CN108954854A - 基于有机朗肯循环的冷热电联产系统 - Google Patents

基于有机朗肯循环的冷热电联产系统 Download PDF

Info

Publication number
CN108954854A
CN108954854A CN201810356962.9A CN201810356962A CN108954854A CN 108954854 A CN108954854 A CN 108954854A CN 201810356962 A CN201810356962 A CN 201810356962A CN 108954854 A CN108954854 A CN 108954854A
Authority
CN
China
Prior art keywords
heat
regenerator
working medium
collector
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810356962.9A
Other languages
English (en)
Inventor
李远哲
周澍楠
高文博
林俊
马明昊
李林兰馨
杨广薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Weihai
Original Assignee
Harbin Institute of Technology Weihai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Weihai filed Critical Harbin Institute of Technology Weihai
Priority to CN201810356962.9A priority Critical patent/CN108954854A/zh
Publication of CN108954854A publication Critical patent/CN108954854A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/08Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using ejectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一种基于有机朗肯循环的冷热电联产系统,该系统分为三个子系统:集热储能子系统、发电制冷子系统和产热子系统。集热储能子系统中,平板集热器串联带空气层的热管式集热器,并与储能器并联;发电制冷子系统中,汽液分离器连接热管集热器,期间从液位传感器和控温器同时工作,控制工质处于最佳过热温度,从控温器流出的工质进入膨胀机,膨胀机的输出端连接喷射器,蒸发器与喷射器高压端相连,喷射器出口与回热器连接,回热器另一端口连通着冷凝器,冷凝器出口一部分与蒸发器连接,另一部分通过阀门与回热器连接,回热器通过阀门与储能器相连。产热子系统中,从回热器流出的工质流入冷凝器冷凝,将热能传递给冷凝水,产生热水。

Description

基于有机朗肯循环的冷热电联产系统
技术领域
本发明是基于船体的有机朗肯循环的冷电热联产系统,尤其是一种降低成本,节能环保的装置。
背景技术
面对当今社会生产力快随发展与能源需求的矛盾,能源的高效利用以及如何针对实际生产有效地利用能源成为我们无法回避的问题。另一方面,能源使用的环保性也成为社会关注的焦点之一。
由于在能源利用率方面的低效,在实际生产中产生了不必要的成本,如果能高效地利用能源,那么在降低成本方面的效果也是可观的,同时,对于能源多种用途的使用还有着较为广阔的发展空间。另一方面,如果能在能源使用的过程中保持环保清洁,从而省去了污染后处理环节,那么将大大地降低成本并符合我国当下的发展政策。
现有传统的制冷循环耗能高,产出较小;有机朗肯循环技术没有高效准确的控制工质处于最佳过热温度,使得循环效率低;传统装置存在集热器成本高,容易损坏,因此不适用于远洋客轮。
发明内容
为了克服现有技术中朗肯循环过程中效率低,成本高并且制冷耗电量大等问题,本发明提供一种新型装置将平板式集热器和带空气层的热管集热器相结合,并加入了基于液位控制系统的控温器,提高了系统工作效率,实现低能耗的冷电热联产,并将该技术应用于远洋客船上,达到节能减排的效果。
本发明解决其技术问题所采用的技术方案是:船用隔热、冷热电联产系统,包括有机朗肯循环集热储能子系统、发电制冷子系统和产热子系统。集热储能子系统包括平板式集热器、带空气层的热管式集热器和储能器;发电制冷子系统包括气液分离器、膨胀机、发电机、控温器、液位传感器、喷射器、蒸发器和回热器;产热子系统包括冷凝器。
上述基于有机朗肯循环冷热电联产系统,集热储能子系统由新型平板集热器、带空气层的热管集热器和储能器组成,新型平板式集热隔热器的最外侧是经过喷砂处理的5mm 低铁高透光钢化玻璃盖板,下面是喷涂选择性吸光材料的,在毛细管网和波纹吸热板间填充10 mm厚的粘合材料,最下面的底板是玻璃胶以及镶嵌式保温胶条等保温材料组成的保温底层;与平板集热器串联的是带空气层的热管式集热器,其最外侧是抛物面反射镜面,镜面中心是玻璃管和套在玻璃管里的金属吸热管;与平板集热器并联的储能器,其内部是装有相变蓄能材料的储液罐,工质流通管道盘绕在储液罐上,方便传热。储能器外部是密封外壳。
上述基于有机朗肯循环冷热电联产系统,发电制冷子系统由气液分离器、膨胀机、发电机、控温器、液位传感器、喷射器、蒸发器和回热器组成。汽液分离器入口连接集热器出口,汽液分离器出口连接控温器第一入口,期间从液位传感器流出的相变材料从控温器第二入口进入,与工质流动方向相反,相互传热,达到相变材料汽液共存的相变温度,即最佳过热温度,最后从控温器第二出口流出,并经过泵C加压流入到液位传感器中,控温器的第一出口连接膨胀机输入端,膨胀机的输出端连接喷射器低压端,蒸发器与喷射器高压端相连,喷射器出口与回热器连接,回热器另一端口连通着冷凝器,冷凝器出口一部分与蒸发器连接,另一部分通过阀门与回热器连接,回热器通过阀门与储能器相连。
上述基于有机朗肯循环冷热电联产系统,产热子系统由冷凝器组成,从回热器流出的工质流入冷凝器冷凝,将热能传递给冷凝水,产生热水。
上述基于有机朗肯循环冷热电联产系统,安装在各管道上的阀门的开合可以影响工质流通路径。
本发明的有益效果是,本发明控温器中采用电子液位控制系统,可以精确有效地控制工质保持在最佳过热温度处,提高系统效率;采用新型平板集热器和带空气层的热管集热器,可以有效降低设备成本,简化制作工艺,延长使用寿命;本装置应用在远洋客船上,将原本传递到船体上面的辐射能进行阻隔和吸收,达到降温的目的,并利用了这部分能量实现冷热电联产,达到节能环保的效果。
附图说明
图1为本发明示意图。
图2为平板集热器的结构示意图。
图3为带空气层的热管式集热器的结构示意图。
图4为喷射器的结构示意图。
具体实施方式
1.不同工况的工作模式
1.1光强适中,阀1、阀门3、阀门5打开,其他阀门关闭,泵A、泵E工作,其他泵不工作。平板集热器吸收(111)太阳能对低温工质进行第二次预热,有空气层的热管集热器(112)对预热后的工质进行高温加热,有机工质定压吸热汽化成为过热蒸汽,经过控温器(118),与其内部相变材料进行换热,达到最佳过热温度,此时高温高压的气态有机工质进入膨胀机(122)做功,并带动发电机(121)发电。膨胀机(122)尾部排出的乏汽,通过从蒸发器(115)流入喷射器的高温高压气体引射进入回热器(119),来自于蒸发器(115)与膨胀机(122)的混合气体在回热器(119)内初步冷却,然后进入冷凝器(116)中等温相变冷凝,冷凝器(116)出口的有机工质一部分经过阀5,然后进入回热器(119)进行第一次预热;另一部分回到蒸发器(115)继续蒸发吸热,实现制冷,并完成一次发电循环。
1.2光强过盛,阀1、阀3、阀4、阀5打开,泵A、泵B、泵E工作。当控温器(118)内相变材料全为气态时,即传感器控制阀7打开、泵B工作,工质把热量传给储能器(113)内储能材料储能。此时,其他环节与1.1工况类似,即平板集热器吸收(111)太阳能对低温工质进行第二次预热,有空气层的热管集热器(112)对预热后的工质进行高温加热,有机工质定压吸热汽化成为过热蒸汽,经过控温器(118),达到最佳过热温度,此时高温高压的气态有机工质进入膨胀机(122)做功,并带动发电机(121)发电。膨胀机(122)尾部排出的乏汽,通过从蒸发器(115)流入喷射器的高温高压气体引射进入回热器(119),来自于蒸发器(115)与膨胀机(122)的混合气体在回热器(119)内初步冷却,然后进入冷凝器(116)中等温相变冷凝,冷凝器(116)出口的有机工质一部分经过阀5,然后进入回热器(119)进行第一次预热;另一部分回到蒸发器(115)继续蒸发吸热,实现制冷,并完成一次发电循环。
1.3光强不足,阀1、阀门3、阀门5打开,其他阀门关闭,泵A、泵C、泵E工作,其他泵不工作。此时,泵C工作,首先使得控温器内相变材料达到相变温度,即工质的最佳过热温度。当传感器检测到控温器内相变材料为汽液共存状态时,泵C停止工作,此时泵A、泵E工作,进入光强适中工作状态。
1.4无光强时,阀2打开,泵A工作。此时,有机工质流过蓄能器(113)进行预热,再经过控温器(118)与相变储能材料进行换热,成为高温气体,高温气体进入膨胀机(122)做功,带动发电机(121)工作,喷射器(120)引射制冷。
2.平板式集热器集热器工作原理
如图2所示,新型集热隔热板由高透光性玻璃盖板(201)、波纹吸热板(202)、粘合材料(203)、毛细管网(204)、保温材料(205)组成。新型平板集热器的玻璃盖板(201)的迎光侧进行了喷砂处理,使得太阳光在此发生漫反射,辐射传递到波纹吸热板(202)。波纹吸热板(202)喷涂选择性吸光材料,太阳辐射经过选择性吸光材料转化为热能,加热工质。波纹板(202)与毛细管(204)之间填充的一层粘合材料(203),其作用是使得热能均匀传递到毛细管(204)内。毛细管(204)作为集热器的高效换热设备,增大了工质的换热面积,提高了集热量。保温材料(205)采用保温胶条,以此来保证集热器(111)的密封性,防止热量散失,降低集热效率。
3.带空气层的热管式集热器工作原理
如图3所示,集热器主要由金属吸热管(403)、玻璃管(401)、抛物面反射镜面(405)构成。太阳辐射首先照射到抛物面反射镜面(405)上,然后由抛物面(405)反射穿过圆柱环玻璃管(401)传到金属吸热管外壁(403),由金属吸热管外壁(403)面的选择性涂层吸收后,将辐射能转换为热能,再经金属吸热管(403)管壁导热后使内壁温度升高,而后通过直接接触传热加热管(407)内流体。
4.集热蓄能系统工作原理
如图1所示,平板式集热器(111)将太阳辐射转化为热能传递给工质,对工质进行预热,预热后的工质流入带空气层的热管集热器(112)进行高温加热,当光照充足时,储能器(113)内储能材料将未利用的太阳能储存起来。
5.发电产热系统工作原理
如图1所示,高温有机工质以气体形式从集热器(111、112)流向膨胀机(122),膨胀机(122)将气体内能转化为机械能带动发电机(121)发电。集热系统(111、112、113)吸收太阳能,将能量传给有机朗肯循环发电系统的有机工质,有机工质定压吸热汽化,形成高温高压有机气体,进入膨胀机(122)做功,带动发电机(121)产电,有机工质通过喷射器(120),流入冷凝器,工质将热能传递给冷却水,冷却水温度升高,可供使用。
6.喷射器制冷原理
如图4所示,喷射器(120)通过压差使得蒸发器(115)内液体汽化,并促使气体循环流动,蒸发器(115)内工质吸收室内热量,达到制冷效果;蒸发器(115)内被抽出的工质与流出回热器(119)的工作蒸汽在混合室(304)内初步混合,经过喉管(305)工作蒸汽和被抽吸气体充分混合, 以减少突然压缩损失和余速动能的损失,混合气体通过末尾处的扩压管(306),压力上升,速度下降,流过回热器(119)及冷凝器(116),液化放热以备进入集热器进行下一次循环。
7.控温器工作原理
如图1所示,控温器(118)通过工质和相变材料相互换热实现控温作用,从汽液分离器(114)流出的气体工质进入控温器(118)第一入口,并从第一出口流出,期间从液位传感器(117)流出的相变材料从控温器第二入口进入,与工质流动方向相反,相互传热,使相变材料及工质均达到相变材料汽液共存的相变温度,即最佳过热温度,最后从控温器第二出口流出,并经过泵C加压流入到液位传感器(117)中。若液位传感器内液体达到最高高度,则表明相变材料全部变为液体,传感器控制阀7打开,液态相变材料流入带空气层的热管集热器(112)中进行加热,变为汽液共存状态,经过阀8再次流入液位传感器,以便使得工质处于最佳过热温度;若液位传感器(117)内液体达到最低高度,即相变材料完全变成气体,则阀6打开,气体流入回热器(119)降温液化,再进入冷凝器(116)二次液化,达到汽液共存状态,并流回液位传感器(117),以便控制工质处于最佳过热温度。

Claims (5)

1.一种基于有机朗肯循环的冷热电联产系统,包括集热储能子系统、发电制冷子系统和产热子系统;其特征在于,集热储能子系统包括成本较低的平板式集热器(111)、带空气层的热管式集热器(112);发电制冷子系统包括防止液体进入膨胀机(122)的气液分离器(114)、控制工质处于最佳过热温度的控温器(118)和液位传感器(117)、产生制冷效果的喷射器(120)和蒸发器(115)。
2.根据权利要求1所述的集热储能子系统,其特征在于,所述新型平板式集热隔热器(111)和带空气层的热管集热器(112)可以降低成本,延长寿命;新型平板式集热隔热器(111)的应用毛细管网(204)、粘合材料(203)、以及保温胶条(205);带空气层的热管式集热器(112),玻璃管(401)和套在玻璃管里的金属吸热管(403)之间冲入适当空气。
3.根据权利要求2所述的发电制冷子系统,其特征在于,气液分离器(114)将液体留在分离器底部,气体可以通过气液分离器出口进入到控温器(118),最终流入膨胀机(122),防止损坏膨胀机(122)。
4.根据权利要求3所述的集热储能子系统,其特征在于,从汽液分离器(114)流出的气体工质进入控温器(118)第一入口,并从第一出口流出,期间与液位传感器(117)中的相变材料相互传热,使相变材料及工质均达到相变材料汽液共存的相变温度,即最佳过热温度。
5.根据权利要求4所述的发电制冷子系统,其特征在于,喷射器(120)通过压差使得蒸发器(115)内液体汽化,并促使气体循环流动,蒸发器(115)内工质吸收室内热量,达到制冷效果;蒸发器(115)内被抽出的工质与流出回热器(119)的工作蒸汽在混合室(304)内初步混合,混合气体通过末尾处的扩压管(306),压力上升,流过回热器(119)及冷凝器(116),液化放热以备进入集热器进行下一次循环。
CN201810356962.9A 2018-04-20 2018-04-20 基于有机朗肯循环的冷热电联产系统 Pending CN108954854A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810356962.9A CN108954854A (zh) 2018-04-20 2018-04-20 基于有机朗肯循环的冷热电联产系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810356962.9A CN108954854A (zh) 2018-04-20 2018-04-20 基于有机朗肯循环的冷热电联产系统

Publications (1)

Publication Number Publication Date
CN108954854A true CN108954854A (zh) 2018-12-07

Family

ID=64498771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810356962.9A Pending CN108954854A (zh) 2018-04-20 2018-04-20 基于有机朗肯循环的冷热电联产系统

Country Status (1)

Country Link
CN (1) CN108954854A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280524A (zh) * 2021-05-31 2021-08-20 哈尔滨工业大学 一种设置有多个喷射器的大温差换热系统
CN114508869A (zh) * 2022-03-07 2022-05-17 郑州轻工业大学 一种太阳能-风能耦合的冷-电联产能源系统
CN115371461A (zh) * 2022-01-26 2022-11-22 昆明理工大学 一种多参数数字可视化的换热系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280524A (zh) * 2021-05-31 2021-08-20 哈尔滨工业大学 一种设置有多个喷射器的大温差换热系统
CN113280524B (zh) * 2021-05-31 2022-06-10 哈尔滨工业大学 一种设置有多个喷射器的大温差换热系统
CN115371461A (zh) * 2022-01-26 2022-11-22 昆明理工大学 一种多参数数字可视化的换热系统
CN114508869A (zh) * 2022-03-07 2022-05-17 郑州轻工业大学 一种太阳能-风能耦合的冷-电联产能源系统

Similar Documents

Publication Publication Date Title
CN106014891B (zh) 一种槽式太阳能联合循环发电系统
CN208578679U (zh) 一种基于塔式定日镜的改良布雷顿光热发电系统
CN106050586A (zh) 基于特征吸收光谱的气体体吸热太阳能发电方法及装置
CN101893327B (zh) 一种太阳能热水热电转换装置
CN106482389B (zh) 一种热电耦合利用太阳能系统及方法
CN205047262U (zh) 基于二次反射聚光吸热技术的超临界二氧化碳发电系统
CN102635462B (zh) 一种太阳能碟式斯特林发动机用蓄热控温装置
CN108954854A (zh) 基于有机朗肯循环的冷热电联产系统
CN207568778U (zh) 一种基于可再生能源的冷热电联供系统
CN107940789A (zh) 一种基于可移动太阳能集热器的新型冷热电联合发电系统
CN108625913A (zh) 一种基于聚光分频光伏光热与双联合朗肯循环技术的分布式冷热电连供系统
CN102817799A (zh) 塔式特斯拉涡轮太阳能发电装置
CN109519243A (zh) 超临界co2和氨水联合循环系统及发电系统
CN107084102A (zh) 一种以二氧化碳为储热及做功工质的槽式太阳能光热发电系统
CN106989431B (zh) 一种塔式太阳能热发电热电联供系统
CN107587984B (zh) 一种基于可再生能源的冷热电联供系统
CN105065217A (zh) 一种适用于炎热干旱地区的太阳能热发电系统及方法
CN207554279U (zh) 一种塔式光热发电系统
CN108361163A (zh) 发电系统
CN204961183U (zh) 一种适用于炎热干旱地区的太阳能热发电系统
CN208749447U (zh) 一种微型燃气轮机
CN207513771U (zh) 发电系统
CN101266088A (zh) 利用柴油机余热驱动的溴化锂吸收式制冷装置
CN200972278Y (zh) 一种直膨式太阳能热泵热水器
CN201705598U (zh) 太阳能热水热电转换装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181207