy; the exhaust gas generated is passed into the turbine 104 The cycle is repeated, and the temperature at the outlet end of the turbine 104 reaches 550°C to 700°C, (preferably, 650°C); the temperature in the regenerator 101 is maintained at 500°C to 600°C.
  • the steam power generation system in the gas turbine, fuel cell, and steam power generation three combined cycle system provided in this embodiment adopts a steam turbine system.
  • the three combined system can simultaneously solve the problem of recovery of SOFC power generation waste heat and regenerator exhaust waste heat.
  • the heat produced in each link is recycled, and its recovery efficiency can reach 50%-80%.
  • an afterburner 202 is added on the basis of the first embodiment.
  • an afterburner 202 can be connected to prevent insufficient combustion.
  • the fuel cell 201 outputs electric energy and part of the incompletely reacted gas is sent to the afterburner 202.
  • the exhaust gas from the outlet of the afterburner 202 is transported to the intake end of the turbine 104, and the turbine 104 rotates at a high speed and drives the inspired integrated motor 103 converted into a generator to generate electricity.
  • the other high-temperature gas is passed through the second inlet of the regenerator 101. Enter the regenerator 101 and repeat the cycle.
  • the afterburner 202 adopts an existing afterburner, such as an afterburner.
  • the gas flowing out of the first outlet of the regenerator 101 is divided into two paths, one path enters the heat exchange unit 302 of the steam turbine system 3, and the other path enters the fuel cell system 2 to promote the reaction of the fuel cell 201 together with the fuel gas Start and maintain:
  • Part of the gas discharged from the first outlet of the regenerator 101 is delivered to the heat exchange unit 302, while the circulating water tank 301 delivers the circulating water to the heat exchange unit 302.
  • the circulating water absorbs the heat in the exhaust gas and collects
  • the heat exchange unit 302 is vaporized to form high-pressure steam, and the high-pressure steam enters the engine 303 to perform work to drive the first generator 304 to generate electricity.
  • the high-pressure steam becomes atmospheric steam or a water-steam mixture after doing work and enters the circulating water tank 301 to realize recycling.
  • the fuel cell 201 After the fuel cell 201 starts, it gradually generates heat and generates a small amount of electric energy.
  • the exhaust gas produced by the fuel cell 201 is passed into the afterburner 202, and the gas discharged from the afterburner 202 flows into the turbine 104, which makes the turbine 104 high speed all the way. It rotates and drives the inspired integrated motor 103 converted into a generator to generate electricity.
  • Another high-temperature gas is passed into the regenerator 101 from the second inlet of the regenerator 101, and the cycle is repeated until the fuel cell 201 reacts stably at the optimal temperature.
  • the fuel cell 201 generates heat after startup, and gradually rises to the optimal reaction temperature, and reacts stably at 800-950°C (preferably 900°C) to stably output electric energy; the exhaust gas generated is passed into the turbine 104 The cycle is repeated, and the temperature at the outlet end of the turbine 104 reaches 550°C to 700°C, (preferably, 650°C); the temperature in the regenerator 101 is maintained at 500°C to 600°C.
  • the afterburner 202 is added to ensure the full combustion of fuel and improve the energy recovery rate.
  • the engine 303 in the first embodiment and the second embodiment of the present invention may adopt a piston engine.
  • the structure of the piston engine can be realized by a variety of structures, for example, but not limited to the following structures.
  • the engine 303 adopts a single-side intake spring return type piston engine 310. As shown in Figure 3, it includes a cylinder block 311, a piston 312, a spring 313, a piston rod 314, a crank slider mechanism 315 and an output shaft 316.
  • the piston 312 is installed in the cylinder block 311, and one end of the piston rod 314 is connected to the piston 312 The other end extends out of the cylinder block 311 and is connected to the crank slider mechanism 315.
  • the crank slider mechanism 315 is connected to the output shaft 316.
  • the rodless cavity side of the cylinder block 311 is provided with a first air inlet 311-1.
  • An exhaust port 311-2, the first intake port 311-1 is connected to the heat exchange unit 302, the first exhaust port 311-2 is connected to the circulating water tank 301, and the output shaft 316 is connected to the first generator 304;
  • a spring 313 is provided on one side of the rod cavity for resetting the piston 312 after working.
  • an on-off valve 321 can be provided between the first intake port 311-1, the first exhaust port 311-2, and the cylinder block 311, and the on-off valve 321 can be controlled according to the specific working state of the piston engine. In order to realize the control of piston engine action.
  • the on-off valve 321 may be a mechanical on-off valve or an electric on-off valve.
  • the electric on-off valve is relatively simple in principle. It only needs to meet the high-frequency on-off, but it needs to be able to withstand higher temperatures and pressures; the mechanical on-off valve needs to combine the movement of its own piston. Interaction between the two, eliminating the frequency limit of program control, but its structure will be a little more complicated.
  • the high-pressure steam enters the rodless cavity of the piston engine from the heat exchange unit 302 through the first air inlet 311-1, pushing the piston 312 to move linearly, and the piston 312 converts the linear motion of the piston 312 through the crank connecting rod mechanism 315
  • the output shaft 316 drives the first generator 304 to generate electricity; after doing work, the spring 313 pushes the piston 312 to reset, and the exhaust gas or steam-water mixture in the rodless cavity of the piston engine passes through the first exhaust port 311- 2 Enter the circulating water tank 301 for recycling.
  • the engine 303 adopts a piston engine 320 with double-side air intake.
  • the spring 313 is omitted, and at the same time, a second air inlet 311-3 and a second air outlet 311-4 are provided on the side of the cylinder block 311 with the rod cavity.
  • the second air inlet 311-3 is connected to the heat exchange unit 302, and the second air outlet 311-4 is connected to the circulating water tank 301.
  • the other structure is the same as that of the first structure, and repeated description and labeling are omitted here.
  • the high-pressure steam enters the rodless cavity of the piston engine from the heat exchange unit 302 through the first air inlet 311-1, pushing the piston 312 to move linearly, and the piston 312 converts the linear motion of the piston 312 through the crank connecting rod mechanism 315
  • the output shaft 316 drives the first generator 304; after doing work, the high-pressure steam enters the rod cavity of the piston engine through the second air inlet 311-3, pushing the piston 312 to the rodless cavity side ,
  • the exhaust gas or steam-water mixture in the rodless cavity of the piston engine enters the circulating water tank 301 through the first exhaust port 311-2, and then enters the next cycle, and the high-pressure steam enters the piston engine through the first intake port 311-1
  • the rodless cavity pushes the piston 312 to do work.
  • the exhaust gas or steam-water mixture in the rod cavity of the piston engine enters the circulating water tank 301 through the second exhaust port 311-4 to circulate.
  • a switch valve may be provided between the first air inlet 311-1, the first air outlet 311-2, the second air inlet 311-3, the second air outlet 311-4 and the cylinder block 311 321.
  • the on-off valve 321 is controlled according to the specific working state of the piston engine to realize the control of the reciprocating movement of the piston engine; the on-off valve 321 may be a mechanical on-off valve or an electric on-off valve.
  • this structure omits the spring, realizes the reciprocating movement of the piston through the intake and exhaust on both sides, improves the reliability of the control of the piston engine, and simplifies the structure.
  • the engine 303 adopts a two-cylinder control piston engine 330 that is horizontally opposed.
  • the dual-cylinder controlled piston engine 330 includes a crank slider mechanism 335 and a first cylinder and a second cylinder that are arranged opposite to the crank slider mechanism 335.
  • the crank slider mechanism 335 is a double slider structure, which includes a crank 335-1, a first slider 335-2, a first connecting rod 335-3, a second slider 335-4, and a second connecting rod 335- 5 and the output shaft 316; the output shaft 316 passes through the center of the crank 335-1, one end of the first connecting rod 335-3 and one end of the second connecting rod 335-5 are respectively connected to the two end faces of the crank 335-1 , And the connecting points are distributed on both sides of the output shaft 316, the other end of the first connecting rod 335-3 is connected to the first slider 335-2, and the other end of the second connecting rod 335-5 is connected to the second slider 335-4 .
  • the first cylinder includes a first cylinder block 331, a first piston 332, and a first piston rod 334.
  • the first piston 332 is installed in the first cylinder block 331.
  • One end of the first piston rod 334 is connected to the first piston 332, and the other One end extends out of the first cylinder block 331 and is connected to the first slider 335-2;
  • the rodless cavity side of the first cylinder block 331 is provided with a first air inlet 311-1 and a first air outlet 311- 2.
  • the first air inlet 311-1 is connected to the heat exchange unit 302, and the first air outlet 311-2 is connected to the circulating water tank 301.
  • the second cylinder includes: a second cylinder block 337, a second piston 338, a second piston rod 339, and a second piston rod 339 are installed in the second cylinder block 337, one end of the second piston rod 338 is connected to the second piston 338, The other end extends out of the second cylinder block 337 and is connected with the second slider 335-4; the second cylinder block 337 is provided with a second intake port 311-3 and a second exhaust port 311 on the side of the rod cavity. -4, the second air inlet 311-3 is connected to the heat exchange unit 302, and the second air outlet 311-4 is connected to the circulating water tank 301.
  • the high-pressure steam enters the rodless cavity of the first cylinder from the heat exchange unit 302 through the first air inlet 311-1, pushing the first piston 332 to move linearly, and the first piston 332 moves the first piston through the crank connecting rod mechanism 335.
  • the linear motion of a piston 332 is transformed into the rotational motion of the output shaft 316, and the output shaft 316 drives the first generator 304; after doing work, the high-pressure steam enters the rod cavity of the second cylinder through the second air inlet 311-3, and pushes the The second piston 338 moves toward the rodless cavity.
  • the exhaust gas or steam-water mixture in the rodless cavity of the first cylinder enters the circulating water tank 301 through the first exhaust port 311-2. After the second cylinder performs work, the high-pressure steam enters the second cylinder again.
  • One cylinder continues to perform work, repeats the cycle, and realizes the continuous work of the output shaft 316.
  • the first piston rod 334 drives the crank 335-1 of the crank slider mechanism 335 to rotate, and the crank 335-1 rotates counterclockwise.
  • the crank 335 -1 simultaneously drives the second piston rod 339 to move.
  • the second piston rod 339 drives the second piston 338 to move to the crank 335-1.
  • the high-pressure steam enters the second cylinder to perform work.
  • 338 drives the second piston rod 339 to move away from the crank 335-1, and the crank 335-1 continues to rotate counterclockwise.
  • the exhaust gas or steam-water mixture in the rodless chamber of the first cylinder passes through the first row
  • the air port 311-2 enters the circulating water tank 301. That is, in the continuous work process, when the intake of the first cylinder is doing work, the second cylinder is exhausted, and when the intake of the second cylinder is doing work, the first cylinder is exhausted, thereby achieving cyclic work.
  • an on-off valve 321 is provided between the first air inlet 311-1, the first air outlet 311-2, the second air inlet 311-3, the second air outlet 311-4 and the cylinder, according to The specific working state of the piston engine controls the on and off of the on-off valve 321 to realize the control of the reciprocating motion of the piston engine.
  • the on-off valve 321 may be a mechanical on-off valve or an electric on-off valve.
  • the inside of the heat exchange unit 302 can be connected to the first air inlet 311-1 and the second air inlet 311-3 through an electromagnetic reversing valve to connect the first air outlet 311-2 and the second row
  • the air port 311-4 is connected to the circulating water tank 301 through an electromagnetic reversing valve, and the actions of the first cylinder and the second cylinder can be controlled by the action control of the electromagnetic reversing valve, making the control of the piston engine simpler and more accurate.
  • the specific structure of the engine 303 is that the cylinder drives the crank connecting rod, that is, the linear reciprocating motion of the piston is converted into the rotational motion of the crank, and then the first generator 304 is driven;
  • the present invention can also use a linear motor, that is, the first generator 304 is a linear generator, and the piston rod is directly connected to the linear motor, and the linear movement of the piston directly drives the linear motor to generate electricity. This can further simplify the overall structure.
  • the specific structure principle is as follows:
  • the engine 303 is a single-side intake spring return type piston engine 310, as shown in Fig. 6, including:
  • the piston 312 is installed in the cylinder block 311, one end of the piston rod 314 is connected to the piston 312, and the other end extends out of the cylinder block 311 and is connected to the first generator 304;
  • the rodless cavity side of the cylinder block 311 is provided with a first intake port 311-1, a first exhaust port 311-2, the first intake port 311-1 is connected to the heat exchange unit 302, and the first exhaust port 311 -2 is connected to the circulating water tank 301, and a spring 313 is provided on the side of the cylinder block 311 with the rod cavity for the reset of the piston 312 after working.
  • the engine 303 is a double-side-intake piston engine 320, as shown in Fig. 7, including:
  • the piston 312 is installed in the cylinder block 311, one end of the piston rod 314 is connected to the piston 312, and the other end extends out of the cylinder block 311 and is connected to the first generator 304;
  • the rodless cavity side of the cylinder block 311 is provided with a first intake port 311-1, a first exhaust port 311-2, and the cylinder block 311 has a rod cavity side with a second intake port 311-3.
  • the second exhaust port 311-4, the first intake port 311-1, the second intake port 311-3 are connected to the heat exchange unit 302, the first exhaust port 311-2, the second exhaust port 311-4 Connect the circulating water tank 301.
  • the engine 303 is a horizontally opposed two-cylinder controlled piston engine 330, as shown in Fig. 8, including:
  • the first cylinder includes a first cylinder block 331, a first piston 332, and a first piston rod 334.
  • the first piston 332 is installed in the first cylinder block 331.
  • One end of the first piston rod 334 is connected to the first piston 332.
  • the other end extends out of the first cylinder block 331 and is connected to one end of the first generator 304;
  • one side of the rodless cavity of the first cylinder block is provided with a first intake port 311-1 and a first exhaust port 311-2 ,
  • the first air inlet 311-1 is connected to the heat exchange unit 302, and the first air outlet 311-2 is connected to the circulating water tank 301;
  • the second cylinder includes a second cylinder block 337, a second piston 338, a second piston rod 339, and a second piston rod 339 installed in the second cylinder block 337.
  • One end of the second piston rod 339 is connected to the second piston 338, and the other One end extends out of the second cylinder block 337 and is connected to the other end of the first generator 304;
  • the second cylinder block 337 is provided with a second intake port 311-3 and a second exhaust port 311- on the side with the rod cavity. 4.
  • the second air inlet 311-3 is connected to the heat exchange unit 302, and the second air outlet 311-4 is connected to the circulating water tank 301.
  • the specific selection of the structure of the power generating device can be optimized according to the working conditions and usage scenarios.
  • a single set of piston engines is provided to drive the operation of the power generating device
  • the present invention can also be provided with multiple sets of piston engines to drive the operation of the power generating device. That is, the piston engines are arranged in multiple groups, and the multiple groups of engines simultaneously drive multiple groups of cranks to rotate, and the multiple groups of cranks are installed on the same output shaft, and the output shaft is connected to the engine. This can improve the operating reliability of the power generation device and at the same time increase the power generation efficiency.
  • the rod cavity of the first cylinder and the rodless cavity of the second cylinder may be connected to the first vacuum pump P1 and the second vacuum pump P2, as shown in FIG. 9 , As shown in Figure 10.
  • the corresponding vacuum pump also starts to work at the same time, pumping the corresponding chamber to a negative pressure state.
  • this embodiment is based on the first embodiment, replacing the steam turbine system 3 of the steam power generation system with the ORC system 4, (that is, the organic Rankine cycle system):
  • the ORC system 4 (ie, organic Rankine cycle system), includes a condenser 401, an evaporator 402, a second generator 403, a turbo expander 404, and a liquid pump 405.
  • the exhaust gas from the first outlet of the regenerator 101 of the gas turbine system 1 is delivered all the way to the fuel cell 201, and the other way is delivered to the evaporator 402.
  • the condenser 401 delivers the condensed water to the evaporator 402 through the liquid pump 405, in the evaporator 402.
  • the condensed water absorbs the heat in the exhaust gas and vaporizes in the evaporator 402 to form high-pressure steam, and the high-pressure steam passes through the turbo expander 404 to drive the second generator 403 to generate electricity.
  • the high-pressure steam becomes atmospheric steam or a water-steam mixture after doing work and enters the condenser 401 to realize recycling. Therefore, the heat in the exhaust gas of the regenerator 101 is effectively used, and the overall efficiency of the cycle is improved.
  • the gas flowing out of the first outlet of the regenerator 101 is divided into two paths, one path enters the evaporator 402 of the ORC system 4, and the other path enters the fuel cell system 2, together with the fuel gas to promote the reaction of the fuel cell 201 to start And maintain:
  • the fuel cell 201 After the fuel cell 201 is started, it gradually generates heat and generates a small amount of electric energy.
  • the exhaust gas generated by the fuel cell 201 flows into the turbine 104.
  • the turbine 104 rotates at a high speed and drives the inspired integrated motor 103 that is converted into a generator to generate electricity.
  • the high-temperature gas is introduced into the regenerator 101 from the second inlet of the regenerator 101, and the cycle is repeated until the fuel cell 201 reacts stably at the optimal temperature.
  • the fuel cell 201 generates heat after startup, and gradually rises to the optimal reaction temperature, and reacts stably at 800-950°C (preferably 900°C) to stably output electric energy; the exhaust gas generated is passed into the turbine 104 The cycle is repeated, and the temperature at the outlet end of the turbine 104 reaches 550°C to 700°C, (preferably, 650°C); the temperature in the regenerator 101 is maintained at 500°C to 600°C.
  • the steam power generation system in the three-combined system of this embodiment selects the ORC system.
  • the three-combined system can simultaneously solve the recovery problems of SOFC power generation waste heat and regenerator exhaust waste heat, and recycle the heat produced by each link in the system.
  • the recovery efficiency can reach 50%-80%.
  • an afterburner 202 is added on the basis of the third embodiment.
  • the afterburner 202 can be connected after the fuel cell 201 to prevent insufficient combustion.
  • the fuel cell 201 outputs electric energy and part of the gas that is not completely reacted is sent to the afterburner 202.
  • the gas from the outlet of the afterburner 202 is transported to the inlet end of the turbine 104, and the turbine 104 rotates at a high speed and drives the inspired integrated motor 103 that is transformed into a generator to generate electricity.
  • the other high-temperature gas is from the second inlet of the regenerator 101 Pass into the regenerator 101 and repeat the cycle.
  • the afterburner 202 adopts an existing afterburner, such as an afterburner.
  • the gas flowing out from the first outlet of the regenerator 101 is divided into two paths, one path enters the evaporator 402 of the ORC system 4, and the other path enters the fuel cell system 2, and together with the fuel gas, it promotes the reaction of the fuel cell 201 to start and maintain:
  • the fuel cell 201 After the fuel cell 201 is started, it gradually generates heat and generates a small amount of electric energy.
  • the exhaust gas generated by the fuel cell is passed into the afterburner 202, and the gas discharged from the afterburner 202 flows into the turbine 104, which makes the turbine 104 rotate at a high speed all the way.
  • the enlightened integrated motor 103 converted into a generator to generate electricity, and another high-temperature gas is passed into the regenerator 101, and the cycle is repeated until the fuel cell 201 reacts stably at the optimal temperature.
  • the fuel cell 201 generates heat after startup, and gradually rises to the optimal reaction temperature, and reacts stably at 800-950°C (preferably 900°C) to stably output electric energy; the exhaust gas generated is passed into the turbine 104 The cycle is repeated, and the temperature at the outlet end of the turbine 104 reaches 550°C to 700°C, (preferably, 650°C); the temperature in the regenerator 101 is maintained at 500°C to 600°C.
  • the afterburner 202 is added to ensure the full combustion of fuel and improve the energy recovery rate.
  • the measure adopted in this embodiment is to install a cooling module 5 on the path between the turbine 104 and the regenerator 101 to appropriately reduce the temperature entering the regenerator 101 to avoid damage to the regenerator 101 due to excessive temperature.
  • the cooling module 5 includes, but is not limited to, a boiler water storage device.
  • the gas in the outlet pipe of the turbine 104 passes through the heating boiler water storage device, which can not only reduce the temperature, but also provide heat for the boiler, thus realizing the effective use of energy.
  • a radial turbine can be selected as the air compressor 102 of the present invention.
  • the fuel cell 201 is a solid fuel cell (such as a carbonate fuel cell) or a proton exchange membrane fuel cell.
  • the gas turbine system 1 further includes a motor casing and a gas turbine casing; wherein the motor casing is arranged on the outer circumference of the inspired integrated motor 103, and the gas turbine casing is arranged in the air
  • the outer periphery of the compressor 102 and the turbine 104 are connected with the motor casing; the housing shell of the fuel cell 201 is connected with the gas turbine casing.
  • the three combined cycle system of the present invention can be applied to vehicles or charging systems to further recover the output produced by the heating elements in the vehicles or charging systems.
  • the above-mentioned circulating water can first recover the heat generated by the driving motor, battery pack, and electrical components in the vehicle, and then enter the heat exchange unit The heat exchange is used to recover the heat emitted by the drive motor, battery pack, and electrical components of the delivery tool, thereby further improving the thermal efficiency of the circulation system of the present invention.
  • the above-mentioned circulating water can first recover the heat generated by the driving motor, battery pack, and electrical components in the charging system, and then enter the heat exchange Unit heat exchange, the charging system can be a charging car, a mobile charging station, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种三联合循环系统,包括:燃气轮机系统(1),包括启发一体式电机(103)、空压机(102)、透平(103)以及回热器(101),所述回热器(101)包括第一进口、第一出口、第二进口、第二出口,所述第一进口与空压机(101)出口连接,所述第二进口、第二出口分别与透平(103)出口以及外界大气连接;燃料电池系统(2),包括燃料电池(201),所述回热器(101)的第一出口连接燃料电池(201)进口用于为燃料电池(201)提供燃烧气体,所述燃料电池(201)尾气出口连接透平(104)进口用于为透平(104)提供做功气体;以及,蒸汽发电系统,所述回热器(101)的第一出口连接蒸汽发电系统用于为蒸汽发电系统提供热源。所述系统可同时解决SOFC发电余热和回热器(101)排气余热的回收问题,将系统中各环节产出的热量循环利用,可提高整个系统的发电和回收效率。

Description

一种三联合循环系统、交通工具、充电系统 技术领域
本发明涉及能量回收及利用技术领域,尤其涉及一种燃气轮机、燃料电池和蒸汽发电三联合循环系统、交通工具、充电系统。
背景技术
在发电系统中,可通过固体氧化物燃料电池进行发电、通过回热器进行热量回收。固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)在高温下(800-1000℃)运行,具有以下特点:不需要使用贵金属催化剂;对燃料的适应性强,能在各种燃料情况下运行;使用全固态组件,不存在漏液、腐蚀问题;可以随意搭建,规模和安装地点灵活等。这些特点使燃料发电效率大大提高。由于反应时含有部分未完全反应的气相燃料,该部分气体本可继续燃烧产生热量,但却经常被当做废气进行排空或者燃烧处理,从而导致能源的浪费,也不利于环境保护。
在微型燃气轮机技术领域,现有技术中通常采用回热器对微型燃气轮机排气的热量进行回收利用,然后将经过回热器的尾气排向大气;然而通过回热器的尾气依旧具有一定的余热,现有技术中,也有对于回热器排出的尾气能量进行回收利用的,通常采用的都是旋转机械,例如涡轮等,以对尾气能量进行回收利用。但是对于小功率的微型燃气轮机,由于回热器排出的尾气温度相对较低,同时尾气量又少,旋转机械无法有效回收这部分能量。
因此,如何提高发电系统中热量循环利用和回收效率以提高发电系统的产电量是本领域技术人员亟需解决的一项技术问题。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种燃气轮机、燃料电池和蒸汽发电三联合循环系统、交通工具、充电系统,可同时解决SOFC发电余热和回热器排气余热的回收问题,将系统中各环节产出的热量循环利用,可提高整个系统的发电和回收效率,同时可集成设置,占用空间小。
本发明的技术方案如下:
根据本发明的一个方面,提供一种三联合循环系统,包括:
燃气轮机系统,包括启发一体式电机、空压机、透平以及回热器,所述回热器包括第一进口、第一出口、第二进口、第二出口,所述第一进口与空压机出口 连接用于加热压缩气体并将压缩气体从第一出口输出,所述第二进口、第二出口分别与透平出口以及外界大气连接用于将从透平流出的做功气体降温后排出燃气轮机系统;
燃料电池系统,包括燃料电池,所述回热器的第一出口连接燃料电池进口用于为燃料电池提供燃烧气体,所述燃料电池尾气出口连接透平进口用于为透平提供做功气体;
以及,蒸汽发电系统,所述回热器的第一出口连接蒸汽发电系统用于为蒸汽发电系统提供热源。
进一步的,所述蒸汽发电系统为汽轮机系统;
所述汽轮机系统包括换热单元、循环水箱、发动机以及第一发电机,所述回热器的第一出口与换热单元进气口连接,所述换热单元的进水口与循环水箱的出水口连接,换热单元的蒸汽出口与发动机连接用于为发动机提供做功蒸汽,所述发动机连接第一发电机用于驱动第一发电机发电,所述循环水箱连接发动机用于回收做功蒸汽做功后转化成的水或者水汽混合物。
进一步的,所述发动机为单侧进气弹簧复位式活塞发动机或双侧进气式活塞发动机或水平对置的双缸控制式活塞发动机;
所述单侧进气弹簧复位式活塞发动机包括:
气缸缸体、活塞、弹簧、活塞杆、曲柄滑块机构以及输出轴;
其中,所述活塞安装于气缸缸体内,活塞杆一端连接活塞,另一端伸出气缸缸体并与曲柄滑块机构连接,曲柄滑块机构连接输出轴,输出轴连接第一发电机;
气缸缸体的无杆腔一侧设置有第一进气口,第一排气口,第一进气口连接换热单元,第一排气口连接循环水箱,气缸缸体的有杆腔一侧设置弹簧,用于活塞做功后的复位;
所述双侧进气式活塞发动机包括:
气缸缸体、活塞、活塞杆、曲柄滑块机构以及输出轴;
其中,所述活塞安装于气缸缸体内,活塞杆一端连接活塞,另一端伸出气缸缸体并与曲柄滑块机构连接,曲柄滑块机构连接输出轴,输出轴连接第一发电机;
气缸缸体的无杆腔一侧设置有第一进气口,第一排气口,气缸缸体的有杆腔一侧设置有第二进气口,第二排气口,第一进气口、第二进气口连接换热单元,第一排气口、第二排气口连接循环水箱;
所述水平对置的双缸控制式活塞发动机包括:
曲柄滑块机构和相对设置于曲柄滑块机构两侧的第一气缸和第二气缸;
其中,曲柄滑块机构为双滑块结构,其包括曲柄、第一滑块、第一连接杆,第二滑块,第二连接杆以及输出轴;输出轴连接第一发电机,输出轴穿设于于曲柄的中心,第一连接的一端、第二连接杆的一端分别连接于曲柄的两个端面,且连接点分布于输出轴的两侧,第一连接杆的另一端连接第一滑块、第二连接杆的另一端连接第二滑块;
第一气缸包括第一气缸缸体,第一活塞,第一活塞杆,第一活塞安装于第一气缸缸体内,第一活塞杆一端连接第一活塞,另一端伸出第一气缸缸体并与第一滑块连接;第一气缸缸体的无杆腔一侧设置有第一进气口、第一排气口,第一进气口连接换热单元,第一排气口连接循环水箱;
第二气缸包括第二气缸缸体、第二活塞、第二活塞杆、第二活塞杆安装于第二气缸缸体内,第二活塞杆一端连接第二活塞,另一端伸出第二气缸缸体并与第二滑块连接;第二气缸缸体的有杆腔一侧设置有第二进气口,第二排气口,第二进气口连接换热单元,第二排气口连接循环水箱。
进一步的,所述第一发电机为直线发电机,所述发动机为单侧进气弹簧复位式活塞发动机或双侧进气式活塞发动机或水平对置的双缸控制式活塞发动机;
所述单侧进气弹簧复位式活塞发动机包括:
气缸缸体、活塞、弹簧、活塞杆;
其中,所述活塞安装于气缸缸体内,活塞杆一端连接活塞,另一端伸出气缸缸体并连接所述直线电机;
气缸缸体的无杆腔一侧设置有第一进气口,第一排气口,第一进气口连接换热单元,第一排气口连接循环水箱,气缸缸体的有杆腔一侧设置弹簧,用于活塞做功后的复位;
所述双侧进气式活塞发动机包括:
气缸缸体、活塞、活塞杆;
其中,所述活塞安装于气缸缸体内,活塞杆一端连接活塞,另一端伸出气缸缸体并连接所述直线电机;
气缸缸体的无杆腔一侧设置有第一进气口,第一排气口,气缸缸体的有杆腔一侧设置有第二进气口,第二排气口,第一进气口、第二进气口连接换热单元, 第一排气口、第二排气口连接循环水箱;
所述水平对置的双缸控制式活塞发动机包括:
第一气缸、第二气缸;
其中,第一气缸包括第一气缸缸体,第一活塞,第一活塞杆,第一活塞安装于第一气缸缸体内,第一活塞杆一端连接第一活塞,另一端伸出第一气缸缸体并与所述直线第一发电机端连接;第一气缸缸体的无杆腔一侧设置有第一进气口、第一排气口,第一进气口连接换热单元,第一排气口连接循环水箱;
第二气缸包括第二气缸缸体、第二活塞、第二活塞杆、第二活塞杆安装于第二气缸缸体内,第二活塞杆一端连接第二活塞,另一端伸出第二气缸缸体并与所述直线电机另一端连接;第二气缸缸体的有杆腔一侧设置有第二进气口,第二排气口,第二进气口连接换热单元,第二排气口连接循环水箱。
进一步的,所述蒸汽发电系统为有机朗肯循环系统;
所述有机朗肯循环系统包括冷凝器、蒸发器、第二发电机、透平膨胀机以及液体泵,所述回热器的第一出口与蒸发器进气口连接,所述冷凝器通过液体泵连接蒸发器的进水口,所述蒸发器的蒸汽出口与透平膨胀机连接用于为透平膨胀机提供做功蒸汽,所述透平膨胀机连接第二发电机用于驱动第二发电机发电,所述冷凝器连接透平膨胀机用于回收做功蒸汽做功后转化成的水或者水汽混合物。
进一步的,所述燃料电池系统还包括补燃器;
所述燃料电池尾气出口连接所述补燃器,所述补燃器出气口连接空压叶轮进气端。
进一步的,所述空压叶轮为径流式涡轮,所述燃料电池为固体燃料电池或质子交换膜燃料电池。
进一步的,所述透平和回热器之间的通路上设置一降温模块。
根据本发明的另一方面,提供一种交通工具,包括上述的三联合循环系统;
所述三联合循环系统的蒸汽发电系统连接交通工具中的发热元件,用于回收发热元件所散发的热量。
根据本发明的另一方面,提供一种充电系统,包括上述的三联合循环系统;
所述三联合循环系统的蒸汽发电系统连接充电系统中的发热元件,用于回收发热元件所散发的热量。
与现有技术相比,本发明具有如下有益效果:
1.本发明提供的燃气轮机、燃料电池和蒸汽发电三联合循环系统是一种三联合系统,其可以同时解决SOFC发电余热和回热器排气余热的回收问题,将系统中各环节产出的热量循环利用,其回收效率可达到50%-80%;该三联合系统中的蒸汽发电系统可选择汽轮机系统或者ORC系统(有机朗肯循环系统),通用性强。
2.燃料电池需要在900℃-1000℃进行反应,这恰好是燃气轮机燃烧室工作时的温度,因此本发明用燃料电池替代了传统的燃气轮机燃烧室。与此同时,燃料电池可以作为独立的发电装置,可以产生大量的热,既起到了替代燃烧室的作用,又可作为循环系统的动力源之一。燃料电池与燃气轮机系统互相促进,联合后的工作效果大于原有各系统各自工作叠加的效果。
3.低温冷启动是影响燃料电池商业化应用的重要因素之一,本发明将燃料电池置于一整套循环系统之中,可以使燃料电池在回热器出气温度达到一个合适的值时才启动,使燃料电池被充分利用,节约资源,使用效率高,利于商业化。
4.本发明的三联合循环系统可应用于交通工具或发电系统中,通过蒸汽发电系统的循环水可进一步回收交通工具或发电系统中发热元件的热量,例如发动机壳体、电池组,发电机散发的热量等。
附图说明
图1是本发明的循环系统实施例一的工作示意图;
图2是本发明的循环系统实施例二的工作示意图;
图3是本发明的发动机结构一示意图;
图4是本发明的发动机结构二示意图;
图5是本发明的发动机结构三示意图;
图6是本发明的发动机结构四示意图;
图7是本发明的发动机结构五示意图;
图8是本发明的发动机结构六示意图;
图9是本发明图5设置真空泵时结构示意图;
图10是本发明图8设置真空泵时结构示意图;
图11是本发明的循环系统实施例三的工作示意图;
图12是本发明的循环系统实施例四的工作示意图;
图13是本发明的循环系统实施例五的工作示意图。
具体实施方式
为了更好的了解本发明的技术方案,下面结合具体实施例、说明书附图对本发明作进一步说明。
实施例一
本实施例提供一种燃气轮机、燃料电池和蒸汽发电三联合循环系统。如图1所示,三联合循环系统包括:
燃气轮机系统1,包括回热器101、空压机102、透平104、启发一体式电机103,所述回热器101包括第一进口、第一出口、第二进口、第二出口,第一进口与空压机102的出口和连通,以加热经空压机102压缩的气体并将其从第一出口输出,该输出分两路,一路通入燃料电池201,提高进入燃料电池201气体的温度,进而提高燃料的利用率;另一路通入蒸汽发电系统中的换热单元302,以将循环水箱301的水转化为蒸汽。回热器101第二进口和第二出口分别与透平104的出口和外界大气连通,以将从透平104流出的高温气体降低温度后作为尾气排出燃气轮机系统1外部。
空压机102启动时由启发一体式电机103带动。所述启发一体式电机103先作为电动机带动空压机102旋转,待加速到能独立运行后则作为发电机发电。
燃料电池系统2,包括燃料电池201。回热器101出口连接至燃料电池201、为燃料电池201提供燃烧所需的高温气体,燃料电池201输出端输出电能,其产生的高温高压尾气推动透平104做功,透平104带动启发一体式电机103高速旋转发电。
蒸汽发电系统:选用汽轮机系统3,包括换热单元302、循环水箱301、发动机303、第一发电机304,回热器101排出的一部分气体输送到换热单元302,同时循环水箱301将循环水输送到换热单元302,在换热单元302内,循环水吸收尾气中的热量并在换热单元302内气化形成高压蒸汽,高压蒸汽进入发动机303做功驱动第一发电机304发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进入循环水箱301,以实现循环利用。从而有效利用了回热器101的排气中的热量,提高循环系统整体效率。
本实施例的循环过程为:
1.启发一体式电机103先作为电动机带动空压机102工作,外界气体通入空压机102,经压缩后从回热器101第一进口通入回热器101内,此时从空压机102 中流出的气体温度为100-300℃,优选地,为200℃。
2.从回热器101第一出口中流出的气体分为两路,一路进入汽轮机系统3的换热单元302中,另一路进入燃料电池系统2中,与燃料气一起促使燃料电池201的反应启动及维持:
1)回热器101第一出口排出的一部分气体输送到换热单元302,同时循环水箱301将循环水输送到换热单元302,在换热单元302内,循环水吸收尾气中的热量并在换热单元302内气化形成高压蒸汽,高压蒸汽进入发动机303做功带动第一发电机304发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进入循环水箱301,以实现循环利用。
2)燃料电池201启动后,逐渐产生热量并产生少部分电能,其产生的尾气通入透平104,一路使透平104高速旋转并带动转化为发电机的启发一体式电机103发电,另一路高温气体从回热器101第二进口通入回热器101内,重复循环直至燃料电池201在最佳温度稳定反应。该步骤中,燃料电池201启动后产生热量,并逐渐升至最佳反应温度,在800-950℃稳定反应,(优选地,为900℃),稳定输出电能;产生的尾气通入透平104重复循环,此时透平104出气端温度达到550℃-700℃,(优选地,为650℃);回热器101中的温度保持在500℃-600℃。
本实施例提供的燃气轮机、燃料电池和蒸汽发电三联合循环系统中的蒸汽发电系统采用汽轮机系统,本三联合系统其可以同时解决SOFC发电余热和回热器排气余热的回收问题,将系统中各环节产出的热量循环利用,其回收效率可达到50%-80%。
实施例二
本实施例是在实施例一的基础上增加了补燃器202。
参见图2,燃料电池201后可以连接补燃器202,以防止燃烧不充分,燃料电池201输出电能、未完全反应的部分气体输送至补燃器202,补燃器202内产生燃烧反应后,尾气自补燃器202出口输送至透平104进气端,一路使透平104高速旋转并带动转化为发电机的启发一体式电机103发电,另一路高温气体从回热器101第二进口通入回热器101内,重复循环。
进一步地,所述补燃器202采用现有补燃装置,如补燃炉等。
本实施例的循环过程为:
1.启发一体式电机103先作为电动机带动空压机102工作,外界气体通入空压机102,经压缩后从回热器101第一进口通入回热器101内,此时从空压机102 中流出的气体温度为100-300℃,优选地,为200℃。
2.从回热器101第一出口中流出的气体分为两路,一路进入汽轮机系统3的换热单元302中,另一路进入燃料电池系统2中,与燃料气一起促使燃料电池201的反应启动及维持:
1)回热器101第一出口排出的一部分气体输送到换热单元302,同时循环水箱301将循环水输送到换热单元302,在换热单元302内,循环水吸收尾气中的热量并在换热单元302内气化形成高压蒸汽,高压蒸汽进入发动机303做功带动第一发电机304发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进入循环水箱301,以实现循环利用。
2)燃料电池201启动后,逐渐产生热量并产生少部分电能,其产生的尾气通入通入补燃器202,补燃器202中排出的气体通入透平104,一路使透平104高速旋转并带动转化为发电机的启发一体式电机103发电,另一路高温气体从回热器101第二进口通入回热器101内,重复循环直至燃料电池201在最佳温度稳定反应。该步骤中,燃料电池201启动后产生热量,并逐渐升至最佳反应温度,在800-950℃稳定反应,(优选地,为900℃),稳定输出电能;产生的尾气通入透平104重复循环,此时透平104出气端温度达到550℃-700℃,(优选地,为650℃);回热器101中的温度保持在500℃-600℃。
本实施例,通过增加补燃器202的方式,以保证燃料的充分燃烧,提高能量回收率。
进一步的,本发明实施例一和实施例二中的发动机303可以采用活塞发动机。活塞发动机的结构可以通过多种结构实现,例如、但不限于以下几种结构。
结构一:
本结构中,发动机303采用单侧进气弹簧复位式活塞发动机310。如图3所示,其包括气缸缸体311,活塞312,弹簧313,活塞杆314,曲柄滑块机构315以及输出轴316,活塞312安装于气缸缸体311内,活塞杆314一端连接活塞312,另一端伸出气缸缸体311并与曲柄滑块机构315连接,曲柄滑块机构315连接输出轴316,气缸缸体311的无杆腔一侧设置有第一进气口311-1,第一排气口311-2,第一进气口311-1连接换热单元302,第一排气口311-2连接循环水箱301,输出轴316连接第一发电机304;气缸缸体311的有杆腔一侧设置有弹簧313,用于活塞312做功后的复位。
作为优选,可在第一进气口311-1,第一排气口311-2、与气缸缸体311之间设置开关阀321,根据活塞发动机的具体工作状态控制开关阀321的通断,以实现对活塞发动机动作的控制。
具体地,开关阀321可以是机械式开关阀或者电动式开关阀。其中电动式开关阀从原理上讲,较为简单,仅需满足高频通断即可,但是其需要能够承受较高的温度和压力;机械式开关阀,则需要结合本身活塞的运动,彼此之间进行联动,省去了程序控制的频率限制,但其结构上会稍复杂一些。
工作状态下,高压蒸汽由换热单元302经第一进气口311-1进入活塞发动机的无杆腔,推动活塞312做直线运动,活塞312通过曲柄连杆机构315将活塞312的直线运动转化为输出轴316的旋转运动,输出轴316带动第一发电机304发电;做功后,弹簧313推动活塞312复位,活塞发动机的无杆腔内的乏气或者汽水混合物经第一排气口311-2进入循环水箱301循环使用。
结构二:
本结构中,发动机303采用双侧进气的活塞发动机320。如图4所示,其在结构一的基础上,省去弹簧313,同时在气缸缸体311的有杆腔一侧设置有第二进气口311-3,第二排气口311-4,第二进气口311-3连接换热单元302,第二排气口311-4连接循环水箱301,其它结构与结构一相同,在此不做重复说明和标注。
工作状态下,高压蒸汽由换热单元302经第一进气口311-1进入活塞发动机的无杆腔,推动活塞312做直线运动,活塞312通过曲柄连杆机构315将活塞312的直线运动转化为输出轴316的旋转运动,输出轴316带动第一发电机304;做功后,高压蒸汽经第二进气口311-3进入活塞发动机的有杆腔,推动活塞312向无杆腔一侧运动,活塞发动机的无杆腔内的乏气或者汽水混合物经第一排气口311-2进入循环水箱301,然后进入下一个循环周期,高压蒸汽经第一进气口311-1进入活塞发动机的无杆腔,推动活塞312做功,活塞发动机有杆腔内的乏气或者汽水混合物经第二排气口311-4进入循环水箱301循环。
作为优选,可在第一进气口311-1,第一排气口311-2、第二进气口311-3,第二排气口311-4与气缸缸体311之间设置开关阀321,根据活塞发动机的具体工作状态控制开关阀321的通断,以实现活塞发动机往复运动的控制;开关阀321可以是机械式开关阀或者电动式开关阀。
本结构与结构一相比,其省去了弹簧,通过两侧进气和排气实现了活塞的往复运动,提高了活塞发动机控制的可靠性,并简化了结构。
结构三:
本结构中,发动机303采用水平对置的双缸控制式活塞发动机330。如图5所示,双缸控制式活塞发动机330包括曲柄滑块机构335和相对设置于曲柄滑块机构335两侧的第一气缸和第二气缸。
其中,曲柄滑块机构335为双滑块结构,其包括曲柄335-1,第一滑块335-2、第一连接杆335-3,第二滑块335-4,第二连接杆335-5以及输出轴316;输出轴316穿设于于曲柄335-1的中心,第一连接杆335-3的一端、第二连接杆335-5的一端分别连接于曲柄335-1的两个端面,且连接点分布于输出轴316的两侧,第一连接杆335-3的另一端连接第一滑块335-2、第二连接杆335-5的另一端连接第二滑块335-4。
第一气缸包括:第一气缸缸体331,第一活塞332,第一活塞杆334,第一活塞332安装于第一气缸缸体331内,第一活塞杆334一端连接第一活塞332,另一端伸出第一气缸缸体331并与第一滑块335-2连接;第一气缸缸体331的无杆腔一侧设置有第一进气口311-1,第一排气口311-2,第一进气口311-1连接换热单元302,第一排气口311-2连接循环水箱301。
第二气缸包括:第二气缸缸体337、第二活塞338、第二活塞杆339、第二活塞杆339安装于第二气缸缸体337内,第二活塞杆338一端连接第二活塞338,另一端伸出第二气缸缸体337并与第二滑块335-4连接;第二气缸缸体337的有杆腔一侧设置有第二进气口311-3,第二排气口311-4,第二进气口311-3连接换热单元302,第二排气口311-4连接循环水箱301。
工作状态下,高压蒸汽由换热单元302经第一进气口311-1进入第一气缸的无杆腔,推动第一活塞332做直线运动,第一活塞332通过曲柄连杆机构335将第一活塞332的直线运动转化为输出轴316的旋转运动,输出轴316带动第一发电机304;做功后,高压蒸汽经第二进气口311-3进入第二气缸的有杆腔,推动第二活塞338向无杆腔一侧运动,第一气缸的无杆腔内的乏气或者汽水混合物经第一排气口311-2进入循环水箱301,第二气缸做功后,高压蒸汽再进入第一气缸继续做功,重复循环,实现输出轴316的连续工作。
在图示结构中,高压蒸汽进入第一气缸做功时,第一活塞杆334带动曲柄滑 块机构335的曲柄335-1旋转,曲柄335-1按逆时针方向旋转,在此过程中,曲柄335-1同时带动第二活塞杆339运动,第二活塞杆339带动第二活塞338向曲柄335-1一侧运动,当其旋转到预定角度后,高压蒸汽进入第二气缸做功时,第二活塞338带动第二活塞杆339向远离曲柄335-1一侧运动,曲柄335-1则继续按逆时针方向旋转,此时,第一气缸的无杆腔内的乏气或者汽水混合物经第一排气口311-2进入循环水箱301。即在连续做功过程中,第一气缸进气做功时,第二气缸排气,第二气缸进气做功时,第一气缸排气,以此实现循环做功。
当然,上述说明只是针对具体工作过程的一个说明,并不构成对本发明的实现过程和其结构的限制。
作为优选,第一进气口311-1,第一排气口311-2、第二进气口311-3,第二排气口311-4与缸体之间设置有开关阀321,根据活塞发动机的具体工作状态控制开关阀321的通断,以实现活塞发动机往复运动的控制。具体地,开关阀321可以是机械式开关阀或者电动式开关阀。
作为优选,可以将换热单元302内与第一进气口311-1、第二进气口311-3之间通过电磁换向阀连接,将第一排气口311-2、第二排气口311-4通过电磁换向阀与循环水箱301连接,通过电磁换向阀的动作控制即可控制第一气缸和第二气缸的动作,使得活塞发动机的控制更为简单和准确。
在结构一、二、三所公开的三种结构中,发动机303的具体结构为气缸带动曲柄连杆的结构,即将活塞的直线往复运动转换为曲柄的旋转运动,然后带动第一发电机304;除上述结构外,本发明也可以使用直线电机,即第一发电机304为直线发电机,将活塞杆直接连接到直线电机,活塞的直线运动直接驱动直线电机发电。这样可进一步简化整体结构。当其使用场景受限不适合上述三种结构的情况下,可以使用以下结构的结构。具体结构原理如下:
结构四:
在本结构中,发动机303为单侧进气弹簧复位式活塞发动机310,如图6所示,包括:
气缸缸体311、活塞312、弹簧313、活塞杆314;
其中,所述活塞312安装于气缸缸体311内,活塞杆314一端连接活塞312,另一端伸出气缸缸体311并连接第一发电机304;
气缸缸体311的无杆腔一侧设置有第一进气口311-1,第一排气口311-2,第 一进气口311-1连接换热单元302,第一排气口311-2连接循环水箱301,气缸缸体311的有杆腔一侧设置弹簧313,用于活塞312做功后的复位。
结构五:
在本结构中,发动机303为双侧进气式活塞发动机320,如图7所示,包括:
气缸缸体311、活塞312、活塞杆314;
其中,所述活塞312安装于气缸缸体311内,活塞杆314一端连接活塞312,另一端伸出气缸缸体311并连接第一发电机304;
气缸缸体311的无杆腔一侧设置有第一进气口311-1,第一排气口311-2,气缸缸体311的有杆腔一侧设置有第二进气口311-3,第二排气口311-4,第一进气口311-1、第二进气口311-3连接换热单元302,第一排气口311-2、第二排气口311-4连接循环水箱301。
结构六:
在本结构中,发动机303为水平对置的双缸控制式活塞发动机330,如图8所示,包括:
第一气缸、第二气缸;
其中,第一气缸包括第一气缸缸体331,第一活塞332,第一活塞杆334,第一活塞332安装于第一气缸缸体331内,第一活塞杆334一端连接第一活塞332,另一端伸出第一气缸缸体331并与第一发电机304一端连接;第一气缸缸体的无杆腔一侧设置有第一进气口311-1、第一排气口311-2,第一进气口311-1连接换热单元302,第一排气口311-2连接循环水箱301;
第二气缸包括第二气缸缸体337、第二活塞338、第二活塞杆339、第二活塞杆339安装于第二气缸缸体337内,第二活塞杆339一端连接第二活塞338,另一端伸出第二气缸缸体337并与第一发电机304另一端连接;第二气缸缸体337的有杆腔一侧设置有第二进气口311-3,第二排气口311-4,第二进气口311-3连接换热单元302,第二排气口311-4连接循环水箱301。
根据上述结构公开的技术,发电装置的结构的具体选择可以根据工况和使用场景做出最优化的选择。
上述6中结构中,均设置了单组的活塞发动机来驱动发电装置的工作,本发明同样可设置多组活塞发动机来驱动发电装置工作。即,活塞发动机设置为多组,多组发动机同时对应驱动多组曲柄旋转,而多组曲柄安装于同一输出轴,输出轴 与发动装置连接。这样可以提高发电装置运行可靠性,同时提高发电效率。
可选地,可以在本发明的图5和图8所示的结构中,在第一气缸的有杆腔和第二气缸的无杆腔连接第一真空泵P1,第二真空泵P2,如图9、图10所示。当第一气缸或者第二气缸做功时,对应的真空泵也同时开始工作,将相应的腔室抽到负压状态。
因为采用的是水蒸汽进行活塞膨胀做功,因此,当背压降低后,即采用抽真空的方法降低排气压力,则做功部分的水蒸汽会有更多的液态水凝结出来,从而产生更多的做功能量,提高整机的发电效率。例如,在第一缸体的有杆腔内的压力为常压时,第一缸体的无杆腔内的蒸汽做功后压力为0.1MPa,而将第一气缸的有杆腔的压力通过真空泵抽到0.005MPa后,两种不同的背压条件,在等熵条件下,0.005MPa背压相比于常压背压,水蒸汽将释放更多的能量,从而将整体的做功效率提高5-8%。
此外,由于本发明中使用循环水来吸收回热器排出的废热,然后推动活塞做功,因此在活塞做功过程中,活塞和缸体之间是不需要添加润滑油和润滑脂的,直接由水润滑即可,因此不需要额外的润滑结构和润滑油供给结构和系统,简化了活塞发动机的结构。
实施例三
参见图11,本实施例是在实施例一的基础上,将蒸汽发电系统的汽轮机系统3更换为ORC系统4,(即有机朗肯循环系统):
ORC系统4,(即有机朗肯循环系统),包括冷凝器401、蒸发器402、第二发电机403、透平膨胀机404,液体泵405。燃气轮机系统1的回热器101第一出口排出气体一路输送到燃料电池201,另一路输送到蒸发器402,同时冷凝器401通过液体泵405将冷凝水输送到蒸发器402,在蒸发器402内,冷凝水吸收尾气中的热量并在蒸发器402内气化形成高压蒸汽,高压蒸汽经过透平膨胀机404带动第二发电机403发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进入冷凝器401,以实现循环利用。从而有效利用了回热器101的排气中的热量,提高循环的整体效率。
本实施例的循环过程为:
1.启发一体式电机103先作为电动机带动空压机102工作,外界气体通入空压机102,经压缩后从回热器101第一进口通入回热器101内,此时从空压机102中流出的气体温度为100-300℃,优选地,为200℃。
2.从回热器101第一出口中流出的气体分为两路,一路进入ORC系统4的蒸发器402中,另一路进入燃料电池系统2中,与燃料气一起促使燃料电池201的反应启动及维持:
1)回热器101第一出口排出的一部分气体输送到蒸发器402,同时冷凝器401通过液体泵405将冷凝水输送到蒸发器402,在蒸发器402内,冷凝水吸收尾气中的热量并在蒸发器402内气化形成高压蒸汽,高压蒸汽经过透平膨胀机404带动第二发电机403发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进入冷凝器401,以实现循环利用。
2)燃料电池201启动后,逐渐产生热量并产生少部分电能,其产生的尾气通入透平104,一路使透平104高速旋转并带动转化为发电机的启发一体式电机103发电,另一路高温气体从回热器101第二进口通入回热器101内,重复循环直至燃料电池201在最佳温度稳定反应。该步骤中,燃料电池201启动后产生热量,并逐渐升至最佳反应温度,在800-950℃稳定反应,(优选地,为900℃),稳定输出电能;产生的尾气通入透平104重复循环,此时透平104出气端温度达到550℃-700℃,(优选地,为650℃);回热器101中的温度保持在500℃-600℃。
本实施例的三联合系统中的蒸汽发电系统选择ORC系统,本三联合系统可以同时解决SOFC发电余热和回热器排气余热的回收问题,将系统中各环节产出的热量循环利用,其回收效率可达到50%-80%。
实施例四
本实施例是在实施例三的基础上增加了补燃器202。
参见图12,燃料电池201后可以连接补燃器202,以防止燃烧不充分,燃料电池201输出电能、未完全反应的部分气体输送至补燃器202,补燃器202内产生燃烧反应后,气体自补燃器202出口输送至透平104进气端,一路使透平104高速旋转并带动转化为发电机的启发一体式电机103发电,另一路高温气体从回热器101的第二进口通入回热器101内,重复循环。
进一步地,所述补燃器202采用现有补燃装置,如补燃炉等。
本实施例的循环过程为:
1.启发一体式电机103先作为电动机带动空压机102工作,外界气体通入空压机102,经压缩后从回热器101的第一进口通入回热器101内,此时从空压机102中流出的气体温度为100-300℃,优选地,为200℃。
2.从回热器101第一出口流出的气体分为两路,一路进入ORC系统4的蒸发器402中,另一路进入燃料电池系统2中,与燃料气一起促使燃料电池201的反应启动及维持:
1)回热器101第一出口排出的一部分气体输送到蒸发器402,同时冷凝器401通过液体泵405将冷凝水输送到蒸发器402,在蒸发器402内,冷凝水吸收尾气中的热量并在蒸发器402内气化形成高压蒸汽,高压蒸汽经过透平膨胀机404带动第二发电机403发电。高压蒸汽做功后成为常压蒸汽或者水汽混合物进入冷凝器401,以实现循环利用。
2)燃料电池201启动后,逐渐产生热量并产生少部分电能,其产生的尾气通入补燃器202,补燃器202中排出的气体通入透平104,一路使透平104高速旋转并带动转化为发电机的启发一体式电机103发电,另一路高温气体通入回热器101内,重复循环直至燃料电池201在最佳温度稳定反应。该步骤中,燃料电池201启动后产生热量,并逐渐升至最佳反应温度,在800-950℃稳定反应,(优选地,为900℃),稳定输出电能;产生的尾气通入透平104重复循环,此时透平104出气端温度达到550℃-700℃,(优选地,为650℃);回热器101中的温度保持在500℃-600℃。
本实施例,通过增加补燃器202的方式,以保证燃料的充分燃烧,提高能量回收率。
实施例五
回热器101可耐受的温度越高,则需选择越耐高温的原材料,工艺更复杂,成本更高,因此可采取适当手段降低通入回热器101的气体温度。
本实施例采用的措施是在透平104和回热器101之间的通路上设置一降温模块5,使进入回热器101的温度适当降低,以免温度过高损坏回热器101。
具体地,该降温模块5包括但不限于锅炉储水装置,透平104出气管内的气体通过加热锅炉储水装置,既可以降低温度,又可以为锅炉提供热量,实现了能量的有效利用,同时保证降温后的气体通入回热器101不至于损坏回热器101,降低了回热器 101成本。
本发明各实施例中,由于燃料电池201所需流量较小,而空压机102可输出的流量较大,因此可选用径流式涡轮作为本发明的空压机102。
本发明各实施例中,燃料电池201为固体燃料电池(如碳酸盐燃料电池)或质子交换膜燃料电池。
作为本发明的一种优选方案,所述燃气轮机系统1还包括电机机匣、燃气轮机机匣;其中,所述电机机匣设置于启发一体式电机103的外周,所述燃气轮机机匣罩设于空压机102和透平104的外周,并与电机机匣连接;所述燃料电池201的容置壳与燃气轮机机匣连接。
本燃气轮机结构中,所有的轴承全部设置在电机机匣内,这样只需保证该机匣内用于设置轴承定子的部位的加工精度即可,在装配时该机匣内用于连接轴承定子的部位通过一次装卡加工即可完成,可见,本结构降低了燃气轮机的加工精度和装配精度,降低了成本,适合工程化批量生产。
本发明的三联合循环系统可应用于交通工具或充电系统中,以进一步回收交通工具或充电系统中的发热元件所产生的产量。
在本发明提供的一种使用该三联合循环系统的交通工具中,上述的循环水可以先对交通工具中的驱动电机,电池组、电器元件所产生的热量先进行回收,后进入换热单元换热,以回收交工工具的驱动电机、电池组、电器元件所散发的热量,进而进一步提高本发明循环系统的热效率。
在本发明还提供的一种使用该三联合循环系统的充电系统中,上述的循环水可以先对充电系统中的驱动电机,电池组、电器元件所产生的热量先进行回收,后进入换热单元换热,该充电系统可以是充电车,移动充电站等。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能。

Claims (10)

  1. 一种三联合循环系统,其特征在于,包括:
    燃气轮机系统,包括启发一体式电机、空压机、透平以及回热器,所述回热器包括第一进口、第一出口、第二进口、第二出口,所述第一进口与空压机出口连接用于加热压缩气体并将压缩气体从第一出口输出,所述第二进口、第二出口分别与透平出口以及外界大气连接用于将从透平流出的做功气体降温后排出燃气轮机系统;
    燃料电池系统,包括燃料电池,所述回热器的第一出口连接燃料电池进口用于为燃料电池提供燃烧气体,所述燃料电池尾气出口连接透平进口用于为透平提供做功气体;
    以及,蒸汽发电系统,所述回热器的第一出口连接蒸汽发电系统用于为蒸汽发电系统提供热源。
  2. 根据权利要求1所述的三联合循环系统,其特征在于,所述蒸汽发电系统为汽轮机系统;
    所述汽轮机系统包括换热单元、循环水箱、发动机以及第一发电机,所述回热器的第一出口与换热单元进气口连接,所述换热单元的进水口与循环水箱的出水口连接,换热单元的蒸汽出口与发动机连接用于为发动机提供做功蒸汽,所述发动机连接第一发电机用于驱动第一发电机发电,所述循环水箱连接发动机用于回收做功蒸汽做功后转化成的水或者水汽混合物。
  3. 根据权利要求2所述的三联合循环系统,其特征在于,所述发动机为单侧进气弹簧复位式活塞发动机或双侧进气式活塞发动机或水平对置的双缸控制式活塞发动机;
    所述单侧进气弹簧复位式活塞发动机包括:
    气缸缸体、活塞、弹簧、活塞杆、曲柄滑块机构以及输出轴;
    其中,所述活塞安装于气缸缸体内,活塞杆一端连接活塞,另一端伸出气缸缸体并与曲柄滑块机构连接,曲柄滑块机构连接输出轴,输出轴连接第一发电机;
    气缸缸体的无杆腔一侧设置有第一进气口,第一排气口,第一进气口连接换热单元,第一排气口连接循环水箱,气缸缸体的有杆腔一侧设置弹簧,用于活塞做功后的复位;
    所述双侧进气式活塞发动机包括:
    气缸缸体、活塞、活塞杆、曲柄滑块机构以及输出轴;
    其中,所述活塞安装于气缸缸体内,活塞杆一端连接活塞,另一端伸出气缸缸体并与曲柄滑块机构连接,曲柄滑块机构连接输出轴,输出轴连接第一发电机;
    气缸缸体的无杆腔一侧设置有第一进气口,第一排气口,气缸缸体的有杆腔一侧设置有第二进气口,第二排气口,第一进气口、第二进气口连接换热单元,第一排气口、第二排气口连接循环水箱;
    所述水平对置的双缸控制式活塞发动机包括:
    曲柄滑块机构和相对设置于曲柄滑块机构两侧的第一气缸和第二气缸;
    其中,曲柄滑块机构为双滑块结构,其包括曲柄、第一滑块、第一连接杆,第二滑块,第二连接杆以及输出轴;输出轴连接第一发电机,输出轴穿设于于曲柄的中心,第一连接的一端、第二连接杆的一端分别连接于曲柄的两个端面,且连接点分布于输出轴的两侧,第一连接杆的另一端连接第一滑块、第二连接杆的另一端连接第二滑块;
    第一气缸包括第一气缸缸体,第一活塞,第一活塞杆,第一活塞安装于第一气缸缸体内,第一活塞杆一端连接第一活塞,另一端伸出第一气缸缸体并与第一滑块连接;第一气缸缸体的无杆腔一侧设置有第一进气口、第一排气口,第一进气口连接换热单元,第一排气口连接循环水箱;
    第二气缸包括第二气缸缸体、第二活塞、第二活塞杆、第二活塞杆安装于第二气缸缸体内,第二活塞杆一端连接第二活塞,另一端伸出第二气缸缸体并与第二滑块连接;第二气缸缸体的有杆腔一侧设置有第二进气口,第二排气口,第二进气口连接换热单元,第二排气口连接循环水箱。
  4. 根据权利要求2所述的三联合循环系统,其特征在于,所述第一发电机为直线发电机,所述发动机为单侧进气弹簧复位式活塞发动机或双侧进气式活塞发动机或水平对置的双缸控制式活塞发动机;
    所述单侧进气弹簧复位式活塞发动机包括:
    气缸缸体、活塞、弹簧、活塞杆;
    其中,所述活塞安装于气缸缸体内,活塞杆一端连接活塞,另一端伸出气缸缸体并连接所述直线电机;
    气缸缸体的无杆腔一侧设置有第一进气口,第一排气口,第一进气口连接换热单元,第一排气口连接循环水箱,气缸缸体的有杆腔一侧设置弹簧,用于活塞 做功后的复位;
    所述双侧进气式活塞发动机包括:
    气缸缸体、活塞、活塞杆;
    其中,所述活塞安装于气缸缸体内,活塞杆一端连接活塞,另一端伸出气缸缸体并连接所述直线电机;
    气缸缸体的无杆腔一侧设置有第一进气口,第一排气口,气缸缸体的有杆腔一侧设置有第二进气口,第二排气口,第一进气口、第二进气口连接换热单元,第一排气口、第二排气口连接循环水箱;
    所述水平对置的双缸控制式活塞发动机包括:
    第一气缸、第二气缸;
    其中,第一气缸包括第一气缸缸体,第一活塞,第一活塞杆,第一活塞安装于第一气缸缸体内,第一活塞杆一端连接第一活塞,另一端伸出第一气缸缸体并与所述直线第一发电机端连接;第一气缸缸体的无杆腔一侧设置有第一进气口、第一排气口,第一进气口连接换热单元,第一排气口连接循环水箱;
    第二气缸包括第二气缸缸体、第二活塞、第二活塞杆、第二活塞杆安装于第二气缸缸体内,第二活塞杆一端连接第二活塞,另一端伸出第二气缸缸体并与所述直线电机另一端连接;第二气缸缸体的有杆腔一侧设置有第二进气口,第二排气口,第二进气口连接换热单元,第二排气口连接循环水箱。
  5. 根据权利要求1所述的三联合循环系统,其特征在于,所述蒸汽发电系统为有机朗肯循环系统;
    所述有机朗肯循环系统包括冷凝器、蒸发器、第二发电机、透平膨胀机以及液体泵,所述回热器的第一出口与蒸发器进气口连接,所述冷凝器通过液体泵连接蒸发器的进水口,所述蒸发器的蒸汽出口与透平膨胀机连接用于为透平膨胀机提供做功蒸汽,所述透平膨胀机连接第二发电机用于驱动第二发电机发电,所述冷凝器连接透平膨胀机用于回收做功蒸汽做功后转化成的水或者水汽混合物。
  6. 根据权利要求1-5任一项所述的三联合循环系统,其特征在于,所述燃料电池系统还包括补燃器;
    所述燃料电池尾气出口连接所述补燃器,所述补燃器出气口连接空压叶轮进气端。
  7. 根据权利要求1-5任一项所述的三联合循环系统,其特征在于,所述空 压叶轮为径流式涡轮,所述燃料电池为固体燃料电池或质子交换膜燃料电池。
  8. 根据权利要求1-5任一项所述的三联合循环系统,其特征在于,所述透平和回热器之间的通路上设置一降温模块。
  9. 一种交通工具,其特征在于,包括权利要求1-8任一项所述的三联合循环系统;
    所述三联合循环系统的蒸汽发电系统连接交通工具中的发热元件,用于回收发热元件所散发的热量。
  10. 一种充电系统,其特征在于,包括权利要求1-8任一项所述的三联合循环系统;
    所述三联合循环系统的蒸汽发电系统连接充电系统中的发热元件,用于回收发热元件所散发的热量。
PCT/CN2020/135898 2019-12-27 2020-12-11 一种三联合循环系统、交通工具、充电系统 WO2021129430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911371256.2A CN111022187A (zh) 2019-12-27 2019-12-27 一种三联合循环系统、交通工具、充电系统
CN201911371256.2 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021129430A1 true WO2021129430A1 (zh) 2021-07-01

Family

ID=70214021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135898 WO2021129430A1 (zh) 2019-12-27 2020-12-11 一种三联合循环系统、交通工具、充电系统

Country Status (2)

Country Link
CN (1) CN111022187A (zh)
WO (1) WO2021129430A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111022187A (zh) * 2019-12-27 2020-04-17 至玥腾风科技集团有限公司 一种三联合循环系统、交通工具、充电系统
CN112502836A (zh) * 2020-11-13 2021-03-16 至玥腾风科技集团有限公司 一种微型燃气轮机联合循环系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001311A2 (en) * 2009-07-03 2011-01-06 Ecole Polytechnique Federale De Lausanne (Epfl) Hybrid cycle sofc - inverted gas turbine with co2 separation
JP2012159031A (ja) * 2011-01-31 2012-08-23 Electric Power Dev Co Ltd ガス化炉ガス利用発電システム
CN103574982A (zh) * 2013-10-29 2014-02-12 清华大学 基于微小型燃气轮机的高效清洁制冷系统
KR101543168B1 (ko) * 2014-07-30 2015-08-07 한국남부발전 주식회사 석탄가스화 기술과 연료전지 기술을 이용한 융합 발전시스템
RU2671821C1 (ru) * 2017-11-14 2018-11-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Устройство электроснабжения собственных нужд энергоблока электростанции
CN109372636A (zh) * 2018-10-30 2019-02-22 中国华能集团清洁能源技术研究院有限公司 一种零碳排放的三循环整体煤气化燃料电池发电系统及方法
CN111022187A (zh) * 2019-12-27 2020-04-17 至玥腾风科技集团有限公司 一种三联合循环系统、交通工具、充电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001311A2 (en) * 2009-07-03 2011-01-06 Ecole Polytechnique Federale De Lausanne (Epfl) Hybrid cycle sofc - inverted gas turbine with co2 separation
JP2012159031A (ja) * 2011-01-31 2012-08-23 Electric Power Dev Co Ltd ガス化炉ガス利用発電システム
CN103574982A (zh) * 2013-10-29 2014-02-12 清华大学 基于微小型燃气轮机的高效清洁制冷系统
KR101543168B1 (ko) * 2014-07-30 2015-08-07 한국남부발전 주식회사 석탄가스화 기술과 연료전지 기술을 이용한 융합 발전시스템
RU2671821C1 (ru) * 2017-11-14 2018-11-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Устройство электроснабжения собственных нужд энергоблока электростанции
CN109372636A (zh) * 2018-10-30 2019-02-22 中国华能集团清洁能源技术研究院有限公司 一种零碳排放的三循环整体煤气化燃料电池发电系统及方法
CN111022187A (zh) * 2019-12-27 2020-04-17 至玥腾风科技集团有限公司 一种三联合循环系统、交通工具、充电系统

Also Published As

Publication number Publication date
CN111022187A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2011058832A1 (ja) エンジン廃熱回収発電ターボシステムおよびこれを備えた往復動エンジンシステム
WO2021129424A1 (zh) 一种微型燃气轮机的联合循环系统、交通工具、充电系统
WO2021129430A1 (zh) 一种三联合循环系统、交通工具、充电系统
WO2022100087A1 (zh) 一种微型燃气轮机联合循环系统
CN111022138A (zh) 一种基于吸收式热泵余热回收的超临界二氧化碳发电系统
WO2021129429A1 (zh) 一种三联合循环系统、交通工具、充电系统
TW200825280A (en) Power generating system driven by a heat pump
US20130277968A1 (en) Stationary Power Plant, in Particular a Gas Power Plant, for Generating Electricity
CN211474267U (zh) 一种微型燃气轮机的联合循环系统、交通工具、充电系统
JP2021513720A (ja) 燃料電池及び可逆熱力学を結合する、エネルギーを生産するアセンブリ
CN106499454A (zh) 动力产生方法和电力产生方法
JP2971378B2 (ja) 水素燃焼ガスタービンプラントおよびその運転方法
US9088188B2 (en) Waste-heat recovery system
CN211777720U (zh) 一种三联合循环系统、交通工具、充电系统
JP5367591B2 (ja) 過給機関の廃熱回収システム
CN212563461U (zh) 一种三联合循环系统、交通工具、充电系统
CN112502801A (zh) 具有多级特斯拉涡轮机的微型燃气轮机联合循环系统
CN106523051A (zh) 动力产生系统和电力产生系统
CN214366252U (zh) 具有串联式特斯拉涡轮机的微型燃气轮机联合循环系统
JP2011038503A (ja) 外燃機関式コージェネシステム
CN205477784U (zh) 一种热电联产装置
CN214366253U (zh) 具有多级特斯拉涡轮机的微型燃气轮机联合循环系统
JP2013007324A (ja) ガスタービン及びガスタービン複合発電設備
CN220302199U (zh) 一种火力发电与压缩空气储能发电联合循环系统
CN116558140B (zh) 一种冷电联供系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907853

Country of ref document: EP

Kind code of ref document: A1