RU2671821C1 - Устройство электроснабжения собственных нужд энергоблока электростанции - Google Patents

Устройство электроснабжения собственных нужд энергоблока электростанции Download PDF

Info

Publication number
RU2671821C1
RU2671821C1 RU2017139486A RU2017139486A RU2671821C1 RU 2671821 C1 RU2671821 C1 RU 2671821C1 RU 2017139486 A RU2017139486 A RU 2017139486A RU 2017139486 A RU2017139486 A RU 2017139486A RU 2671821 C1 RU2671821 C1 RU 2671821C1
Authority
RU
Russia
Prior art keywords
power
auxiliary
power plant
gas
turbine
Prior art date
Application number
RU2017139486A
Other languages
English (en)
Inventor
Руслан Сергеевич Цгоев
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority to RU2017139486A priority Critical patent/RU2671821C1/ru
Application granted granted Critical
Publication of RU2671821C1 publication Critical patent/RU2671821C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J11/00Circuit arrangements for providing service supply to auxiliaries of stations in which electric power is generated, distributed or converted
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Abstract

Изобретение относится к областям электротехники и электроэнергетики и может быть применено на тепловых электростанциях с паротурбинным циклом Ренкина (например, конденсационные электростанции - КЭС), с газотурбинным циклом Брайтона (например, электростанции с газотурбинными установками - ПТУ, на парогазовых электростанциях - ПТУ), использующих газовое топливо, например, традиционный природный газ. Технический результат заключается в повышении эффективности (в повышении общего КПД электростанции) и отдачи электростанции (в увеличении выдачи электроэнергии в энергосистему на величину потребления собственных нужд) и достигается тем, что устройство электроснабжения собственных нужд теплосиловой установки, использующей газовое топливо, содержит контур рабочего тела с блоком нагрева рабочего тела, по первому входу подсоединенного к системе газоснабжения, по второму входу - к системе воздухоподачи, а по выходу соединенного с турбиной с электрогенераторм на валу, выводы статорных обмоток которого подсоединены к энергосистеме и через трансформатор к шинам собственных нужд теплосиловой установки, снабжено блоком топливных элементов, воздухозаборником и инвертором, при этом первый вход блока топливных элементов подсоединен к указанной системе газоснабжения электростанции, второй вход - к воздухозаборнику, а электрический выход через инвертор подсоединен к шинам собственных нужд. 2 з.п. ф-лы, 2 ил.

Description

Изобретение относится к электроэнергетике и может быть применено на тепловых электростанциях с паротурбинным циклом Ренкина (например, конденсационные электростанции - КЭС), с газотурбинным циклом Брайтона (например, электростанции с газотурбинными установками - ГТУ, на парогазовых электростанциях - ПТУ), использующих газовое топливо, например, традиционный природный газ.
Известен аналог - система электроснабжения собственных нужд энергоблока электростанции, которая содержит генератор, линейные выводы обмотки статора которого присоединены через блочный трансформатор к распределительной установке электростанции и через рабочий трансформатор собственных нужд к распределительной установке собственных нужд энергоблока (Неклепаев Б.Н. Электрическая часть электростанций и подстанций.: Учебник для вузов. - 1-е изд., перераб. и доп. - М.: Энергоатомиздат, 1986. - 640 с., с 371, Рис. 8.246).
Однако надежность такой системы электроснабжения собственных нужд энергоблока электростанции в отношении поддержания необходимого уровня напряжения на электроприемниках собственных нужд энергоблока недостаточно высока как во время изменения режима энергоблока, так и во время коротких замыканий в распределительной установке электростанции и прилегающей к ней электрической сети. Кроме того, электроприемники собственных нужд являются дополнительной нагрузкой для генератора, тем самым снижая эффективность и отдачу энергоблока.
Известен прототип - система электроснабжения собственных нужд энергоблока электростанции (Патент РФ №2261511, МПК H02J 3/00, опубл. 20.08.2003), содержащая генератор, линейные выводы обмотки статора которого присоединены через блочный трансформатор к распределительной установке электростанции, и рабочий трансформатор собственных нужд, первичная обмотка которого присоединена к электрической цепи между линейными выводами обмотки статора генератора и первичной обмотки блочного трансформатора, при этом вторичная обмотка рабочего трансформатора собственных нужд присоединена к распределительной установке собственных нужд энергоблока. Кроме того, содержит дополнительный трансформатор собственных нужд, вторичная обмотка которого присоединена к электрической цепи между вторичной обмоткой рабочего трансформатора собственных нужд и распределительной установкой собственных нужд энергоблока. При этом, первичная обмотка дополнительного трансформатора собственных нужд включена последовательно в электрическую цепь или между линейными выводами обмотки статора генератора и местом присоединения первичной обмотки рабочего трансформатора собственных нужд, или последовательно с нейтральными выводами обмотки статора генератора, или между местом присоединения первичной обмотки рабочего трансформатора собственных нужд и линейными выводами первичной обмотки блочного трансформатора, или последовательно с нейтральными выводами первичной обмотки блочного трансформатора, или последовательно между линейными выводами вторичной обмотки блочного трансформатора и распределительной установкой электростанции, или последовательно с нейтральными выводами вторичной обмотки блочного трансформатора.
Недостаток устройства - прототипа заключается в том, что в системе электроснабжения собственных нужд энергоблока электростанции кроме основного рабочего трансформатора собственных нужд использован дополнительный трансформатор собственных, тем самым, увеличивая общие потери, по сравнению с аналогом, еще и на дополнительном трансформаторе системы собственных нужд, что снижает эффективность и отдачу энергоблока.
Техническая задача, решаемая изобретением, состоит в обеспечении электроснабжения собственных нужд электростанции при любых нормальных и аварийных режимах в энергосистеме и на самой электростанции, и как следствие, в повышении надежности работы электростанции.
Технический результат заключается в повышении эффективности и отдачи электростанции и достигается тем, что в устройстве электроснабжения собственных нужд энергоблока электростанции, содержащем генератор, линейные выводы обмотки статора которого присоединены через блочный трансформатор к энергосистеме, и рабочий трансформатор собственных нужд, первичная обмотка которого присоединена к электрической цепи между линейными выводами обмотки статора генератора и первичной обмотки блочного трансформатора, при этом вторичная обмотка рабочего трансформатора собственных нужд присоединена к шинам собственных нужд энергоблока, согласно изобретению, энергоблок электростанции выполнен в виде теплосиловой установки, содержащей систему газоснабжения, контур рабочего тела, турбину с электрическим генератором на валу, и дополнительно снабжено блоком топливных элементов, воздухозаборником, инвертором, при этом первый вход блока топливных элементов подсоединен к системе газоснабжения энергоблока, второй вход - к воздухозаборнику, а электрический выход через инвертор подсоединен к шинам собственных нужд.
Кроме того, в устройстве электроснабжения собственных нужд энергоблока электростанции контур рабочего тела может быть выполнен в виде паротурбинного цикла Ренкина, включающего блок нагрева рабочего тела в виде парогенератора, например, парового котла, турбину в виде паровой турбины, снабженной конденсатором и питательным насосом.
Кроме того, в устройстве электроснабжения собственных нужд энергоблока электростанции, энергоблок может быть выполнен в виде теплосиловой установки, контур рабочего тела которой выполнен в виде газотурбинного цикла Брайтона, включающего систему воздухоподачи в виде компрессора, блок нагрева рабочего тела в виде камеры сгорания топлива и турбину в виде газовой турбины.
Предлагаемое устройство схематично представлено на чертежах. На Фиг. 1 представлена упрощенная схема устройства электроснабжения собственных нужд теплосиловой установки, когда контур рабочего тела выполнен в виде паротурбинного цикла Ренкина.
На Фиг. 2 представлена упрощенная схема устройства электроснабжения собственных нужд теплосиловой установки, когда контур рабочего тела выполнен в виде газотурбинного цикла Брайтона.
Согласно Фиг. 1 устройство электроснабжения собственных нужд теплосиловой установки, использующей газовое топливо, например, природный газ, содержит контур рабочего тела в виде паротурбинного цикла Ренкина (Теплотехника. Учебник для вузов / А.П. Баскаков, Б.В. Берг, О.К. Витт и др.; Под ред. А.П. Баскакова. – М.: Энергоиздат, 1982, стр. 65-71) с блоком 1 нагрева рабочего тела в виде парогенератора, например, парового котла, по первому входу подсоединенного к системе 2 газоснабжения электростанции, по второму входу - к системе 3 воздухоподачи, выполненного, например, в виде вентилятора с фильтрами, а по выходу соединенного с турбиной 4 в виде паровой турбины с электрогенераторм 5 на валу, выводы статорных обмоток которого подсоединены к энергосистеме 6 и через трансформатор 7 к шинам 8 собственных нужд теплосиловой установки, а также блок 9 топливных элементов (Коровин Н.В. Топливные элементы и электрохимические энергоустановки. - М.: Издательство МЭИ, 2005. - 280 с.: ил.), первый вход которого подсоединен к указанной системе 2 газоснабжения, а второй вход к воздухозаборнику 10, выполненного, например, также в виде вентилятора с фильтрами, а электрический выход через инвертор 11 подсоединен к шинам 8 собственных нужд. При этом выход паротурбины 4 по пару (рабочему телу цикла Ренкина) соединен через конденсатор 12 и питательный насос 13 с третьим входом парогенератора 1. К шинам 8 собственных нужд теплосиловой установки также подключены электроприемники 14 собственных нужд. Кроме того, на Фиг. 1 обозначены: 15 - выключатели в электрических цепях соединений элементов устройства, 16 - трансформатор связи электрогенератора 5 с энергосистемой 6, 17 - циркуляционный насос подачи охлаждающей воды в конденсатор 12.
Согласно Фиг. 2 устройство электроснабжения собственных нужд теплосиловой установки, использующей газовое топливо, содержит контур рабочего тела в виде газотурбинного цикла Брайтона (Теплотехника. Учебник для вузов / А.П. Баскаков, Б.В. Берг, О.К. Витт и др.; Под ред. А.П. Баскакова. - М.: Энергоиздат, 1982, стр. 63-65) с блоком 1 нагрева рабочего тела в виде камеры сгорания топлива, по первому входу подсоединенной к системе 2 газоснабжения электростанции, по второму - к системе 3 воздухоподачи, например, в виде компрессора на валу турбины 4, а по выходу (т.е. по продуктам сгорания - рабочему телу цикла Брайтона) соединенной с турбиной 4 в виде газовой турбины с электрогенераторм 5 на валу, выводы статорных обмоток которого подсоединены к энергосистеме 6 и через трансформатор 7 к шинам 8 собственных нужд теплосиловой установки, а также блок 9 топливных элементов, первый вход которого подсоединен к указанной системе 2 газоснабжения, а второй вход к воздухозаборнику 10, выполненного, например, также в виде вентилятора с фильтрами, а электрический выход через инвертор 11 подсоединен к шинам 8 собственных нужд. К шинам 8 собственных нужд теплосиловой установки также подключены электроприемники 14 собственных нужд. Кроме того, на Фиг. 2 обозначены: 15 - выключатели в электрических цепях соединений элементов устройства, 16 - трансформатор связи электрогенератора 5 с энергосистемой 6, 18 - забор компрессором 3 атмосферного воздуха, 19 - сброс турбиной 4 отработавших газов цикла в окружающую среду.
Согласно Фиг. 1 устройство электроснабжения собственных нужд теплосиловой установки работает следующим образом. В парогенератор 1 по первому входу подают газ из системы 2 газоснабжения электростанции, по второму входу подают воздух вентилятором 3 с фильтрами, а через выход подают пар в турбину 4 с электрогенератором 5 на валу. От электрогенератора 5 энергия поступает в энергосистему 6 и через трансформатор 7 к шинам 8 собственных нужд теплосиловой установки. Отработавший пар с выхода турбины 4 через конденсатор 12 питательным насосом 13 возвращают в виде конденсата в парогенератор 1.
На первый вход блока 9 топливных элементов подают газ из той же системы 2 газоснабжения, а на второй вход подают атмосферный воздух вентилятором 10 с фильтрами. Электроэнергию на постоянном токе с выхода блока 9 топливных элементов подают через инвертор 11, а с его выхода переменный ток подают на шины 8 собственных нужд, от которых питаются электроприемники 14 собственных нужд.
Работа устройство электроснабжения собственных нужд теплосиловой установки согласно Фиг. 2 очевидна из описания статики схемы.
Рассмотрим особенности схем устройства - прототипа в виде конденсационной электростанции (КЭС) и предлагаемого устройства согласно Фиг. 1 также в виде конденсационной электростанции (КЭС).
Для блок-схемы КЭС устройства - прототипа различают КПД-брутто, равный
Figure 00000001
где Рг - мощность электрогенератора, QКЭС - тепловая мощность топлива (обычно по низшей теплоте сгорания), отбираемое из системы газоснабжения 2 и подаваемое в топочную камеру (топку) парового котла - парогенератора 1, и КПД-нетто, равный
Figure 00000002
где Рс - мощность, отдаваемая в сеть энергосистемы, kСН - коэффициент собственных нужд (в о.е. - доля от Рг), РСН - мощность собственных нужд КЭС, отбираемая от мощности генератора.
В предлагаемом устройстве вся мощность генератора 5 отдается в сеть энергосистемы 6 (т.е. Ргс), а питание собственных нужд 14 осуществляется от блока топливных элементов 9.
Так как в предлагаемом устройстве мощность по электроэнергии блока 9 топливных элементов равна мощности собственных нужд, т.е.
Figure 00000003
, то для этой схемы КПД-нетто равен:
Figure 00000004
где QТЭ - тепловая мощность топлива, отбираемое из той же системы газоснабжения 2 и подаваемое на вход блока 9 топливных элементов,
Figure 00000005
- общий КПД последовательно включенных блока 9 топливных элементов (по электроэнергии) и инвертора 11,
Figure 00000006
- мощность по электроэнергии на выходе блока 9 топливных элементов и инвертора 11.
Очевидно, граничной точкой эквивалентности режимов устройства - прототипа и предлагаемого устройства являются режимы при выполнении условия
Figure 00000007
Тогда можно записать
Figure 00000008
или после раскрытия:
Figure 00000009
откуда следует вывод, что экономическим обоснованием применения блока 9 топливных элементов по электроэнергии в собственных нуждах КЭС является выполнение условия:
Figure 00000010
В книге по топливным элементам (Коровин Н.В. Топливные элементы и электрохимические энергоустановки. - М.: Издательство МЭИ, 2005, - 280 с.: ил.) на стр. 229 в таблице 9.2 приведены значения КПД по электрической энергии для топливных элементов: с расплав - карбонатным электролитом (РКТЭ) -
Figure 00000011
и с твердооксидным электролитом (ТОТЭ) -
Figure 00000012
. В книге по теплотехнике (Теплотехника: Учебник для вузов / А.П. Баскаков, Б.В. Берг, O.K. Витт и др.: Под ред. А.П. Баскакова. - М.: Энергоиздат, 1982. - 264 с.) на стр. 209 указано, что "…Коэффициент полезного действия современных ТЭС (Теплоэлектростанций) с паровыми турбинами достигает
Figure 00000013
, с газовыми турбинами (ГТУ) не превышает
Figure 00000014
… Коэффициент полезного действия комбинированных установок с паровыми и газовыми турбинами (парогазовых установок - ПТУ) может достигать
Figure 00000015
".
Из сравнения этих известных данных по КПД тепловых электростанций и топливных элементов с очевидностью следует, что, так как в предлагаемом устройстве всегда выполняется обоснованное выше условие:
Figure 00000016
то общий КПД параллельно работающих ТЭС и блока топливных элементов также всегда повышается. Степень повышения КПД зависит от соотношения установленных мощностей собственно ТЭС и собственно блока топливных элементов - с ростом установленной мощности блока топливных элементов растет и общий КПД.
Применение предлагаемого устройства позволяет достичь поставленной технической задачи в повышении надежности работы электростанции, так как при любых режимах, в том числе нормальных и аварийных, в энергосистеме 6 собственные нужды всегда энергообеспечены, за исключением аварий в системе газоснабжения 2. Для последних случаев в принципе можно предусмотреть газгольдеры.
Достигнутый технически результат заключается в повышении эффективности (повышает общий КПД электростанции) и отдачи электростанции (увеличивает выдачу электроэнергии в энергосистему на величину потребления собственных нужд).

Claims (3)

1. Устройство электроснабжения собственных нужд энергоблока электростанции, содержащей генератор, линейные выводы обмотки статора которого присоединены через блочный трансформатор к энергосистеме, и рабочий трансформатор собственных нужд, первичная обмотка которого присоединена к электрической цепи между линейными выводами обмотки статора генератора и первичной обмотки блочного трансформатора, при этом вторичная обмотка рабочего трансформатора собственных нужд присоединена к шинам собственных нужд энергоблока, отличающееся тем, что энергоблок электростанции выполнен в виде теплосиловой установки, содержащей систему газоснабжения, контур рабочего тела, турбину с электрическим генератором на валу, и дополнительно снабжено блоком топливных элементов, воздухозаборником, инвертором, при этом первый вход блока топливных элементов подсоединен к системе газоснабжения энергоблока, второй вход - к воздухозаборнику, а электрический выход через инвертор подсоединен к шинам собственных нужд.
2. Устройство электроснабжения собственных нужд энергоблока электростанции по п. 1, отличающееся тем, что контур рабочего тела выполнен в виде паротурбинного цикла Ренкина, включающего блок нагрева рабочего тела в виде парогенератора, например, парового котла, турбину в виде паровой турбины, снабженной конденсатором и питательным насосом.
3. Устройство электроснабжения собственных нужд энергоблока электростанции по п. 1, отличающееся тем, что энергоблок выполнен в виде теплосиловой установки, контур рабочего тела которой выполнен в виде газотурбинного цикла Брайтона, включающего систему воздухоподачи в виде компрессора, блок нагрева рабочего тела в виде камеры сгорания топлива и турбину в виде газовой турбины.
RU2017139486A 2017-11-14 2017-11-14 Устройство электроснабжения собственных нужд энергоблока электростанции RU2671821C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017139486A RU2671821C1 (ru) 2017-11-14 2017-11-14 Устройство электроснабжения собственных нужд энергоблока электростанции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017139486A RU2671821C1 (ru) 2017-11-14 2017-11-14 Устройство электроснабжения собственных нужд энергоблока электростанции

Publications (1)

Publication Number Publication Date
RU2671821C1 true RU2671821C1 (ru) 2018-11-07

Family

ID=64103486

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017139486A RU2671821C1 (ru) 2017-11-14 2017-11-14 Устройство электроснабжения собственных нужд энергоблока электростанции

Country Status (1)

Country Link
RU (1) RU2671821C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129430A1 (zh) * 2019-12-27 2021-07-01 至玥腾风科技集团有限公司 一种三联合循环系统、交通工具、充电系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1277269A (en) * 1968-10-30 1972-06-07 Siemens Ag A thermal power plant
RU2261511C2 (ru) * 2000-11-21 2005-09-27 Национальный университет "Львивська политехника" Система электроснабжения собственных нужд энергоблока электростанции
RU74963U1 (ru) * 2008-03-11 2008-07-20 Открытое акционерное общество "Сибтехэнерго" Устройство электропитания потребителей собственных нужд и тупиковых потребителей при аварийном снижении частоты в энергосистеме
RU151864U1 (ru) * 2014-05-22 2015-04-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Система электроснабжения собственных нужд электростанции

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1277269A (en) * 1968-10-30 1972-06-07 Siemens Ag A thermal power plant
RU2261511C2 (ru) * 2000-11-21 2005-09-27 Национальный университет "Львивська политехника" Система электроснабжения собственных нужд энергоблока электростанции
RU74963U1 (ru) * 2008-03-11 2008-07-20 Открытое акционерное общество "Сибтехэнерго" Устройство электропитания потребителей собственных нужд и тупиковых потребителей при аварийном снижении частоты в энергосистеме
RU151864U1 (ru) * 2014-05-22 2015-04-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Система электроснабжения собственных нужд электростанции

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129430A1 (zh) * 2019-12-27 2021-07-01 至玥腾风科技集团有限公司 一种三联合循环系统、交通工具、充电系统

Similar Documents

Publication Publication Date Title
Panora et al. Real-world performance of a CERTS microgrid in Manhattan
Veyo et al. Tubular SOFC hybrid power system status
Obara Dynamic-characteristics analysis of an independent microgrid consisting of a SOFC triple combined cycle power generation system and large-scale photovoltaics
US20160006254A1 (en) Serial Hybrid Microgrid with PPSA-mediated interface to Genset and to Non-Dispatchable Power
Veyo et al. Tubular solid oxide fuel cell/gas turbine hybrid cycle power systems—status
KR101028634B1 (ko) 발전소의 출력증강으로 발생한 잉여증기를 이용한 보조발전시스템
RU2687382C1 (ru) Способ работы тепловой электрической станции и устройство для его реализации
Vasant et al. Optimization of solar-wind energy system power for battery charging using MPPT
RU2671821C1 (ru) Устройство электроснабжения собственных нужд энергоблока электростанции
Singh et al. Renewable energy sources integration in micro-grid including load patterns
CN109026223B (zh) 基于燃气内燃机和燃料电池联供的冷热电综合能源集成系统及工作方法
Sangov et al. Three-phase Self-excited Induction Generator for Windmills Analytical Techniques and Experimental Results
Siddaraj et al. Integration of DG systems composed of photovoltaic and a micro-turbine in remote areas
Obara Control of cyclic fluctuations in an independent microgrid by an SOFC triple combined cycle inertia system
JP5932690B2 (ja) コージェネレーション装置
RU2739166C1 (ru) Тепловая электрическая станция с собственными нуждами
Mabe et al. Biomass Free Piston Stirling Engine Generator with PV
Beck A comprehensive solar electric system for remote areas
Borush et al. Development complex efficiency of central heat and power plant (CHPP) on the basis of exergy methodology
Zogogianni et al. Investigation of a waste heat recovery system for a more electric ship
RU139787U1 (ru) Автономный источник электроснабжения
Mozdren et al. The input analysis of parameters and expected operation modes of energetic technologies in technological centre ENET
Kosonen Operation and dynamics of cogeneration in microgrids: Mitigation of the challenges with uninterruptible power systems
CN214506566U (zh) 黑启动电源系统
RU2567112C2 (ru) Система генерирования электрической энергии