WO2022099886A1 - 一种具有加热功能的电容屏及触屏终端设备 - Google Patents

一种具有加热功能的电容屏及触屏终端设备 Download PDF

Info

Publication number
WO2022099886A1
WO2022099886A1 PCT/CN2020/139920 CN2020139920W WO2022099886A1 WO 2022099886 A1 WO2022099886 A1 WO 2022099886A1 CN 2020139920 W CN2020139920 W CN 2020139920W WO 2022099886 A1 WO2022099886 A1 WO 2022099886A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
channel
impedance
channels
capacitive screen
Prior art date
Application number
PCT/CN2020/139920
Other languages
English (en)
French (fr)
Inventor
黄俊辉
邬营杰
Original Assignee
广州视源电子科技股份有限公司
广州视睿电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视源电子科技股份有限公司, 广州视睿电子科技有限公司 filed Critical 广州视源电子科技股份有限公司
Publication of WO2022099886A1 publication Critical patent/WO2022099886A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present disclosure relates to the technical field of touch control, and more particularly, to a capacitive screen with a heating function and a touch screen terminal device.
  • Capacitive touch screen technology works by using the current sensing of the human body. To achieve multi-point touch, capacitive screens rely on electrodes that increase mutual capacitance. Simply put, the screen is divided into blocks, and a group of The mutual capacitance modules work independently, so the capacitive screen can independently detect the touch situation of each area.
  • the controller When the user touches the capacitive screen, due to the electric field of the human body, the user's finger and the working surface form a coupling capacitance, because the working surface is connected to High frequency signal, so the finger absorbs a small current, this current flows out from the electrodes on the four corners of the screen, and theoretically, the current flowing through the four electrodes is proportional to the distance from the finger to the four corners, the controller The position is obtained by precise calculation of the four current ratios to achieve the effect of touch.
  • the capacitive screen is a four-layer composite glass screen.
  • the inner surface of the glass screen and the interlayer are each coated with a layer of ITO (nano indium tin metal oxide), the outermost layer is a silica glass protective layer, and the interlayer ITO (nano indium tin metal oxide). ) coating is used as the working surface, four electrodes are drawn from the four corners, and the inner layer of ITO (nano-indium tin metal oxide) is used as the screen layer to ensure the working environment.
  • the projected capacitive screen is one of the capacitive screens. The projected capacitive screen is to etch different ITO conductive circuit modules on two layers of ITO conductive glass coatings.
  • the etched patterns on the two modules are perpendicular to each other, which can be seen It is a slider that changes continuously in the X and Y directions. Since the X and Y structures are on different surfaces, a capacitive node is formed at the intersection.
  • One slider can be used as a drive line, and the other slider can be used as a detection line. When the current passes through one wire in the driving line, if there is a signal of capacitance change in the outside world, it will cause the change of the capacitance node on the other layer of wire, thereby confirming the position of the touch.
  • the current practice is generally to bake the capacitive screen to remove the water mist before shipment, and the capacitive screen is shipped. Afterwards, if the capacitive screen is in a relatively humid environment, and the sealing performance of the capacitive screen itself is not good, there will also be water mist in the machine, which will greatly affect the appearance and user experience.
  • At least some embodiments of the present disclosure aim to overcome at least one of the above-mentioned defects of the prior art, and provide a capacitive screen and a touch screen terminal device with a heating function, which can be used for heating the whole machine when water mist occurs or the surface is wet. Remove the effects of water mist and drying, and improve the experience and service life of capacitive screens.
  • the technical solution adopted in the present disclosure is a capacitive screen with a heating function, comprising a substrate and a conductive layer disposed on the substrate, the conductive layer comprising:
  • the effective area includes a plurality of sensing channels and driving channels arranged in a staggered manner
  • the ineffective area surrounds the effective area, and the ineffective area is provided with interconnected high-impedance conductive channels, the head and end of the high-impedance conductive channels are electrified to generate heat to heat the conductive layer.
  • the present disclosure provides a capacitive screen with a heating function, which can remove water mist from the capacitive screen after being heated by electricity.
  • the capacitive screen includes a substrate and a conductive layer disposed on the substrate.
  • the conductive layer generates capacitance changes through touch induction to realize multi-point touch.
  • the conductive layer includes an effective area and an ineffective area.
  • the effective area is provided with a plurality of interlaced sensing channels and driving channels.
  • the capacitance of the capacitive nodes where the sensing channels and the driving channels are interlaced changes, so as to achieve The purpose of touch control; the invalid area surrounds the valid area, and the invalid area is provided with a high-impedance conductive channel that communicates with each other.
  • a current or voltage is applied to the head and end of the high-impedance conductive channel. Because of its large impedance, the high-impedance conductive channel will emit heat to heat the screen.
  • the present disclosure provides a capacitive screen with a heating function.
  • a corresponding high-impedance conductive channel is designed in an ineffective area on the conductive layer, and then current or voltage is applied to the head and end of the high-impedance conductive channel to utilize the high-impedance characteristic. Realize the heating function of the capacitive screen.
  • the heat generated by the high-impedance conductive channel is used to remove the water mist or dry the surface moisture to improve the experience of the capacitive screen. and service life.
  • the effective area includes a plurality of the sensing channels distributed in a lateral direction and a plurality of the driving channels distributed in a longitudinal direction, or a plurality of the driving channels distributed in the lateral direction and a plurality of the sensing channels distributed in the longitudinal direction.
  • the present disclosure provides a capacitive screen with a heating function.
  • the purpose of touch is achieved through an effective area on the conductive layer.
  • the effective area includes a plurality of sensing channels and driving channels.
  • the sensing channels and the driving channels are perpendicular to each other.
  • the sensing channel can be distributed horizontally and the plurality of driving channels can be distributed vertically, or the sensing channel is vertically distributed and the driving channel is horizontally distributed.
  • the intersection of the sensing channel and the driving channel forms a capacitive node.
  • the change of the capacitance value can be detected through the sensing channel, so as to locate the position of the touch point.
  • the touch When the finger touches the touch screen surface, the touch The capacitance value below the touch point increases according to the distance of the touch point, and the continuous scanning on the sensor detects the change of the capacitance value to realize the touch effect.
  • the invalid area includes a plurality of the high-impedance conductive channels distributed horizontally and vertically, and the high-impedance conductive channels distributed in the lateral direction are connected with each other, and the high-impedance conductive channels distributed in the vertical direction are connected with each other.
  • the present disclosure provides a capacitive screen with a heating function.
  • a sensing channel and a driving channel in an effective area are etched on the conductive layer to realize touch control, and the conductive layer further includes a peripheral ineffective area in addition to the effective area, and the ineffective area surrounds the effective area. Effective area, so the distribution of the invalid area is the same as the channel distribution of the effective area.
  • the high-impedance channel surrounding the invalid area of the sensing channel is horizontal/vertical distribution
  • the high-impedance channel surrounding the invalid area of the sensing channel is horizontal/vertical distribution
  • the drive channels in the effective area are distributed laterally/longitudinal
  • the high-impedance channels surrounding the inactive area of the drive channel are distributed laterally/longitudinal
  • the high-impedance conductive channels distributed in the horizontal and vertical directions are connected to each other in the same direction.
  • a current or voltage is applied to the first and last ends of the high-impedance conductive channel, so that the high-impedance conductive channel in the ineffective area can generate heat to achieve the effect of heating.
  • the existing capacitive screens are generally made into independent grids that are not connected to each other for the invalid area, and the present disclosure is a capacitive screen with a heating function, which uses the space of the invalid area to design a corresponding high-impedance conductive channel to improve the capacitance.
  • the utilization rate of the screen is improved, and by energizing the first and last ends of the high-impedance conductive channel to generate heat due to the impedance characteristics, the capacitive screen can be heated and heated, and the moisture problem of the capacitive screen can be improved.
  • the invalid region includes a plurality of sub-regions, the sub-regions are provided with the high-impedance conductive channel, and the plurality of the sub-regions communicate with each other.
  • the present disclosure provides a capacitive screen with a heating function.
  • the ineffective area includes a plurality of sub-areas, and each sub-area is provided with a high-impedance conductive channel. Since the effective area of the capacitive screen is set in blocks, the ineffective area also corresponds to It is set to block state, and the effective area is distributed horizontally and vertically, so the invalid area is also set to horizontal and vertical distribution.
  • the invalid area of each block is defined as a sub-area, and each sub-area is provided with a high-impedance conductive channel.
  • the present disclosure provides a capacitive screen with a heating function.
  • high-impedance conductive channels are densely designed in the sub-regions, so as to maximize the space utilization rate in the sub-regions, thereby making the The space utilization is maximized and the high impedance characteristics of the inactive area are formed, and the effect of heating and dehumidification can be achieved by energizing the sub-areas at the beginning and the end.
  • the high-impedance conductive channel of the sub-region is a serpentine channel or a grid-shaped channel.
  • the present disclosure provides a capacitive screen with a heating function
  • the traces of the high-impedance conductive channels in the sub-regions can be designed as serpentine traces, grid traces, horizontal and vertical traces, or other traces that can maximize the Using the routing design form of the sub-area space, when the invalid area is divided into blocks and partitions, in order to realize that the capacitive screen can generate heat due to the high impedance characteristic after power-on, it is necessary to increase the impedance in the invalid area as much as possible within a reasonable range.
  • the impedance can be maximized in a certain space utilization ratio, Realize the performance of heating after energization through a high impedance conductive channel.
  • the conductive layer includes a first conductive film and a second conductive film, the first conductive film and the second conductive film are bonded by optical glue, and the first conductive film includes a first effective conductive film. area and a first ineffective area, the second conductive film includes a second effective area and a second ineffective area, the first effective area is provided with the sensing channel, the second effective area is provided with the driving channel, In addition, the high-impedance conductive channel is provided in the first ineffective area and/or the second ineffective area.
  • the present disclosure provides a capacitive screen with a heating function, wherein the conductive layer structure includes a first conductive film and a second conductive film, and the lower surface of the first conductive film and the upper surface of the second conductive film are bonded on each other through transparent optical glue Together, the first conductive film includes a first effective area and a first ineffective area, the second conductive film includes a second effective area and a second ineffective area, and the sensing channel and the driving channel are respectively arranged in the first effective area and the second effective area.
  • the driving channel and the sensing channel are arranged on the first effective area and the second effective area, by arranging the driving channel and the sensing channel on different conductive film surfaces, the intersection of the channels forms a capacitive node, when the current passes through the driving channel.
  • the signal of the external capacitance change will cause the change of the capacitance node on the other conductive film, and then determine the position of the touch point; the first invalid area on the first conductive film, or the second conductive film
  • the second ineffective area, or the first ineffective area and the second ineffective area are provided with a high-impedance conductive channel.
  • the high-impedance conductive channel is heated to remove the water mist of the capacitor film after being energized. Therefore, the high-impedance conductive channel can be set in the In the first ineffective area on the first conductive film, a high-impedance conductive channel can also be arranged in the second ineffective area on the second conductive film, or in the first ineffective area and the second conductive area on the first conductive film. The second inactive regions on the film are all provided with high-impedance conductive channels.
  • the high-impedance conductive channel material is ITO or nano-silver conductive material.
  • the materials of the sensing channel and the driving channel are ITO or nano-silver conductive materials.
  • the present disclosure provides a capacitive screen with a heating function, wherein the material of the high-impedance conductive channel is ITO (nano indium tin oxide) or other conductive materials such as nano silver, and the material of the sensing channel and the driving channel is ITO (nano indium oxide) Tin metal oxide) or other conductive materials such as nano-silver, the material of the high-impedance conductive channel can be the same as the material of the sensing channel and the driving channel, and the manufacturing process of the high-impedance conductive channel and the sensing channel and the driving channel is the same. It is to etch the required lines on the conductive film, but the impedance of the high-impedance conductive channel is greater than or much greater than the impedance of the sensing channel and the driving channel.
  • a cover plate is further provided above the conductive layer, and the cover plate and the conductive layer are bonded by the optical glue.
  • the present disclosure provides a capacitive screen with a heating function, further comprising a cover plate, the lower surface of the cover plate and the upper surface of the conductive layer are bonded by transparent optical glue, specifically, the lower surface of the cover plate and the first surface of the conductive layer The upper surfaces of a conductive film are bonded together by optical glue, and the cover plate can be made of transparent glass material to protect the conductive layer of the capacitive screen.
  • a touch screen terminal device includes a capacitive screen with a heating function.
  • the present disclosure provides a capacitive screen with a heating function and a touch screen terminal device, design a corresponding high-impedance conductive channel for the invalid area on the conductive layer, and then The first and last ends of the high-impedance conductive channel are connected with current or voltage, and the high-impedance characteristic of the high-impedance conductive channel is used to realize the heating function of the capacitive screen.
  • the heat generated after the impedance conductive channel is energized to remove water mist or dry the surface moisture can not only improve the utilization rate of the capacitive screen, but also improve the water mist and moisture problems of the capacitive screen, and improve the use experience and service life of the capacitive screen.
  • FIG. 1 is a schematic plan view of the conductive layer of the present disclosure.
  • FIG. 2 is a schematic diagram of a horizontal and vertical shape of a high-impedance conductive channel in a sub-region of the present disclosure.
  • FIG. 3 is a schematic diagram of a grid-like shape of a high-impedance conductive channel in a sub-region of the present disclosure.
  • FIG. 4 is a schematic structural diagram of the conductive layer of the present disclosure.
  • FIG. 5 is a schematic diagram of the distribution of active regions and inactive regions on the first conductive film of the present disclosure.
  • FIG. 6 is a schematic diagram of the distribution of active regions and inactive regions on the second conductive film of the present disclosure.
  • FIG. 1 is a schematic plan view of the conductive layer in this embodiment, and the conductive layer includes:
  • the effective area 100 includes a plurality of sensing channels and driving channels arranged alternately, specifically, the effective area is a diamond-shaped black area in FIG. 1, and the sensing channels and the driving channels are not marked in the figure;
  • the ineffective area 200 surrounds the effective area 100, and the ineffective area 200 is provided with a high-impedance conductive channel that communicates with each other.
  • the inactive area 200 is an octagonal solid area in FIG. 1
  • the high-impedance conductive channel 200 in the inactive area is in the form of a serpentine end-to-end connection;
  • the effective area 100 includes a plurality of the sensing channels distributed laterally and a plurality of the driving channels distributed longitudinally, or a plurality of the driving channels distributed laterally and a plurality of the sensing channels distributed longitudinally;
  • the effective area 100 includes a plurality of the high-impedance conductive channels distributed in the horizontal and vertical directions, and the high-impedance conductive channels distributed in the lateral direction are connected with each other, and the high-impedance conductive channels distributed in the vertical direction are connected with each other;
  • the effective region 100 includes a plurality of sub-regions, the sub-regions are provided with the high-impedance conductive channels, and the plurality of the sub-regions are communicated with each other, and the high-impedance conductive channels of the sub-regions are serpentine channels or grid channel;
  • the high-impedance conductive channels in the sub-region shown in FIG. 1 are in a serpentine shape, the high-impedance conductive channels in the sub-region shown in FIG.
  • the impedance conductive channels are in the form of grids.
  • FIG. 4 is a schematic diagram of the structure of the conductive layer.
  • the conductive layer includes a first conductive film 201 and a second conductive film 202.
  • Optical glue 203 is passed between the first conductive film 201 and the second conductive film 202.
  • Adhesion the first conductive film 201 includes a first effective area and a first ineffective area
  • the second conductive film 202 includes a second effective area and a second ineffective area
  • the first effective area is provided with the sensor channel
  • the second active area is provided with the driving channel
  • the first inactive area and/or the second inactive area is provided with the high-impedance conductive channel.
  • the high-impedance conductive channel material is ITO or nano-silver conductive material.
  • the materials of the sensing channel and the driving channel are ITO or nano-silver conductive materials.
  • a cover plate 204 is further provided above the conductive layer, and the cover plate 204 and the conductive layer are bonded by the optical glue 203
  • the conductive layer includes a first conductive film 201 and a second conductive film 202 that are connected sequentially from top to bottom, and the lower surface of the first conductive film 201 and the upper surface of the second conductive film 202 are bonded by OCA (optical adhesive) 203.
  • OCA optical adhesive
  • both the first conductive film 201 and the second conductive film 202 are provided with an effective area and an ineffective area, and the sensing channel can be set in the effective area on the first conductive film 201 or the second conductive film 202, and the driving channel can correspond to In the active area provided on the second conductive film 202 or the first conductive film 201 , the high impedance conductive channel may be provided in the inactive area of one or both of the first conductive film 201 and the second conductive film 202 .
  • FIG. 5 is a schematic diagram of the distribution of the effective area and the ineffective area on the first conductive film
  • the effective area on the first conductive film is provided with an induction channel
  • the induction channel is longitudinally distributed
  • the area is provided with multiple sub-areas, and each sub-area is provided with a high-impedance conductive channel, and the longitudinally distributed sub-areas are connected end to end through the high-impedance conductive channel.
  • the octagonal area is a high-impedance conductive channel;
  • FIG. 6 is a schematic diagram of the distribution of the effective area and the ineffective area on the second conductive film.
  • the effective area on the second conductive film is provided with driving channels, the driving channels are distributed laterally, and the ineffective area on the second conductive film is provided with driving channels.
  • There are multiple sub-regions each sub-region is provided with a high-impedance conductive channel, and the laterally distributed sub-regions are connected end-to-end through the high-impedance conductive channel.
  • the shaped area is a high-impedance conductive channel.
  • a corresponding high-impedance conductive channel is designed on the inactive area of the conductive layer, and then a current or voltage is applied to the head and end of the high-impedance conductive channel. Because of its high impedance, the high-impedance conductive channel will emit heat, which will cause heat to the screen. For heating, when there is a problem of water mist inside the capacitive screen or the surface of the capacitive screen is wet, use the heat generated by the high-impedance conductive channel to remove the water mist or dry the surface moisture to improve the experience and service life of the capacitive screen. ;
  • a touch screen terminal device including the capacitive screen with heating function described in the above embodiment.
  • a capacitive screen with a heating function and a touch screen terminal device design a corresponding high-impedance conductive channel for the invalid area on the conductive layer, and then design a corresponding high-impedance conductive channel at the beginning of the high-impedance conductive channel.
  • the current or voltage is connected to the terminal end, and the high impedance characteristic of the high impedance conductive channel is used to realize the heating function of the capacitive screen.
  • the high impedance conductive channel is used to generate electricity It can not only improve the utilization rate of the capacitive screen, but also improve the water mist and humidity problems of the capacitive screen, and improve the use experience and service life of the capacitive screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Central Heating Systems (AREA)

Abstract

一种具有加热功能的电容屏及触屏终端设备,其中一种具有加热功能的电容屏,包括基板以及设于所述基板上的导电层,所述导电层包括:有效区域(100),所述有效区域(100)包括交错设置的多条感应通道和驱动通道;无效区域(200),所述无效区域(200)围绕所述有效区域(100),且所述无效区域(200)设置有互相连通的高阻抗导电通道,所述高阻抗导电通道首末端通电后产生热量可对导电层进行加热。当整机在出现水雾情况或表面潮湿时,达到加热去除水雾和烘干的效果,提升电容屏的使用体验和使用寿命。

Description

一种具有加热功能的电容屏及触屏终端设备
本申请要求于2020年11月10日提交至中国国家知识产权局、申请号为202022592289.4、发明名称为“一种具有加热功能的电容屏及触屏终端设备”的专利申请的优先权。全部内容通过引用结合在本申请中。
技术领域
本公开涉及触控技术领域,更具体地,涉及一种具有加热功能的电容屏及触屏终端设备。
背景技术
电容屏触摸屏技术是利用人体的电流感应进行工作的,电容屏要实现多点触控,靠的就是增加互电容的电极,简单地说,就是将屏幕分块,在每一个区域里设置一组互电容模块都是独立工作,所以电容屏就可以独立检测到各区域的触控情况,当用户触摸电容屏时,由于人体电场,用户手指和工作面形成一个耦合电容,因为工作面上接有高频信号,于是手指吸收走一个很小的电流,这个电流分别从屏的四个角上的电极中流出,且理论上流经四个电极的电流与手指头到四角的距离成比例,控制器通过对四个电流比例的精密计算得出位置,实现触控的效果。
电容屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),最外层是矽土玻璃保护层,夹层ITO(纳米铟锡金属氧化物)涂层作工作面,四个角引出四个电极,内层ITO(纳米铟锡金属氧化物)为屏层以保证工作环境。而投射式电容屏作为电容屏的其中一种,投射式电容屏是在两层ITO导电玻璃涂层上蚀刻出不同的ITO导电线路模块,两个模块上蚀刻的图形相互垂直,可以把他们看作是X和Y方向连续变化的滑条,由于X和Y架构在不同表面,其相交处形成一电容节点,一个滑条可以当成驱动线,另外一个滑条当成侦测线。当电流经过驱动线中的一条导线时,如果外界有电容变化的信号,那么就会引起另一层导线上电容节点的变化,进而确认触控的位置。
对于投射式电容屏整机,在出厂时是比较容易出现水雾情况的,目前的做法一般是在出货前对电容屏整机进行烘烤工艺去除水雾,并且在电容屏整机出货后,若电容屏整机处于比 较潮湿的环境时,电容屏整机本身的密封性不好的话,也会出现机内水雾的情况,极大地影响外观和使用体验。
申请内容
本公开至少部分实施例旨在克服上述现有技术的至少一种缺陷,提供一种具有加热功能的电容屏及触屏终端设备,用于整机在出现水雾情况或表面潮湿时,达到加热去除水雾和烘干的效果,提升电容屏的使用体验和使用寿命。
本公开采取的技术方案是,一种具有加热功能的电容屏,包括基板以及设于所述基板上的导电层,所述导电层包括:
有效区域,所述有效区域包括交错设置的多条感应通道和驱动通道;
无效区域,所述无效区域围绕所述有效区域,且所述无效区域设置有互相连通的高阻抗导电通道,所述高阻抗导电通道首末端通电后产生热量可对导电层进行加热。
本公开提供了一种具有加热功能的电容屏,通电加热后能够去除电容屏水雾,电容屏包括基板以及设于基板上的导电层,导电层通过触摸感应产生电容变化实现多点触控,导电层包括有效区域和无效区域,有效区域上设有多条交错设置的感应通道和驱动通道,当触摸电容屏上的有效区域时,感应通道和驱动通道交错的电容节点电容发生变化,从而达到触控的目的;无效区域围绕着有效区域,无效区域设置有互相连通的高阻抗导电通道,高阻抗导电通道的制作工艺与感应通道和驱动通道相同,但高阻抗导电通道的阻抗大于感应通道和驱动通道的阻抗,在高阻抗导电通道的首末端通上电流或电压,因其阻抗较大,高阻抗导电通道会发出热量进而对屏幕进行加温。本公开提供了一种具有加热功能的电容屏,在导电层上的无效区域设计出对应的高阻抗导电通道,然后在高阻抗导电通道的首末两端通上电流或电压,利用高阻抗特性实现电容屏的加热功能,当电容屏内部存在水雾问题或者电容屏表面处于潮湿状态时,利用高阻抗导电通道通电后产生的热量去除水雾或将表面水分烘干,提升电容屏的使用体验和使用寿命。
可选的,所述有效区域包括横向分布的多条所述感应通道和纵向分布的多条所述驱动通道,或者横向分布的多条所述驱动通道和纵向分布的多条所述感应通道。
本公开提供了一种具有加热功能的电容屏,通过导电层上的有效区域实现触控目的,有效区域包括多条感应通道和驱动通道,感应通道和驱动通道互相垂直,有效区域上的多条感应通道可为横向分布和多条驱动通道可为纵向分布或者感应通道为纵向分布和驱动通道为横 向分布,感应通道和驱动通道的相交处形成一电容节点,当电流经过驱动通道中的其中一条导线时,如果外界有电容变化的信号,则会引起电容节点的变化,通过感应通道可以侦测到电容值的变化,从而定位到触控点的位置,当手指触摸触控屏幕表面时,触碰点下方的电容值根据触控点的远近而增加,传感器上连续性的扫描探测到电容值的变化,实现触控的效果。
可选的,所述无效区域包括横纵向分布的多条所述高阻抗导电通道,且横向分布的所述高阻抗导电通道互相连通,纵向分布的所述高阻抗导电通道互相连通。
本公开提供了一种具有加热功能的电容屏,在导电层上蚀刻出有效区域的感应通道和驱动通道来实现触控,并且导电层还包括除了有效区域外的外围无效区域,无效区域围绕着有效区域,因此无效区域的分布情况与有效区域的通道分布情况相同,当有效区域内的感应通道为横向/纵向分布时,则围绕着感应通道的无效区域的高阻抗通道为横向/纵向分布;当有效区域内的驱动通道为横向/纵向分布时,则围绕着驱动通道的无效区域的高阻抗通道为横向/纵向分布,并且横纵向分布的高阻抗导电通道在相同方向上相互连通,通过在高阻抗导电通道的首末两端通上电流或者电压,即可实现无效区域内的高阻抗导电通道产生热量,达到加热的效果。目前现有的电容屏一般都是针对无效区域做成独立互不连通的格子,而本公开一种具有加热功能的电容屏,利用无效区域的空间,设计出对应的高阻抗导电通道,提高电容屏的利用率,并且通过在高阻抗导电通道的首末两端通电使其因阻抗特性产生热量,从而可实现对电容屏进行加温加热,改善电容屏的受潮问题。
可选的,所述无效区域包括多个子区域,所述子区域设置有所述高阻抗导电通道,且多个所述子区域互相连通。
本公开提供了一种具有加热功能的电容屏中的无效区域包括多个子区域,每个子区域内均设置有高阻抗导电通道,由于电容屏的有效区域是分块设置的,所以无效区域也对应设置为分块的状态,并且有效区域是横纵向分布的,所以无效区域也对应设置为横纵向分布,每个分块的无效区域定义为子区域,每个子区域内均设置有高阻抗导电通道,并且高阻抗导电通道密布在子区域内使得子区域的阻抗很大,同个横向或纵向方向上的子区域通过高阻抗导电通道的首末端依次连接起来。本公开提供了一种具有加热功能的电容屏通过设置无效区域的多个子区域,在子区域中密集设计着高阻抗导电通道,使子区域内的空间利用率最大化,进而使无效区域内的空间利用率最大化并且形成无效区域的高阻抗特性,在首末两端的子区域通电即可实现加热去湿的效果。
可选的,所述子区域的高阻抗导电通道为蛇形通道或网格形通道。
本公开提供了一种具有加热功能的电容屏,可以将子区域内的高阻抗导电通道的走线设计为蛇形走线或者网格形走线或者横纵式走线抑或是其它能够最大化利用子区域空间的走线设计形式,在无效区域分块分区的情况下,为了实现电容屏能够在通电后由于高阻抗特性产生热量,需要在合理范围内尽可能地提高无效区域内的阻抗,本公开通过将子区域内的高阻抗导电通道设计为蛇形通道或者网格形通道,并且每个子区域通过高阻抗导电通道首末连接,能够在一定的空间内利用率最大化地提高阻抗,实现通过高阻抗导电通道通电后加热的性能。
可选的,所述导电层包括第一导电膜和第二导电膜,所述第一导电膜与所述第二导电膜之间通过光学胶粘合,所述第一导电膜包括第一有效区域和第一无效区域,所述第二导电膜包括第二有效区域和第二无效区域,所述第一有效区域设有所述感应通道,所述第二有效区域设有所述驱动通道,且所述第一无效区域和/或第二无效区域设有所述高阻抗导电通道。
本公开提供了一种具有加热功能的电容屏,其中导电层结构包括第一导电膜和第二导电膜,第一导电膜的下表面和第二导电膜的上表面通过透明光学胶粘合在一起,第一导电膜上包括第一有效区域和第一无效区域,第二导电膜上包括第二有效区域和第二无效区域,感应通道和驱动通道分别设置在第一有效区域和第二有效区域上,或者驱动通道和感应通道设置在第一有效区域和第二有效区域上,通过将驱动通道和感应通道架构在不同的导电膜表面,通道相交处形成电容节点,当电流经过驱动通道的某一导线时,外界电容变化的信号就会引起另一层导电膜上电容节点的变化,进而确定触控点的位置;第一导电膜上的第一无效区域、或者第二导电膜上的第二无效区域、或者第一无效区域和第二无效区域设有高阻抗导电通道,本公开通过高阻抗导电通道通电后加热去除电容膜的水雾等问题,因此可以将高阻抗导电通道设置在第一导电膜上的第一无效区域中,也可以将高阻抗导电通道设置在第二导电膜上的第二无效区域中,也可以在第一导电膜上的第一无效区域和第二导电膜上的第二无效区域均设置高阻抗导电通道。
可选的,所述高阻抗导电通道材料为ITO或者纳米银导电材料。
可选的,所述感应通道和所述驱动通道材料为ITO或者纳米银导电材料。
本公开提供了一种具有加热功能的电容屏,其中高阻抗导电通道的材料为ITO(纳米铟锡金属氧化物)或者为纳米银等其它导电材料,感应通道和驱动通道材料为ITO(纳米铟锡金属氧化物)或者为纳米银等其它导电材料,高阻抗导电通道的材料可以与感应通道和驱动通道的材料一致,并且高阻抗导电通道与感应通道和驱动通道的制作工艺是相同的,都是在导电膜上蚀刻出所需的线路,但是高阻抗导电通道的阻抗大于或者远大于感应通道和驱动通 道的阻抗。
可选的,所述导电层上方还设有盖板,所述盖板与所述导电层通过所述光学胶粘合。
本公开提供了一种具有加热功能的电容屏,还包括盖板,盖板的下表面和导电层的上表面通过透明光学胶粘合,具体地,盖板的下表面和导电层中的第一导电膜的上表面通过光学胶粘合在一起,盖板可以为透明玻璃材料,起到保护电容屏导电层的作用。
一种触屏终端设备,包括具有加热功能的电容屏。
与现有技术相比,本公开的有益效果为:本公开提供了一种具有加热功能的电容屏及触屏终端设备,针对导电层上的无效区域设计出对应的高阻抗导电通道,然后在高阻抗导电通道的首末两端通上电流或电压,利用高阻抗导电通道的高阻抗特性实现电容屏的加热功能,当电容屏内部存在水雾问题或者电容屏表面处于潮湿状态时,利用高阻抗导电通道通电后产生的热量去除水雾或将表面水分烘干,不仅可以提高电容屏的利用率,而且改善了电容屏的水雾问题和潮湿问题,提升电容屏的使用体验和使用寿命。
附图说明
图1为本公开的导电层的平面示意图。
图2为本公开的子区域内的高阻抗导电通道呈横纵式形态示意图。
图3为本公开的子区域内的高阻抗导电通道呈网格状形态示意图。
图4为本公开的导电层的结构示意图。
图5为本公开的第一导电膜上有效区域和无效区域的分布示意图。
图6为本公开的第二导电膜上的有效区域和无效区域的分布示意图。
具体实施方式
本公开附图仅用于示例性说明,不能理解为对本公开的限制。为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例
本公开实施例提供了一种具有加热功能的电容屏,包括基板以及设于所述基板上的导电层,如图1所示为本实施例中导电层的平面示意图,所述导电层包括:
有效区域100,所述有效区域100包括交错设置的多条感应通道和驱动通道,具体地,有效区域为图1中呈菱形的黑色区域,感应通道和驱动通道在图中未标出;
无效区域200,所述无效区域200围绕所述有效区域100,且所述无效区域200设置有互相连通的高阻抗导电通道,所述高阻抗导电通道首末端通电后产生热量可对导电层进行加热,具体地,无效区域200为图1中呈八边形的实心区域,且无效区域内200的高阻抗导电通道呈蛇形首尾连接形态;
优选地,所述有效区域100包括横向分布的多条所述感应通道和纵向分布的多条所述驱动通道,或者横向分布的多条所述驱动通道和纵向分布的多条所述感应通道;
优选地,所述有效区域100包括横纵向分布的多条所述高阻抗导电通道,且横向分布的所述高阻抗导电通道互相连通,纵向分布的所述高阻抗导电通道互相连通;
优选地,所述有效区域100包括多个子区域,所述子区域设置有所述高阻抗导电通道,且多个所述子区域互相连通,所述子区域的高阻抗导电通道为蛇形通道或网格形通道;
具体地,图1所示的子区域内的高阻抗导电通道呈蛇形形态,图2所示的子区域内的高阻抗导电通道呈横纵式形态,图3所示的子区域内的高阻抗导电通道呈网格状形态。
如图4所示为导电层的结构示意图,所述导电层包括第一导电膜201和第二导电膜202,所述第一导电膜201与所述第二导电膜202之间通过光学胶203粘合,所述第一导电膜201包括第一有效区域和第一无效区域,所述第二导电膜202包括第二有效区域和第二无效区域,所述第一有效区域设有所述感应通道,所述第二有效区域设有所述驱动通道,且所述第一无效区域和/或第二无效区域设有所述高阻抗导电通道。
优选地,所述高阻抗导电通道材料为ITO或者纳米银导电材料。
优选地,所述感应通道和所述驱动通道材料为ITO或者纳米银导电材料。
优选地,所述导电层上方还设有盖板204,所述盖板204与所述导电层通过所述光学胶203粘合
更具体地,对导电层的结构作进一步详细的说明:
导电层包括从上到下依次复合连接的第一导电膜201和第二导电膜202,且第一导电膜201的下表面和第二导电膜202的上表面通过OCA(光学胶)203进行粘合,第一导电膜201和第二导电膜202上均设有有效区域和无效区域,并且感应通道可设在第一导电膜201或第二导电膜202上的有效区域中,驱动通道可对应设在第二导电膜202或第一导电膜201上的有效区域中,高阻抗导电通道可设在第一导电膜201和第二导电膜202其中一个或两个的无 效区域中。
具体地,如图5所示为第一导电膜上有效区域和无效区域的分布示意图,第一导电膜上的有效区域设有感应通道,感应通道为纵向分布,并且第一导电膜上的无效区域设有多个子区域,每个子区域内设有高阻抗导电通道,纵向分布的子区域通过高阻抗导电通道首尾依次连接,其中图5中的菱形黑色区域为感应通道,内部呈网格状的八边形区域为高阻抗导电通道;
如图6所示为第二导电膜上的有效区域和无效区域的分布示意图,第二导电膜上的有效区域设有驱动通道,驱动通道为横向分布,并且第二导电膜上的无效区域设有多个子区域,每个子区域内设有高阻抗导电通道,横向分布的子区域通过高阻抗导电通道首尾依次连接,其中图6中的菱形黑色区域为驱动通道,内部呈网格状的八边形区域为高阻抗导电通道。
更具体地,对导电层的加热原理作进一步详细的说明:
本实施例在导电层的无效区域上设计出对应的高阻抗导电通道,然后在高阻抗导电通道的首末端通上电流或电压,因其阻抗较高,高阻抗导电通道会发出热量进而对屏幕进行加温,当电容屏内部存在水雾问题或者电容屏表面处于潮湿状态时,利用高阻抗导电通道通电后产生的热量去除水雾或将表面水分烘干,提升电容屏的使用体验和使用寿命;
而且,根据关于功率电阻电路的欧姆定律P=I2R(和P=U2/R),在R(电阻值)一定的情况下,所加的电流或是电压越高,可以达到的功率越高,所以可以通过调整不同的电流或是电压,达到不同的加温效果。
在另一个具体的实施例中,还提供一种触屏终端设备,包括以上实施例所述的具有加热功能的电容屏。
本实施例的有益效果为:本公开实施例一种具有加热功能的电容屏及触屏终端设备,针对导电层上的无效区域设计出对应的高阻抗导电通道,然后在高阻抗导电通道的首末两端通上电流或电压,利用高阻抗导电通道的高阻抗特性实现电容屏的加热功能,当电容屏内部存在水雾问题或者电容屏表面处于潮湿状态时,利用高阻抗导电通道通电后产生的热量去除水雾或将表面水分烘干,不仅可以提高电容屏的利用率,而且改善了电容屏的水雾问题和潮湿问题,提升电容屏的使用体验和使用寿命。
显然,本公开的上述实施例仅仅是为清楚地说明本公开技术方案所作的举例,而并非是对本公开的具体实施方式的限定。凡在本公开权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开权利要求的保护范围之内。

Claims (10)

  1. 一种具有加热功能的电容屏,包括基板以及设于所述基板上的导电层,其特征在于,所述导电层包括:
    有效区域,所述有效区域包括交错设置的多条感应通道和驱动通道;
    无效区域,所述无效区域围绕所述有效区域,且所述无效区域设置有互相连通的高阻抗导电通道,所述高阻抗导电通道首末端通电后产生热量可对导电层进行加热。
  2. 根据权利要求1所述的一种具有加热功能的电容屏,其中,所述有效区域包括横向分布的多条所述感应通道和纵向分布的多条所述驱动通道,或者横向分布的多条所述驱动通道和纵向分布的多条所述感应通道。
  3. 根据权利要求2所述的一种具有加热功能的电容屏,其中,所述无效区域包括横纵向分布的多条所述高阻抗导电通道,且横向分布的所述高阻抗导电通道互相连通,纵向分布的所述高阻抗导电通道互相连通。
  4. 根据权利要求1所述的一种具有加热功能的电容屏,其中,所述无效区域包括多个子区域,所述子区域设置有所述高阻抗导电通道,且多个所述子区域互相连通。
  5. 根据权利要求4所述的一种具有加热功能的电容屏,其中,所述子区域的高阻抗导电通道为蛇形通道或网格形通道。
  6. 根据权利要求1所述的一种具有加热功能的电容屏,其中,所述导电层包括第一导电膜和第二导电膜,所述第一导电膜与所述第二导电膜之间通过光学胶粘合,所述第一导电膜包括第一有效区域和第一无效区域,所述第二导电膜包括第二有效区域和第二无效区域,所述第一有效区域设有所述感应通道,所述第二有效区域设有所述驱动通道,且所述第一无效区域和/或所述第二无效区域设有所述高阻抗导电通道。
  7. 根据权利要求1所述的一种具有加热功能的电容屏,其中,所述高阻抗导电通道材料为ITO或者纳米银导电材料。
  8. 根据权利要求1所述的一种具有加热功能的电容屏,其中,所述感应通道和所述驱动通道材料为ITO或者纳米银导电材料。
  9. 根据权利要求6所述的一种具有加热功能的电容屏,其中,所述导电层上方还设有盖板,所述盖板与所述导电层通过所述光学胶粘合。
  10. 一种触屏终端设备,其中,包括如权利要求1-9任一项所述的具有加热功能的电容屏。
PCT/CN2020/139920 2020-11-10 2020-12-28 一种具有加热功能的电容屏及触屏终端设备 WO2022099886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022592289.4 2020-11-10
CN202022592289.4U CN213814622U (zh) 2020-11-10 2020-11-10 一种具有加热功能的电容屏及触屏终端设备

Publications (1)

Publication Number Publication Date
WO2022099886A1 true WO2022099886A1 (zh) 2022-05-19

Family

ID=76967163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139920 WO2022099886A1 (zh) 2020-11-10 2020-12-28 一种具有加热功能的电容屏及触屏终端设备

Country Status (2)

Country Link
CN (1) CN213814622U (zh)
WO (1) WO2022099886A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114489246A (zh) * 2021-12-29 2022-05-13 苏州摩比信通智能系统有限公司 一种pda屏幕的自动除雾系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140168171A1 (en) * 2012-12-13 2014-06-19 Samsung Electro-Mechanics Co., Ltd. Touch sensing device and touch sensing method
CN203966088U (zh) * 2014-04-30 2014-11-26 介面光电股份有限公司 触控面板的双层电极结构
CN204143417U (zh) * 2014-09-28 2015-02-04 南京华睿川电子科技有限公司 一种带自动加热功能的投射式电容屏
CN104965615A (zh) * 2015-06-24 2015-10-07 上海与德通讯技术有限公司 一种去水汽方法及系统
CN105045421A (zh) * 2015-06-16 2015-11-11 上海与德通讯技术有限公司 触摸屏
CN105988620A (zh) * 2015-02-13 2016-10-05 冠捷投资有限公司 触控显示装置及水气结露侦测与消除方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140168171A1 (en) * 2012-12-13 2014-06-19 Samsung Electro-Mechanics Co., Ltd. Touch sensing device and touch sensing method
CN203966088U (zh) * 2014-04-30 2014-11-26 介面光电股份有限公司 触控面板的双层电极结构
CN204143417U (zh) * 2014-09-28 2015-02-04 南京华睿川电子科技有限公司 一种带自动加热功能的投射式电容屏
CN105988620A (zh) * 2015-02-13 2016-10-05 冠捷投资有限公司 触控显示装置及水气结露侦测与消除方法
CN105045421A (zh) * 2015-06-16 2015-11-11 上海与德通讯技术有限公司 触摸屏
CN104965615A (zh) * 2015-06-24 2015-10-07 上海与德通讯技术有限公司 一种去水汽方法及系统

Also Published As

Publication number Publication date
CN213814622U (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
KR101093651B1 (ko) 금속박막을 이용한 터치패널 및 그 제조방법
TWI671671B (zh) 觸控面板及其製造方法
TWI436256B (zh) Mutual capacitive touchpad and modular mutual capacitive touchpad
WO2017004975A1 (zh) 电容触摸屏及其制备方法、触控装置
CN104965617B (zh) 触控显示面板
TW201409337A (zh) 單層電極互電容觸控面板
JP2010108505A (ja) 交互静電容量式タッチパネル及びコンビ式交互静電容量式タッチパネル
TWM344522U (en) Sensory structure of capacitive touch panel and capacitive touch panel having the same
KR101161146B1 (ko) 금속박막을 이용한 터치패널 및 그 제조방법
WO2012096210A1 (ja) 座標入力装置
WO2022099886A1 (zh) 一种具有加热功能的电容屏及触屏终端设备
US20140152915A1 (en) Touch panel
KR101191949B1 (ko) 정전용량 터치 패널의 제조 방법 및 이에 의해 제조되는 터치 패널
KR101114416B1 (ko) 정전용량 방식 터치패널 및 그 제조방법
CN104714680A (zh) 触控板
JP2015507231A (ja) 容量タッチデバイスのパターンとその製造方法
CN104699336B (zh) 触控模组及其桥接结构的制造方法
CN207586893U (zh) 一种双面导电结构和触控面板
KR20140016623A (ko) 터치스크린 패널 및 그 형성방법
CN104063079B (zh) 触控面板的电极桥接结构
CN202351846U (zh) 一种遮挡结构、使用该遮挡结构的电容式触控面板
CN107315510B (zh) 一种导电膜和金属网格触摸传感器
TW201241711A (en) Touch panel device with single-layer radial electrode layout
KR20150014106A (ko) 터치 스크린 패널 및 그 제조 방법
CN104461205B (zh) 触摸屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961439

Country of ref document: EP

Kind code of ref document: A1