WO2022099876A1 - 一种装配式地铁车站及其施工方法 - Google Patents

一种装配式地铁车站及其施工方法 Download PDF

Info

Publication number
WO2022099876A1
WO2022099876A1 PCT/CN2020/138754 CN2020138754W WO2022099876A1 WO 2022099876 A1 WO2022099876 A1 WO 2022099876A1 CN 2020138754 W CN2020138754 W CN 2020138754W WO 2022099876 A1 WO2022099876 A1 WO 2022099876A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
components
wedge
steel
subway station
Prior art date
Application number
PCT/CN2020/138754
Other languages
English (en)
French (fr)
Inventor
丁先立
项宝
农兴中
吴居洋
史海欧
欧飞奇
昝子卉
王冉
何晟亚
李潇
刘春杰
叶亮
周前
李恒一
张文奇
任一恒
黄河
Original Assignee
广州地铁设计研究院股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州地铁设计研究院股份有限公司 filed Critical 广州地铁设计研究院股份有限公司
Priority to US17/577,373 priority Critical patent/US11926982B2/en
Publication of WO2022099876A1 publication Critical patent/WO2022099876A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/04Making large underground spaces, e.g. for underground plants, e.g. stations of underground railways; Construction or layout thereof
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/16Arrangement or construction of joints in foundation structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D31/00Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
    • E02D31/02Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against ground humidity or ground water

Definitions

  • the invention relates to the technical field of subway stations, in particular to a prefabricated subway station and a construction method thereof.
  • the subway station usually adopts the construction method of in-situ pouring, which mainly includes the steps of building formwork, binding steel bars, pouring concrete and curing and removing formwork.
  • in-situ pouring has many problems, such as a large amount of labor, poor on-site operating conditions, a large impact on the surrounding environment, and a long construction period.
  • the Chinese invention patent application with application publication number CN107761765A and application publication date of 2018.03.06 discloses a fully prefabricated subway station double-column main structure and its construction method , and specifically discloses that its structure includes a hoisting and positioning bottom plate A block, the two sides of the bottom plate A block are connected with the bottom corner plate B block, the bottom corner plate B block is provided with a side wall C block, and the middle of the bottom plate A block is fixed with a Two lower columns Z, the left side wall C block and the left lower column Z are fixed with the left middle plate D, the right side wall C block and the right lower column Z are fixed with the right middle plate D
  • the upper column Z is set on the middle plate D block on the left and the middle plate D block on the right side, and the top plate F block is arranged on the upper column Z.
  • Corner E block Between bottom plate A and bottom corner plate B, between bottom corner plate B and side wall C, between side wall C and top corner plate E, between top corner plate E and top plate F, Concave-convex tenon and bolts are used to connect the butted mid-plate D blocks.
  • Using the double-column main structure of the fully assembled subway station in the prior art can realize the construction of the entire subway station by assembling and connecting different components, and the joints between the components can be waterproofed by using waterproof gaskets.
  • the connecting parts of the components will bear a large shear force and bending moment, the bending moment that the bolted connection can bear is small, which cannot meet the design requirements, and the force transmission of the bolted connection is not uniform, which is easy to cause structural stress concentration and lead to The structure is damaged and cannot meet the high-performance waterproofing requirements; moreover, the operation of screwing the bolts is cumbersome and the construction efficiency is low.
  • the purpose of the present invention is to provide a prefabricated subway station and a construction method thereof, so as to solve the problem that the bending moment that the bolted connection of the existing components can bear is small, cannot meet the design requirements, and the force transmission of the bolted connection is not uniform. , it is easy to cause structural stress concentration and lead to structural damage, which cannot meet the high-performance waterproof requirements; moreover, the operation of screwing the bolts is cumbersome and the construction efficiency is low.
  • the technical scheme of the prefabricated subway station of the present invention is:
  • the prefabricated subway station includes a plurality of components in a ring-shaped combination, and the plurality of components are respectively a bottom plate component, a bottom corner component, a side wall component, a middle plate component, a top corner component and a top plate component, and the bottom corner components are connected at the The lateral sides of the bottom plate member, the top corner members are connected to the lateral sides of the top plate member, the side wall members are connected to the lateral sides of the middle plate member, and the side wall members are connected to between the bottom corner member and the top corner member;
  • each said member is respectively provided with mutually matching concave-convex structures, and the butt joints of two adjacent said members are filled with sealing structures;
  • the insert grooves of the components are arranged opposite to each other, and a connector for forming an opposite tightening force for two adjacent components is installed therein.
  • the embedding groove is a C-shaped groove
  • the notch of the C-shaped groove is disposed outward
  • the outer groove edge of the C-shaped groove is blocked and matched with the connecting piece.
  • a C-shaped channel steel is pre-embedded at the edge position of each of the components, the C-shaped channel steel is connected with the main rib of the component, and the C-shaped channel steel is also provided with anchors, and the C-shaped channel steel is provided.
  • the inner channel of steel constitutes the C-shaped channel.
  • the connecting piece is an I-shaped steel
  • the I-shaped steel includes two side flanges and a web in the middle, and the two side flanges are respectively connected with the outer grooves of the two adjacent C-shaped grooves.
  • the web is in clearance fit with the notch of the C-shaped groove.
  • the gap between the C-shaped groove and the I-shaped steel is also filled with high-strength grouting material.
  • the I-shaped steel is provided with a first wedge-shaped structure, and the first wedge-shaped structure has a first wedge-shaped surface inclined along the length direction of the I-shaped steel; the C-shaped groove is also provided with a first wedge-shaped surface. Two wedge-shaped structures, the second wedge-shaped structure and the first wedge-shaped surface are press fit laterally.
  • the sealing structure includes a sealing bead disposed on the edge of each of the components, the sealing bead has a sealing surface for press-fit with the sealing bead of the adjacent component; the sealing structure further includes Epoxy resin filled between two adjacent said members.
  • the prefabricated subway station adopts the combination of floor member, bottom corner member, side wall member, top corner member and roof member to form a ring structure.
  • the concave-convex structure on the edge of the member is used for positioning.
  • the connecting piece is installed in the inserting groove of the two adjacent components, and the opposite tightening force is formed on the two adjacent components through the connecting piece instead of
  • the existing bolt connection form ensures that the sealing structure at the butt joint can play a better sealing effect; using the assembly form of the connection piece and the insert groove, the complete connection piece replaces multiple bolt structures, which can seal the adjacent parts.
  • the two components form a stronger and more reliable fastening force; moreover, this connection form bears a larger bending moment, transmits evenly and prevents stress concentration, avoids joint cracking due to structural damage, and satisfies high performance Moreover, compared with screwing bolts, the operation is simplified and the construction efficiency is improved.
  • the technical scheme of the construction method of the prefabricated subway station of the present invention is:
  • the construction method of the prefabricated subway station includes the following steps:
  • Step 1 prefabricating a plurality of components, and setting concave-convex structures and C-shaped grooves on the edges of the components; processing into I-shaped steel;
  • Step 2 Move the components to the docking position according to the assembly sequence to ensure that the notches of the C-shaped grooves of the adjacent two components are opposite;
  • Step 3 inserting the I-shaped steel into the C-shaped grooves of two adjacent said members, so as to form an opposite tightening force to the two adjacent said members;
  • Step 4 pour high-strength grouting material into the gap between the C-shaped groove and the I-shaped steel;
  • Step 5 filling epoxy resin between two adjacent components to form a seal.
  • step 1 an anchor is arranged on the C-shaped channel steel, the groove of the C-shaped channel steel is pre-embedded in the edge position of the component outward, and the C-shaped channel steel is connected to the component.
  • the main ribs are connected; after each of the components is prefabricated, a sealing bead is arranged on the edge of each of the components.
  • a first wedge-shaped structure is arranged on the I-shaped steel, and the first wedge-shaped structure has a first wedge-shaped surface inclined along the length direction of the I-shaped steel; A second wedge-shaped structure is arranged on it;
  • step 3 when the I-shaped steel is inserted, the first wedge-shaped structure is used to form a lateral compression fit effect on the second wedge-shaped structure of the C-shaped channel steel of two adjacent members.
  • the prefabricated subway station adopts the combination of floor member, bottom corner member, side wall member, top corner member and roof member to form a ring structure.
  • the concave-convex structure on the edge of the member is used for positioning.
  • the connecting piece is installed in the inserting groove of the two adjacent components, and the opposite tightening force is formed on the two adjacent components through the connecting piece instead of
  • the existing bolt connection form ensures that the sealing structure at the butt joint can play a better sealing effect; using the assembly form of the connection piece and the insert groove, the complete connection piece replaces multiple bolt structures, which can seal the adjacent parts.
  • the two components form a stronger and more reliable fastening force; moreover, this connection form bears a larger bending moment, transmits evenly and prevents stress concentration, avoids joint cracking due to structural damage, and satisfies high performance Moreover, compared with screwing bolts, the operation is simplified and the construction efficiency is improved.
  • Fig. 1 is the cross-sectional structure schematic diagram of the prefabricated subway station in the specific embodiment 1 of the prefabricated subway station of the present invention
  • Fig. 2 is the enlarged schematic diagram of the junction of the top corner member and the top plate member in Fig. 1;
  • Fig. 3 is the assembly schematic diagram between the I-shaped steel and two C-shaped channel steels in the specific embodiment 1 of the prefabricated subway station of the present invention
  • Fig. 4 is the three-dimensional schematic diagram of the I-shaped steel in the specific embodiment 1 of the prefabricated subway station of the present invention.
  • FIG. 5 is a longitudinal cross-sectional view of the I-shaped steel installed in two C-shaped channel steels in the specific embodiment 1 of the prefabricated subway station of the present invention
  • FIG. 6 is an enlarged schematic view of the connection between the top corner member and the side wall member in FIG. 1 .
  • the prefabricated subway station includes a plurality of components in a ring-shaped combination, and the plurality of components are respectively a bottom plate member 11, a bottom corner member 12, The side wall member 13, the top corner member 14 and the top plate member 15, the bottom corner member 12 is connected to the lateral sides of the bottom plate member 11, the top corner member 14 is connected to the lateral sides of the top plate member 15, and the side wall member 13 is connected to the bottom corner.
  • each member 12 and the corner member 14 Between the member 12 and the corner member 14; the edges of each member are respectively provided with mutually matching concave-convex structures, and the butt joints of the two adjacent members are filled with sealing structures;
  • the insert grooves of the adjacent two components are oppositely arranged, and a connecting piece for forming an opposite tightening force to the adjacent two components is installed therein.
  • the prefabricated subway station adopts the combination of bottom plate member 11, bottom corner member 12, side wall member 13, top corner member 14 and top plate member 15 to form a ring-shaped structure.
  • the connecting piece is installed in the embedding groove of the two adjacent components, and the opposite tightening force is formed on the adjacent two components through the connecting piece.
  • This replaces the existing bolt connection form, thereby ensuring that the sealing structure at the butt joint can play a better sealing effect; using the assembly form of the connector and the insert groove, the complete connector replaces multiple bolt structures, which can The two adjacent components form a stronger and more reliable fastening force.
  • this connection form can withstand a larger bending moment, transmit evenly, prevent stress concentration, and avoid joint cracking due to structural damage. High-performance waterproof requirements; moreover, compared with screwing bolts, it simplifies the operation and improves the construction efficiency.
  • the bottom corner member 11 and the bottom corner member 12 are connected by a combination of connectors and curved bolts
  • the bottom corner member 12 and the side wall member 13 are connected by a combination of connectors and curved bolts
  • the side wall member 13 and the The top corner members 14 are connected in the form of double connectors
  • the top corner members 14 and the top plate member 15 are connected in the form of double connectors.
  • a middle plate member 16 is also connected between the two side wall members 13, and the side wall member 13 and the middle plate member 16 are also connected in the form of double connectors.
  • the components are connected by a combination of connectors and bent bolts, and a single connector can meet the requirements of the connection strength between the components; while the upper half of the prefabricated subway station structure It not only acts as a load-bearing structure but also undertakes waterproofing, and adopts the form of double connectors to connect components to meet its higher requirements for connection strength.
  • the embedded groove is a C-shaped groove 20
  • the notch of the C-shaped groove 20 is disposed outward
  • the outer groove edge 21 of the C-shaped groove 20 is blocked and matched with the connector.
  • a C-shaped channel steel 2 is pre-embedded at the edge of each component, the C-shaped channel steel 2 is connected to the main rib of the component, and the C-shaped channel steel 2 is also provided with anchors 23.
  • the inner channel of the C-shaped channel steel 2 A C-shaped groove 20 is formed.
  • the upper edge of the top corner member 14 is provided with a stepped outer edge, and two C-shaped channel steels 2 embedded in the top corner member 14, wherein , the two C-shaped channel steels 2 are connected with the main rib 140 of the corner member, and the two C-shaped channel steels 2 are also provided with anchors 23, and the C-shaped channel steel 2 and the corner member 14 are improved by the anchors 23.
  • the combined strength of the concrete part ensures that the anchor 23 and the top corner member 14 form an integral structure.
  • the outer edge of the top plate member 15 is also provided with a stepped outer edge, and two C-shaped channel steels 2 pre-buried in the top plate member 15, wherein the two C-shaped channel steels 2 are connected with the main rib of the top plate member. 150 are connected, and the two C-shaped channel steels 2 are also provided with anchors 23, through the anchors 23 to improve the bonding strength of the C-shaped channel steel 2 and the concrete part of the roof member 15, to ensure that the anchors 23 and the roof member 15 form an overall structure.
  • the stepped outer edge of the apex corner member 14 and the stepped outer edge of the top plate member 15 are concave and convex, so as to play a positioning and supporting role, and the stepped outer edge of the apex corner member 14 and the stepped outer edge of the top plate member 15 constitute the edge of the member the concave-convex structure.
  • the stepped outer edge of the apex corner member 14 and the stepped outer edge of the top plate member 15 constitute the edge of the member the concave-convex structure.
  • the other side edge of the corner member 14 is provided with a groove 141 of the corner member
  • the corresponding side edge of the side wall member 13 is provided with a convex edge 131 of the side wall member
  • the concave edge of the corner member is provided
  • the groove 141 and the protruding edge 131 of the side wall member are in concave-convex fit, and the two respectively constitute the concave-convex structure of the respective member.
  • the connecting piece is an I-shaped steel 3
  • the I-shaped steel 3 includes two side flanges 31 and a web 30 in the middle.
  • the two side flanges 31 are respectively connected with the outer groove edges of the two adjacent C-shaped grooves 20 21 is a stop fit, and the web 30 is a clearance fit with the notch of the C-shaped groove 20 .
  • the two side flanges 31 of the I-shaped steel 3 are used to stop and cooperate with the outer groove edge 21 of the corresponding C-shaped groove 20 respectively. Since the web 30 of the I-shaped steel 3 is a longitudinally continuous structure and has high strength, it can ensure It plays a high-strength fastening connection for the two connected components.
  • a first wedge-shaped structure 32 is provided on the I-shaped steel 3, and the first wedge-shaped structure 32 has a first wedge-shaped surface 320 inclined along the length direction of the I-shaped steel 3; in the C-shaped groove 20 A second wedge-shaped structure 22 is also provided, and the second wedge-shaped structure 22 is laterally press-fitted with the first wedge-shaped surface 320 .
  • there are two first wedge structures 32 and the two first wedge structures 32 are symmetrically arranged on opposite sides of the two side flanges 31 of the I-shaped steel 3 respectively, and the opposite sides of the two first wedge structures 32 are is the first wedge surface 320 .
  • the second wedge-shaped structure 22 is arranged on the inner side of the outer groove 21 of the C-shaped channel steel 2, the inner side of the second wedge-shaped structure 22 is inclined along the length direction of the C-shaped channel steel 2, and the second wedge-shaped structure
  • the inclination angle of the inner surface of 22 is equal to the inclination angle of the first wedge-shaped surface 320 of the first wedge-shaped structure 32 . It is precisely because of the design of the first wedge-shaped structure 32 and the second wedge-shaped structure 22 that as the I-shaped steel 3 gradually penetrates into the C-shaped grooves 20 of the two components, the longitudinal movement of the two first wedge-shaped structures 32 is converted into a pair of two wedge-shaped structures 32 .
  • the lateral pressing force of the second wedge-shaped structure 22 of each C-shaped channel steel 2 makes the two adjacent components tightly connected and thus forms a good seal.
  • the gap between the C-shaped groove 20 and the I-shaped steel 3 is also filled with high-strength grouting material 6.
  • the high-strength grouting material 6 itself has good pressure resistance characteristics. The use of high-strength grouting material 6 is not only used to fill dense gaps, but also more important What's more, the I-shaped steel 3 is completely restricted by the solidified high-strength grouting material 6, so that the I-shaped steel 3 is firmly and stably stationary in the C-shaped groove 20, which ensures the reliable connection of the I-shaped steel 3 to the components.
  • the sealing structure includes a sealing bead 4 arranged at the edge of each component, and the sealing bead 4 has a sealing surface for press-fit with the sealing bead 4 of the adjacent component; Epoxy resin 5 between adjacent two components.
  • the sealing form and the effective sealing area are increased by the sealing and sealing between the sealing bead 4 and the sealing bead 4, and the epoxy resin 5 fills the gap between the two adjacent components, and the actual sealing effect between the components is guaranteed to be better. it is good.
  • the construction method of the prefabricated subway station includes the following steps:
  • Step 1 Prefabricate multiple components, and set concave-convex structures and C-shaped grooves 20 on the edges of the components;
  • the notch is pre-buried at the edge of the component facing outward, and the C-shaped channel steel 2 is connected to the main rib of the component, and the inner channel of the C-shaped channel steel 2 constitutes the C-shaped channel 20;
  • the edge is provided with a sealing bead 4.
  • step 1 the I-shaped steel 3 is processed; specifically, a first wedge-shaped structure 32 is firstly provided on the I-shaped steel 3 , and the first wedge-shaped structure 32 has a first wedge-shaped structure 32 inclined along the length direction of the I-shaped steel 3 . Wedge face 320.
  • Step 2 Move the components to the docking position according to the assembly sequence to ensure that the notches of the C-shaped grooves 20 of the two adjacent components are opposite;
  • Step 3 inserting the I-shaped steel 3 into the C-shaped groove 20 of the two adjacent components, so as to form an opposite tightening force on the adjacent two components; specifically, in step 3, when the I-shaped steel 3 is inserted , using its first wedge-shaped structure 32 to respectively form a lateral compression fit effect on the second wedge-shaped structure 22 of the C-shaped channel steel 2 of two adjacent members.
  • Step 4 pour high-strength grouting material 6 into the gap between the C-shaped groove 20 and the I-shaped steel 3;
  • Step 5 Filling epoxy resin 5 between two adjacent components to form a seal.
  • the first wedge-shaped structure of the I-shaped steel and/or the second wedge-shaped structure of the C-shaped channel steel can be omitted.
  • the dimensions of the channel steel are precisely matched to realize the connection between the two components.
  • the specific embodiments of the construction method of the prefabricated subway station of the present invention are the same as the specific embodiments of the construction method of the prefabricated subway station in the specific embodiments of the prefabricated subway station of the present invention, and will not be repeated here.

Abstract

一种装配式地铁车站及其施工方法,包括呈环状组合的多个构件,多个构件分别为底板构件(11)、底角构件(12)、侧墙构件(13)、中板构件(16)、顶角构件(14)和顶板构件(15),各构件的边缘分别设有相互匹配的凹凸结构,相邻两个构件的对接处填充有密封结构,各构件的边缘还设有纵向延伸的嵌槽,相邻两个构件的嵌槽相对设置且其中安装有用于对相邻两个构件形成对向紧固力的连接件。通过连接件对相邻两个构件形成对向紧固力,保证对接处的密封结构,起到更好的密封效果。

Description

一种装配式地铁车站及其施工方法 技术领域
本发明涉及地铁车站技术领域,特别是涉及一种装配式地铁车站及其施工方法。
背景技术
目前,地铁车站通常采用现场浇筑的施工方式,主要包括搭建模板、绑扎钢筋、浇筑混凝土和固化拆模等步骤。但是,现场浇筑存在劳动量大、现场作业条件恶劣、对周边环境影响大以及施工周期长等诸多问题。
基于上述问题,随后发展了装配式地铁车站的技术,如申请公布号为CN107761765A、申请公布日为2018.03.06的中国发明专利申请公开了一种全装配式地铁车站双柱主体结构及其施工方法,并具体公开了其结构包括吊装并定位的底板A块,底板A块上两侧与底角板B块相连,底角板B块上均设置有边墙C块,底板A块中部固定有两根下柱Z,左侧边墙C块、左侧下柱Z上固定有左侧的中板D块,右侧边墙C块、右侧下柱Z上固定有右侧的中板D块,左侧的中板D块、右侧的中板D块上均设置有上柱Z,上柱Z上设置有顶板F块,顶板F块两侧与边墙C块端部固定有顶角E块。底板A块、底角板B块之间,底角板B块、边墙C块之间,边墙C块、顶角板E块之间,顶角板E块、顶板F块之间,对接的中板D块之间采用凹凸榫和螺栓连接。
采用现有技术中的全装配式地铁车站双柱主体结构可通过不同构件的拼装连接实现整个地铁车站的施工,构件之间的接缝采用防水密封垫可起到起到防水效果。但是,由于构件的连接部位会承受较大的剪切力和弯矩,采用螺栓连接能承受的弯矩较小,不能满足设计要求,且螺栓连接传力不均匀,容易引起结构应力集中而导致结构受损,无 法满足高性能的防水要求;而且,旋拧螺栓的操作繁琐,施工效率低。
发明内容
为了解决上述问题,本发明的目的在于提供一种装配式地铁车站及其施工方法,以解决现有构件采用螺栓连接能承受的弯矩较小,不能满足设计要求,且螺栓连接传力不均匀,容易引起结构应力集中而导致结构受损,无法满足高性能的防水要求;而且,旋拧螺栓的操作繁琐,施工效率低。
本发明的装配式地铁车站的技术方案为:
装配式地铁车站包括呈环状组合的多个构件,多个所述构件分别为底板构件、底角构件、侧墙构件、中板构件、顶角构件和顶板构件,所述底角构件连接在所述底板构件的横向两侧,所述顶角构件连接在所述顶板构件的横向两侧,所述侧墙构件连接在所述中板构件的横向两侧,且所述侧墙构件连接在所述底角构件和所述顶角构件之间;
各所述构件的边缘分别设有相互匹配的凹凸结构,相邻两个所述构件的对接处填充有密封结构;各所述构件的边缘还设有纵向延伸的嵌槽,相邻两个所述构件的嵌槽相对设置且其中安装有用于对相邻两个所述构件形成对向紧固力的连接件。
进一步的,所述嵌槽为C型槽,所述C型槽的槽口朝外设置,且所述C型槽的外槽沿与所述连接件挡止配合。
进一步的,各所述构件的边缘位置预埋设有C型槽钢,所述C型槽钢与所述构件的主筋相连且所述C型槽钢上还设有锚固件,所述C型槽钢的内槽道构成所述C型槽。
进一步的,所述连接件为工字型钢,所述工字型钢包括两个侧翼缘以及中间的腹板,两个所述侧翼缘分别与相邻两个所述C型槽的外槽沿挡止配合,所述腹板与所述C型槽的槽口间隙配合。
进一步的,所述C型槽和所述工字型钢之间的空隙还灌注有高强灌浆料。
进一步的,所述工字型钢上设置有第一楔形结构,所述第一楔形结构具有沿所述工字型钢的长度方向倾斜设置的第一楔形面;所述C型槽中还设有第二楔形结构,所述第二楔形结构与所述第一楔形面横向压紧配合。
进一步的,所述密封结构包括设置在各所述构件的边缘的密封压条,所述密封压条具有用于与相邻所述构件的密封压条相对挤压配合的密封面;所述密封结构还包括填筑在相邻两个所述构件之间的环氧树脂。
有益效果:该装配式地铁车站采用底板构件、底角构件、侧墙构件、顶角构件和顶板构件组合形成环状结构,相邻两个构件对接到位后,利用构件边缘的凹凸结构起到定位作用,并在相邻两个构件的嵌槽正对时,将连接件安装在相邻两个构件的嵌槽中,通过连接件对相邻两个构件形成对向紧固力,以此替代现有的螺栓连接形式,进而保证对接处的密封结构可起到更好的密封效果;采用该连接件与嵌槽的装配形式,由完整的连接件代替了多个螺栓结构,能够对相邻两个构件形成更大强度、更牢靠的紧固力;而且,该连接形式承受更大弯矩作用,传力均匀并防止出现应力集中,避免因结构受损而导致接缝开裂,满足高性能的防水要求;而且,相比于旋拧螺栓简化了操作,提高了施工效率。
本发明的装配式地铁车站的施工方法的技术方案为:
装配式地铁车站的施工方法包括以下步骤:
步骤一、预制多个构件,并在所述构件的边缘设置凹凸结构和C型槽;加工制成工字型钢;
步骤二、按照组装顺序将所述构件移动至对接位置,确保相邻两个所述构件的C型槽的槽口相对;
步骤三、将所述工字型钢穿插至相邻两个所述构件的C型槽中,以对相邻两个所述构件形成对向紧固力;
步骤四、对所述C型槽和所述工字型钢之间的空隙灌注高强灌浆料;
步骤五、在相邻两个所述构件之间填筑环氧树脂形成密封。
进一步的,步骤一中,在C型槽钢上设置锚固件,将所述C型槽钢槽口朝外预埋在所述构件的边缘位置,并将所述C型槽钢与所述构件的主筋相连;各所述构件预制成型后,在各所述构件的边缘设置密封压条。
进一步的,步骤一中,在所述工字型钢上设置第一楔形结构,且所述第一楔形结构具有沿所述工字型钢的长度方向倾斜设置的第一楔形面;在C型槽钢上设置第二楔形结构;
步骤三中,穿插所述工字型钢时,利用其第一楔形结构分别对相邻两个所述构件的C型槽钢的第二楔形结构形成横向压紧配合作用。
有益效果:该装配式地铁车站采用底板构件、底角构件、侧墙构件、顶角构件和顶板构件组合形成环状结构,相邻两个构件对接到位后,利用构件边缘的凹凸结构起到定位作用,并在相邻两个构件的嵌槽正对时,将连接件安装在相邻两个构件的嵌槽中,通过连接件对相邻两个构件形成对向紧固力,以此替代现有的螺栓连接形式,进而保证对接处的密封结构可起到更好的密封效果;采用该连接件与嵌槽的装配形式,由完整的连接件代替了多个螺栓结构,能够对相邻两个构件形成更大强度、更牢靠的紧固力;而且,该连接形式承受更大弯矩作用,传力均匀并防止出现应力集中,避免因结构受损而导致接缝开裂,满足高性能的防水要求;而且,相比于旋拧螺栓简化了操作,提高了施工效率。
附图说明
图1为本发明的装配式地铁车站的具体实施例1中装配式地铁车站的横断面结构示意图;
图2为图1中的顶角构件和顶板构件连接处的放大示意图;
图3为本发明的装配式地铁车站的具体实施例1中工字型钢与两个C型槽钢之间的装配示意图;
图4为本发明的装配式地铁车站的具体实施例1中工字型钢的立体示意图;
图5为本发明的装配式地铁车站的具体实施例1中工字型钢安装于两个C型槽钢中的纵向剖视图;
图6图1中的顶角构件和侧墙构件连接处的放大示意图。
图中:11-底板构件、12-底角构件、13-侧墙构件、131-侧墙构件的凸沿、14-顶角构件、140-顶角构件的主筋、141-顶角构件的凹槽、15-顶板构件、150-顶板构件的主筋、16-中板构件、2-C型槽钢、20-C型槽、21-外槽沿、22-第二楔形结构、23-锚固件、3-工字型钢、30-腹板、31-侧翼缘、32-第一楔形结构、320-第一楔形面、4-密封压条、5-环氧树脂、6-高强灌浆料。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明的装配式地铁车站的具体实施例1,如图1至图6所示,装配式地铁车站包括呈环状组合的多个构件,多个构件分别为底板构件11、底角构件12、侧墙构件13、顶角构件14和顶板构件15,底角构件12连接在底板构件11的横向两侧,顶角构件14连接在顶板构件15的横向两侧,侧墙构件13连接在底角构件12和顶角构件14之间;各构件的边缘分别设有相互匹配的凹凸结构,相邻两个构件的对接处填充有密封结构;各构件的边缘还设有纵向延伸的嵌槽,相邻两个构件的嵌槽相对设置且其中安装有用于对相邻两个构件形成对向紧固力的连接件。
该装配式地铁车站采用底板构件11、底角构件12、侧墙构件13、顶角构件14和顶板构件15组合形成环状结构,相邻两个构件对接到位后,利用构件边缘的凹凸结构起到定位作用,并在相邻两个构件的嵌槽正对时,将连接件安装在相邻两个构件的嵌槽中,通过连接件对 相邻两个构件形成对向紧固力,以此替代现有的螺栓连接形式,进而保证对接处的密封结构可起到更好的密封效果;采用该连接件与嵌槽的装配形式,由完整的连接件代替了多个螺栓结构,能够对相邻两个构件形成更大强度、更牢靠的紧固力,而且,该连接形式承受更大弯矩作用,传力均匀并防止出现应力集中,避免因结构受损而导致接缝开裂,满足高性能的防水要求;而且,相比于旋拧螺栓简化了操作,提高了施工效率。
其中,底板构件11与底角构件12之间采用连接件+弯螺栓的组合形式连接,底角构件12与侧墙构件13之间采用连接件+弯螺栓的组合形式连接,侧墙构件13与顶角构件14之间采用双连接件的形式连接,顶角构件14与顶板构件15之间采用双连接件的形式连接。另外,两个侧墙构件13之间还连接有中板构件16,并且侧墙构件13与中板构件16之间也采用双连接件的形式连接。基于装配式地铁车站的下半部分结构本身不承重,采用连接件+弯螺栓的组合形式连接构件,单连接件即可满足构件之间连接强度的需求;而装配式地铁车站的上半部分结构既作为承重结构又承担防水作用,采用双连接件的形式连接构件以满足其对连接强度的更高要求。
在本实施例中,嵌槽为C型槽20,C型槽20的槽口朝外设置,且C型槽20的外槽沿21与连接件挡止配合。具体的,各构件的边缘位置预埋设有C型槽钢2,C型槽钢2与构件的主筋相连且C型槽钢2上还设有锚固件23,C型槽钢2的内槽道构成C型槽20。以顶角构件14与顶板构件15之间的连接结构为例,顶角构件14的上边缘设有阶梯形外沿,以及预埋在顶角构件14中的两个C型槽钢2,其中,两个C型槽钢2均与顶角构件的主筋140相连,并且两个C型槽钢2上还设有锚固件23,通过锚固件23来提高C型槽钢2与顶角构件14的混凝土部分的结合强度,保证了锚固件23与顶角构件14形成整体结构。
相对应的,顶板构件15的外侧边缘也设有阶梯形外沿,以及预埋在顶板构件15中的两个C型槽钢2,其中,两个C型槽钢2均与顶板 构件的主筋150相连,并且两个C型槽钢2上还设有锚固件23,通过锚固件23来提高C型槽钢2与顶板构件15的混凝土部分的结合强度,保证了锚固件23与顶板构件15形成整体结构。顶角构件14的阶梯形外沿与顶板构件15的阶梯形外沿凹凸配合,从而起到定位支撑作用,并且顶角构件14的阶梯形外沿与顶板构件15的阶梯形外沿构成构件边缘的凹凸结构。另外,如图6所示,顶角构件14的另一侧边缘设有顶角构件的凹槽141,侧墙构件13的对应侧边缘设有侧墙构件的凸沿131,顶角构件的凹槽141与侧墙构件的凸沿131之间凹凸配合,且二者分别构成各自构件的凹凸结构。
在本实施例中,连接件为工字型钢3,工字型钢3包括两个侧翼缘31以及中间的腹板30,两个侧翼缘31分别与相邻两个C型槽20的外槽沿21挡止配合,腹板30与C型槽20的槽口间隙配合。施工时,在相邻两个构件对接到位后,将工字型钢3沿纵向方向插装至两个构件的C型槽20中,工字型钢3的腹板30进入C型槽20的槽口位置,利用工字型钢3的两个侧翼缘31分别与对应的C型槽20的外槽沿21挡止配合,由于工字型钢3的腹板30为纵向连续结构且本身强度高,能够确保对相连两个构件起到高强度的紧固连接作用。
为了提高构件的密封连接效果,在工字型钢3上设置有第一楔形结构32,第一楔形结构32具有沿工字型钢3的长度方向倾斜设置的第一楔形面320;C型槽20中还设有第二楔形结构22,第二楔形结构22与第一楔形面320横向压紧配合。具体的,第一楔形结构32设有两个,两个第一楔形结构32分别对称设置在工字型钢3的两个侧翼缘31的相对侧,并且两个第一楔形结构32的相对侧面即为第一楔形面320。
相对应的,第二楔形结构22设置在C型槽钢2的外槽沿21的内侧面,第二楔形结构22的内侧面沿C型槽钢2的长度方向倾斜设置,并且第二楔形结构22的内侧面的倾角与第一楔形结构32的第一楔形面320的倾角大小相等。正是由于第一楔形结构32和第二楔形结构22的设计,随着工字型钢3在两个构件的C型槽20中逐渐深入,通过两 个第一楔形结构32的纵向移动转化为对两个C型槽钢2的第二楔形结构22的横向挤压力,从而使相邻两个构件之间紧固连接进而形成良好密封。
另外,在C型槽20和工字型钢3之间的空隙还灌注有高强灌浆料6,高强灌浆料6本身具有良好的耐压特性,利用高强灌浆料6不仅用来填充密实空隙,更重要的是,通过固化后的高强灌浆料6完全限制工字型钢3,使工字型钢3牢固稳定地静止在C型槽20中,保证了工字型钢3对构件的可靠连接作用。
在本实施例中,密封结构包括设置在各构件的边缘的密封压条4,密封压条4具有用于与相邻构件的密封压条4相对挤压配合的密封面;密封结构还包括填筑在相邻两个构件之间的环氧树脂5。通过密封压条4和密封压条4之间的贴合密封,以及环氧树脂5填充相邻两个构件之间的间隙,增加了密封形式和有效的密封面积,保证了构件间实际的密封效果更好。
该装配式地铁车站的施工方法包括以下步骤:
步骤一、预制多个构件,并在构件的边缘设置凹凸结构和C型槽20;具体的,先在C型槽钢2上设置第二楔形结构22和锚固件23,将C型槽钢2槽口朝外预埋在构件的边缘位置,并将C型槽钢2与构件的主筋相连,C型槽钢2的内槽道构成C型槽20;各构件预制成型后,在各构件的边缘设置密封压条4。
在步骤一中,加工制成工字型钢3;具体的,先在工字型钢3上设置第一楔形结构32,且第一楔形结构32具有沿工字型钢3的长度方向倾斜设置的第一楔形面320。
步骤二、按照组装顺序将构件移动至对接位置,确保相邻两个构件的C型槽20的槽口相对;
步骤三、将工字型钢3穿插至相邻两个构件的C型槽20中,以对相邻两个构件形成对向紧固力;具体的,在步骤三中,穿插工字型钢3时,利用其第一楔形结构32分别对相邻两个构件的C型槽钢2的第二 楔形结构22形成横向压紧配合作用。
步骤四、对C型槽20和工字型钢3之间的空隙灌注高强灌浆料6;
步骤五、在相邻两个构件之间填筑环氧树脂5形成密封。
本发明的装配式地铁车站的其他具体实施例,为了满足不同的施工需求,可将工字型钢的第一楔形结构和/或C型槽钢的第二楔形结构省去,工字型钢和C型槽钢的尺寸精确配合,实现对两个构件之间的连接作用。
本发明的装配式地铁车站的施工方法的具体实施例,与本发明的装配式地铁车站的具体实施方式中装配式地铁车站的施工方法的各具体实施例相同,在此不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (10)

  1. 一种装配式地铁车站,其特征是,包括呈环状组合的多个构件,多个所述构件分别为底板构件、底角构件、侧墙构件、中板构件、顶角构件和顶板构件,所述底角构件连接在所述底板构件的横向两侧,所述顶角构件连接在所述顶板构件的横向两侧,所述侧墙构件连接在所述中板构件的横向两侧,且所述侧墙构件连接在所述底角构件和所述顶角构件之间;
    各所述构件的边缘分别设有相互匹配的凹凸结构,相邻两个所述构件的对接处填充有密封结构;各所述构件的边缘还设有纵向延伸的嵌槽,相邻两个所述构件的嵌槽相对设置且其中安装有用于对相邻两个所述构件形成对向紧固力的连接件。
  2. 根据权利要求1所述的装配式地铁车站,其特征是,所述嵌槽为C型槽,所述C型槽的槽口朝外设置,且所述C型槽的外槽沿与所述连接件挡止配合。
  3. 根据权利要求2所述的装配式地铁车站,其特征是,各所述构件的边缘位置预埋设有C型槽钢,所述C型槽钢与所述构件的主筋相连且所述C型槽钢上还设有锚固件,所述C型槽钢的内槽道构成所述C型槽。
  4. 根据权利要求2所述的装配式地铁车站,其特征是,所述连接件为工字型钢,所述工字型钢包括两个侧翼缘以及中间的腹板,两个所述侧翼缘分别与相邻两个所述C型槽的外槽沿挡止配合,所述腹板与所述C型槽的槽口间隙配合。
  5. 根据权利要求4所述的装配式地铁车站,其特征是,所述C型槽和所述工字型钢之间的空隙还灌注有高强灌浆料。
  6. 根据权利要求4所述的装配式地铁车站,其特征是,所述工字型钢上设置有第一楔形结构,所述第一楔形结构具有沿所述工字型钢的长度方向倾斜设置的第一楔形面;所述C型槽中还设有第二楔形结 构,所述第二楔形结构与所述第一楔形面横向压紧配合。
  7. 根据权利要求1所述的装配式地铁车站,其特征是,所述密封结构包括设置在各所述构件的边缘的密封压条,所述密封压条具有用于与相邻所述构件的密封压条相对挤压配合的密封面;所述密封结构还包括填筑在相邻两个所述构件之间的环氧树脂。
  8. 一种装配式地铁车站的施工方法,其特征是,包括以下步骤:
    步骤一、预制多个构件,并在所述构件的边缘设置凹凸结构和C型槽;加工制成工字型钢;
    步骤二、按照组装顺序将所述构件移动至对接位置,确保相邻两个所述构件的C型槽的槽口相对;
    步骤三、将所述工字型钢穿插至相邻两个所述构件的C型槽中,以对相邻两个所述构件形成对向紧固力;
    步骤四、对所述C型槽和所述工字型钢之间的空隙灌注高强灌浆料;
    步骤五、在相邻两个所述构件之间填筑环氧树脂形成密封。
  9. 根据权利要求8所述的装配式地铁车站的施工方法,其特征是,步骤一中,在C型槽钢上设置锚固件,将所述C型槽钢槽口朝外预埋在所述构件的边缘位置,并将所述C型槽钢与所述构件的主筋相连;各所述构件预制成型后,在各所述构件的边缘设置密封压条。
  10. 根据权利要求9所述的装配式地铁车站的施工方法,其特征是,步骤一中,在所述工字型钢上设置第一楔形结构,且所述第一楔形结构具有沿所述工字型钢的长度方向倾斜设置的第一楔形面;在C型槽钢上设置第二楔形结构;
    步骤三中,穿插所述工字型钢时,利用其第一楔形结构分别对相邻两个所述构件的C型槽钢的第二楔形结构形成横向压紧配合作用。
PCT/CN2020/138754 2020-11-13 2020-12-23 一种装配式地铁车站及其施工方法 WO2022099876A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/577,373 US11926982B2 (en) 2020-11-13 2022-01-17 Assembled subway station and construction method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011276099.XA CN112281918B (zh) 2020-11-13 2020-11-13 一种装配式地铁车站及其施工方法
CN202011276099.X 2020-11-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/577,373 Continuation US11926982B2 (en) 2020-11-13 2022-01-17 Assembled subway station and construction method thereof

Publications (1)

Publication Number Publication Date
WO2022099876A1 true WO2022099876A1 (zh) 2022-05-19

Family

ID=74398935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138754 WO2022099876A1 (zh) 2020-11-13 2020-12-23 一种装配式地铁车站及其施工方法

Country Status (2)

Country Link
CN (1) CN112281918B (zh)
WO (1) WO2022099876A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115163924A (zh) * 2022-08-05 2022-10-11 福州轨道交通设计院有限公司 与地铁装配式墙板体系结合的综合支架及抗震支架
CN115354690A (zh) * 2022-09-09 2022-11-18 上海市隧道工程轨道交通设计研究院 一种大跨空腹刚构梁式组合结构的地下车站
CN115405070A (zh) * 2022-08-16 2022-11-29 中铁二院工程集团有限责任公司 一种轨排井孔边梁的安装形式及车站施工方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113047863A (zh) * 2021-04-06 2021-06-29 深圳市市政设计研究院有限公司 一种机械化暗挖装配式地铁车站及其施工方法
CN113622461A (zh) * 2021-08-11 2021-11-09 中铁工程机械研究设计院有限公司 一种装配式地铁车站施工方法
CN113898010A (zh) * 2021-10-20 2022-01-07 中铁大桥勘测设计院集团有限公司 一种装配式混凝土预制构件接头及其应用
CN114687444A (zh) * 2022-05-07 2022-07-01 浙江大学 用于装配式混凝土结构连接的工字形钢后插式连接方法
CN114908800A (zh) * 2022-05-11 2022-08-16 广州地铁设计研究院股份有限公司 可变宽度及层高的全预制无柱拱形装配式地铁车站结构
CN115198796B (zh) * 2022-08-02 2023-09-05 广州地铁设计研究院股份有限公司 一种预制装配式地下通道
CN115434361A (zh) * 2022-09-15 2022-12-06 深圳市市政设计研究院有限公司 预制构件连接接头及装配式车站

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255027B1 (ko) * 2012-12-20 2013-04-30 주식회사 지구코퍼레이션 프리캐스트 라멘형 암거박스
CN206053113U (zh) * 2016-08-17 2017-03-29 广州地铁设计研究院有限公司 应用于装配式施工的结构板及装配式结构板的连接结构
CN107524234A (zh) * 2017-09-30 2017-12-29 沈阳建筑大学 钢板混凝土剪力墙连梁拆分结构及制作方法
CN107687213A (zh) * 2017-10-16 2018-02-13 华东建筑设计研究院有限公司 一种装配式混凝土墙体连接节点装置及施工方法
CN107761765A (zh) * 2017-11-01 2018-03-06 中国铁路设计集团有限公司 全装配式地铁车站双柱主体结构及其施工方法
CN207363038U (zh) * 2017-10-16 2018-05-15 华东建筑设计研究院有限公司 一种装配式混凝土墙体连接节点装置
CN207812487U (zh) * 2017-11-01 2018-09-04 中国铁路设计集团有限公司 一种全装配式地铁车站双柱主体结构
CN109853908A (zh) * 2019-01-11 2019-06-07 广州地铁设计研究院股份有限公司 一种新型预制轨顶风道结构及其施工方法
CN109881705A (zh) * 2019-03-08 2019-06-14 东北大学 一种预制装配式混凝土综合管廊稳固防水装置及方法
CN111549888A (zh) * 2020-06-16 2020-08-18 中冶天工集团有限公司 一种装配式排水预制检查井及其构建方法
CN112081142A (zh) * 2020-08-11 2020-12-15 广州地铁设计研究院股份有限公司 一种连接接头及连接节点

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105839795A (zh) * 2016-05-12 2016-08-10 沈阳建筑大学 双燕尾装配式建筑抗震连接结构
CN108222292B (zh) * 2018-03-17 2024-03-22 福州大学 预制板间可拆卸连接结构及其安装方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255027B1 (ko) * 2012-12-20 2013-04-30 주식회사 지구코퍼레이션 프리캐스트 라멘형 암거박스
CN206053113U (zh) * 2016-08-17 2017-03-29 广州地铁设计研究院有限公司 应用于装配式施工的结构板及装配式结构板的连接结构
CN107524234A (zh) * 2017-09-30 2017-12-29 沈阳建筑大学 钢板混凝土剪力墙连梁拆分结构及制作方法
CN107687213A (zh) * 2017-10-16 2018-02-13 华东建筑设计研究院有限公司 一种装配式混凝土墙体连接节点装置及施工方法
CN207363038U (zh) * 2017-10-16 2018-05-15 华东建筑设计研究院有限公司 一种装配式混凝土墙体连接节点装置
CN107761765A (zh) * 2017-11-01 2018-03-06 中国铁路设计集团有限公司 全装配式地铁车站双柱主体结构及其施工方法
CN207812487U (zh) * 2017-11-01 2018-09-04 中国铁路设计集团有限公司 一种全装配式地铁车站双柱主体结构
CN109853908A (zh) * 2019-01-11 2019-06-07 广州地铁设计研究院股份有限公司 一种新型预制轨顶风道结构及其施工方法
CN109881705A (zh) * 2019-03-08 2019-06-14 东北大学 一种预制装配式混凝土综合管廊稳固防水装置及方法
CN111549888A (zh) * 2020-06-16 2020-08-18 中冶天工集团有限公司 一种装配式排水预制检查井及其构建方法
CN112081142A (zh) * 2020-08-11 2020-12-15 广州地铁设计研究院股份有限公司 一种连接接头及连接节点

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115163924A (zh) * 2022-08-05 2022-10-11 福州轨道交通设计院有限公司 与地铁装配式墙板体系结合的综合支架及抗震支架
CN115405070A (zh) * 2022-08-16 2022-11-29 中铁二院工程集团有限责任公司 一种轨排井孔边梁的安装形式及车站施工方法
CN115405070B (zh) * 2022-08-16 2024-01-23 中铁二院工程集团有限责任公司 一种轨排井孔边梁的安装形式及车站施工方法
CN115354690A (zh) * 2022-09-09 2022-11-18 上海市隧道工程轨道交通设计研究院 一种大跨空腹刚构梁式组合结构的地下车站

Also Published As

Publication number Publication date
CN112281918B (zh) 2022-06-21
CN112281918A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2022099876A1 (zh) 一种装配式地铁车站及其施工方法
US10443228B2 (en) Method of manufacturing and assembly of a series of prefabricated prefinished volumetric construction (PPCV) modules
US9951513B2 (en) Method for erecting a structure made of prefabricated concrete elements and associated structure
US20100088985A1 (en) Connection Of Prestressing Sheath Sections Of A Structure Having A Series Of Precast Elements
CN109235222B (zh) 轻型全装配式大悬臂超高性能混凝土展翅梁及其施工方法
CN209686651U (zh) 用于装配式剪力墙的连接结构体系
US11926982B2 (en) Assembled subway station and construction method thereof
CN105350532A (zh) 预制拼装式体内预应力锚固桩
US11821456B2 (en) Connection assembly for prefabricated components
CN112359880A (zh) 一种装配式地下结构接缝连接结构
JPH10231694A (ja) 継手構造
KR101625995B1 (ko) 프리캐스트 데크 및 그를 구비하는 교량용 슬래브
JP5285933B2 (ja) コンクリート部材とその製造方法、合成セグメントとその製造方法
CN113898010A (zh) 一种装配式混凝土预制构件接头及其应用
CN214994058U (zh) 一种用于明挖法轨道交通装配式车站的预应力凹凸榫注浆接头结构
CN212582954U (zh) 混凝土对拉榫卯连接结构
CN108643208B (zh) 钢板夹心混凝土组合板围堰及拼装方法
CN106437027A (zh) 一种抗弯抗剪防震自适应型组合连梁及加工方法
CN112483123A (zh) 一种径向推压紧固式盾构管片接头及施工方法
CN205152948U (zh) 预制拼装式体内预应力锚固桩
CN212506888U (zh) 十字型预制混凝土墙连接结构
CN211773936U (zh) 一种用于固定弹性止水带的端头模板
JPH11229785A (ja) セグメントの継手構造
CN212426710U (zh) 剪力键连接的预制拼装盖梁结构
CN220486176U (zh) 一种沥青砼抗裂防水封层结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961429

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.10.2023)