WO2022098139A1 - System and method for identifying positions and number of trees using high-resolution drone image - Google Patents

System and method for identifying positions and number of trees using high-resolution drone image Download PDF

Info

Publication number
WO2022098139A1
WO2022098139A1 PCT/KR2021/015988 KR2021015988W WO2022098139A1 WO 2022098139 A1 WO2022098139 A1 WO 2022098139A1 KR 2021015988 W KR2021015988 W KR 2021015988W WO 2022098139 A1 WO2022098139 A1 WO 2022098139A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
data
height
tree
trees
Prior art date
Application number
PCT/KR2021/015988
Other languages
French (fr)
Korean (ko)
Inventor
장광민
Original Assignee
장광민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210100151A external-priority patent/KR20220061836A/en
Application filed by 장광민 filed Critical 장광민
Publication of WO2022098139A1 publication Critical patent/WO2022098139A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods

Definitions

  • the present invention relates to a system and identification method for identifying the position and number of a tree using a high-resolution drone image, and more specifically, to the position and It relates to a tree position and tree identification system and identification method using a high-resolution drone image that can automatically identify information about the number of trees.
  • the direct survey method based on field surveys by manpower is predominant.
  • R/S technology is being used as an auxiliary.
  • the conventional site survey method by manpower takes a lot of time and money for monitoring.
  • an error may occur in the duplicate or omission of the number of standing trees.
  • Accurate GPS reception is difficult under the crown layer of trees, so it is difficult to obtain accurate coordinates for the position of the trees. There are difficult limitations.
  • remote techniques based on satellite and aerial images has the advantage of reducing the time and cost required for monitoring, but is mainly used to detect the canopy layer due to the limitation of low-resolution orthographic images. It is not used at all to identify a location or the like.
  • the present invention is a high-resolution drone that can automatically identify information on the position and number of trees by applying GIS spatial analysis technique based on high-resolution drone image data acquired by drone aerial photography as derived to solve the above-mentioned problems. It is intended to provide a system and method for identifying the position and number of trees using an image.
  • a system and identification method for identifying the position and number of trees using a high-resolution drone image is a point cloud data (Point cloud ), a first digital space that generates first digital spatial information data through a digital surface model (DSM) and a digital elevation model (DEM) from the aerial image data.
  • Point cloud point cloud data
  • DSM digital surface model
  • DEM digital elevation model
  • An information generating unit a second digital spatial information generating unit generating second digital spatial information through a Normalized Difference Vegetation Index (NDVI) from the spectral image data, Excluding the height value data of an artificial structure from the point cloud data
  • NDVI Normalized Difference Vegetation Index
  • a first Modified CHM (Modified Canopy Height Model) unit for storing the standing tree height value data, the first Modified CHM unit through the tree height value data stored in the tree top to identify the tree top (Tree top) and a detection unit, wherein the first modified CHM unit collects and processes the first digital spatial information data and the second digital spatial information data.
  • NDVI Normalized Difference Vegetation Index
  • the first digital spatial information generation unit applies the numerical surface model (DSM) to apply the numerical surface model unit to derive the height values of the trees and artificial structures, the numerical surface model (DEM) to apply the numerical elevation model (DEM)
  • DSM numerical surface model
  • DEM numerical surface model
  • DEM numerical elevation model
  • a numerical elevation model unit for deriving the height value of the terrain excluding the height value of the artificial structure and a water pipe height model unit for applying the water pipe height model by collecting the data values derived from the numerical surface model unit and the numerical elevation model unit.
  • DSM numerical surface model
  • DEM numerical elevation model
  • a numerical elevation model unit for deriving the height value of the terrain excluding the height value of the artificial structure
  • water pipe height model unit for applying the water pipe height model by collecting the data values derived from the numerical surface model unit and the numerical elevation model unit.
  • the second digital spatial information generating unit derives the regular vegetation index (NDVI), and the regular vegetation index (NDVI) calculates the difference between the values of the near infrared and red light bands between the near infrared and the red light band. It may be characterized in that the calculation is divided by the sum of the values.
  • the first modified CHM unit may be characterized in that the first digital spatial information data is removed from the second digital spatial information data to derive the tree height data value.
  • the head detection unit Local Maxima for extracting the maximum height value for each predetermined interval from the height data value derived from the first Modified CHM unit, the Standing height derived from the first Modified CHM unit.
  • Concave area for extracting the area of the convex part at regular intervals from the data value, the second Modified CHM part for extracting the standing tree having a height greater than or equal to the reference value from the tree height data value derived from the first Modified CHM part, and the Local It may be characterized in that it includes a data collection unit that collects the values derived from the Maxima unit, the Concave area unit, and the second Modified CHM unit to generate information on the position and number of trees.
  • the method for identifying the position and number of trees using a high-resolution drone image is performed by the point cloud data generator, and the aerial image data and the spectral image data captured from the drone equipped with the spectral sensor are matched to the photographic image.
  • the step of generating point cloud data which is performed by the first digital spatial information generator, is performed from the aerial image data through a digital surface model (DSM) and a digital elevation model (DEM).
  • DSM digital surface model
  • DEM digital elevation model
  • the first Modified CHM (Modified Canopy Height Model) unit is performed, the step of excluding the height value data of the artificial structure from the point cloud data, and storing the tree height value data, the first Modified CHM unit is performed in the first head detection unit and identifying a tree top of a tree through the tree height value data stored in the , wherein the storing of the tree height value data includes the first digital spatial information data and the second digital spatial information It may be characterized by collecting and processing data.
  • the step of generating the first digital spatial information is performed by a numerical surface model unit, and applying the numerical surface model (DSM) to derive height values of the trees and artificial structures, the numerical elevation model unit
  • the step of applying the numerical elevation model (DEM) to deriving the height values of the terrain excluding the height values of the trees and artificial structures and performed in the canopy height model part, the numerical surface model part and the numerical elevation model It may be characterized in that it comprises the step of applying the crown height model by collecting the data values derived from the part.
  • the generating of the second digital spatial information may include: deriving the NDVI through the second digital spatial information generating unit; and calculating the normal vegetation index (NDVI) by dividing a difference between the near-infrared light and the red light band by the sum of the near-infrared light and the red light band.
  • NDVI normal vegetation index
  • the storing of the standing tree height value data may include deriving the standing tree height data value by removing the second digital geospatial data data from the first digital geospatial data data. there is.
  • the step of identifying the tree top of the tree is performed in the Local Maxima part, and from the tree height data value derived from the first Modified CHM part, the maximum height value for each predetermined interval is extracted.
  • step, performed in the concave area part, extracting the area of the convex part at regular intervals from the tree height data value derived from the first Modified CHM part, is performed in the second Modified CHM part, and the first Modified.
  • the step of extracting a tree having a height greater than or equal to the reference value from the tree height data value derived from the CHM part and the data collection part are performed by collecting the values derived from the Local Maxima part, the Concave area part, and the second Modified CHM part. It may be characterized in that it comprises the step of generating information on the position and the number of trees.
  • the present invention since it is possible to automatically acquire information on the location and number of trees in forested areas and non-forest areas, it can be used for systematic lumber resource management.
  • CHM canopy height model
  • FIG. 1 is a diagram illustrating a process of identifying a standing tree position and a tree number using the standing tree position and number identification system 100 using a high-resolution drone image according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating topography according to data values through Digital Surface Model (DSM), Digital Elevation Model (DEM), Normalized Difference Vegetation Index (NDVI), and Canopy Height Model (CHM).
  • DSM Digital Surface Model
  • DEM Digital Elevation Model
  • NDVI Normalized Difference Vegetation Index
  • CHM Canopy Height Model
  • FIG. 3 is a diagram illustrating a model according to height data values of trees and artificial structures.
  • FIG. 4 is a diagram illustrating a process of detecting a tree top of a standing tree according to the standing tree position and tree number identification system 100 using a high-resolution drone image.
  • FIG. 5 is a diagram illustrating a state in which a tree is identified and detected according to the tree position and tree number identification system 100 using a high-resolution drone image.
  • FIG. 1 is a diagram illustrating a process of identifying a standing tree position and a tree number using the standing tree position and number identification system 100 using a high-resolution drone image according to an embodiment of the present invention.
  • the tree position and number identification system 100 using a high-resolution drone image includes a point cloud data generation unit 110 , a first digital spatial information generation unit 120 , and a second digital spatial information generation unit 130 . , is configured to include a first Modified CHM unit 140 and a super head detection unit 150 .
  • the point cloud data generating unit 110 is to generate a point cloud data by registering the aerial image data 111 and the spectral image data 112 photographed from a drone (not shown) equipped with a spectral sensor to a photographic image.
  • the first digital spatial information generation unit 120 generates first digital spatial information data from the aerial image data 111 through a digital surface model (DSM) and a digital elevation model (DEM).
  • DSM digital surface model
  • DEM digital elevation model
  • a canopy height model that can estimate the height of vegetation and artificial structures from the ground surface can be created. Therefore, when artificial structures and trees are mixed, such as vegetation in downtown, a post-processing process is required to artificially remove height information of artificial structures in order to extract tree location information.
  • the first digital spatial information generation unit 120 applies a numerical surface model (DSM) to derive the height values of the trees and artificial structures (DSM unit) , 121), the numerical elevation model part (DEM part, 122) and the numerical surface model part 122 and the numerical elevation that derive the height values of the terrain excluding the height values of the trees and artificial structures by applying the numerical elevation model (DEM)
  • DSM numerical surface model
  • DEM part, 122 the numerical elevation model part
  • the regular vegetation index is an index for indexing the growth status of crops using the reflectivity of near-infrared rays.
  • the value of is expressed as a quantitative value.
  • the vegetation area represents a positive (+) value
  • the non-vegetated area is expressed as a value less than or equal to 0, and the index can be used to distinguish between the vegetation area and the non-vegetation area where artificial structures are located.
  • the second digital spatial information generating unit 130 may generate the second digital spatial information from the spectral image data through a regular expression index (NDVI), and the regular expression index (NDVI) is a combination of near-infrared rays and near-infrared rays as in the above equation. It can be calculated by dividing the difference in the values between the red light bands by the sum of the near infrared and red light bands.
  • NDVI regular expression index
  • the first modified CHM unit 140 includes the second digital spatial information data generation unit 130 derived from the first digital spatial information data generation unit 120 from the first digital spatial information data generation unit 120 .
  • the digital spatial information data may be collected and processed, and more specifically, the tree height data value may be derived by removing the second digital spatial information data from the first digital spatial information data.
  • the modified CHM data it is possible to extract the point where the height values at two different scales (analysis units) have the local maxima, and the designated scale unit is the object tree. In order not to miss detection, it can be analyzed by applying a value smaller than the minimum planting interval of the target area. Considering that even if trees are densely planted in Korea, it is common to plant 3,000 trees in an area of 1 ha. ) can be derived.
  • the upper part of the crown layer of the tree when viewed from above at a right angle, it has an upwardly convex geometric shape. Therefore, if the concave area is extracted at the 1.5 m scale in consideration of the general planting interval in Korea using the revised canopy height model data, it may be possible to detect the place expected to be the upper part of the tree crown.
  • a height of 5 m or more can be applied as a threshold to identify standing trees.
  • young trees of 5 m or less, including seedlings, or to include shrubs or glue trees with a height of 3 to 5 m it can be applied by lowering the standard value to 5 m or less or not applying it.
  • the super head detection unit 150 may be configured to include a Local Maxima unit 151 , a Concave area unit 152 , and a second Modified CHM unit.
  • the Local Maxima unit 151 extracts the maximum height value for each predetermined interval using the tree height data value (modified tree crown height model data) derived from the first Modified CHM unit 140 to determine the height value of the highest standing tree. can be derived
  • the Concave Area unit 152 may extract the area of the convex portion at regular intervals by using the tree height data value (modified crown height model data) derived from the first Modified CHM unit 140 .
  • the second Modified CHM unit 153 may extract a standing tree having a height equal to or greater than a reference value by using the tree height data value (modified crown height model data) derived from the first Modified CHM unit 140 .
  • the data collection unit 150 of the present invention uses the tree height data value (modified tree crown height model data) derived from the first Modified CHM unit 140 to the Local Maxima unit 151, Concave Area unit ( 152) and the second Modified CHM unit 153 may generate information on the location and number of trees by collecting each data derived through the unit.
  • tree height data value modified tree crown height model data
  • FIG. 2 is a diagram illustrating topography according to data values through Digital Surface Model (DSM), Digital Elevation Model (DEM), Normalized Difference Vegetation Index (NDVI), and Canopy Height Model (CHM).
  • DSM Digital Surface Model
  • DEM Digital Elevation Model
  • NDVI Normalized Difference Vegetation Index
  • CHM Canopy Height Model
  • FIG. 2 is a view showing some of the images collected by using a drone equipped with aerial imaging equipment and a spectral image sensor in the area of 70-5 Hwadong-ri.
  • NDVI, 130 is used to be useful in reading the vegetation area through the spectral image band combination as described above.
  • the regular vegetation index is an index for indexing the growth status of crops using the reflectivity of near-infrared rays. It is expressed as a quantitative value. In general, the vegetation area represents a positive (+) value, and the non-vegetation area is expressed as a value of 0 or less.
  • an image using the Canopy Height Model (CHM, Canopy Height Model, 123) model can be obtained.
  • a modified canopy height model in which the height information of the vegetation area is extracted after the spatial analysis process of removing the altitude value located in the non-vegetated area using the regular vegetation index (NDVI, 130) image from the crown height model (CHM, 123) (Modified CHM) can be derived.
  • FIG. 3 is a diagram illustrating a model according to height data values of trees and artificial structures.
  • a drawing 122-1 in the upper left of FIG. 3 is a diagram illustrating a model in which the elevation value of the terrain is stored numerically using a digital elevation model (DEM), excluding the height values of trees and artificial structures.
  • the drawing 121-1 in the upper right is a model in which the elevation values of the ground including the height values of trees and artificial structures are stored numerically using DSM (Digital Surface Model), and the drawing 121-1 in the upper right is As shown in , it can be confirmed that the height values of the ground surface and artificial structures are measured and stored together with the height values of trees.
  • the lower left drawing 123-1 is the height of trees and artificial structures using CHM (Canopy Height Model), which removes the upper left drawing 122-1 from the upper right drawing 121-1.
  • FIG. 140 It is a diagram showing a model in which values are stored numerically, and the drawing 140-1 in the lower right is a model in which the height values of trees and artificial structures are stored numerically using the CHM of the drawing 123-1 in the lower left. It is a diagram showing the deriving of a modified canopy height model (Modified CHM) from which height information of vegetation areas is extracted through spatial analysis processing that removes altitude values located in non-vegetated areas using regular vegetation index (NDVI) images. .
  • Modified CHM modified canopy height model
  • FIG. 4 is a diagram illustrating a process of detecting a tree top of a standing tree according to the standing tree position and tree number identification system 100 using a high-resolution drone image.
  • the superhead detection unit 150 may include a Local Maxima unit 151 , a Concave area unit 152 , and a second Modified CHM unit 153 .
  • the Local Maxima unit 151 can extract the maximum height value for each predetermined interval from the tree height data value derived through the first Modified, and the height value in scale 1 and scale 2 is local. It can be confirmed that the point with the maximum value is extracted.
  • the green arrow bar indicates that the point having the locally maximum height value among scale 1 is extracted, and the yellow arrow bar indicates that the point having the maximum height value locally on scale 2 is extracted. say what happened Here, when the interval between the yellow and green arrows is 1.5 m or less, the maximum value of the height extracted from scale 1 and scale 2 is compared and the higher one is stored, and the lower one can be deleted.
  • the concave area unit 152 may extract the area of the convex part for each predetermined interval from the tree height data value derived from the first modified CHM unit. Also in the concave area, it is possible to extract an area with a convex shape at a scale interval of generally 1.5 m.
  • the second Modified CHM unit 153 may classify trees 5 m or more tall in order to distinguish trees and shrubs from the image derived from the first Modified CHM unit 140 , and 5 m or more as a threshold value. can be applied to identify the standing tree. At this time, it may be possible to investigate young trees of 5 m or less, including seedlings, or by lowering the standard value to 5 m or less or not applying it if investigation is necessary including shrubs or glue trees with a height of 3 to 5 m.
  • the data collection unit 154 may collect data that satisfies all the conditions in the Local Maxima unit 151 , the Conacave area unit 152 , and the second Modified CHM unit 153 and identify them as an entity.
  • a point having a high effort may be selected as the individual tree.
  • FIG. 5 is a diagram illustrating a state in which a tree is identified and detected according to the tree position and tree number identification system 100 using a high-resolution drone image.
  • a diagram 151-1 in the upper left is a diagram illustrating the detection of superhead candidates by applying the Local Maxima algorithm.
  • the upper right drawing 151-2 is a view of detecting the upper part of the canopy layer
  • the lower left drawing 151-3 is a view showing a combination of the left and right upper drawings
  • the lower right drawing 151-4 is In the lower left drawing 151-4, candidate groups of adjacent individual trees within 1 m can be selected and merged.
  • selecting and merging candidate groups of adjacent individuals within 1 m is to prevent overestimation.
  • the point cloud data generation unit As a method of identifying the position and number of trees using a high-resolution drone image, it is performed in the point cloud data generation unit, and the aerial image data and the spectral image data taken from the drone equipped with a spectral sensor are matched to the photographic image to generate the point cloud data.
  • the first digital spatial information generating unit can be generated, and it is performed by the first digital spatial information generating unit, and the first digital spatial information data from aerial image data through digital surface model (DSM, Digital Surface Model) and digital elevation model (DEM, Digital Elevation Model) can create
  • the second digital spatial information generating unit generates second digital spatial information through a Normalized Difference Vegetation Index (NDVI) from the spectral image data
  • NDVI Normalized Difference Vegetation Index
  • CHM Modified Canopy Height Model
  • the step of generating the first digital spatial information is performed in the numerical surface model unit, and by applying the numerical surface model (DSM), the height values of the trees and artificial structures can be derived, and the numerical elevation model unit is performed.
  • DSM numerical surface model
  • DEM numerical elevation model
  • the canopy height model can be applied.
  • a regular vegetation index may be derived through the second digital spatial information generating unit, and the difference between the near-infrared and red light bands is a value obtained by adding the near-infrared and red light bands. By dividing by , the regular expression index (NDVI) can be calculated.
  • the storing of the tree height value data may include removing the second digital spatial data data from the first digital spatial data data to derive the tree height data value.
  • the step of identifying the tree top of the standing tree is performed in the Local Maxima part, and from the tree height data value derived from the first Modified CHM part, the maximum height value for each predetermined interval can be extracted, and Concave It is performed in the area part, and from the height data value derived from the first Modified CHM part, the area of the convex part at regular intervals can be extracted, and it is performed in the second Modified CHM part, From the tree height data value, it is possible to extract a tree having a height greater than or equal to the standard value, and it is performed in the data collection unit. information can be created.

Abstract

The present invention relates to a system and method for identifying the positions and number of trees using a high-resolution drone image, wherein information about the positions and number of trees can be automatically identified by applying GIS spatial analysis techniques on the basis of high-resolution drone image data acquired by drone aerial image capture.

Description

고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템 및 식별 방법A system and method for identifying the position and number of trees using a high-resolution drone image
본 출원은 2020년 11월 06일자 한국 특허 출원 제10-2020-0147817호 및 2021년 7월 29일자 한국 특허 출원 제10-2021-0100151호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2020-0147817 dated November 06, 2020 and Korean Patent Application No. 10-2021-0100151 dated July 29, 2021, and All content disclosed in the literature is incorporated as a part of this specification.
본 발명은 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템 및 식별 방법에 관한 것으로서, 보다 구체적으로는, 드론 항공촬영으로 취득한 고해상도 드론영상 자료를 기반으로 GIS 공간분석기법을 적용하여 입목의 위치와 본수에 대한 정보를 자동으로 식별할 수 있는 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템 및 식별 방법에 관한 것이다.The present invention relates to a system and identification method for identifying the position and number of a tree using a high-resolution drone image, and more specifically, to the position and It relates to a tree position and tree identification system and identification method using a high-resolution drone image that can automatically identify information about the number of trees.
일반적으로, 산림지역이나 비산림지역에 위치한 입목의 위치와 본수를 조사하기 위한 모니터링 방법으로 인력에 의한 현장조사를 기반으로 한 직접조사 방식이 주를 이루고 있으며, 항공사진 또는 위성영상을 기반으로 한 R/S 기술을 보조적으로 활용하고 있는 실정이다. In general, as a monitoring method to investigate the location and number of trees located in forested or non-forest areas, the direct survey method based on field surveys by manpower is predominant. R/S technology is being used as an auxiliary.
종래의 인력에 의한 현장조사 방식은 모니터링에 있어서 많은 시간과 비용이 소요된다. 또한, 나무가 밀집한 산림지역을 대면적으로 조사하는 경우 입목본수를 중복조사 또는 누락하는 오류가 발생할 수 있으며, 나무의 수관층 아래에서는 정확한 GPS 수신이 어렵기 때문에 입목의 위치에 대한 정확한 좌표취득이 어려운 한계가 존재한다. The conventional site survey method by manpower takes a lot of time and money for monitoring. In addition, if a large area is surveyed in a forest area with dense trees, an error may occur in the duplicate or omission of the number of standing trees. Accurate GPS reception is difficult under the crown layer of trees, so it is difficult to obtain accurate coordinates for the position of the trees. There are difficult limitations.
위성영상 및 항공영상을 기반으로 한 원격기법을 활용하는 경우 모니터링에 필요한 시간과 비용을 절감할 수 있는 장점이 있으나 저해상도 정사영상의 한계로 인해 주로 수관층을 탐지하는 데 활용되고 있으며, 개체목의 위치 등을 식별하는 데에는 전혀 활용되지 못하고 있다. The use of remote techniques based on satellite and aerial images has the advantage of reducing the time and cost required for monitoring, but is mainly used to detect the canopy layer due to the limitation of low-resolution orthographic images. It is not used at all to identify a location or the like.
한편, 연구적 차원에서 라이다(LiDAR)로부터 취득한 점군데이터를 기반으로 수목의 형태 및 높이 구조를 분석하여 개체목을 식별하는 방법들이 제안되고 높은 분석정확도를 확보할 수 있는 것으로 보고되고 있으나, 높은 라이다 영상 촬영단가로 인해 현장적용이 어려운 실정이다.On the other hand, at the research level, methods for identifying individual trees by analyzing the shape and height structure of trees based on point cloud data obtained from LiDAR have been proposed and reported that high analysis accuracy can be secured. Due to the cost of filming lidar video, it is difficult to apply it to the field.
그러나 최근 드론기술의 발달로 비용효율적으로 3~10cm급의 고해상도 영상 데이터의 확보가 가능해짐에 따라 고해상도 항공영상 및 분광영장 데이터를 기반으로 정밀한 입목의 위치와 본수 정보를 자동으로 식별할 수 있는 방법을 개발하고 활용할 수 있는 제반 여건이 마련되고 있는 실정이다.However, with the recent development of drone technology, it is possible to cost-effectively obtain high-resolution image data of 3 to 10 cm. All conditions are being prepared to develop and utilize it.
본 발명은 상술된 문제점을 해결하기 위해 도출된 것으로서, 드론 항공촬영으로 취득한 고해상도 드론영상 자료를 기반으로 GIS 공간분석기법을 적용하여 입목의 위치와 본수에 대한 정보를 자동으로 식별할 수 있는 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템 및 식별 방법을 제공하고자 한다.The present invention is a high-resolution drone that can automatically identify information on the position and number of trees by applying GIS spatial analysis technique based on high-resolution drone image data acquired by drone aerial photography as derived to solve the above-mentioned problems. It is intended to provide a system and method for identifying the position and number of trees using an image.
본 발명의 일 실시예에 따른 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템 및 식별 방법은 분광센서가 탑재된 드론으로부터 촬영되는 항공영상 데이터 및 분광영상 데이터를 사진영상 정합하여 점군데이터(Point cloud)를 생성하는 점군데이터 생성부, 상기 항공영상 데이터로부터 수치표면모델(DSM, Digital Surface Model) 및 수치표고모델(DEM, Digital Elevation Model)을 통해 제1 디지털 공간정보 데이터를 생성하는 제1 디지털 공간정보 생성부, 상기 분광영상 데이터로부터 정규식생지수(NDVI, Normalized Difference Vegetation Index)를 통해 제2 디지털 공간정보를 생성하는 제2 디지털 공간정보 생성부, 상기 점군데이터에서 인공구조물의 높이 값 데이터를 제외하고 입목 높이 값 데이터를 저장하기 위한 제1 Modified CHM(Modified Canopy Height Model)부, 상기 제1 Modified CHM부에 저장된 상기 입목 높이 값 데이터를 통해, 입목의 초두부(Tree top)를 식별하는 초두부 탐지부;를 포함하되, 상기 제1 Modified CHM부는 상기 제1 디지털 공간정보 데이터 및 상기 제2 디지털 공간정보 데이터를 취합하여 가공하는 것을 특징으로 할 수 있다.A system and identification method for identifying the position and number of trees using a high-resolution drone image according to an embodiment of the present invention is a point cloud data (Point cloud ), a first digital space that generates first digital spatial information data through a digital surface model (DSM) and a digital elevation model (DEM) from the aerial image data. An information generating unit, a second digital spatial information generating unit generating second digital spatial information through a Normalized Difference Vegetation Index (NDVI) from the spectral image data, Excluding the height value data of an artificial structure from the point cloud data And a first Modified CHM (Modified Canopy Height Model) unit for storing the standing tree height value data, the first Modified CHM unit through the tree height value data stored in the tree top to identify the tree top (Tree top) and a detection unit, wherein the first modified CHM unit collects and processes the first digital spatial information data and the second digital spatial information data.
일 실시예에서, 상기 제1 디지털 공간정보 생성부는 상기 수치표면모델(DSM)을 적용하여 입목 및 인공구조물의 높이 값을 도출하는 수치표면모델부, 상기 수치표고모델(DEM)을 적용하여 입목 및 인공구조물의 높이 값을 제외한 지형의 높이 값을 도출하는 수치표고모델부 및 상기 수치표면모델부 및 상기 수치표고모델부로부터 도출된 데이터 값을 취합하여 수관높이모델을 적용하는 수관높이모델부를 포함하는 것을 특징으로 할 수 있다.In one embodiment, the first digital spatial information generation unit applies the numerical surface model (DSM) to apply the numerical surface model unit to derive the height values of the trees and artificial structures, the numerical surface model (DEM) to apply the numerical elevation model (DEM) A numerical elevation model unit for deriving the height value of the terrain excluding the height value of the artificial structure, and a water pipe height model unit for applying the water pipe height model by collecting the data values derived from the numerical surface model unit and the numerical elevation model unit. can be characterized as
일 실시예에서, 상기 제2 디지털 공간정보 생성부는 상기 정규식생지수(NDVI)를 도출하며, 상기 정규식생지수(NDVI)는 근적외선과 적색광 밴드 사이의 값의 차이를 상기 근적외선과 상기 적생광 밴드를 합한 값으로 나누어서 계산하는 것을 특징으로 할 수 있다.In an embodiment, the second digital spatial information generating unit derives the regular vegetation index (NDVI), and the regular vegetation index (NDVI) calculates the difference between the values of the near infrared and red light bands between the near infrared and the red light band. It may be characterized in that the calculation is divided by the sum of the values.
일 실시예에서, 상기 제1 Modified CHM부는 상기 제1 디지털 공간정보 데이터에서 상기 제2 디지털 공간정보 데이터를 제거하여 상기 입목 높이 데이터 값을 도출하는 것을 특징으로 할 수 있다.In an embodiment, the first modified CHM unit may be characterized in that the first digital spatial information data is removed from the second digital spatial information data to derive the tree height data value.
일 실시예에서, 상기 초두부 탐지부는 상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 일정 간격 별 높이 최대 높이값을 추출하는 Local Maxima부, 상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 일정 간격 별 볼록한 부분의 지역을 추출하는 Concave area부, 상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 기준치 이상의 높이를 가지는 입목을 추출하는 제2 Modified CHM부 및 상기 Local Maxima부, Concave area부 및 제2 Modified CHM부로부터 도출된 값을 취합하여 입목의 위치 및 본수 정보를 생성하는 데이터 취합부를 포함하는 것을 특징으로 할 수 있다.In one embodiment, the head detection unit Local Maxima for extracting the maximum height value for each predetermined interval from the height data value derived from the first Modified CHM unit, the Standing height derived from the first Modified CHM unit. Concave area for extracting the area of the convex part at regular intervals from the data value, the second Modified CHM part for extracting the standing tree having a height greater than or equal to the reference value from the tree height data value derived from the first Modified CHM part, and the Local It may be characterized in that it includes a data collection unit that collects the values derived from the Maxima unit, the Concave area unit, and the second Modified CHM unit to generate information on the position and number of trees.
본 발명의 다른 실시예에 따른 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 방법은 점군데이터 생성부에서 수행되며, 분광센서가 탑재된 드론으로부터 촬영되는 항공영상 데이터 및 분광영상 데이터를 사진영상 정합하여 점군데이터(Point cloud)를 생성하는 단계, 제1 디지털 공간정보 생성부에서 수행되며, 상기 항공영상 데이터로부터 수치표면모델(DSM, Digital Surface Model) 및 수치표고모델(DEM, Digital Elevation Model)을 통해 제1 디지털 공간정보 데이터를 생성하는 단계, 제2 디지털 공간정보 생성부에서 수행되며, 상기 분광영상 데이터로부터 정규식생지수(NDVI, Normalized Difference Vegetation Index)를 통해 제2 디지털 공간정보를 생성하는 단계, 제1 Modified CHM(Modified Canopy Height Model)부에서 수행되며, 상기 점군데이터에서 인공구조물의 높이 값 데이터를 제외하고 입목 높이 값 데이터를 저장하는 단계, 초두부 탐지부에서 수행되며 상기 제1 Modified CHM부에 저장된 상기 입목 높이 값 데이터를 통해, 입목의 초두부(Tree top)를 식별하는 단계를 포함하되, 상기 입목 높이 값 데이터를 저장하는 단계는 상기 제1 디지털 공간정보 데이터 및 상기 제2 디지털 공간정보 데이터를 취합하여 가공하는 단계를 포함하는 특징으로 할 수 있다.The method for identifying the position and number of trees using a high-resolution drone image according to another embodiment of the present invention is performed by the point cloud data generator, and the aerial image data and the spectral image data captured from the drone equipped with the spectral sensor are matched to the photographic image. The step of generating point cloud data, which is performed by the first digital spatial information generator, is performed from the aerial image data through a digital surface model (DSM) and a digital elevation model (DEM). generating first digital spatial information data, the second digital spatial information generating unit generating second digital spatial information from the spectral image data through a Normalized Difference Vegetation Index (NDVI); The first Modified CHM (Modified Canopy Height Model) unit is performed, the step of excluding the height value data of the artificial structure from the point cloud data, and storing the tree height value data, the first Modified CHM unit is performed in the first head detection unit and identifying a tree top of a tree through the tree height value data stored in the , wherein the storing of the tree height value data includes the first digital spatial information data and the second digital spatial information It may be characterized by collecting and processing data.
일 실시예에서, 상기 제1 디지털 공간정보를 생성하는 단계는 수치표면모델부에서 수행되며, 상기 수치표면모델(DSM)을 적용하여 입목 및 인공구조물의 높이 값을 도출하는 단계, 수치표고모델부에서 수행되며, 상기 수치표고모델(DEM)을 적용하여 입목 및 인공구조물의 높이 값을 제외한 지형의 높이 값을 도출하는 단계 및 수관높이모델부에서 수행되며, 상기 수치표면모델부 및 상기 수치표고모델부로부터 도출된 데이터 값을 취합하여 수관높이모델을 적용하는 단계를 포함하는 것을 특징으로 할 수 있다.In an embodiment, the step of generating the first digital spatial information is performed by a numerical surface model unit, and applying the numerical surface model (DSM) to derive height values of the trees and artificial structures, the numerical elevation model unit The step of applying the numerical elevation model (DEM) to deriving the height values of the terrain excluding the height values of the trees and artificial structures and performed in the canopy height model part, the numerical surface model part and the numerical elevation model It may be characterized in that it comprises the step of applying the crown height model by collecting the data values derived from the part.
일 실시예에서, 상기 제2 디지털 공간정보를 생성하는 단계는 상기 제2 디지털 공간정보 생성부를 통해 상기 정규식생지수(NDVI)를 도출하는 단계; 및 근적외선과 적색광 밴드 사이의 값의 차이를 상기 근적외선과 상기 적생광 밴드를 합한 값으로 나누어서 상기 정규식생지수(NDVI)를 계산하는 단계를 포함하는 것을 특징으로 할 수 있다.In an embodiment, the generating of the second digital spatial information may include: deriving the NDVI through the second digital spatial information generating unit; and calculating the normal vegetation index (NDVI) by dividing a difference between the near-infrared light and the red light band by the sum of the near-infrared light and the red light band.
일 실시예에서, 상기 입목 높이 값 데이터를 저장하는 단계는 상기 제1 디지털 공간정보 데이터에서 상기 제2 디지털 공간정보 데이터를 제거하여 상기 입목 높이 데이터 값을 도출하는 단계를 포함하는 것을 특징으로 할 수 있다.In an embodiment, the storing of the standing tree height value data may include deriving the standing tree height data value by removing the second digital geospatial data data from the first digital geospatial data data. there is.
일 실시예에서, 상기 입목의 초두부(Tree top)를 식별하는 단계는 Local Maxima부에서 수행되며, 상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 일정 간격 별 높이 최대 높이값을 추출하는 단계, Concave area부에서 수행되며, 상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 일정 간격 별 볼록한 부분의 지역을 추출하는 단계, 제2 Modified CHM부에서 수행되며, 상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 기준치 이상의 높이를 가지는 입목을 추출하는 단계 및 데이터 취합부에서 수행되며, 상기 Local Maxima부, Concave area부 및 제2 Modified CHM부로부터 도출된 값을 취합하여 입목의 위치 및 본수 정보를 생성하는 단계를 포함하는 것을 특징으로 할 수 있다.In one embodiment, the step of identifying the tree top of the tree is performed in the Local Maxima part, and from the tree height data value derived from the first Modified CHM part, the maximum height value for each predetermined interval is extracted. step, performed in the concave area part, extracting the area of the convex part at regular intervals from the tree height data value derived from the first Modified CHM part, is performed in the second Modified CHM part, and the first Modified The step of extracting a tree having a height greater than or equal to the reference value from the tree height data value derived from the CHM part and the data collection part are performed by collecting the values derived from the Local Maxima part, the Concave area part, and the second Modified CHM part. It may be characterized in that it comprises the step of generating information on the position and the number of trees.
본 발명의 일 측면에 따르면, 산림지역 및 비산림지역을 대상으로 자동으로 입목의 위치와 본수 정보를 취득할 수 있으므로 체계적인 입목자원 관리에 활용될 수 있고 또한, 입목의 위치와 본수정보는 기존의 수관높이모델(CHM)과 결합하여 분석할 경우 정확한 수고(높이) 추정이 가능해지므로, 나무의 재적량 또는 이산화탄소 흡수량 등을 산정에 필요한 중요한 매개변수인 수고와 분수를 비용효율적으로 모니터링 하는데 활용될 수 있는 이점을 가진다.According to one aspect of the present invention, since it is possible to automatically acquire information on the location and number of trees in forested areas and non-forest areas, it can be used for systematic lumber resource management. When combined with the canopy height model (CHM), it is possible to estimate the exact height (height), so it can be used to cost-effectively monitor the height and fraction, which are important parameters necessary for estimating the amount of tree stacking or carbon dioxide absorption. have an advantage
도 1은 본 발명의 일 실시예에 따른 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템(100)을 이용하여 입목 위치 및 본수를 식별하는 과정을 도시한 도면이다.1 is a diagram illustrating a process of identifying a standing tree position and a tree number using the standing tree position and number identification system 100 using a high-resolution drone image according to an embodiment of the present invention.
도 2는 DSM(Digital Surface Model), DEM(Digital Elevation Model), NDVI(Normalized Difference Vegetation Index) 및 CHM(Canopy Height Model)을 통한 데이터 값에 따른 지형을 도시한 도면이다.FIG. 2 is a diagram illustrating topography according to data values through Digital Surface Model (DSM), Digital Elevation Model (DEM), Normalized Difference Vegetation Index (NDVI), and Canopy Height Model (CHM).
도 3은 입목 및 인공구조물 등의 높이 데이터값에 따른 모형을 도시한 도면이다.3 is a diagram illustrating a model according to height data values of trees and artificial structures.
도 4는 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템(100)에 따른 입목의 초두부(Tree top)가 탐지되는 과정을 나타낸 도면이다.4 is a diagram illustrating a process of detecting a tree top of a standing tree according to the standing tree position and tree number identification system 100 using a high-resolution drone image.
도 5는 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템(100)에 따른 개체목이 식별 및 탐지되는 상태를 나타낸 도면이다.5 is a diagram illustrating a state in which a tree is identified and detected according to the tree position and tree number identification system 100 using a high-resolution drone image.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the content of the present invention is not limited by the examples.
도 1은 본 발명의 일 실시예에 따른 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템(100)을 이용하여 입목 위치 및 본수를 식별하는 과정을 도시한 도면이다.1 is a diagram illustrating a process of identifying a standing tree position and a tree number using the standing tree position and number identification system 100 using a high-resolution drone image according to an embodiment of the present invention.
도 1을 살펴보면, 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템(100)은 점군데이터 생성부(110), 제1 디지털 공간정보 생성부(120), 제2 디지털 공간정보 생성부(130), 제1 Modified CHM부(140) 및 초두부 탐지부(150)를 포함하여 구성된다.Referring to FIG. 1 , the tree position and number identification system 100 using a high-resolution drone image includes a point cloud data generation unit 110 , a first digital spatial information generation unit 120 , and a second digital spatial information generation unit 130 . , is configured to include a first Modified CHM unit 140 and a super head detection unit 150 .
먼저, 점군데이터 생성부(110)는 분광센서가 탑재된 드론(미도시)로부터 촬영되는 항공영상 데이터(111) 및 분광영상 데이터(112)를 사진영상 정합하여 정군데이터(Point Cloud)를 생성할 수 있다.First, the point cloud data generating unit 110 is to generate a point cloud data by registering the aerial image data 111 and the spectral image data 112 photographed from a drone (not shown) equipped with a spectral sensor to a photographic image. can
제1 디지털 공간정보 생성부(120)는 항공영상 데이터(111)로부터 수치표면모델(DSM, Digital Surface Model) 및 수치표고모델(DEM, Digital Elevation Model)을 통해 제1 디지털 공간정보 데이터를 생성할 수 있다.The first digital spatial information generation unit 120 generates first digital spatial information data from the aerial image data 111 through a digital surface model (DSM) and a digital elevation model (DEM). can
여기에서, 수치표고모델과 수치고도모델을 이용하면 지표면으로부터 식생 및 인공구조물의 높이를 추정할 수 있는 수관높이모델을 생성할 수 있으며, 이때 수관높이모델에는 식생의 높이 이외에도 인공구조물의 높이 정보가 포함되어 있어, 도심지 내 식생과 같이 인공구조물과 나무가 혼재되어 있는 경우, 나무의 위치 정보를 추출하기 위해서는 인공구조물의 높이 정보를 인위적으로 제거하기 위한 후처리 과정이 필요하다.Here, by using the numerical elevation model and the numerical elevation model, a canopy height model that can estimate the height of vegetation and artificial structures from the ground surface can be created. Therefore, when artificial structures and trees are mixed, such as vegetation in downtown, a post-processing process is required to artificially remove height information of artificial structures in order to extract tree location information.
제1 디지털 공간정보 생성부(120)를 살펴보면, 제1 디지털 공간정보 생성부(120)는 수치표면모델(DSM)을 적용하여 입목 및 인공구조물의 높이 값을 도출하는 수치표면모델부(DSM부, 121), 수치표고모델(DEM)을 적용하여 입목 및 인공구조물의 높이 값을 제외한 지형의 높이 값을 도출하는 수치표고모델부(DEM부, 122) 및 수치표면모델부(122) 및 수치표고모델부로부터 도출된 데이터 값을 취합하여 수관높이모델을 적용하는 수관높이모델부(123)를 포함할 수 있다.Looking at the first digital spatial information generation unit 120, the first digital spatial information generation unit 120 applies a numerical surface model (DSM) to derive the height values of the trees and artificial structures (DSM unit) , 121), the numerical elevation model part (DEM part, 122) and the numerical surface model part 122 and the numerical elevation that derive the height values of the terrain excluding the height values of the trees and artificial structures by applying the numerical elevation model (DEM) It may include a water pipe height model unit 123 that applies the water pipe height model by collecting data values derived from the model unit.
한편, 분광센서를 탑재한 드론으로 촬영한 분광영상을 이용할 경우, 분광영상 밴드 조합을 통해 식생지역을 판독하는데 유용한 정규식생지수(NDVI) 영상자료를 손쉽게 생산 할 수 있다.On the other hand, in the case of using a spectral image taken by a drone equipped with a spectral sensor, it is possible to easily produce NDVI image data useful for reading vegetation areas through a combination of spectral image bands.
보다 자세하게는, 정규식생지수는 근적외선의 반사율을 이용해 작물의 생장상태를 지수화하기 위한 지표로 정규식생지수 NDVI = (NIR - Red)/(NIR + Red)의 밴드조합으로 산출되며 -1에서부터 1 사이의 값으로 정량적인 값으로 표현된다. 일반적으로 식생지역은 양수(+)값을 나타내며, 비식생 지역은 0이하의 값으로 표현되어, 해당 지수를 이용하면 식생지역과 인공구조물 등이 위치한 비식생지역을 구분하는데 적용할 수 있다.In more detail, the regular vegetation index is an index for indexing the growth status of crops using the reflectivity of near-infrared rays. The value of is expressed as a quantitative value. In general, the vegetation area represents a positive (+) value, and the non-vegetated area is expressed as a value less than or equal to 0, and the index can be used to distinguish between the vegetation area and the non-vegetation area where artificial structures are located.
이에 관하여, 제2 디지털 공간정보 생성부(130)는 분광영상 데이터로부터 정규식생지수(NDVI)를 통해 제2 디지털 공간정보를 생성할 수 있으며, 정규식생지수(NDVI)는 상기의 식과 같이 근적외선과 적색광 밴드 사이의 값의 차이를 근적외선과 적색광 밴드를 합한 값으로 나누어서 계산할 수 있다.In this regard, the second digital spatial information generating unit 130 may generate the second digital spatial information from the spectral image data through a regular expression index (NDVI), and the regular expression index (NDVI) is a combination of near-infrared rays and near-infrared rays as in the above equation. It can be calculated by dividing the difference in the values between the red light bands by the sum of the near infrared and red light bands.
기존의 수관높이모델에서 정규식생지수(NDVI) 영상을 이용해 비식생지역에 위치한 고도값을 제거하는 공간분석 처리과정을 거치면 식생지역의 높이 정보가 추출되는 수정된 수관높이모형(Modified CHM)을 도출할 수 있다.Derived a Modified CHM model in which height information of vegetation areas is extracted through spatial analysis processing that removes altitude values located in non-vegetated areas using regular vegetation index (NDVI) images from the existing canopy height model. can do.
보다 자세하게는, 제1 Modified CHM부(140)는 제1 디지털 공간정보 데이터 생성부(120)로부터 도출된 제1 디지털 공간정보 데이터에서 제2 디지털 공간정보 데이터 생성부(130)로부터 도출된 제2 디지털 공간정보 데이터를 취합하여 가공할 수 있으며, 보다 자세하게는, 제1 디지털 공간정보 데이터에서 제2 디지털 공간정보 데이터를 제거하여 입목 높이 데이터 값을 도출할 수 있다.In more detail, the first modified CHM unit 140 includes the second digital spatial information data generation unit 130 derived from the first digital spatial information data generation unit 120 from the first digital spatial information data generation unit 120 . The digital spatial information data may be collected and processed, and more specifically, the tree height data value may be derived by removing the second digital spatial information data from the first digital spatial information data.
수정된 수관높이모형(Modifed CHM) 데이터를 이용해 서로 다른 2개의 스케일(분석단위)에서의 높이값이 지역적으로 최대값(local Maxima)을 갖는 지점을 추출할 수 있으며, 이때 지정한 스케일 단위는 개체목 탐지가 누락되지 않도록 대상지역의 최소식재 간격보다 작은 값을 적용하여 분석할 수 있다. 우리나라는 조밀하게 나무를 식재하더라도 보통 1ha 면적에 3,000본을 기준으로 식재하는 경우가 일반적임을 감안한다면 최소 식재 간격은 1.5m 수준에서 결정되므로, 1.5m 이하로 스케일을 선정하여 지역적 최대값(Local Maxima)을 도출할 수 있다.Using the modified CHM data, it is possible to extract the point where the height values at two different scales (analysis units) have the local maxima, and the designated scale unit is the object tree. In order not to miss detection, it can be analyzed by applying a value smaller than the minimum planting interval of the target area. Considering that even if trees are densely planted in Korea, it is common to plant 3,000 trees in an area of 1 ha. ) can be derived.
또한, 나무의 수관층의 상층부는 위에서 직각으로 내려다 볼 때, 위쪽으로 볼록한 형태의 기하학적 형태를 지니고 있다. 그러므로 수정된 수관높이모형 데이터를 이용해 우리나라의 일반적인 식재간격을 고려하여 1.5m 스케일에서 볼록한 형태를 띄는 지역(Concave area)을 추출하게 되면 나무의 수관 상층부로 예상되는 곳을 탐지하는 것이 가능할 수 있다.In addition, when the upper part of the crown layer of the tree is viewed from above at a right angle, it has an upwardly convex geometric shape. Therefore, if the concave area is extracted at the 1.5 m scale in consideration of the general planting interval in Korea using the revised canopy height model data, it may be possible to detect the place expected to be the upper part of the tree crown.
다음으로, 수정된 수관높이모형 데이터에서 교목이나 관목을 구분하기 위해서 수관 높이 5m 이상을 기준치(Threshold)로 적용하여 입목을 식별하는데 활용할 수 있다. 묘목을 포함한 수고 5m이하의 어린나무를 조사하거나, 3~5m 수고의 관목이나 아교목 등을 포함하여 조사가 필요한 경우에는 기준치를 5m이하로 낮추거나 미적용하는 방식으로 적용할 수 있다.Next, in order to classify trees or shrubs in the revised canopy height model data, a height of 5 m or more can be applied as a threshold to identify standing trees. When it is necessary to irradiate young trees of 5 m or less, including seedlings, or to include shrubs or glue trees with a height of 3 to 5 m, it can be applied by lowering the standard value to 5 m or less or not applying it.
상기와 같은 내용을 이용하여 본 발명에 적용한다면, 초두부 탐지부(150)는 Local Maxima부(151), Concave area부(152) 및 제2 Modified CHM부를 포함하여 구성할 수 있다.If applied to the present invention using the above contents, the super head detection unit 150 may be configured to include a Local Maxima unit 151 , a Concave area unit 152 , and a second Modified CHM unit.
Local Maxima부(151)는 제1 Modified CHM부(140)로부터 도출된 입목 높이 데이터 값(수정된 수관높이모형 데이터)을 이용하여 일정 간격 별 최대 높이값을 추출하여, 가장 높은 입목의 높이 값을 도출할 수 있다.The Local Maxima unit 151 extracts the maximum height value for each predetermined interval using the tree height data value (modified tree crown height model data) derived from the first Modified CHM unit 140 to determine the height value of the highest standing tree. can be derived
Concave Area부(152)는 제1 Modified CHM부(140)로부터 도출된 입목 높이 데이터 값(수정된 수관높이모형 데이터)을 이용하여 일정 간격 별 볼록한 부분의 지역을 추출할 수 있다.The Concave Area unit 152 may extract the area of the convex portion at regular intervals by using the tree height data value (modified crown height model data) derived from the first Modified CHM unit 140 .
제2 Modified CHM부(153)는 제1 Modified CHM부(140)로부터 도출된 입목 높이 데이터 값(수정된 수관높이모형 데이터)을 이용하여 기준치 이상의 높이를 가지는 입목을 추출할 수 있다.The second Modified CHM unit 153 may extract a standing tree having a height equal to or greater than a reference value by using the tree height data value (modified crown height model data) derived from the first Modified CHM unit 140 .
상기의 과정을 통해 지역적 최대값, 수관상층부 지역, 수고 5m 기준을 모두 충족하는 지점을 개체목 식별을 위한 후보군으로 선정하되, 개체목 후보군간의 거리가 1m이하로 인접한 경우 수고값이 높은 후보군을 개체목으로 선정하여, 개체목의 좌표정보와 본수정보를 생성한다. 이에 따라, 본 발명의 데이터 취합부(150)는 제1 Modified CHM부(140)로부터 도출된 입목 높이 데이터 값(수정된 수관높이모형 데이터)을 이용하여 Local Maxima부(151), Concave Area부(152) 및 제2 Modified CHM부(153)를 통해 도출된 각각의 데이터를 취합하여 입목의 위치 및 본수 정보를 생성할 수 있다.Through the above process, a point that satisfies all the criteria for the regional maximum value, the upper crown area, and the height of 5 m is selected as a candidate group for individual tree identification. By selecting the tree, the coordinate information of the object tree and the number information are generated. Accordingly, the data collection unit 150 of the present invention uses the tree height data value (modified tree crown height model data) derived from the first Modified CHM unit 140 to the Local Maxima unit 151, Concave Area unit ( 152) and the second Modified CHM unit 153 may generate information on the location and number of trees by collecting each data derived through the unit.
도 2는 DSM(Digital Surface Model), DEM(Digital Elevation Model), NDVI(Normalized Difference Vegetation Index) 및 CHM(Canopy Height Model)을 통한 데이터 값에 따른 지형을 도시한 도면이다.FIG. 2 is a diagram illustrating topography according to data values through Digital Surface Model (DSM), Digital Elevation Model (DEM), Normalized Difference Vegetation Index (NDVI), and Canopy Height Model (CHM).
도 2를 살펴보면, 도 2는 화동리 70-5 지역을 항공영상 장비 및 분광 영상 센서를 구비한 드론을 통하여 데이터를 수집한 영상 중 일부를 나타낸 도면이다.Referring to FIG. 2, FIG. 2 is a view showing some of the images collected by using a drone equipped with aerial imaging equipment and a spectral image sensor in the area of 70-5 Hwadong-ri.
드론을 통하여 수집한 분광 영상을 수치표고모델(DSM, 121) 및 수치고도모델(DEM, 122)을 이용하여 나타낸 도면이다. 정규식생지수(NDVI, 130)는 상기 기재된 것과 같이 분광영상 밴드 조합을 통해 식생지역을 판독하는데 유용하도록 활용된다. 또한, 정규식생지수는 근적외선의 반사율을 이용해 작물의 생장상태를 지수화하기 위한 지표로, NDVI = (NIR-Red)/(NIR+Red)의 밴드조합으로 산출되며, -1에서부터 1 사이의 값으로 정량적인 값으로 표현된다. 일반적으로 식생지역은 양수(+)값을 나타내며, 비식생 지역은 0 이하의 값으로 표현되어, 해당 지수를 이용하면 식생지역과 인공구조물 등이 위치한 비식생지역을 구분하는데 적용할 수 있다.It is a diagram showing the spectral images collected through the drone using a numerical elevation model (DSM, 121) and a numerical elevation model (DEM, 122). The regular vegetation index (NDVI, 130) is used to be useful in reading the vegetation area through the spectral image band combination as described above. In addition, the regular vegetation index is an index for indexing the growth status of crops using the reflectivity of near-infrared rays. It is expressed as a quantitative value. In general, the vegetation area represents a positive (+) value, and the non-vegetation area is expressed as a value of 0 or less.
또한, 수치표고모델을 이용한 DSM(121) 영상에서 수치고도모델을 이용한 DEM(122) 영상을 제거하면 수관높이모델(CHM, Canopy Height Model, 123) 모델을 이용한 영상을 획득할 수 있으며, 기존의 수관높이모델(CHM, 123)에서 정규식생지수(NDVI, 130) 영상을 이용하여 비식생지역에 위치한 고도값을 제거하는 공간분석 처리과정을 거치면 식생지역의 높이 정보가 추출된 수정된 수관높이 모형(Modified CHM)을 도출할 수 있다.In addition, if the DEM (122) image using the numerical elevation model is removed from the DSM (121) image using the numerical elevation model, an image using the Canopy Height Model (CHM, Canopy Height Model, 123) model can be obtained. A modified canopy height model in which the height information of the vegetation area is extracted after the spatial analysis process of removing the altitude value located in the non-vegetated area using the regular vegetation index (NDVI, 130) image from the crown height model (CHM, 123) (Modified CHM) can be derived.
도 3은 입목 및 인공구조물 등의 높이 데이터값에 따른 모형을 도시한 도면이다.3 is a diagram illustrating a model according to height data values of trees and artificial structures.
도 3의 좌측 상단의 도면(122-1)은 DEM(Digital Elevation Model)을 사용하여 나무, 인공구조물의 높이 값이 제외된 지형의 고도값을 수치로 저장한 모형을 나타낸 도면이다. 우측 상단의 도면(121-1)은 DSM(Digital Surface Model)을 사용하여 나무, 인공구조물의 높이값이 포함된 지표면의 고도값을 수치로 저장한 모형이며, 우측 상단의 도면(121-1)에서 보는 바와 같이 지표면과 인공구조물의 높이값이 나무의 높이값과 같이 측정되어 저장되어있는 것을 확인할 수 있다. 또한, 좌측 하단의 도면(123-1)은 우측 상단의 도면(121-1)에서 좌측 상단의 도면(122-1)을 제거하는, CHM(Canopy Height Model)을 이용하여 나무 및 인공구조물의 높이값을 수치로 저장한 모형을 나타낸 도면이며, 우측 하단의 도면(140-1)은 좌측 하단의 도면(123-1)의 CHM을 이용하여 나무 및 인공구조물의 높이값을 수치로 저장한 모형에서 정규식생지수(NDVI) 영상을 이용해 비식생지역에 위치한 고도값을 제거하는 공간분석 처리과정을 거쳐, 식생지역의 높이 정보가 추출된 수정된 수관높이모형(Modified CHM)을 도출하는 것을 나타낸 도면이다.A drawing 122-1 in the upper left of FIG. 3 is a diagram illustrating a model in which the elevation value of the terrain is stored numerically using a digital elevation model (DEM), excluding the height values of trees and artificial structures. The drawing 121-1 in the upper right is a model in which the elevation values of the ground including the height values of trees and artificial structures are stored numerically using DSM (Digital Surface Model), and the drawing 121-1 in the upper right is As shown in , it can be confirmed that the height values of the ground surface and artificial structures are measured and stored together with the height values of trees. In addition, the lower left drawing 123-1 is the height of trees and artificial structures using CHM (Canopy Height Model), which removes the upper left drawing 122-1 from the upper right drawing 121-1. It is a diagram showing a model in which values are stored numerically, and the drawing 140-1 in the lower right is a model in which the height values of trees and artificial structures are stored numerically using the CHM of the drawing 123-1 in the lower left. It is a diagram showing the deriving of a modified canopy height model (Modified CHM) from which height information of vegetation areas is extracted through spatial analysis processing that removes altitude values located in non-vegetated areas using regular vegetation index (NDVI) images. .
도 4는 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템(100)에 따른 입목의 초두부(Tree top)가 탐지되는 과정을 나타낸 도면이다.4 is a diagram illustrating a process of detecting a tree top of a standing tree according to the standing tree position and tree number identification system 100 using a high-resolution drone image.
도 4를 살펴보면, 초두부 탐지부(150)는 Local Maxima부(151), Concave area부(152) 및 제2 Modified CHM부(153)를 포함하여 구성될 수 있다. Local Maxima부(151)는 제1 Modified 통해 도출된 입목 높이 데이터 값에서, 일정 간격 별 최대 높이값을 추출할 수 있으며, 스케일 1(scale 1)과 스케일 2(scale 2)에서의 높이 값이 지역적으로 최대값을 갖는 지점을 추출하는 것을 확인할 수 있다. 초록색 화살표 막대는 스케일 1(scale 1) 중 높이 값이 지역적으로 최대값으로 갖는 지점이 추출된 것을 말하며, 노란색 화살표 막대는 스케일 2(scale 2) 중 높이 값이 지역적으로 최대값으로 갖는 지점이 추출된 것을 말한다. 여기에서 노란색과 초록색 화살표의 간격이 1.5m이하 일 때는 스케일 1 및 스케일 2에서 추출된 높이의 최대값을 비교하여 더 높은 곳을 저장하며, 낮은 곳은 삭제될 수 있다.Referring to FIG. 4 , the superhead detection unit 150 may include a Local Maxima unit 151 , a Concave area unit 152 , and a second Modified CHM unit 153 . The Local Maxima unit 151 can extract the maximum height value for each predetermined interval from the tree height data value derived through the first Modified, and the height value in scale 1 and scale 2 is local. It can be confirmed that the point with the maximum value is extracted. The green arrow bar indicates that the point having the locally maximum height value among scale 1 is extracted, and the yellow arrow bar indicates that the point having the maximum height value locally on scale 2 is extracted. say what happened Here, when the interval between the yellow and green arrows is 1.5 m or less, the maximum value of the height extracted from scale 1 and scale 2 is compared and the higher one is stored, and the lower one can be deleted.
Concave area부(152)는 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 일정 간격 별 볼록한 부분의 지역을 추출할 수 있다. Concave area부에서도 역시 일반적으로 1.5m의 스케일 간격에서 볼록한 형태를 띠는 지역을 추출할 수 있다.The concave area unit 152 may extract the area of the convex part for each predetermined interval from the tree height data value derived from the first modified CHM unit. Also in the concave area, it is possible to extract an area with a convex shape at a scale interval of generally 1.5 m.
또한, 제2 Modified CHM부(153)는 제1 Modified CHM부(140)에서 도출된 영상에서 교목과 관목을 구분하기 위하여 5m 이상 높이의 나무를 기준으로 구분할 수 있으며, 5m 이상을 기준치(Threshold)로 적용하여 입목을 식별할 수 있다. 이때, 묘목을 포함한 수고 5m 이하의 어린나무를 조사하거나, 3~5m 수고의 관목이나 아교목 등을 포함하여 조사가 필요한 경우 기준치를 5m 이하로 낮추거나 미적용하는 방식을 통하여 조사가 가능할 수 있다.In addition, the second Modified CHM unit 153 may classify trees 5 m or more tall in order to distinguish trees and shrubs from the image derived from the first Modified CHM unit 140 , and 5 m or more as a threshold value. can be applied to identify the standing tree. At this time, it may be possible to investigate young trees of 5 m or less, including seedlings, or by lowering the standard value to 5 m or less or not applying it if investigation is necessary including shrubs or glue trees with a height of 3 to 5 m.
데이터 취합부(154)는 Local Maxima부(151), Conacave area부(152) 및 제2 Modified CHM부(153)에서의 조건을 모두 충족한 데이터를 취합하여 개체목으로 식별할 수 있다. 여기에서, 식별된 입목 간의 거리가 1m 이내로 인접한 경우 수고가 높은 포인트(point)를 개체목으로 선정할 수 있다.The data collection unit 154 may collect data that satisfies all the conditions in the Local Maxima unit 151 , the Conacave area unit 152 , and the second Modified CHM unit 153 and identify them as an entity. Here, when the distance between the identified trees is adjacent to within 1 m, a point having a high effort may be selected as the individual tree.
도 5는 고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템(100)에 따른 개체목이 식별 및 탐지되는 상태를 나타낸 도면이다.5 is a diagram illustrating a state in which a tree is identified and detected according to the tree position and tree number identification system 100 using a high-resolution drone image.
도 5를 살펴보면, 좌측 상단의 도면(151-1)은 Local Maxima 알고리즘을 적용하여 초두부 후보군을 탐지하는 것을 나타낸 도면이다. 우측 상단의 도면(151-2)는 수관층 상단부를 탐지한 도면이며, 좌측 하단의 도면(151-3)은 좌우측 상단의 도면을 조합하여 나타낸 도면이며, 우측 하단의 도면(151-4)는 좌측 하단의 도면(151-4)에서 1m 이내로 인접한 개체목의 후보군을 선별하여 병합할 수 있다. 여기에서, 1m 이내로 인접한 개체목의 후보군을 선별하여 병합하는 것은 과대 추정을 방지하기 위함이다.Referring to FIG. 5 , a diagram 151-1 in the upper left is a diagram illustrating the detection of superhead candidates by applying the Local Maxima algorithm. The upper right drawing 151-2 is a view of detecting the upper part of the canopy layer, the lower left drawing 151-3 is a view showing a combination of the left and right upper drawings, and the lower right drawing 151-4 is In the lower left drawing 151-4, candidate groups of adjacent individual trees within 1 m can be selected and merged. Here, selecting and merging candidate groups of adjacent individuals within 1 m is to prevent overestimation.
고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 방법으로는, 점군데이터 생성부에서 수행되며, 분광센서가 탑재된 드론으로부터 촬영되는 항공영상 데이터 및 분광영상 데이터를 사진영상 정합하여 점군데이터(Point cloud)를 생성할 수 있으며, 제1 디지털 공간정보 생성부에서 수행되며, 항공영상 데이터로부터 수치표면모델(DSM, Digital Surface Model) 및 수치표고모델(DEM, Digital Elevation Model)을 통해 제1 디지털 공간정보 데이터를 생성할 수 있다. 또한, 제2 디지털 공간정보 생성부에서 수행되며, 분광영상 데이터로부터 정규식생지수(NDVI, Normalized Difference Vegetation Index)를 통해 제2 디지털 공간정보를 생성하며, 제1 Modified CHM(Modified Canopy Height Model)부에서 수행되며, 점군데이터에서 인공구조물의 높이 값 데이터를 제외하고 입목 높이 값 데이터를 저장할 수 있고, 초두부 탐지부에서 수행되며 제1 Modified CHM부에 저장된 입목 높이 값 데이터를 통해, 입목의 초두부(Tree top)를 식별할 수 있다.As a method of identifying the position and number of trees using a high-resolution drone image, it is performed in the point cloud data generation unit, and the aerial image data and the spectral image data taken from the drone equipped with a spectral sensor are matched to the photographic image to generate the point cloud data. can be generated, and it is performed by the first digital spatial information generating unit, and the first digital spatial information data from aerial image data through digital surface model (DSM, Digital Surface Model) and digital elevation model (DEM, Digital Elevation Model) can create In addition, the second digital spatial information generating unit generates second digital spatial information through a Normalized Difference Vegetation Index (NDVI) from the spectral image data, and the first Modified CHM (Modified Canopy Height Model) unit It is performed in , and it is possible to save the height value data of the artificial structure by excluding the height value data of artificial structures from the point cloud data. (Tree top) can be identified.
여기에서, 제1 디지털 공간정보를 생성하는 단계는 수치표면모델부에서 수행되며, 수치표면모델(DSM)을 적용하여 입목 및 인공구조물의 높이 값을 도출할 수 있고, 수치표고모델부에서 수행되며, 수치표고모델(DEM)을 적용하여 입목 및 인공구조물의 높이 값을 제외한 지형의 높이 값을 도출할 수 있으며, 수관높이모델부에서 수행되며, 수치표면모델부 및 수치표고모델부로부터 도출된 데이터 값을 취합하여 수관높이모델을 적용할 수 있다.Here, the step of generating the first digital spatial information is performed in the numerical surface model unit, and by applying the numerical surface model (DSM), the height values of the trees and artificial structures can be derived, and the numerical elevation model unit is performed. , by applying the numerical elevation model (DEM), it is possible to derive the height values of the terrain excluding the height values of the trees and artificial structures, and the data derived from the numerical surface model part and the numerical elevation model part are performed in the canopy height model part. By collecting the values, the canopy height model can be applied.
또한, 제2 디지털 공간정보를 생성하는 단계는 제2 디지털 공간정보 생성부를 통해 정규식생지수(NDVI)를 도출할 수 있고, 근적외선과 적색광 밴드 사이의 값의 차이를 근적외선과 적생광 밴드를 합한 값으로 나누어서 상기 정규식생지수(NDVI)를 계산할 수 있다.Also, in the generating of the second digital spatial information, a regular vegetation index (NDVI) may be derived through the second digital spatial information generating unit, and the difference between the near-infrared and red light bands is a value obtained by adding the near-infrared and red light bands. By dividing by , the regular expression index (NDVI) can be calculated.
또한, 입목 높이 값 데이터를 저장하는 단계는 제1 디지털 공간정보 데이터에서 제2 디지털 공간정보 데이터를 제거하여 입목 높이 데이터 값을 도출할 수 있다.In addition, the storing of the tree height value data may include removing the second digital spatial data data from the first digital spatial data data to derive the tree height data value.
마지막으로, 입목의 초두부(Tree top)를 식별하는 단계는 Local Maxima부에서 수행되며, 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 일정 간격 별 최대 높이값을 추출할 수 있고, Concave area부에서 수행되며, 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 일정 간격 별 볼록한 부분의 지역을 추출할 수 있으며, 제2 Modified CHM부에서 수행되며, 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 기준치 이상의 높이를 가지는 입목을 추출할 수 있고, 데이터 취합부에서 수행되며, Local Maxima부, Concave area부 및 제2 Modified CHM부로부터 도출된 값을 취합하여 입목의 위치 및 본수 정보를 생성할 수 있다.Finally, the step of identifying the tree top of the standing tree is performed in the Local Maxima part, and from the tree height data value derived from the first Modified CHM part, the maximum height value for each predetermined interval can be extracted, and Concave It is performed in the area part, and from the height data value derived from the first Modified CHM part, the area of the convex part at regular intervals can be extracted, and it is performed in the second Modified CHM part, From the tree height data value, it is possible to extract a tree having a height greater than or equal to the standard value, and it is performed in the data collection unit. information can be created.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention within the scope without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that it can be done.

Claims (10)

  1. 분광센서가 탑재된 드론으로부터 촬영되는 항공영상 데이터 및 분광영상 데이터를 사진영상 정합하여 점군데이터(Point cloud)를 생성하는 점군데이터 생성부;A point cloud data generation unit for generating point cloud data by matching aerial image data and spectral image data taken from a drone equipped with a spectral sensor to a photographic image;
    상기 항공영상 데이터로부터 수치표면모델(DSM, Digital Surface Model) 및 수치표고모델(DEM, Digital Elevation Model)을 통해 제1 디지털 공간정보 데이터를 생성하는 제1 디지털 공간정보 생성부;a first digital spatial information generator for generating first digital spatial information data from the aerial image data through a digital surface model (DSM) and a digital elevation model (DEM);
    상기 분광영상 데이터로부터 정규식생지수(NDVI, Normalized Difference Vegetation Index)를 통해 제2 디지털 공간정보를 생성하는 제2 디지털 공간정보 생성부;a second digital spatial information generator for generating second digital spatial information from the spectroscopic image data through a Normalized Difference Vegetation Index (NDVI);
    상기 점군데이터에서 인공구조물의 높이 값 데이터를 제외하고 입목 높이 값 데이터를 저장하기 위한 제1 Modified CHM(Modified Canopy Height Model)부;A first Modified CHM (Modified Canopy Height Model) unit for storing the height value data of the trees except for the height value data of the artificial structures in the point cloud data;
    상기 제1 Modified CHM부에 저장된 상기 입목 높이 값 데이터를 통해, 입목의 초두부(Tree top)를 식별하는 초두부 탐지부;를 포함하되,A tree top detection unit for identifying a tree top of a tree through the tree height value data stored in the first Modified CHM unit; including,
    상기 제1 Modified CHM부는,The first Modified CHM unit,
    상기 제1 디지털 공간정보 데이터 및 상기 제2 디지털 공간정보 데이터를 취합하여 가공하는 것을 특징으로 하는,The first digital spatial information data and the second digital spatial information data are collected and processed.
    고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템.A system for identifying the position of the tree and the number of trees using a high-resolution drone image.
  2. 제1항에 있어서,According to claim 1,
    상기 제1 디지털 공간정보 생성부는,The first digital spatial information generating unit,
    상기 수치표면모델(DSM)을 적용하여 입목 및 인공구조물의 높이 값을 도출하는 수치표면모델부;a numerical surface model unit for deriving height values of trees and artificial structures by applying the numerical surface model (DSM);
    상기 수치표고모델(DEM)을 적용하여 입목 및 인공구조물의 높이 값을 제외한 지형의 높이 값을 도출하는 수치표고모델부; 및a numerical elevation model unit that applies the numerical elevation model (DEM) to derive the height values of the terrain excluding the height values of the trees and artificial structures; and
    상기 수치표면모델부 및 상기 수치표고모델부로부터 도출된 데이터 값을 취합하여 수관높이모델을 적용하는 수관높이모델부;를 포함하는 것을 특징으로 하는, It characterized in that it comprises;
    고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템.A system for identifying the position of the tree and the number of trees using a high-resolution drone image.
  3. 제1항에 있어서,According to claim 1,
    상기 제2 디지털 공간정보 생성부는,The second digital spatial information generating unit,
    상기 정규식생지수(NDVI)를 도출하며, 상기 정규식생지수(NDVI)는 근적외선과 적색광 밴드 사이의 값의 차이를 상기 근적외선과 상기 적생광 밴드를 합한 값으로 나누어서 계산하는 것을 특징으로 하는,The regular vegetation index (NDVI) is derived, and the regular vegetation index (NDVI) is calculated by dividing the difference between the values of the near-infrared and red light bands by the sum of the near-infrared and the red light bands,
    고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템.A system for identifying the position of the tree and the number of trees using a high-resolution drone image.
  4. 제1항에 있어서,According to claim 1,
    상기 제1 Modified CHM부는,The first Modified CHM unit,
    상기 제1 디지털 공간정보 데이터에서 상기 제2 디지털 공간정보 데이터를 제거하여 상기 입목 높이 데이터 값을 도출하는 것을 특징으로 하는,It is characterized in that by removing the second digital spatial information data from the first digital spatial information data to derive the height data value,
    고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템.A system for identifying the position of the tree and the number of trees using a high-resolution drone image.
  5. 제1항에 있어서,According to claim 1,
    상기 초두부 탐지부는,The super head detection unit,
    상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 일정 간격 별 최대 높이값을 추출하는 Local Maxima부;a Local Maxima unit for extracting a maximum height value for each predetermined interval from the tree height data value derived from the first Modified CHM unit;
    상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 일정 간격 별 볼록한 부분의 지역을 추출하는 Concave area부;Concave area for extracting a convex area for each predetermined interval from the height data value derived from the first Modified CHM unit;
    상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 기준치 이상의 높이를 가지는 입목을 추출하는 제2 Modified CHM부; 및a second Modified CHM unit for extracting a tree having a height greater than or equal to a reference value from the height data value derived from the first Modified CHM unit; and
    상기 Local Maxima부, Concave area부 및 제2 Modified CHM부로부터 도출된 값을 취합하여 입목의 위치 및 본수 정보를 생성하는 데이터 취합부;를 포함하는 것을 특징으로 하는,A data collection unit generating information on the position and number of trees by collecting the values derived from the Local Maxima unit, the Concave area unit and the second Modified CHM unit; characterized in that it comprises a;
    고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 시스템.A system for identifying the position of the tree and the number of trees using a high-resolution drone image.
  6. 점군데이터 생성부에서 수행되며, 분광센서가 탑재된 드론으로부터 촬영되는 항공영상 데이터 및 분광영상 데이터를 사진영상 정합하여 점군데이터(Point cloud)를 생성하는 단계;It is performed by the point cloud data generation unit, generating a point cloud data (Point cloud) by registering the aerial image data and the spectral image data photographed from the drone equipped with a spectral sensor to the photographic image;
    제1 디지털 공간정보 생성부에서 수행되며, 상기 항공영상 데이터로부터 수치표면모델(DSM, Digital Surface Model) 및 수치표고모델(DEM, Digital Elevation Model)을 통해 제1 디지털 공간정보 데이터를 생성하는 단계;generating first digital spatial information data from the aerial image data through a digital surface model (DSM) and a digital elevation model (DEM), performed by the first digital spatial information generating unit;
    제2 디지털 공간정보 생성부에서 수행되며, 상기 분광영상 데이터로부터 정규식생지수(NDVI, Normalized Difference Vegetation Index)를 통해 제2 디지털 공간정보를 생성하는 단계;generating second digital spatial information from the spectral image data through a Normalized Difference Vegetation Index (NDVI), performed by the second digital spatial information generator;
    제1 Modified CHM(Modified Canopy Height Model)부에서 수행되며, 상기 점군데이터에서 인공구조물의 높이 값 데이터를 제외하고 입목 높이 값 데이터를 저장하는 단계;The first Modified CHM (Modified Canopy Height Model) unit is performed, the step of excluding the height value data of the artificial structure from the point cloud data and storing the height value data of the tree;
    초두부 탐지부에서 수행되며 상기 제1 Modified CHM부에 저장된 상기 입목 높이 값 데이터를 통해, 입목의 초두부(Tree top)를 식별하는 단계;를 포함하되,The step of identifying the tree top of the tree through the tree height value data stored in the first Modified CHM unit and performed by the tree head detection unit;
    상기 입목 높이 값 데이터를 저장하는 단계는,The step of storing the tree height value data is,
    상기 제1 디지털 공간정보 데이터 및 상기 제2 디지털 공간정보 데이터를 취합하여 가공하는 단계;를 포함하는 특징으로 하는,Collecting and processing the first digital spatial information data and the second digital spatial information data;
    고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 방법.A method of identifying the position and number of trees using high-resolution drone images.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 제1 디지털 공간정보를 생성하는 단계는,The step of generating the first digital spatial information comprises:
    수치표면모델부에서 수행되며, 상기 수치표면모델(DSM)을 적용하여 입목 및 인공구조물의 높이 값을 도출하는 단계;It is performed in the numerical surface model unit, applying the numerical surface model (DSM) to derive the height value of the tree and artificial structures;
    수치표고모델부에서 수행되며, 상기 수치표고모델(DEM)을 적용하여 입목 및 인공구조물의 높이 값을 제외한 지형의 높이 값을 도출하는 단계; 및It is performed in the numerical elevation model unit, applying the numerical elevation model (DEM) to derive the height value of the terrain except for the height values of the trees and artificial structures; and
    수관높이모델부에서 수행되며, 상기 수치표면모델부 및 상기 수치표고모델부로부터 도출된 데이터 값을 취합하여 수관높이모델을 적용하는 단계;를 포함하는 것을 특징으로 하는, It is performed by the water pipe height model unit, and applying the water pipe height model by collecting the data values derived from the numerical surface model unit and the numerical elevation model unit; characterized in that it comprises,
    고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 방법.A method of identifying the position and number of trees using high-resolution drone images.
  8. 제6항에 있어서,7. The method of claim 6,
    상기 제2 디지털 공간정보를 생성하는 단계는,The generating of the second digital spatial information comprises:
    상기 제2 디지털 공간정보 생성부를 통해 상기 정규식생지수(NDVI)를 도출하는 단계; 및 근적외선과 적색광 밴드 사이의 값의 차이를 상기 근적외선과 상기 적생광 밴드를 합한 값으로 나누어서 상기 정규식생지수(NDVI)를 계산하는 단계;를 포함하는 것을 특징으로 하는,deriving the regular vegetation index (NDVI) through the second digital spatial information generator; and calculating the regular vegetation index (NDVI) by dividing the difference between the near-infrared light and the red light band by the sum of the near-infrared light and the red light band.
    고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 방법.A method of identifying the position and number of trees using high-resolution drone images.
  9. 제1항에 있어서,The method of claim 1,
    상기 입목 높이 값 데이터를 저장하는 단계는,The step of storing the tree height value data is,
    상기 제1 디지털 공간정보 데이터에서 상기 제2 디지털 공간정보 데이터를 제거하여 상기 입목 높이 데이터 값을 도출하는 단계;를 포함하는 것을 특징으로 하는,Deriving the height data value by removing the second digital spatial information data from the first digital spatial information data; characterized in that it comprises,
    고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 방법.A method of identifying the position and number of trees using high-resolution drone images.
  10. 제6항에 있어서,7. The method of claim 6,
    상기 입목의 초두부(Tree top)를 식별하는 단계는,The step of identifying the tree top of the stand,
    Local Maxima부에서 수행되며, 상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 일정 간격 별 최대 높이값을 추출하는 단계;It is performed in the Local Maxima unit, extracting a maximum height value for each predetermined interval from the height data value derived from the first Modified CHM unit;
    Concave area부에서 수행되며, 상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 일정 간격 별 볼록한 부분의 지역을 추출하는 단계; It is performed in the concave area part, extracting the area of the convex part at regular intervals from the tree height data value derived from the first Modified CHM part;
    제2 Modified CHM부에서 수행되며, 상기 제1 Modified CHM부로부터 도출된 입목 높이 데이터 값에서, 기준치 이상의 높이를 가지는 입목을 추출하는 단계; 및It is performed by the second Modified CHM unit, extracting a tree having a height greater than or equal to a reference value from the tree height data value derived from the first Modified CHM unit; and
    데이터 취합부에서 수행되며, 상기 Local Maxima부, Concave area부 및 제2 Modified CHM부로부터 도출된 값을 취합하여 입목의 위치 및 본수 정보를 생성하는 단계;를 포함하는 것을 특징으로 하는,It is performed by the data collection unit, and generating information about the position and number of trees by collecting the values derived from the Local Maxima unit, the Concave area unit, and the second Modified CHM unit; characterized in that it comprises;
    고해상도 드론 영상을 활용한 입목 위치 및 본수 식별 방법.A method of identifying the position and number of trees using high-resolution drone images.
PCT/KR2021/015988 2020-11-06 2021-11-05 System and method for identifying positions and number of trees using high-resolution drone image WO2022098139A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200147817 2020-11-06
KR10-2020-0147817 2020-11-06
KR1020210100151A KR20220061836A (en) 2020-11-06 2021-07-29 System and method to identify the location and number of standing trees using high-resolution drone images
KR10-2021-0100151 2021-07-29

Publications (1)

Publication Number Publication Date
WO2022098139A1 true WO2022098139A1 (en) 2022-05-12

Family

ID=81457264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015988 WO2022098139A1 (en) 2020-11-06 2021-11-05 System and method for identifying positions and number of trees using high-resolution drone image

Country Status (1)

Country Link
WO (1) WO2022098139A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100111729A (en) * 2008-02-19 2010-10-15 해리스 코포레이션 Geospatial modeling system providing simulated tree trunks and branches for groups of tree crown vegetation points and related methods
US20160300375A1 (en) * 2013-12-04 2016-10-13 Urthecast Corp. Systems and methods for processing and distributing earth observation images
KR101863123B1 (en) * 2017-02-15 2018-06-01 한국건설기술연구원 System for mapping river water-bloom map using automatic driving unmanned air vehicle and unmanned floating body of moving type
KR101859947B1 (en) * 2017-03-06 2018-06-27 강원대학교 산학협력단 System and method for constructing database about safety diagnostic of dangerous reservoir using unmanned aerial vehicle
KR20180131932A (en) * 2017-06-01 2018-12-11 충남대학교산학협력단 River topography information generation method using drone and geospatial information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100111729A (en) * 2008-02-19 2010-10-15 해리스 코포레이션 Geospatial modeling system providing simulated tree trunks and branches for groups of tree crown vegetation points and related methods
US20160300375A1 (en) * 2013-12-04 2016-10-13 Urthecast Corp. Systems and methods for processing and distributing earth observation images
KR101863123B1 (en) * 2017-02-15 2018-06-01 한국건설기술연구원 System for mapping river water-bloom map using automatic driving unmanned air vehicle and unmanned floating body of moving type
KR101859947B1 (en) * 2017-03-06 2018-06-27 강원대학교 산학협력단 System and method for constructing database about safety diagnostic of dangerous reservoir using unmanned aerial vehicle
KR20180131932A (en) * 2017-06-01 2018-12-11 충남대학교산학협력단 River topography information generation method using drone and geospatial information

Similar Documents

Publication Publication Date Title
Waser et al. Semi-automatic classification of tree species in different forest ecosystems by spectral and geometric variables derived from Airborne Digital Sensor (ADS40) and RC30 data
CN111341461A (en) Infrared epidemic situation intelligent comprehensive detection and identification system
Gougeon et al. The individual tree crown approach applied to Ikonos images of a coniferous plantation area
WO2020213787A1 (en) System and method for monitoring forest gap using lidar survey data
CN107610128A (en) The method for inspecting and device of a kind of oil level indicator
Ke et al. Active contour and hill climbing for tree crown detection and delineation
JP2017224935A (en) Object detection/evaluation system and object detection/evaluation method
CN109958583A (en) Method and equipment for measuring tower clearance of wind generating set
WO2012005461A2 (en) Method for automatically calculating information on clouds
CN113018725B (en) Intelligent fire fighting analysis and management integrated platform based on remote image analysis and processing technology
CN111257320A (en) Wisdom forestry monitoring system
Gong et al. Photo ecometrics for forest inventory
WO2024010127A1 (en) System for predicting amount of captured carbon dioxide
WO2023172080A1 (en) Vegetation index acquisition unit and plant monitoring device comprising same
CN114295649A (en) Information association method and device, electronic equipment and storage medium
CN112836683A (en) License plate recognition method, device, equipment and medium for portable camera equipment
WO2022098139A1 (en) System and method for identifying positions and number of trees using high-resolution drone image
Tao et al. Recognition of ecological vegetation fairy circles in intertidal salt marshes from UAV LiDAR point clouds
Sirmacek et al. Damaged building detection in aerial images using shadow information
Liu et al. Detection of Firmiana danxiaensis canopies by a customized imaging system mounted on an UAV platform
KR20220061836A (en) System and method to identify the location and number of standing trees using high-resolution drone images
Xiao et al. Individual tree detection and crown delineation with 3D information from multi-view satellite images
CN115060202A (en) Green tide algae area monitoring method based on unmanned aerial vehicle airborne multi-spectrometer
CN109101893A (en) A kind of Pedestrian flow detection method of view-based access control model and WiFi
WO2013115422A1 (en) Method for detecting objects using multifractal analysis of digital images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/09/2023)