WO2022099935A1 - 超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料及制备方法和应用 - Google Patents

超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料及制备方法和应用 Download PDF

Info

Publication number
WO2022099935A1
WO2022099935A1 PCT/CN2021/073559 CN2021073559W WO2022099935A1 WO 2022099935 A1 WO2022099935 A1 WO 2022099935A1 CN 2021073559 W CN2021073559 W CN 2021073559W WO 2022099935 A1 WO2022099935 A1 WO 2022099935A1
Authority
WO
WIPO (PCT)
Prior art keywords
geopolymer
toughness
molecular weight
emulsified asphalt
grouting material
Prior art date
Application number
PCT/CN2021/073559
Other languages
English (en)
French (fr)
Inventor
朱兴一
庞亚凤
杜豫川
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Priority to US17/915,490 priority Critical patent/US11981602B2/en
Publication of WO2022099935A1 publication Critical patent/WO2022099935A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/003Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hybrid binders other than those of the polycarboxylate type
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/10Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for raising or levelling sunken paving; for filling voids under paving; for introducing material into substructure
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/10Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
    • E01C7/14Concrete paving
    • E01C7/147Repairing concrete pavings, e.g. joining cracked road sections by dowels, applying a new concrete covering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical field of road engineering materials, in particular to a high-toughness geopolymer grouting material modified by ultra-high molecular weight fiber-emulsified asphalt, and a preparation method and application thereof.
  • cement-based grouting materials are widely used and rapidly developing grouting materials in the field of road engineering. After the cement-based grouting material is injected into the layer to be reinforced, it fills the voids and cements the loose particles by filling, infiltrating, compacting, etc., and forms an integral with the original road structure, thereby restoring the road between the bases, the base and the roadbed. The interlayer continuity between the layers, thereby improving the bearing capacity and strength of the original road, playing a role in treating road diseases and prolonging the service life of the road.
  • grouting materials with traditional Portland cement materials as the main component generally have the characteristics of low early strength, low toughness, and poor durability, which cannot well meet the needs of rapid highway maintenance for rapid construction and rapid restoration of road traffic.
  • CN103232182A discloses a geopolymer/emulsified asphalt composite material and a preparation method thereof, which is mainly composed of the following components in parts by weight: 75-95 parts of geopolymer slurry and 5-25 parts of emulsified asphalt; the Geopolymers are prepared by mixing alkali-excited active materials and modified water glass in a mass ratio of 1:1.
  • the alkali activated active material is one or a mixture of two or more selected from metakaolin, slag and fly ash.
  • the geopolymer/emulsified asphalt composite material in this technical solution is aimed at preparing high-strength materials, and the preparation process needs to involve complex processes such as high-temperature calcination, low-medium-high temperature curing, and compression molding.
  • the construction performance of the material is not mentioned, and it is not suitable for geopolymerization.
  • the purpose of the present invention is to provide a high-toughness geopolymer grouting material modified by ultra-high molecular weight fiber-emulsified asphalt and its preparation method and application in order to overcome the above-mentioned defects in the prior art, so as to solve the problem of the existing grouting material.
  • Technical problems such as poor durability and poor matching of road substrate.
  • the strength and durability of the geopolymer are superior to those of traditional Portland cement, and its raw materials are widely sourced, with high content of active silica and alumina and other components, and the carbon emission low; regarded as one of the most promising materials for emergency engineering applications.
  • the geopolymer can be opened to traffic after curing for 4 hours at room temperature, and the aircraft can take off and land normally after curing for 6 hours. Therefore, geopolymers have unique advantages in rapid repair.
  • emulsified asphalt in order to improve the deficiencies of traditional cement-based grouting materials, emulsified asphalt has the advantages of good economy, normal temperature construction, and good mixing with cement, geopolymer and other materials.
  • the composite material combines the characteristics of cement/geopolymer and asphalt to achieve the effect of combining rigidity and flexibility.
  • they are used as grouting materials to further improve the toughness, durability and compatibility of emulsified asphalt geopolymer grouting materials.
  • the cohesiveness of the road substrate improves the effect of the grouting material.
  • the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer grouting material in the present invention includes the following components in parts by weight:
  • the geopolymer includes a combination of one or more of metakaolin, kaolin, fly ash, and slag.
  • the density of the geopolymer is 2.2-2.7g ⁇ cm -3
  • the elastic modulus is 50-55GPa
  • the tensile strength is 30-190Mpa
  • the compressive strength is 40-120Mpa
  • the breaking energy is 50-1500J ⁇ cm -2 .
  • the emulsified asphalt is a cationic emulsified asphalt
  • the cationic emulsified asphalt is a medium-cracked or slow-cracked cationic emulsified asphalt
  • the sieve balance of the cationic emulsified asphalt is less than or equal to 0.1%
  • the 1d room temperature stability is less than or equal to 1%.
  • the ultra-high molecular weight fiber is polyethylene fiber, its molecular weight is 1-5 million, the ultimate tensile strain is 3%-7%, the fiber length is 6-18mm, the nominal strength is 2900-3800Mpa, and the elastic modulus is 100- 120GPa.
  • the alkali excitation solution is composed of sodium silicate solution and sodium hydroxide particles, wherein the parts by weight are: 11-15 parts of sodium silicate solution and 1-4 parts of sodium hydroxide particles.
  • the preparation method of the high-toughness geopolymer grouting material in the present invention comprises the following steps:
  • step (4) first stir at one third of the rated stirring rate, then add the ultra-high molecular weight fibers into the mixing pot in 2-4 times, and then stir at the rated stirring rate.
  • the 28d flexural strength of the high-toughness geopolymer grouting material obtained in step (5) is 12.8Mpa, and the 28d compressive strength is 37.03Mpa.
  • the present invention has the following technical advantages:
  • the present invention adopts a self-designed mix ratio of ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer, and the addition of cationic emulsified asphalt makes the grouting material have lower temperature sensitivity and better crack resistance. It has the advantages of good permeability and impermeability, and basically matches the elastic modulus of the roadbed material. In addition, the adsorption of emulsified asphalt particles on the surface of the geopolymer hydration product can hinder the progress of hydration to a certain extent, thereby improving the slurry flow retention.
  • the ultra-high-molecular-weight fiber-emulsified asphalt modified high-toughness geopolymer in the present invention incorporates the ultra-high molecular weight fiber into the composite material, which will exhibit the phenomenon of strain hardening and multiple cracking, and has good crack control ability, It can effectively prevent the entry of harmful impurities and water, and improve the durability of the grouting material; at the same time, due to the bridging effect of the fibers, the reinforcement effect of the grouting material is not limited by the mechanical properties of the interface between the ECC and the matrix, and its fatigue life depends on Due to the performance of the grouting material, the matching between the grouting material and the road matrix structure is further improved.
  • the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer provided by the present invention has the advantages of simple and easy preparation steps, low cost, good toughness, early strength, good impermeability, good durability and compatibility with road substrates.
  • the structure is well matched. It can be used in trenchless reinforcement and reinforcement technology for road base, subgrade and pavement slab bottom hollow.
  • the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer grouting material in the present invention is simple to prepare, has good fluidity, and has the characteristics of geopolymer and asphalt that are both rigid and flexible, and is compatible with road substrates
  • the good toughness and crack control ability of ultra-high molecular weight fibers make this new type of grouting material able to overcome the durability problems of ordinary geopolymer-based materials, and can be applied to the hollow of the slab bottom of cement concrete pavements and high-grade highways. in the trenchless reinforcement technology of the base and roadbed.
  • Fig. 1 is the flow chart of the high-toughness geopolymer modified by ultra-high molecular weight fiber-emulsified asphalt in the present invention
  • Fig. 2 is the physical map of the geopolymer specimen prepared in Example 1 during the flexural strength test
  • Fig. 3 is the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer prepared in Examples 2 and 3;
  • Fig. 4 is the parameter diagram that is set in the material thixotropy test in Example 2.
  • Fig. 5 is the test result diagram of fresh slurry thixotropic index of the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer grouting material prepared in Example 2;
  • Fig. 6 is the parameter diagram of the concrete shear control setting of the structural recovery test in embodiment 3.
  • Fig. 7 is the test result diagram of the structural recovery test among the embodiment 3.
  • Fig. 8 is the failure mode diagram of the material in Comparative Example 1;
  • Fig. 9 is a graph showing the thixotropic index test result of fresh grout of the emulsified asphalt modified high-toughness geopolymer grouting material prepared in Comparative Example 2;
  • FIG. 10 is a graph showing the test results of fresh slurry structure recovery of the emulsified asphalt modified high-toughness geopolymer grouting material prepared in Comparative Example 2.
  • the purpose of the present invention is to propose a high-toughness geopolymer modified by ultra-high molecular weight fiber-emulsified asphalt and a preparation method thereof, so as to solve the problems of poor durability of existing grouting materials and road substrates.
  • Technical problems such as poor matching.
  • the geopolymer in the present invention has the characteristics of abundant raw materials, low energy consumption for preparation, low carbon emission, fast hardening and early strength, high temperature resistance, low thermal conductivity, strong corrosion resistance, low permeability and the like; it is regarded as the most potential cement replacement material.
  • the hydration of the geopolymer described in the present invention includes the process of dissolution and complexation, migration and diffusion, concentration polymerization and dehydration hardening of aluminosilicate, specifically:
  • the main components of the geopolymer clinker and the hydration product react with HCl in the emulsified asphalt to generate insoluble double salted hydrated calcium chloroaluminate, forming a geopolymer, a geopolymer hydration product, and an asphalt membrane that interpenetrate each other.
  • Emulsified asphalt-geopolymer hydration reaction in the present invention is:
  • the water glass used in the present invention is one of the important raw materials for preparing gel materials from alkali excited industrial waste residues.
  • Water glass can be divided into sodium water glass and potassium water glass according to the type of alkali metal, and the main components are cinnamon dioxide and alkali metal.
  • Oxides, the molecular formulas are Na 2 O ⁇ nSiO 2 and K 2 O ⁇ nSiO 2 respectively, and n is the modulus of water glass;
  • the sodium silicate solution provided by the present invention is composed of silicon dioxide (SiO 2 ), sodium oxide (Na 2 O) and water (H 2 O), the mass ratio of each part is:
  • the dispersibility of the polyethylene fiber has an important influence on the working performance and mechanical properties of the grouting material.
  • the fibers are mixed by the first mixing method.
  • the geopolymer slurry and the fibers are pre-stirred and added in batches, with slow stirring at first and then rapid stirring.
  • the present invention aims at the current situation of the traditional emulsified asphalt cement-based grouting material with low early strength, insufficient durability and poor matching with the road substrate.
  • the present invention adds ultra High molecular weight fiber to improve the toughness and durability of the grouting material, prevent the entry of harmful impurities and water, improve the matching between the grouting material and the road substrate, and obtain high early strength, good flexibility, and match with the main structure of the road Good performance is especially suitable for trenchless reinforcement and reinforcement technology of roads.
  • the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer provided by the present invention is composed of emulsified asphalt, geopolymer, ultra-high molecular weight fiber, alkali excitation solution and water.
  • the emulsified asphalt combines the sealing water of the asphalt material with the high strength of the geopolymer slurry after solidification; the bridging effect of the ultra-high molecular weight fiber in the hardened grouting material improves the traditional geopolymer-based grouting material.
  • the durability of the grouting material increases the adhesion between the grouting material and the road substrate interface.
  • the invention adopts ultra-high molecular weight fiber, and fully utilizes its strain strengthening and crack control ability as a component of a new type of grouting material.
  • the present invention improves the traditional cement-based grouting material, emulsified asphalt cement-based grouting material and geopolymer-based grouting material, and the provided emulsified asphalt geopolymer grouting material mixed with ultra-high molecular weight fibers has a high performance. It has early strength, good toughness, good durability, and has the effect of combining the rigidity and flexibility of geopolymer and asphalt.
  • the ultra-high molecular weight fibers are added to the geopolymer by a first-blended method to prevent the dispersibility of the fibers from being affected by the adsorption of water in the geopolymer-based slurry.
  • the dispersion of ultra-high molecular weight fibers has an important impact on the working performance and mechanical properties of grouting materials.
  • the fibers are mixed first, and the geological The polymer slurry and the fibers are pre-stirred and added in batches, with slow stirring first and then fast stirring.
  • the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer grouting material provided by the invention has simple preparation steps, easy operation and low cost.
  • This embodiment provides an ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer.
  • the mass components of this material are:
  • Emulsified asphalt 8 parts
  • the emulsified asphalt is a medium-cracked or slow-cracked cationic emulsified asphalt
  • the sieve balance of the cationic emulsified asphalt is less than or equal to 0.1%
  • the 1d room temperature stability is less than or equal to 1%.
  • the geopolymer is metakaolin, and the bulk density is 1.25-1.72 g/cm 3 .
  • the ultra-high molecular weight fiber density was 0.97 g/cm 3
  • the breaking strain was 2-3%
  • the fiber diameter was 20 ⁇ m
  • the length was 6 mm
  • the fiber volume content was 1%.
  • the alkali excitation solution is composed of sodium silicate solution (water glass) and sodium hydroxide particles, and it is characterized in that the mass ratio of each part is:
  • the dispersibility of the ultra-high molecular weight fibers has an important impact on the working performance and mechanical properties of the grouting material.
  • the first mixing method is used to mix the fibers. , firstly pre-stir the geopolymer and fiber, and add it in batches, stirring at a slow speed at first, and then at a rapid speed.
  • the preparation method of the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer in the present implementation comprises the following steps:
  • the alkali excitation solution is prepared according to the established ratio of water glass and sodium hydroxide, and it is sealed and allowed to stand for 24 hours at room temperature to ensure that the sodium hydroxide is fully dissolved;
  • the emulsified asphalt is added and stirred uniformly.
  • the prepared geopolymer specimens showed the macroscopic phenomenon of multiple cracks and microcracks in the flexural strength test, which can improve the durability of traditional grouting materials.
  • This embodiment provides an ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer.
  • the mass components of this material are:
  • Emulsified asphalt 8 parts
  • the preparation method and performance test of the high-toughness cement grouting material in this example are basically the same as those in Example 1.
  • the pumpability of the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer grouting material is analyzed more accurately to verify its feasibility as a grouting material.
  • the thixotropic index of the prepared fresh slurry was determined.
  • the prepared fresh slurry was pre-sheared for 180s at a constant shear rate of 300s -1 ; then, it was allowed to stand for 2min; and then sheared at a constant shear rate of 50s -1 for 30s.
  • the test results of the thixotropy of the fresh slurry of the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer grouting material in this example are shown in Figure 5.
  • the thixotropic index of the material is 1.2244, indicating that it is thixotropic as a grouting material. Good performance.
  • This embodiment provides an ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer.
  • the mass components of this material are:
  • Emulsified asphalt 8 parts
  • the preparation method of the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer of this example is basically the same as that of Example 1.
  • it also includes a test method for the recovery ability of the fresh slurry structure, including the following specific steps:
  • the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer was prepared according to the steps in Example 1;
  • the fresh slurry was sheared at a constant shear rate of 0.01s -1 for 60s, followed by shearing at a constant shear rate of 100s -1 for 30s; finally, it was restored to a shear rate of 0.01s -1 and sheared again for 60s.
  • the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer grouting material prepared by the present invention has good mechanical properties, work performance/rheological properties and durability, and can effectively solve the traditional grouting.
  • the material solves the technical problem of poor void durability at the bottom of cement concrete pavement slabs.
  • the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer grouting material of the present invention has the advantages of early strength, fine multi-crack cracking and good durability.
  • the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer of the present invention has the characteristics of simple and easy preparation steps, low cost, good toughness and good matching with the road matrix structure. It can be used in trenchless reinforcement and reinforcement technology for road base, subgrade and pavement slab bottom hollow.
  • an emulsified asphalt modified high-toughness geopolymer is provided.
  • the mass components of this material are:
  • Emulsified asphalt 8 parts
  • the compressive strength of the composite material prepared in this comparative example is basically the same as that in Example 1, but the flexural strength is significantly lower than that in Example 1, and there is no obvious micro-crack failure during the failure process, but a macroscopic appearance.
  • the brittle failure of the material is easy to cause secondary failure of the material when used as a grouting material. Therefore, its performance is inferior to that of Example 1.
  • the compressive strength of the material in this comparative example is in the range of 30-40 MPa, which is far less than the strength range of 30-80 MPa of the geopolymer/emulsified asphalt composite prepared in CN103232182A, and the same is true for the flexural strength.
  • the reason for this phenomenon is, on the one hand, caused by the difference in material properties and material content, and on the other hand, it is related to the curing conditions of the specimen.
  • the purpose of the present invention is to develop a new type of geopolymer material suitable for road grouting, for which the strength can be appropriately sacrificed to satisfy its construction properties such as thixotropy and structural recovery, and CN103232182A is to prepare a high-strength geopolymer Asphalt/emulsified asphalt composite material, the strength is an important indicator of its concern, which can appropriately sacrifice the workability of the material and increase its strength to a large extent. But it cannot be regarded as an ideal grouting material.
  • This comparative example removes the ultra-high molecular weight fiber component relative to the examples.
  • an emulsified asphalt modified high-toughness geopolymer is provided.
  • the mass components of this material are:
  • Emulsified asphalt 8 parts
  • Alkali challenge solution 90 parts.
  • the test results of the thixotropy test and the structure recovery test of the material are shown in Figure 9 and Figure 10.
  • the thixotropic index and viscosity recovery of the geopolymer-emulsified asphalt material in the comparative example were 1.0085 and 0.2417, respectively. It shows that the thixotropy and structural recovery of the composite material without the addition of ultra-high molecular weight polyethylene fibers are weaker than the material properties in the examples, which means that the preparation of the ultra-high molecular weight fiber-emulsified asphalt modified high-toughness geopolymer in the present invention is better. Suitable as grouting material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Road Paving Structures (AREA)

Abstract

提供了一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料及制备方法和应用,注浆材料的重量组分为:乳化沥青:4-12份,地质聚合物:80-100份,碱激发溶液:103-126份,超高分子量纤维:2-3份,水:30-35份。超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料制备简单、流动性好、兼具地质聚合物和沥青刚柔并济的特点,与道路基体的匹配度好,超高分子量纤维良好的韧性和裂缝控制能力使得这种新型的注浆材料能够克服普通地质聚合物基材料耐久性的问题,可应用于水泥混凝土路面的板底脱空以及高等级公路的基层、路基的非开挖加固技术中。

Description

超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料及制备方法和应用 技术领域
本发明涉及一种道路工程材料技术领域,尤其是涉及一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料及制备方法和应用。
背景技术
道路作为交通运行的主要载体,在反复的行车荷载和复杂自然环境,包括温度、湿度等综合作用的影响下,逐渐出现基层冲刷脱空、路基湿软沉陷、局部强度不足等病害,严重影响着行车舒适性,甚至极大的降低了道路的使用寿命。目前,为解决这一问题常采取的维修养护技术主要涉及罩面处治、开挖重铺和注浆加固等。其中,注浆加固技术由于技术成熟、工艺简单、成本低、快速开放交通等优点,已成为道路非开挖维修补强中的首选技术之一。
水泥基注浆材料是目前道路工程领域应用较为广泛、发展较快的注浆材料。水泥基注浆材料通过将其注入到待加固层后,以充填、渗透、挤密等方式填充脱空空隙并胶结松散颗粒,与原道路结构形成整体,从而恢复道路基层之间、基层与路基之间的层间连续性,进而提高原道路承载能力和强度,起到处治道路病害,延长道路使用寿命的作用。
但是以传统硅酸盐水泥材料为主要成分的注浆材料普遍具有早期强度低、韧性低、耐久性差等特点,无法很好的满足快速施工、迅速恢复道路通行的公路快速养护需求。
CN103232182A公开了一种地质聚合物/乳化沥青复合材料及其制备方法,其主要由以下重量份数的组分组成:75~95份地质聚合物浆体和5~25份乳化沥青;所述的地质聚合物是由碱激发活性材料与改性水玻璃按质量比为1:1混合制备而成。所述的碱激发活性材料为选自偏高岭土、矿渣和粉煤灰中的一种或两种以上的混合物。该技术方案中地质聚合物/乳化沥青复合材料以制备高强材料为目的,制备工艺需要涉及高温煅烧、低中高温养护以及压制成型等复杂工艺,材料的施工性能未提及,不适于作为地质聚合物注浆材料的首选。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料及制备方法和应用,以解决现有的注浆材料耐久性差与道路基体匹配性差等技术问题。
本发明的目的可以通过以下技术方案来实现:
作为本技术方案的技术构思之一,地质聚合物的强度及耐久性能均优于传统硅酸盐水泥,其原料来源广泛,具有高含量的活性氧化硅和氧化铝等组分,且碳排放量低;被视为应用于应急工程最有前途的材料之一。另外,地质聚合物在常温下养护4h即可通车,养护6h飞机可正常进行起降操作。因此,地质聚合物在快速修补方面具有独特优势。
作为本技术方案的技术构思之一,为改善传统水泥基注浆材料的不足,乳化沥青因其经济性好、可常温施工、与水泥、地质聚合物等材料拌和性良好等优点,所制备的复合材料兼备水泥/地质聚合物和沥青特点,达到刚柔并济的效果。此外,考虑到超高分子量纤维极强的极限抗拉能力和裂缝控制能力,将其作为注浆材料中,以进一步提高乳化沥青地质聚合物注浆材料基注浆材料的韧性、耐久性及与道路基体的粘结性,改善注浆材料的作用效果。
本发明中超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料,包括以下重量份的各组分:
Figure PCTCN2021073559-appb-000001
进一步地,所述地质聚合物包括偏高岭土、高岭土、粉煤灰、矿渣中的一种或多种的组合。
进一步地,所述地质聚合物的密度为2.2~2.7g·cm -3,弹性模量为50-55GPa,抗拉强度为30~190Mpa,抗压强度为40~120Mpa,断裂能为50~1500J·cm -2
进一步地,所述乳化沥青为阳离子乳化沥青,所述阳离子乳化沥青为中裂或慢裂型阳离子乳化沥青,所述阳离子乳化沥青的筛上余量≤0.1%,1d常温稳定性≤1%。
进一步地,所述超高分子量纤维为聚乙烯纤维,其分子量为100~500万,极限 拉应变为3%~7%,纤维长度为6~18mm,名义强度2900~3800Mpa,弹性模量100~120GPa。
进一步地,所述碱激发溶液由硅酸钠溶液和氢氧化钠颗粒组成,其中重量份组成为:硅酸钠溶液11-15份,氢氧化钠颗粒1-4份。
本发明中高韧性地质聚合物注浆材料的制备方法,包括以下步骤:
(1)根据组分要求,称量预设量的水玻璃溶液和氢氧化钠,配置碱激发溶液,并静置18~36h;
(2)按照质量组分,称量各原料;
(3)将部分地质聚合物加入水泥净浆搅拌器的拌锅中,开启搅拌机搅拌20~40s后,在拌锅中加入碱激发溶液,继续搅拌1~2min;
(4)将超高分子量纤维分2~4次加入拌锅中,全部加入后快速搅拌至混合均匀,得到地质聚合物基浆液;
(5)向所述地质聚合物基浆液中加入乳化沥青,搅拌均匀,得到高韧性地质聚合物注浆材料。
进一步地,步骤(4)中,先以额定搅拌速率的三分之一进行搅拌,之后将超高分子量纤维分2~4次加入拌锅中,之后以额定搅拌速率进行搅拌。
进一步地,步骤(5)中得到的高韧性地质聚合物注浆材料的28d抗折强度为12.8Mpa,28d抗压强度为37.03Mpa。
本发明中高韧性地质聚合物注浆材料在水泥混凝土路面板底脱空、基层和路基补强加固中的应用,在道路的非开挖加固方面具有广阔的应用前景
与现有技术相比,本发明具有以下技术优势:
1)本发明采用自行设计的一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物配合比,阳离子乳化沥青的加入使得注浆材料具有较低的温度敏感性、较好的抗裂性和防渗性,和路基材料的弹性模量基本匹配等优点。此外,乳化沥青颗粒在地质聚合物水化产物的表面的吸附可在一定程度上阻碍水化的进行,进而提高浆体流动保持性。
2)本发明中的超高分子量纤维-乳化沥青改性的高韧性地质聚合物中掺入超高分子量纤维后的复合材料会表现出应变硬化和多重开裂的现象,具有良好的裂缝控制能力,可有效阻止有害杂质和水的进入,提高了注浆材料的耐久性;同时,由于纤维的桥连作用使得注浆材料的加固效果不受ECC与基体连接界面力学性能的限 制,其疲劳寿命取决于注浆材料的性能,进一步改善了注浆材料与道路基体结构的匹配性。
3)本发明所提供的超高分子量纤维-乳化沥青改性的高韧性地质聚合物具有制备步骤简单易行、成本低廉、韧性好、早强、抗渗性好、耐久性好及与道路基体结构的匹配性好的特点。可用于道路基层、路基和路面板板底脱空的非开挖补强加固技术中。
4)乳化沥青的掺入将沥青材料的封水性与地质聚合物浆体凝固后的高强度予以结合;超高分子量纤维在硬化后的注浆材料的桥接作用,提高了传统地质聚合物注浆材料的耐久性,增加了注浆材料与道路基体界面间的粘结力。
5)本发明中的超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料制备简单、流动性好、兼具地质聚合物和沥青刚柔并济的特点,与道路基体的匹配度好,超高分子量纤维良好的韧性和裂缝控制能力使得这种新型的注浆材料能够克服普通地质聚合物基材料耐久性的问题,可应用于水泥混凝土路面的板底脱空以及高等级公路的基层、路基的非开挖加固技术中。
附图说明
图1为本发明中超高分子量纤维-乳化沥青改性的高韧性地质聚合物流程图;
图2为实施例1制备的地质聚合物试件在抗折强度测试时的实物图;
图3为实施例2和3中制备的超高分子量纤维-乳化沥青改性的高韧性地质聚合物;
图4为实施例2中材料触变性测试中设置的参数图;
图5为实施例2制备的超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料新鲜浆液触变指数测试结果图;
图6为实施例3中结构恢复试验的具体剪切控制设置的参数图;
图7为实施例3中结构恢复试验的测试结果图;
图8为对比例1中材料的破坏形式图;
图9为对比例2制备的乳化沥青改性的高韧性地质聚合物注浆材料新鲜浆液触变指数测试结果图;
图10为对比例2制备的乳化沥青改性的高韧性地质聚合物注浆材料新鲜浆液结构恢复测试结果图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
针对现有技术中存在的不足,本发明的目的在于提出一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物及其制备方法,以解决现有的注浆材料耐久性差与道路基体匹配性差等的技术问题。
本发明中地质聚合物具有原料丰富,制备能耗低,碳排放量低;快硬早强;耐高温,热导率低;耐腐蚀性强;低渗透性等特点;被视为最有潜力的水泥替代材料。
本发明中所述地质聚合物的水化包括铝硅酸盐的溶解络合、迁移扩散、浓缩聚合和脱水硬化过程,具体为:
Al 2SiO 3(OH) 4+3H 2O+4NaOH-Na 2O·nSiO 2
→2[Al(OH) 4] -+2[SiO(OH) 3]+4Na +
Al-Si-O+MOH+NaSiO 3
→Al-Si-O+[M x(AlO) 2Y·(SiO 2) 2·nMOH·mH 2O]
→Al-Si-O[M x(AlO 2) Y·(SiO 2) 2·nMOH·mH 2O]
本发明中地质聚合物熟料主要成份及水化产物与乳化沥青中HCl反应生成不溶性复盐水化氯铝酸钙,形成一种地质聚合物、地质聚合物水化产物、沥青膜三者相互贯穿的无机-有机复合结构产物的过程。
本发明中乳化沥青-地质聚合物水化反应为:
3CaO·Al 2O 3+9CaCl 2+90H 2O=3CaO·Al 2O 3·3CaCl 2·30H 2O
3Ca(OH) 2+CaCl 2+12H 2O=CaCl 2·3Ca(OH) 2·12H 2O
本发明中采用的水玻璃是碱激发工业废渣制备凝胶材料的重要原料之一,水玻璃可根据碱金属的种类分为钠水玻璃和钾水玻璃,主要成分是二氧化桂和碱性金属氧化物,分子式分别为Na 2O·nSiO 2和K 2O·nSiO 2,n为水玻璃模数;本发明所提供的硅酸钠溶液由二氧化硅(SiO 2),氧化钠(Na 2O)和水(H 2O)组成,各部分的质量比例为:
二氧化硅:20-30份
氧化钠:5-15份
水:65-69份
本发明中聚乙烯纤维的分散性重要影响注浆材料的工作性能和力学性能,在超 高分子量纤维-乳化沥青改性的高韧性地质聚合物浆液制作中,采用先掺法掺入纤维,先将地质聚合物浆液与纤维进行预搅拌,并采用分批加入的方式,先慢速搅拌,后快速搅拌。
本发明针对传统的乳化沥青水泥基注浆材料早期强度低、耐久性不足和与道路基体匹配性差的的现状,为改善注浆材料的耐久性,本发明通过在传统的注浆材料中加入超高分子量纤维,以提高注浆材料的韧性和耐久性,防止有害杂质和水的进入,以改善注浆材料与道路基体的匹配性,得到早期强度高、柔韧性好、与路面主体结构的匹配性好的特别适用于道路的非开挖补强加固技术中。
本发明提供的超高分子量纤维-乳化沥青改性的高韧性地质聚合物,由乳化沥青、地质聚合物、超高分子量纤维、碱激发溶液和水组成。所述的乳化沥青将沥青材料的封水性与地质聚合物浆体凝固后的高强度予以结合;超高分子量纤维在硬化后的注浆材料的桥接作用,提高了传统地质聚合物基注浆材料的耐久性,增加了注浆材料与道路基体界面间的粘结力。
本发明采用超高分子量纤维,充分利用其应变强化和裂缝控制能力作为新型注浆材料的组分。
本发明改善了传统的水泥基注浆材料、乳化沥青水泥基注浆材料以及地质聚合物基注浆材料,所提供的掺入超高分子量纤维的乳化沥青地质聚合物注浆材料性是一种早强、韧性好、耐久性好,兼具地质聚合物和沥青刚柔并济的效果。
尤为重要地,本发明中超高分子量纤维采用先掺法的方式加入到地质聚合物中,以防止地质聚合物基浆液中由于水的吸附而影响纤维的分散性。超高分子量纤维的分散性重要影响注浆材料的工作性能和力学性能,在超高分子量纤维-乳化沥青改性的高韧性地质聚合物浆液制作中,采用先掺法掺入纤维,先将地质聚合物浆液与纤维进行预搅拌,并采用分批加入的方式,先慢速搅拌,后快速搅拌。
本发明提供的超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料,其制备步骤简单,易于操作,且成本低廉。
为清楚的表明本发明的具体实施过程,以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。
实施例1
本实施例中提供了一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物。 该材料的质量组分为:
乳化沥青:8份
地质聚合物:100份
碱激发溶液:120份
超高分子量纤维:2份。
本实施中,乳化沥青为中裂或慢裂型阳离子乳化沥青,所述阳离子乳化沥青的筛上余量≤0.1%,1d常温稳定性≤1%。
本实施中,所述的地质聚合物为偏高岭土,体积密度为1.25~1.72g/cm 3
本实施中,超高分子量纤维密度为0.97g/cm 3,断裂应变为2~3%,纤维直径20μm,长度6mm,纤维体积掺量为1%。
本实施中,碱激发溶液由硅酸钠溶液(水玻璃)和氢氧化钠颗粒组成,其特征是,各部分的质量比例是:
硅酸钠溶液:13份
氢氧化钠颗粒:4份
本实施中,超高分子量纤维的分散性重要影响注浆材料的工作性能和力学性能,在超高分子量纤维-乳化沥青改性的高韧性地质聚合物浆液制作中,采用先掺法掺入纤维,先将地质聚合物与纤维进行预搅拌,并采用分批加入的方式,先慢速搅拌,后快速搅拌。
本实施中的超高分子量纤维-乳化沥青改性的高韧性地质聚合物的制备方法,包括以下步骤:
按照既定的水玻璃和氢氧化钠比例配置碱激发溶液,常温下密封静置24h,以确保氢氧化钠充分溶解;
按照质量组分,称量各原料,以供备用;
将部分地质聚合物加入水泥净浆搅拌器的拌锅中,开启搅拌机低速搅拌30s后,在拌锅中加入碱激发溶液,继续搅拌1-2min;
将超高分子量纤维分三次加入拌锅中,全部加入后快速搅拌至混合均匀;
地质聚合物基浆液混合均匀后,再加入乳化沥青,搅拌均匀。
性能测试:为验证本实施例的超高分子量纤维-乳化沥青改性的高韧性地质聚合物具有良好的力学性能,对本实施例中制得的注浆材料进行强度测试,测试试验包括7d、28d的抗压强度和抗折强度测试,具体参照《公路工程水泥及水泥混凝土 试验规程》(JTG E30-2005)和水泥胶砂强度检验方法(ISO法)(GB/T 17671-1999)制备40×40×160mm的试件。
根据图2,制备的地质聚合物试件在抗折强度测试时表现出多封开裂且均为细微裂缝的宏观现象,可提高传统注浆材料的耐久性。
本实施例的性能测试结果如表1所示。
表1 本实施例材料测定强度
Figure PCTCN2021073559-appb-000002
实施例2:
本实施例中提供了一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物。该材料的质量组分为:
乳化沥青:8份
地质聚合物:100份
碱激发溶液:90份
超高分子量纤维:2份。
本实施例中各个原料的种类和用量以及性能要求与实施例1相同。
本实施例的高韧性水泥注浆材料的制备方法及性能测试与实施例1基本相同。
本实施例中,为较为精确的分析超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料的可泵性,以验证其作为注浆材料的可行性。测定制备的新鲜浆液的触变指数。
根据图4,制备的新鲜浆液在300s -1的定剪切速率下预剪切180s;随后,静置2min;再在50s -1的定剪切速率下剪切30s。
本实施例中超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料新鲜浆液触变性的测试结果如图5所示,材料的触变指数为1.2244,说明其作为注浆材料触变性能良好。
实施例3
本实施例中提供了一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物。 该材料的质量组分为:
乳化沥青:8份
地质聚合物:100份
碱激发溶液:90份
超高分子量纤维:2份。
本实施例中各个原料的种类和用量以及性能要求与实施例1相同。
本实施例的超高分子量纤维-乳化沥青改性的高韧性地质聚合物的制备方法与实施例1基本相同。
本实施例中,为较为精确的验证超高分子量纤维-乳化沥青改性的高韧性地质聚合物注入水泥混凝土路面板底后的性能演变规律,测定制备的新鲜浆液的结构恢复能力。
本实施例中,还包括新鲜浆液结构恢复能力的测试方法,包括以下具体步骤:
按照实施例1中的步骤制备超高分子量纤维-乳化沥青改性的高韧性地质聚合物;
新鲜浆液以0.01s -1的定剪切速率剪切60s,随后在100s -1的定剪切速率下剪切30s;最后,恢复到0.01s -1的剪切速率,再次剪切60s。
结构恢复试验的具体剪切控制设置的参数如图6所示。
结构恢复试验的测试结果如图7所示。根据图7,在高速剪切后的低速剪切开始处,材料粘度得到较大程度的恢复,其恢复率为0.6928;说明其在注浆后硬化效果良好。
综上实施例,本发明制备的超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料具有良好的力学性能、工作性能/流变性能和耐久性能,可有效的解决传统注浆材料解决水泥混凝土路面板底脱空耐久性差的技术问题。
本发明的超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料具有早强、细微多裂缝开裂和耐久性好等优势。
本发明的超高分子量纤维-乳化沥青改性的高韧性地质聚合物具有制备步骤简单易行、成本低廉、韧性好与道路基体结构的匹配性好的特点。可用于道路基层、路基和路面板板底脱空的非开挖补强加固技术中。
对比例1
本对比例中提供了一种乳化沥青改性的高韧性地质聚合物。该材料的质量组分为:
乳化沥青:8份
地质聚合物:100份
碱激发溶液:120份
本对比例中除去除超高分子量聚乙烯纤维外,其余各个原料的种类和用量以及性能要求与实施例1中相同。
本对比例中,为进一步明确超高分子量纤维的流变调控作用,采用与实施例1相同的测试方法,测定制备的乳化沥青-地质聚合物试件的强度。由于超高分子量纤维的去除,制备的复合材料以脆性为主,其破坏形式如图8。
本对比例的性能测试结果如表2所示。
表2 本对比例材料测定强度
Figure PCTCN2021073559-appb-000003
本对比例制备的复合材料其抗压强度基本与实施例1中相同,但抗折强度明显低于实施例1,且其破坏过程中不会出现明显的细微裂缝破坏的形式而是呈现出宏观的脆性破坏,作为注浆材料时容易引起材料的二次破坏。因此,其性能劣于实施例1。
本对比例中材料的抗压强度在30~40MPa范围内,虽远小于CN103232182A中制备的地质聚合物/乳化沥青复合材料的30~80MPa的强度范围,抗折强度同样如此。出现这一现象的原因一方面是由于材料属性和材料掺量的差异性造成,另一方面与试件养护条件有关。但本发明旨在研发一种适用于道路注浆的新型地质聚合物材料,为此可适当的牺牲强度以满足其触变和结构恢复等施工性能,而CN103232182A是为了制备一种高强的地质聚合物/乳化沥青复合材料,强度是其重要关注的指标,其可适当牺牲材料的工作性而较大程度的提高其强度。但其不可视为理想的注浆材料。
对比例2
本对比例相对于实施例去除超高分子量纤维组分。
本对比例中提供了一种乳化沥青改性的高韧性地质聚合物。该材料的质量组分为:
乳化沥青:8份
地质聚合物:100份
碱激发溶液:90份。
本对比例中除去除超高分子量聚乙烯纤维外,其余各个原料的种类和用量以及性能要求与实施例2和3中相同。
本对比例中,为较为精确的验证超高分子量纤维的流变调控作用,采用与实施例2和3相同的测试方法,测定制备的新鲜浆液的触变性和结构恢复能力。
材料的触变性试验和结构恢复试验的测试结果如图9和图10所示。根据图9和图10,对比例中地质聚合物-乳化沥青材料的触变指数和粘度恢复分别为1.0085和0.2417。说明不掺加超高分子量聚乙烯纤维复合材料的触变性和结构恢复情况均弱于实施例中材料性能,意味着本发明中制备超高分子量纤维-乳化沥青改性的高韧性地质聚合物更适合作为注浆材料。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料,其特征在于,包括以下重量份的各组分:
    Figure PCTCN2021073559-appb-100001
  2. 根据权利要求1所述的一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料,其特征在于,所述地质聚合物包括偏高岭土、高岭土、粉煤灰、矿渣中的一种或多种的组合。
  3. 根据权利要求1所述的一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料,其特征在于,所述地质聚合物的密度为2.2~2.7g·cm -3,弹性模量为50-55GPa,抗拉强度为30~190Mpa,抗压强度为40~120Mpa,断裂能为50~1500J·cm -2
  4. 根据权利要求1所述的一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料,其特征在于,所述乳化沥青为阳离子乳化沥青,所述阳离子乳化沥青为中裂或慢裂型阳离子乳化沥青,所述阳离子乳化沥青的筛上余量≤0.1%,1d常温稳定性≤1%。
  5. 根据权利要求1所述的一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料,其特征在于,所述超高分子量纤维为聚乙烯纤维,其分子量为100~500万,极限拉应变为3%~7%,纤维长度为6~18mm,名义强度2900~3800Mpa,弹性模量100~120GPa。
  6. 根据权利要求1所述的一种超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料,其特征在于,所述碱激发溶液由硅酸钠溶液和氢氧化钠颗粒组成,其中重量份组成为:硅酸钠溶液11-15份,氢氧化钠颗粒1-4份。
  7. 一种权利要求1中高韧性地质聚合物注浆材料的制备方法,其特征在于,包括以下步骤:
    (1)根据组分要求,称量预设量的水玻璃溶液和氢氧化钠,配置碱激发溶液, 并静置18~36h;
    (2)按照质量组分,称量各原料;
    (3)将部分地质聚合物加入水泥净浆搅拌器的拌锅中,开启搅拌机搅拌20~40s后,在拌锅中加入碱激发溶液,继续搅拌1~2min;
    (4)将超高分子量纤维分2~4次加入拌锅中,全部加入后快速搅拌至混合均匀,得到地质聚合物基浆液;
    (5)向所述地质聚合物基浆液中加入乳化沥青,搅拌均匀,得到高韧性地质聚合物注浆材料。
  8. 根据权利要求7所述的一种高韧性地质聚合物注浆材料的制备方法,其特征在于,步骤(4)中,先以额定搅拌速率的三分之一进行搅拌,之后将超高分子量纤维分2~4次加入拌锅中,之后以额定搅拌速率进行搅拌。
  9. 根据权利要求7所述的一种高韧性地质聚合物注浆材料的制备方法,其特征在于,步骤(5)中得到的高韧性地质聚合物注浆材料的28d抗折强度为12.8Mpa,28d抗压强度为37.03Mpa。
  10. 一种权利要求1中高韧性地质聚合物注浆材料在水泥混凝土路面板底脱空、基层、路基补强加固、道路的非开挖加固中的应用。
PCT/CN2021/073559 2020-11-16 2021-01-25 超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料及制备方法和应用 WO2022099935A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/915,490 US11981602B2 (en) 2020-11-16 2021-01-25 High-toughness geopolymer grouting material modified by ultra-high weight fibers and emulsified asphalt, preparation and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011281142.1A CN112299769B (zh) 2020-11-16 2020-11-16 超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料及制备方法和应用
CN202011281142.1 2020-11-16

Publications (1)

Publication Number Publication Date
WO2022099935A1 true WO2022099935A1 (zh) 2022-05-19

Family

ID=74334720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073559 WO2022099935A1 (zh) 2020-11-16 2021-01-25 超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料及制备方法和应用

Country Status (3)

Country Link
US (1) US11981602B2 (zh)
CN (1) CN112299769B (zh)
WO (1) WO2022099935A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159929A (zh) * 2022-07-29 2022-10-11 山东建筑大学 超高性能混凝土的制备方法
CN115612050A (zh) * 2022-12-19 2023-01-17 北京市政路桥管理养护集团有限公司 一种堵水注浆材料及其制备方法
CN116161937A (zh) * 2022-12-28 2023-05-26 中煤科工开采研究院有限公司 一种温度响应型原位聚合改性复合注浆材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105142B (zh) * 2021-04-24 2023-06-16 武汉理工大学 一种制品混凝土增韧功能组分及其制备方法和应用
CN113372817A (zh) * 2021-07-06 2021-09-10 中铁四局集团有限公司 一种耐低温喷涂沥青防水材料及其制备方法
CN115043613B (zh) * 2022-06-30 2023-03-10 华南农业大学 一种纤维筋-地聚合物乳化沥青路面坑槽修补材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596848A (zh) * 2009-08-21 2012-07-18 法国运输规划和运输网科学技术学院 地聚物水泥及其用途
CN103232182A (zh) * 2013-04-24 2013-08-07 广西交通科学研究院 一种地质聚合物/乳化沥青复合材料及其制备方法
CN108529936A (zh) * 2018-04-24 2018-09-14 同济大学 超高分子量聚乙烯纤维增强地聚合物基复合材料及制备方法
CN108675699A (zh) * 2018-06-11 2018-10-19 浙江大学 一种耐腐蚀地聚合物混凝土灌注桩材料及其制备方法与施工工艺
WO2020122726A1 (en) * 2018-12-14 2020-06-18 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Flexible concrete

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525845A (ja) * 2000-11-06 2004-08-26 インスティテュート オブ ペーパー サイエンスアンド テクノロジー インコーポレイテッド 繊維補強された鉱物基礎材料およびその製造方法
CN103880363B (zh) * 2014-02-20 2016-02-24 广西交通科学研究院 一种地质聚合物/废橡胶粉复合材料及其制备方法
KR101533622B1 (ko) * 2015-01-05 2015-07-10 주식회사 씨.에스 재활용 상온 반강성 아스팔트 콘크리트 조성물 및 그 제조방법
CN108640570A (zh) * 2018-04-24 2018-10-12 同济大学 超高分子量聚乙烯纤维增强污泥-粉煤灰基地聚合物及其制备方法
CN108585639A (zh) * 2018-04-24 2018-09-28 同济大学 超高分子量聚乙烯纤维增强沸石-粉煤灰基地聚合物及其制备方法
CN109400063A (zh) * 2018-11-19 2019-03-01 西安长大公路养护技术有限公司 一种用于裂缝修补的高聚合物遇水止水材料及其制备方法
CN109797624B (zh) * 2019-01-17 2020-12-08 上海力阳道路加固科技股份有限公司 一种道路用半柔性改性地聚合物下封层材料及其施工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596848A (zh) * 2009-08-21 2012-07-18 法国运输规划和运输网科学技术学院 地聚物水泥及其用途
CN103232182A (zh) * 2013-04-24 2013-08-07 广西交通科学研究院 一种地质聚合物/乳化沥青复合材料及其制备方法
CN108529936A (zh) * 2018-04-24 2018-09-14 同济大学 超高分子量聚乙烯纤维增强地聚合物基复合材料及制备方法
CN108675699A (zh) * 2018-06-11 2018-10-19 浙江大学 一种耐腐蚀地聚合物混凝土灌注桩材料及其制备方法与施工工艺
WO2020122726A1 (en) * 2018-12-14 2020-06-18 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Flexible concrete

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BEHZAD NEMATOLLAHI, JAY SANJAYAN, JISHEN QIU , EN-HUA YANG: "High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation", ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, vol. 17, no. 3, 1 May 2017 (2017-05-01), pages 555 - 563, XP009536800, ISSN: 1644-9665, DOI: 10.1016/j.acme.2016.12.005 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159929A (zh) * 2022-07-29 2022-10-11 山东建筑大学 超高性能混凝土的制备方法
CN115159929B (zh) * 2022-07-29 2023-11-03 山东建筑大学 超高性能混凝土的制备方法
CN115612050A (zh) * 2022-12-19 2023-01-17 北京市政路桥管理养护集团有限公司 一种堵水注浆材料及其制备方法
CN115612050B (zh) * 2022-12-19 2023-08-04 北京市政路桥管理养护集团有限公司 一种堵水注浆材料及其制备方法
CN116161937A (zh) * 2022-12-28 2023-05-26 中煤科工开采研究院有限公司 一种温度响应型原位聚合改性复合注浆材料及其制备方法
CN116161937B (zh) * 2022-12-28 2023-10-10 中煤科工开采研究院有限公司 一种温度响应型原位聚合改性复合注浆材料及其制备方法

Also Published As

Publication number Publication date
CN112299769B (zh) 2021-12-31
CN112299769A (zh) 2021-02-02
US20230227361A1 (en) 2023-07-20
US11981602B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
WO2022099935A1 (zh) 超高分子量纤维-乳化沥青改性的高韧性地质聚合物注浆材料及制备方法和应用
Ling et al. Feasibility of using recycled glass in architectural cement mortars
US9090508B2 (en) Geopolymer composite for ultra high performance concrete
CN108017345A (zh) 一种超高性能水泥基修补材料及其制备方法
CN105236891B (zh) 一种嵌缝用柔性混凝土
CN106242429A (zh) 一种高韧性混杂纤维增强混凝土及其制备方法
CN108546028A (zh) 一种纳米SiO2和PVA纤维增强地聚合物砂浆的制备方法
CN102976672A (zh) 低碳高性能混凝土辅助胶凝材料
CN105016671B (zh) 一种超流态自密实混凝土及其制备方法
CN107572981A (zh) 一种混凝土修补用自密实混凝土及其制备方法
CN109369121A (zh) 一种高弹模纤维自应力再生混凝土的制作工艺
CN108892424A (zh) 一种纳米SiO2和PVA纤维增强地聚合物砂浆
Nasr et al. Utilization of high volume fraction of binary combinations of supplementary cementitious materials in the production of reactive powder concrete
CN109020468B (zh) 一种抗除冰盐水泥基沟渠修补剂
Vivek et al. Strength and microstructure properties of self-compacting concrete using mineral admixtures. Case study I
CN110294621A (zh) 基于磷酸钾镁水泥无砟轨道无机快速修补材料及制备方法
CN113788646A (zh) 高性能碱激发矿渣基海水珊瑚骨料混凝土及制备方法
WO2024108868A1 (zh) 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法
Bastani et al. Application of alkali-activated slag in roller compacted concrete
CN114956746B (zh) 一种3d打印锑尾矿固废快硬混凝土
CN115057679B (zh) 一种风电钢混塔架专用100MPa无收缩座浆料及其制备方法
CN115180900B (zh) 一种超高性能预拌透水混凝土及其制备方法
CN108793861A (zh) 一种湿法喷射聚合物砂浆及其制备方法
Wang et al. Self-compacting concrete adopting recycled aggregates
CN111675523A (zh) 一种特种混凝土材料及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890473

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21890473

Country of ref document: EP

Kind code of ref document: A1