WO2022099605A1 - 一种船用导航脉冲波雷达的信号处理方法 - Google Patents

一种船用导航脉冲波雷达的信号处理方法 Download PDF

Info

Publication number
WO2022099605A1
WO2022099605A1 PCT/CN2020/128653 CN2020128653W WO2022099605A1 WO 2022099605 A1 WO2022099605 A1 WO 2022099605A1 CN 2020128653 W CN2020128653 W CN 2020128653W WO 2022099605 A1 WO2022099605 A1 WO 2022099605A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
processing
echo
radar
pulse wave
Prior art date
Application number
PCT/CN2020/128653
Other languages
English (en)
French (fr)
Inventor
金序能
Original Assignee
金序能
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金序能 filed Critical 金序能
Priority to PCT/CN2020/128653 priority Critical patent/WO2022099605A1/zh
Publication of WO2022099605A1 publication Critical patent/WO2022099605A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the invention relates to the technical field of navigation, in particular to a signal processing method of a marine navigation pulse wave radar.
  • Radar is widely used in defense and military, civil aviation control, topographic survey, meteorology, navigation and many other fields.
  • radar installed on ships for navigation avoidance, ship positioning, and narrow waterway navigation, namely ship navigation radar, also known as navigation radar, when visibility is low, such radar can provide necessary means of observation.
  • the digital radar has the advantages of good performance, complete functions and convenient operation.
  • Using digital signal processing technology to realize radar signal processing algorithm is simpler, more flexible and more efficient. Based on a high-speed digital signal processor, it can sample and process radar echo signals very efficiently, suppress clutter, and extract target information. Moreover, the effect realized by digital signal processing technology is obviously better than that of analog implementation.
  • ship navigation radar is widely used in my country, and many domestic units are engaged in the research and development of ship navigation radar.
  • the final products can not completely replace foreign products. resulting in a low market share.
  • the navigation radar used for ships is a complex system, involving many key technologies, among which the technical difficulties are mainly concentrated in the antenna feeder system, the transmitting sub-system, the receiving sub-system, signal processing and data processing.
  • the radar signal processor is an important part of the radar system, which mainly completes the functions of sampling, processing and transmitting the video signal output by the radar receiver.
  • Early radars used analog circuits to process signals, which not only had complex structures, but also the circuits themselves were prone to interference.
  • radar signal processing is realized by digital circuits.
  • the traditional radar digital signal processor is implemented by DSP, and this technology is relatively mature.
  • the purpose of the present invention is to provide a signal processing method for marine navigation pulse wave radar, which has the advantages of being compatible with old radar equipment, having digital/analog processing capability, fast processing speed, abundant interfaces and low cost.
  • a signal processing method for a marine navigation pulse wave radar characterized in that it comprises the following steps:
  • S3 FPGA processes the received echo intensity information, and performs exception processing to suppress plane clutter
  • the FPGA performs analog-to-digital conversion on the processed signal with the ARM processor
  • S3 suppression of plane clutter includes threshold processing for echoes. Threshold processing is to detect outliers, remove outliers after detecting outliers, and then perform CFAR constant false alarm processing on echoes.
  • S3 includes an elevation scanning beam, and according to the width of the elevation lobe, the airspace to be detected can be divided into several wave positions in the vertical direction, and the setting criterion of the wave position position is: for the specified detection distance , the beam pointing to the lowest detection height wave position cannot irradiate the plane before this specified distance, and for the top-view scanning angle of this beam, it is required to make the lower edge of the elevation lobe just irradiate the lowest height of the plane line required to be detected.
  • S3 includes extraction processing, and after the echo abnormality processing is completed, appropriate extraction is performed for the sampling sequence with a large amount of data.
  • the preset value is met, the packet loss phenomenon occurs, and the packet loss phenomenon is recorded. When the packet loss phenomenon accounts for a large proportion, an alarm is realized.
  • the filtering processing in S5 includes the tracking processing, the tracking processing predicts the route of the target through the echo, and determines the velocity vector, position information and distance of the target, thereby realizing the collision warning.
  • the present invention has the following beneficial effects:
  • the system By converting the analog signal collected by the radar into a digital signal and suppressing the clutter of the digital signal and then outputting the digital signal, the system has good controllability and anti-jamming performance, and the reliability of radar clutter suppression is improved;
  • Fig. 1 is a flow chart of signal transmission and processing in FPGA and ARM.
  • the high-frequency radar radar echo of the clutter is converted into an intermediate frequency signal that is more convenient to process, but the intermediate frequency signal is a power signal with a large dynamic range, which needs to be converted into a voltage signal before it can be used for A/D sampling and subsequent processing.
  • digital signal processing realizes the conversion of the intermediate frequency signal through the intermediate frequency amplifying circuit, that is, the echo signal has been amplified in advance, and the terminal receives the synchronization signal, angle signal and echo signal from the receiver, and directly transmits it to the terminal.
  • each mapping process takes a space-time data matrix X from the data buffer and transforms it into the angle-Doppler frequency domain.
  • One way to realize the transformation is to use a two-dimensional fast Fourier transform (2D-FFT).
  • 2D-FFT two-dimensional fast Fourier transform
  • the space-time data is mapped to a two-dimensional grid surface formed by N angle values and M Doppler frequency values. Each grid corresponds to an angle-Doppler frequency unit.
  • S3, FPGA processes the received echo intensity information, and performs abnormal processing to suppress plane clutter. And performs abnormal processing.
  • the abnormal includes echo abnormality and system abnormality.
  • echo abnormality it is usually received by the radar unit, including receiving The thermal noise inside the machine, as well as clutter interference such as ground objects, rain and snow, sea waves, and abnormal echoes caused by abnormal interference such as sea surface during reception, a set of algorithms are used to achieve clutter suppression.
  • S3 also includes an elevation scanning beam.
  • the airspace to be detected can be divided into several wave positions in the vertical direction.
  • the setting criterion of the wave position is: for the specified detection distance, point to the lowest detection height
  • the beam of the wave position cannot irradiate the plane before the specified distance, and for the top-view scanning angle of this beam, it is required to make the lower edge of the elevation lobe just irradiate the lowest height of the plane line required to be detected.
  • the internal echo abnormality is processed, and the clutter suppression includes the threshold processing of the echo.
  • the threshold processing is to detect the test value.
  • the detection parameter is based on the artificial setting. When it exceeds the artificial setting, the obtained value is in The value outside the area of the standard value is judged as an outlier and eliminated.
  • S3 includes extraction processing. After the echo abnormality processing is completed, appropriate extraction is performed for the sampling sequence with a large amount of data. According to the distance gain control, since the echo distance corresponds to the synchronization signal, the stronger echo signal with a shorter distance is attenuated, and the weaker echo signal with a longer distance is not attenuated, and the attenuation is controlled according to the function of time and distance. The digital gain control is realized, so that the distance gain control is performed on the extracted data value.
  • S4 the FPGA performs analog-to-digital conversion on the processed signal with the ARM processor.
  • the S5 filters the echo signal, inputs the control information through the external button module of the ARM processor, calculates the analog-to-digital converted data and feeds it back to the radar unit, so as to realize the control of the radar unit.
  • the filtering processing in S5 includes tracking processing.
  • the tracking processing predicts the route of the target through echoes, and determines the velocity vector, position information and distance of the target, thereby realizing collision warning. It includes a moving object tracking algorithm based on Kalman filter, which has better real-time performance, effectively solves problems such as fast occlusion, and prevents tracking loss.
  • each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams can be implemented by computer program instructions.
  • These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable video processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable video processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable video processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • These computer program instructions can also be loaded on a computer or other programmable video processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.

Abstract

一种船用导航脉冲波雷达的信号处理方法,属于导航技术领域。方法包括以下步骤:辐射探测信号并接收回波信号(S1);根据回波信号形成空时数据矩阵,并送向FPGA(S2); FPGA对收到的回波强度信息进行处理,并进行异常处理,抑制平面杂波(S3);FPGA将处理完毕的信号与ARM处理器进行模数转换(S4);对回波信号进行滤波处理(S5),通过ARM处理器外接的按键模块进行控制信息的输入,对模数转换的数据进行计算并反馈到雷达单元,从而实现对雷达单元的控制,具有兼容老旧雷达设备、具备数字/模拟处理能力、处理速度快、接口丰富的且成本低廉的优点。

Description

一种船用导航脉冲波雷达的信号处理方法 技术领域
本发明涉及导航技术领域,特别涉及一种船用导航脉冲波雷达的信号处理方法。
背景技术
雷达被广泛应用于国防军事、民航管制、地形测量、气象、航海等众多领域。在航海方面,安装于船舶上用于航行避让、船舶定位、狭窄水道引航的雷达,即船舶导航雷达,又称航海雷达,当能见度低时,此类雷达能提供必需的观察手段。相对于模拟雷达,数字化雷达具有性能好、功能全、操作方便等优势。利用数字信号处理技术实现雷达信号处理算法更简易、更灵活、更高效。基于高速的数字信号处理器,可以非常高效的对雷达回波信号进行采样和处理,对杂波进行抑制,对目标信息进行提取。并且,利用数字信号处理技术实现的效果明显优于模拟实现方式。
目前船舶导航雷达在我国应用广泛,国内也有许多单位在从事船舶导航雷达的研发工作,但由于系统设计、器件加工工艺以及算法实现等方面还存在问题,最终推出的产品都不能完全代替国外产品,导致市场占有率较低。
用于船舶的导航雷达是一个复杂的系统,涉及诸多关键技术,其中技术难点主要集中在天馈系统、发射分系统、接收分系统、信号处理与数据处理等方面。雷达信号处理机是雷达系统的重要组成部分,主要完成对雷达接收机输出的视频信号进行采样、处理和传输 的功能。早期的雷达使用模拟电路对信号进行处理,不仅结构复杂,而且电路本身也极易收到干扰。随着数字技术的发展,雷达信号处理转由数字电路实现。传统的雷达数字信号处理机采用DSP实现,这种技术比较成熟,如文献“基于ADSP_TS101芯片的雷达信号处理机设计”中采用3片DSP芯片作为雷达信号处理机的核心,完成数字脉压、动目标检测等信号处理功能以及控制整个雷达系统的运行。但DSP指令更适合实现算法而不是逻辑控制,其外部接口的通用性较差,对雷达系统的控制显得不够灵活。
发明内容
本发明的目的是提供一种船用导航脉冲波雷达的信号处理方法,具有能够兼容老旧雷达设备、具备数字/模拟处理能力、处理速度快、接口丰富的且成本低廉的优点。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种船用导航脉冲波雷达的信号处理方法,其特征在于:包括以下步骤:
S1,辐射探测信号并接收回波信号;
S2,根据回波信号形成空时数据矩阵,并送向FPGA;
S3,FPGA对收到的回波强度信息进行处理,并进行异常处理,抑制平面杂波;
S4,FPGA将处理完毕的信号与ARM处理器进行模数转换;
S5,对回波信号进行滤波处理,通过ARM处理器外接的按键模块进行控制信息的输入,对模数转换的数据进行计算并反馈到雷达单元,从而实现对雷达单元的控制。
本方案进一步设置为,S3的抑制平面杂波包括对回波的门限处理,门限处理即对野值进行检测,检测出野值后进行野值剔除,再对回波进行CFAR恒虚警处理。
本方案进一步设置为,S3中包括俯仰向扫描波束,依据俯仰波瓣的宽度,待检测空域在垂直方向上可以被划分成若干个波位,波位位置的设定准则是:对于指定检测距离,指向最低检测高度波位的波束不能照射到此指定距离之前的平面,且对于此波束的俯视扫描角度,要求其使俯仰波瓣下边沿刚好照射到要求检测到的平面线的最低高度。
本方案进一步设置为,S3包括抽取处理,对回波异常处理完毕后,对于较大的数据量的采样序列进行适当的抽取。
本方案进一步设置为,S4中包括循环检测,在每个探测信号的重复周期内,数字接收机采样得到K个采样点x,k=1,...,K,每个样点出现的时刻表示该位置上回波的双程距离延时;对于M个重复周期的探测信号,在每个距离门上可获得M个时间采样值x,m=1,...,M;k=1,...,K;每进行一次探测,每个接收通道输出的信号样点数为M×K,N个通道的雷达接收系统总共可获得N×M×K个信号样点,采样点数量不满足预设值时,即出现丢包现象,对该次丢包进行记录,当丢包现象占比较多时,实现报警。
本方案进一步设置为,S5中滤波处理包括跟踪处理,跟踪处理通过回 波对目标的航路进行预测,判定目标的速度矢量、位置信息与距离,从而实现撞击预警
综上所述,本发明具有以下有益效果:
1、通过将雷达采集的模拟信号转换为数字信号以及对所述数字信号进行杂波抑制然后输出,系统可控性和抗干扰性能好,提高了雷达杂波干扰抑制的可靠性;
2、将雷达单元接收机输出的回波信号进行采样,通过一个终端实现信号处理和数据处理,可靠性高,易于维护,并有效降低了系统复杂度。
附图说明
图1是信号在FPGA与ARM内传输与处理的流程示意图。
具体实施方式
以下结合附图对本发明作进一步详细说明。
实施例:一种船用导航脉冲波雷达的信号处理方法,如图1所示,S1,辐射探测信号并接收回波信号;船舶导航雷达射频接收前端,可以将雷达天线接收到的混有噪声和杂波的高频雷达雷达回波,转换为更便于处理的中频信号,但该中频信号是具有很大动态范围的功率信号,需将其转换为电压信号,才能供A/D采样和之后的数字信号处理。接收机通过中频放大电路实现中频信号的转换,即对回波信号已经事先进行了放大,终端接收来自接收机的同步信号、角度信号和回波信号,并直接传递给终端。
S2,根据回波信号形成空时数据矩阵,并送向FPGA;每一次映射处理从数据缓冲区中取出一个空时数据矩阵X,将其变换到角度-多普勒频率域。一种实现变换方法是使用二维快速傅里叶变换(2D-FFT),变换后空时数据被映射到由N个角度值和M个多普勒频率值形成的二维网格面上,每个网格对应了一个角度-多普勒频率单元。
S3,FPGA对收到的回波强度信息进行处理,并进行异常处理,抑制平面杂波.并进行异常处理,异常包括回波异常与系统异常,对于回波异常通常为雷达单元受到的包括接收机内部的热噪声,以及地物、雨雪、海浪等杂波干扰,接收时受到的海面等异常干扰导致的回波异常,对此采用一套算法实现杂波抑制。
S3中还包括俯仰向扫描波束,依据俯仰波瓣的宽度,待检测空域在垂直方向上可以被划分成若干个波位,波位位置的设定准则是:对于指定检测距离,指向最低检测高度波位的波束不能照射到此指定距离之前的平面,且对于此波束的俯视扫描角度,要求其使俯仰波瓣下边沿刚好照射到要求检测到的平面线的最低高度。此时对内部的回波异常进行处理,杂波抑制包括对回波的门限处理,门限处理即对测试值进行检测,检测参数基于人为设定,当超出人为设定后,即获得的数值在标准值的区域外界外值即判定为野值,并进行剔除。
S3包括抽取处理,对回波异常处理完毕后,对于较大的数据量的采样序列进行适当的抽取。根据距离增益控制,因回波距离与同步信号对应,对距离较近的较强回波信号进行衰减,对距离较远的较弱回波 信号不进行衰减,通过根据时间与距离的函数控制衰减量,实现数字化增益控制,从而对抽取的数据值进行距离增益控制。
S4,FPGA将处理完毕的信号与ARM处理器进行模数转换,S4中包括循环检测,在每个探测信号的重复周期内,数字接收机采样得到K个采样点x,k=1,...,K,每个样点出现的时刻表示该位置上回波的双程距离延时;对于M个重复周期的探测信号,在每个距离门上可获得M个时间采样值x,m=1,...,M;k=1,...,K;每进行一次探测,每个接收通道输出的信号样点数为M×K,N个通道的雷达接收系统总共可获得N×M×K个信号样点,采样点数量不满足预设值时,即出现丢包现象,对该次丢包进行记录,当丢包现象占比较多时,实现报警。
S5对回波信号进行滤波处理,通过ARM处理器外接的按键模块进行控制信息的输入,对模数转换的数据进行计算并反馈到雷达单元,从而实现对雷达单元的控制。S5中滤波处理包括跟踪处理,跟踪处理通过回波对目标的航路进行预测,判定目标的速度矢量、位置信息与距离,从而实现撞击预警。其中包括基于卡尔曼滤波的运动物体跟踪算法,具有更好的实时性,有效解决快速遮挡等问题,防止跟踪丢失。本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程视频处理设备的处理器以产生一个机器,使得通过计算机或其他可编程视频处理设 备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程视频处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程视频处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (6)

  1. 一种船用导航脉冲波雷达的信号处理方法,其特征在于:包括以下步骤:
    S1,辐射探测信号并接收回波信号;
    S2,根据回波信号形成空时数据矩阵,并送向FPGA;
    S3,FPGA对收到的回波强度信息进行处理,并进行异常处理,抑制平面杂波;
    S4,FPGA将处理完毕的信号与ARM处理器进行模数转换;
    S5,对回波信号进行滤波处理,通过ARM处理器外接的按键模块进行控制信息的输入,对模数转换的数据进行计算并反馈到雷达单元,从而实现对雷达单元的控制。
  2. 根据权利要求2所述的一种船用导航脉冲波雷达的信号处理方法,其特征在于:S3的抑制平面杂波包括对回波的门限处理,门限处理即对野值进行检测,检测出野值后进行野值剔除,再对回波进行CFAR恒虚警处理。
  3. 根据权利要求2所述的一种船用导航脉冲波雷达的信号处理方法,其特征在于:S3中包括俯仰向扫描波束,依据俯仰波瓣的宽度,待检测空域在垂直方向上可以被划分成若干个波位,波位位置的设定准则是:对于指定检测距离,指向最低检测高度波位的波束不能照射到此指定距离之前的平面,且对于此波束的俯视扫描角度,要求其使俯仰波瓣下边沿刚好照射到要求检测到的平面线的最低高度。
  4. 根据权利要求3所述的一种船用导航脉冲波雷达的信号处理方法,其特征在于:S3包括抽取处理,对回波异常处理完毕后,对于较大的数据量的采样序列进行适当的抽取。
  5. 根据权利要求1所述的一种船用导航脉冲波雷达的信号处理方法,其特征在于:S4中包括循环检测,在每个探测信号的重复周期内,数字接收机采样得到K个采样点x,k=1,...,K,每个样点出现的时刻表示该位置上回波的双程距离延时;对于M个重复周期的探测信号,在每个距离门上可获得M个时间采样值x,m=1,...,M;k=1,...,K;每进行一次探测,每个接收通道输出的信号样点数为M×K,N个通道的雷达接收系统总共可获得N×M×K个信号样点,采样点数量不满足预设值时,即出现丢包现象,对该次丢包进行记录,当丢包现象占比较多时,实现报警。
  6. 根据权利要求1所述的一种船用导航脉冲波雷达的信号处理方法,其特征在于:S5中滤波处理包括跟踪处理,跟踪处理通过回波对目标的航路进行预测,判定目标的速度矢量、位置信息与距离,从而实现撞击预警。
PCT/CN2020/128653 2020-11-13 2020-11-13 一种船用导航脉冲波雷达的信号处理方法 WO2022099605A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/128653 WO2022099605A1 (zh) 2020-11-13 2020-11-13 一种船用导航脉冲波雷达的信号处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/128653 WO2022099605A1 (zh) 2020-11-13 2020-11-13 一种船用导航脉冲波雷达的信号处理方法

Publications (1)

Publication Number Publication Date
WO2022099605A1 true WO2022099605A1 (zh) 2022-05-19

Family

ID=81602019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128653 WO2022099605A1 (zh) 2020-11-13 2020-11-13 一种船用导航脉冲波雷达的信号处理方法

Country Status (1)

Country Link
WO (1) WO2022099605A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117452357A (zh) * 2023-12-22 2024-01-26 上海几何伙伴智能驾驶有限公司 基于fpga实现多通道数据采集与注入的系统及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520395A (zh) * 2011-10-18 2012-06-27 西安电子科技大学 基于双基地多输入多输出雷达的杂波抑制方法
CN106546965A (zh) * 2016-10-31 2017-03-29 西安电子科技大学 基于雷达幅度和多普勒频率估计的空时自适应处理方法
CN107490788A (zh) * 2016-06-13 2017-12-19 中国人民解放军空军预警学院 一种适于mimo机载雷达非平稳杂波抑制的空时自适应处理方法
CN108303680A (zh) * 2018-01-04 2018-07-20 厦门兴康信科技股份有限公司 导航雷达的信号与数据处理终端
CN109375179A (zh) * 2018-10-29 2019-02-22 中国电子科技集团公司第十四研究所 一种基于稀疏表示的机载雷达近程强杂波抑制方法
US20190129002A1 (en) * 2017-10-26 2019-05-02 Infineon Technologies Ag Radar signal processing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520395A (zh) * 2011-10-18 2012-06-27 西安电子科技大学 基于双基地多输入多输出雷达的杂波抑制方法
CN107490788A (zh) * 2016-06-13 2017-12-19 中国人民解放军空军预警学院 一种适于mimo机载雷达非平稳杂波抑制的空时自适应处理方法
CN106546965A (zh) * 2016-10-31 2017-03-29 西安电子科技大学 基于雷达幅度和多普勒频率估计的空时自适应处理方法
US20190129002A1 (en) * 2017-10-26 2019-05-02 Infineon Technologies Ag Radar signal processing
CN108303680A (zh) * 2018-01-04 2018-07-20 厦门兴康信科技股份有限公司 导航雷达的信号与数据处理终端
CN109375179A (zh) * 2018-10-29 2019-02-22 中国电子科技集团公司第十四研究所 一种基于稀疏表示的机载雷达近程强杂波抑制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117452357A (zh) * 2023-12-22 2024-01-26 上海几何伙伴智能驾驶有限公司 基于fpga实现多通道数据采集与注入的系统及其方法
CN117452357B (zh) * 2023-12-22 2024-03-19 上海几何伙伴智能驾驶有限公司 基于fpga实现多通道数据采集与注入的系统及其方法

Similar Documents

Publication Publication Date Title
CN104215951B (zh) 一种在海杂波背景下慢速小目标的检测系统及其检测方法
CN107462873A (zh) 一种雷达干扰快速识别方法
CN112666529B (zh) 一种对线性调频脉冲压缩雷达的自适应干扰方法
CN111650563B (zh) 一种外辐射源雷达同频干扰时延和能量快速估计系统及方法
WO2022099605A1 (zh) 一种船用导航脉冲波雷达的信号处理方法
CN103529438A (zh) 一种航海雷达地面移动目标监测系统及其探测方法
JP2017053685A (ja) レーダ装置及びレーダ信号処理方法
CN110632573B (zh) 一种机载宽带雷达空时二维keystone变换方法
Shan et al. Experiment demonstration of micro-Doppler detection of rotor blades with passive coherent location based on digital video broadcast
CN113835077B (zh) 基于变脉冲重复频率的搜索雷达目标检测方法及系统
CN114325599B (zh) 一种针对不同环境的自动门限检测方法
CN102253380B (zh) 一种自适应测高装置
JP7170948B2 (ja) 信号処理装置、レーダ及びレーダ信号処理方法
Filippini et al. Polarimetric detection scheme for passive radar based on a 2D auto-regressive disturbance model
CN113917435A (zh) 一种基于逐点比较和数值比较被动雷达副瓣抑制方法
Zhu et al. Feature-aided multi-target tracking method in sea clutter using scanning radar data
CN114545384A (zh) 一种应用于跑道异物检测的整合方法及系统
Zhou et al. An adaptive clutter suppression technique based on environmental perception
Duan et al. Interference countermeasure system based on time–frequency domain characteristics
Dzvonkovskaya et al. HF radar ship detection and tracking using WERA system
Chen et al. Small target detection in heavy sea clutter
Huang et al. Ship detection and tracking using multi-frequency HFSWR
Li et al. Track-Before-Detect Method for Targets with Appearance Time Uncertainty
Lu et al. Passive radar detection based on advanced broadcasting system-satellite
CN104777459A (zh) 一种雷达抗干扰系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961161

Country of ref document: EP

Kind code of ref document: A1