WO2012005461A2 - Method for automatically calculating information on clouds - Google Patents

Method for automatically calculating information on clouds Download PDF

Info

Publication number
WO2012005461A2
WO2012005461A2 PCT/KR2011/004628 KR2011004628W WO2012005461A2 WO 2012005461 A2 WO2012005461 A2 WO 2012005461A2 KR 2011004628 W KR2011004628 W KR 2011004628W WO 2012005461 A2 WO2012005461 A2 WO 2012005461A2
Authority
WO
WIPO (PCT)
Prior art keywords
cloud
image
area
clouds
automatic
Prior art date
Application number
PCT/KR2011/004628
Other languages
French (fr)
Korean (ko)
Other versions
WO2012005461A3 (en
Inventor
차주완
장기호
이철규
권중장
최영진
Original Assignee
대한민국(기상청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(기상청장) filed Critical 대한민국(기상청장)
Publication of WO2012005461A2 publication Critical patent/WO2012005461A2/en
Publication of WO2012005461A3 publication Critical patent/WO2012005461A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a method for automatically calculating data on cloudiness, cloud height, cloud shape for each cloud in the upper, middle, and lower layers of the sky.
  • the meteorological observation does not present a specific meteorological calculation algorithm at all in terms of methodological method using cloud and cloud information.
  • the meteorological zones of the world are currently used for visual observation according to WMO (World Meteorological Organization) standards.
  • WMO World Meteorological Organization
  • an object of the present invention is to automatically calculate the cloud shape of the upper cloud, middle cloud, lower cloud by using the cloud amount, cloud height value calculated by analyzing the image image including the cloud image
  • the present invention provides a method of calculating cloud information to obtain objective observation data of automated layered clouds.
  • the present invention comprises the steps of inputting a video image of the atmosphere including the cloud area; Extracting a cloud region from the input image image; Calculating cloud and cloud height using the cloud area; Analyzing cloud patterns by analyzing cloud patterns using the calculated clouds and clouds; And five steps of calculating upper, middle, and lower stratus rhythms.
  • the first step may be configured to acquire and input an image image of the atmosphere including the cloud area by using two left and right cameras.
  • the second step may be a step of extracting only the cloud area by dividing the cloud area and the sky area by using the change or contrast of the color image in the video image.
  • the third step after classifying the cloud area and the non-cloud area for each image pixel in the extracted cloud area, only the cloud area is crystallized to derive the percentage (%) of only the cloud area in the entire image.
  • the cloud-by-pixel calculation step when there is one cloud layer, derives the average height of the pixel areas as the cloud height observed at that time, and classifies the classification in the observed image having a plurality of cloud layers. Divided into middle and lower cloud height can be implemented to derive the average cloud by floor.
  • step 4 may be formed by analyzing cloud patterns by comparing cloud cloud lookup table information forming a cloud shape database optimized for regional characteristics with the observed image.
  • step 4 may include: a1) converting the pixel image of the observation area into a vector format; A2) classifying the similar cloud pattern through the neural network analysis method using the information generated in step a1; A3) generating cloud-optimized lookup tables optimized for regions by classifying the cloud patterns classified in step a2) into 10 types of cloud types based on WMO cloud cloud standards; Comparing the cloud cloud form lookup table optimized for each region and cloud image images observed in real time to calculate the best cloud shape; may be configured to include.
  • the system configuration for implementing the above-described calculation method can be implemented in the following configuration.
  • the automatic cloud information system comprises an image input unit for inputting the image of the atmosphere including the cloud area; A cloud region extraction unit for extracting a cloud region from the input image; A cloud cloud computing unit for calculating cloud clouds and cloud height using the cloud area; It may be configured to include; cloud pattern analysis unit for analyzing the cloud shape by analyzing the cloud pattern calculated by the cloud cloud height calculation unit.
  • the image input unit may be configured as an image input unit consisting of two cameras, left and right, to provide an image image of the observation point.
  • the cloud cloud computing unit the pixel-specific cloud computing unit for crystallizing only the image of the cloud region in the input image image by the percentage (%) of only the cloud region in the entire image image; and the cloud region in the video image
  • a cloud-by-pixel computing unit for calculating an average cloud height by unrolling the bay.
  • the cloud pattern analysis unit by comparing the cloud cloud pattern lookup table optimized for the observation area and the actual cloud pattern can be compared to calculate the cloud shape for each of the upper, middle, and lower layers.
  • the present invention by automatically calculating the cloud shape of the upper cloud, the middle cloud, the lower cloud by using the cloud amount, cloud height value calculated by analyzing the image image including the cloud image, an automated observation of the objective cloud data of the layered cloud There is.
  • FIG. 1 is a conceptual diagram of a cloud observation information calculation system of the upper and lower middle clouds in the sky state according to the present invention.
  • FIG. 2 is a block diagram showing the configuration of the automatic cloud observation system 100 according to the present invention.
  • FIG. 3 is a flowchart illustrating a method for calculating automatic cloud information according to the present invention.
  • FIG. 4 is a conceptual diagram illustrating a process of forming a cloud cloud form look-up table.
  • the present invention is an automatic floor-by-bed (upper, middle, lower layer) by integrated automatic observation and calculation of the cloud (cloud) conditions performed by the eye in the field of meteorological and climate observation worldwide, cloud, cloud, cloud form
  • the objective is to provide a method and system for producing objective observation data of clouds.
  • FIG. 1 is a conceptual diagram of a cloud observation information calculation system of the upper and lower middle clouds in the sky state according to the present invention.
  • the present invention it is possible to remotely manage the cloudiness, cloud height, cloud shape occurring locally by using the correlation between cloud and cloud shape.
  • the automatic cloud observation system 100 according to the present invention for calculating the optimal information of the cloud shape by comparing the image input unit 10 for automatic observation of the cloud image, and the normalized cloud pattern information and the observed cloud information carried out It characterized by having a.
  • FIG. 2 is a block diagram showing the configuration of the automatic cloud observation system 100 according to the present invention.
  • the automatic cloud observation system includes an image input unit 10 for inputting the image of the atmosphere including the cloud region and the cloud region extraction unit 110 for extracting the cloud region from the input image, Cloud pattern analysis unit 130 and the cloud pattern analysis unit 130 that calculates the cloud and cloud height by using the cloud area, cloud pattern analysis unit 130 to analyze the cloud pattern calculated by the cloud cloud cloud computing unit 120 and the final It is configured to include a cloud shape calculation unit 140 for calculating the cloud shape.
  • the image input unit 10 may be configured as an image input unit consisting of two cameras, left and right, to provide an image image of an observation point.
  • the cloudiness cloud computing unit 120 crystallizes only the cloud region image in the image image input from the image input unit 10 to form a percentage (%) of only the cloud region in the entire image image. It may be configured to include a calculation unit 121 and the pixel-specific cloud computing unit 122 for calculating the average cloud height by clouding only the cloud area in the image image. For cloud and cloud observation, two cameras are used, and color cloud images are used during the day and contrast is measured at night.
  • the cloud pattern analysis unit 130 performs a function of calculating cloud patterns for upper, middle, and lower layers by comparing and analyzing the cloud cloud lookup table 150 optimized for the observation area and the cloud patterns observed in reality. Based on the observed cloudiness and cloudage information, cloud image pattern analysis (PCA (Principle Component Analysis), PNN (Probailistic Neural Network, etc.) enables the integrated calculation of cloudiness, cloudiness, and cloud shape.
  • PCA Principal Component Analysis
  • PNN Probailistic Neural Network, etc.
  • cloud image patterns of long-term upper, middle and lower stratum cloud images should be defined in consideration of cloud volume and cloud height. It can be generated and automatically calculate the cloud shape considering the cloud quantity, cloud height, etc. of the cloud image observed in real time.
  • FIG. 3 is a flowchart illustrating a method for calculating automatic cloud information according to the present invention.
  • the automatic cloud information calculation method comprises the first step of inputting the image image of the atmosphere including the cloud region, the second step of extracting the cloud region from the input image image, and the cloud
  • Three steps of calculating the cloud and cloud by using the region, the cloud pattern is analyzed using the cloud and cloud calculated by using the cloud pattern comprises four steps to analyze the cloud shape and five steps to calculate the upper, middle, lower cloud rhyme do.
  • the first step is a step of acquiring an atmospheric image using the left and right cameras as the image input unit according to the present invention and inputting it into the system, and the second step is extracting only the wrong region from the input image.
  • the third step is to calculate the cloud amount of only the cloud area, which is performed by the pixel-specific cloud computing unit in the above-described system. Specifically, in order to distinguish the cloud area from the sky area in the acquired image image, the change of the color image is used during the day, and the contrast is used at night. In order to estimate the cloudiness, basic pre-processing (remove effect by sun, moon, etc.), display the cloud part and non-cloud part by image pixel, and then crystallize only the cloud area to change the amount of cloud area only in% in full screen. The cloud is calculated to calculate the cloud volume (pixel level calculation step).
  • the cloud-by-pixel calculation step for each cloud only the cloud area of the acquired image image is clouded and the average height is calculated.
  • This pixel-specific cloud height is determined by using two cameras to determine the height of the cloud region at the corresponding position, and define the height as the cloud height of the image region.
  • the cloud height for each pixel is divided into histograms to distinguish whether a cloud is a single layer or a multilayer. If there is a cloud layer, the average height of these pixel areas is the cloud height observed at that time. If there are two or more cloud layers, the observations are classified in the observation image and divided into lower and middle clouds or upper clouds, and the average cloud is calculated separately. This is used as the basic data for classifying rhymes.
  • the existing observation system is compared with other cilometers (Ceilometer). In other words, after the cloud amount and cloud height are calculated, whether a single cloud or a multi-layer cloud may be classified.
  • step 4 it is desirable to build a zonal classification system and DB optimized for the region so that the rhythm classification can be automated.
  • observation data For example, it is desirable to form sufficient observation data to database the cloud form by classifying cloud form according to WMO cloud classification criteria. That is, it is necessary to secure observation data of cloud type by upper, middle, and lower cloud classification.
  • the cloud pattern analysis method for cloud classification can be performed as follows.
  • the cloud pattern analysis method for cloud classification has statistical methods for various image processing, and it is preferable to select and apply the optimal method for the region to be observed.
  • it can be divided into the process of forming a look-up table optimized for the area and the process of recognizing cloud type by comparing the cloud image with the real-time observed cloud image. .
  • Step 1 The process of selecting a technical algorithm to create a cloud cloud lookup table is performed.
  • a suitable method such as PCA (Principle Component Analysis) or SVM (Super Vector Machine) is used to create the most suitable cloud lookup table for each region.
  • PCA Principal Component Analysis
  • SVM Super Vector Machine
  • Step 2 Classify similar cloud patterns through neural network analysis of cloud images generated by the method selected in step 1 to create cloud cloud lookup table.
  • cloud patterns are analyzed in consideration of cloud volume and cloud height to improve cloud classification classification accuracy.
  • Step 3 The classified cloud patterns are classified into 10 types of cloud types, which are the WMO cloud cloud standard, to generate a cloud cloud survey table optimized for the region.
  • Step 4 Based on the cloud cloud lookup table optimized for each region, the cloud patterns are analyzed in real time by the same method applied in step 1, and the calculated upper, middle, lower cloud and cloud height are considered. Compare with cloud cloud form chart. By performing this comparison process repeatedly, the best rhyme is calculated.
  • the automatic cloud information calculation method integrates cloud, cloud and cloud type by analyzing cloud image pattern (PCA (Principle Component Analysis), PNN (Probailistic Neural Network, etc.) based on observed cloud and cloud information.
  • PCA Principal Component Analysis
  • PNN Probailistic Neural Network, etc.
  • the cloud form can be automatically calculated by considering the cloudiness, cloud height, etc. of the cloud image observed in real time.

Abstract

The present invention relates to a method for automatically calculating information on clouds, wherein the method comprises: a first step of inputting a video image of the atmosphere including a cloud area; a second step of extracting the cloud area from the input video image; a third step of calculating the amount and heights of the clouds; a fourth step of analyzing the forms of the clouds through a cloud pattern using the calculated amount and heights of the clouds; and a fifth step of calculating the forms of the clouds for the upper, middle and lower clouds. According to the present invention, the forms of the clouds for the upper, middle and lower clouds can be automatically calculated using the amount and heights of the clouds which are calculated by analyzing the video image including the cloud image, thereby automatically obtaining objective observation data of the clouds for each level. The method for automatically calculating information on clouds according to the present invention can maximize observation efficiency through the automation of cloud observation and secure objective data with high resolution on the height and amount of the clouds which are uncertain, thereby significantly enhancing the technology of weather forecasting and climate change prediction.

Description

자동 구름 정보 산출방법Automatic cloud information calculation method
본 발명은 하늘의 구름상태를 상, 중, 하층별로 운량, 운고, 운형에 대한 자료를 자동 산출하는 방법에 관한 것이다.The present invention relates to a method for automatically calculating data on cloudiness, cloud height, cloud shape for each cloud in the upper, middle, and lower layers of the sky.
전세계 기상 및 기후 관측분야에서 하늘(구름)의 상태는 목측으로 수행되어 온것이 일반적이다. 그러나 기상관측소급의 목측이 중단되어, 목측 구름관측자료의 공간 해상도 저하되는 문제가 발생하고 있다. 또한, 기상대 및 지방청의 현업 근무자는 3시간 간격의 목측으로 운량, 운형, 운고 및 기상현상 등의 관측을 수행하는 어려움이 존재한다.In the world of meteorological and climatic observations, the condition of the sky (clouds) has generally been performed to the eye. However, the observation of retrospective meteorological observations has been interrupted, resulting in a problem that the spatial resolution of the observation cloud observation data is degraded. In addition, weather workers and local government office workers have difficulty in performing observations such as cloudiness, cloud shape, cloud height, and meteorological phenomena on the three-hour interval.
운형관측은 그 방법론적인 면에서 운고, 운량 정보를 활용하여 구체적 운형산출 알고리즘이 전혀 제시하고 있지 못하며, 특히, 현재 전세계 기상대에서는 목측으로 WMO(세계기상기구) 기준에 의하여 상,중,하층운에 따라 운형을 관측하여 기록하고 있는 실정이다. 따라서 구름영상 방식에 의해 산출된 운고값을 이용하여 상,중,하층운의 운형을 자동으로 산출하고 기록할 필요성이 대두되고 있다.The meteorological observation does not present a specific meteorological calculation algorithm at all in terms of methodological method using cloud and cloud information.In particular, the meteorological zones of the world are currently used for visual observation according to WMO (World Meteorological Organization) standards. The situation is recorded by observing rhythm. Therefore, there is a need to automatically calculate and record the cloud shape of the upper, middle and lower layer clouds using the cloud height calculated by the cloud image method.
본 발명은 상술한 문제를 해결하기 위하여 안출된 것으로, 본 발명의 목적은 구름영상을 포함하는 영상이미지를 분석하여 산출된 운량, 운고값을 이용하여 상층운, 중층운, 하층운의 운형을 자동으로 산출하여, 자동화된 층별 구름의 객관적인 관측자료를 얻을 수 있는 구름정보 산출방법을 제공하는 데 있다.The present invention has been made to solve the above problems, an object of the present invention is to automatically calculate the cloud shape of the upper cloud, middle cloud, lower cloud by using the cloud amount, cloud height value calculated by analyzing the image image including the cloud image In addition, the present invention provides a method of calculating cloud information to obtain objective observation data of automated layered clouds.
상술한 과제를 해결하기 위한 수단으로서, 본 발명은 구름영역이 포함된 대기의 영상이미지를 입력하는 1단계; 상기 입력되는 영상이미지에서 구름영역을 추출하는 2단계; 상기 구름영역을 이용하여 운량 및 운고를 산출하는 3단계; 상기 산출된 운량 및 운고를 이용하여 구름패턴은 분석하여 운형을 분석하는 4단계; 및 상, 중, 하층운별 운형을 산출하는 5단계;를 포함하는 자동 구름 정보 산출방법을 제공할 수 있도록 한다.As a means for solving the above problems, the present invention comprises the steps of inputting a video image of the atmosphere including the cloud area; Extracting a cloud region from the input image image; Calculating cloud and cloud height using the cloud area; Analyzing cloud patterns by analyzing cloud patterns using the calculated clouds and clouds; And five steps of calculating upper, middle, and lower stratus rhythms.
이 경우, 상기 1단계는, 2대의 좌, 우 카메라를 이용하여 구름영역이 포함된 대기의 영상이미지를 획득하여 입력하는 단계로 구성될 수 있다.In this case, the first step may be configured to acquire and input an image image of the atmosphere including the cloud area by using two left and right cameras.
또한, 상기 2단계는, 상기 영상이미지에서 컬러이미지의 변화 또는 명암도를 이용하여 구름영역과 하늘영역을 구분하여 구름영역만을 추출하는 단계로 형성할 수 있다.In addition, the second step may be a step of extracting only the cloud area by dividing the cloud area and the sky area by using the change or contrast of the color image in the video image.
아울러, 상기 3단계는, 추출된 구름영역에 대하여 영상픽셀별 구름인 영역과 구름이 아닌 영역에 대한 구분 후, 구름 영역만을 결정화하여 전체 이미지에서의 구름영역만의 양을 퍼센티지(%)도 도출하는 픽셀별 운량산출단계;와 상기 2대의 좌, 우 카메라에서 획득된 좌우 영상이미지의 대응되는 위치의 구름영역의 높이를 결정하여 운고를 도출하는 픽셀별 운고산출단계;로 구현할 수 있다.In addition, in the third step, after classifying the cloud area and the non-cloud area for each image pixel in the extracted cloud area, only the cloud area is crystallized to derive the percentage (%) of only the cloud area in the entire image. Cloud level calculation step for each pixel; and cloud level calculation step for each pixel for deriving the cloud height by determining the height of the cloud area of the corresponding position of the left and right image images obtained by the two left and right cameras.
또한, 이 경우 상기 픽셀별운고산출단계는, 한 개의 구름층이 있을 경우, 픽셀영역들의 평균높이를 그 시간에 관측된 운고로 도출하고, 다수의 구름층이 있는 경오 관측 영상내의 분류를 상, 중, 하층 운고로 나누어 층별 평균운고를 운고로 도출하도록 구현할 수 있다.In this case, the cloud-by-pixel calculation step, when there is one cloud layer, derives the average height of the pixel areas as the cloud height observed at that time, and classifies the classification in the observed image having a plurality of cloud layers. Divided into middle and lower cloud height can be implemented to derive the average cloud by floor.
또한, 상기 4단계는, 지역적 특성에 최적화된 운형 데이터베이스를 형성하는 구름운형조견테이블 정보와 실제 관측된 상기 영상이미지를 비교하여 구름 패턴을 분석하는 단계로 형성할 수 있다.In addition, step 4 may be formed by analyzing cloud patterns by comparing cloud cloud lookup table information forming a cloud shape database optimized for regional characteristics with the observed image.
더욱 구체적으로는, 상기 4단계는, 관측 지역의 픽셀이미지를 벡터형식으로 변환하는 a1)단계; 상기 a1단계에서 생성된 정보를 신경망분석방법을 통해 유사 구름패턴을 분류하는 a2)단계; 상기 a2)단계에서 분류된 구름패턴을 WMO(세계기상기구) 구름운형 기준인 10종의 운형으로 분류하여 지역에 최적화된 구름운형조견표를 생성하는 a3)단계; 각 지역에 최적화된 구름운형 조견표와 실시간으로 관측되는 구름영상이미지를 비교하여 최족의 운형을 산출하는 a4)단계;를 포함하여 구성되도록 할 수 있다.More specifically, step 4 may include: a1) converting the pixel image of the observation area into a vector format; A2) classifying the similar cloud pattern through the neural network analysis method using the information generated in step a1; A3) generating cloud-optimized lookup tables optimized for regions by classifying the cloud patterns classified in step a2) into 10 types of cloud types based on WMO cloud cloud standards; Comparing the cloud cloud form lookup table optimized for each region and cloud image images observed in real time to calculate the best cloud shape; may be configured to include.
상술한 산출방법을 구현하는 시스템적인 구성은 다음과 같은 구성으로 구현할 수 있다.The system configuration for implementing the above-described calculation method can be implemented in the following configuration.
구체적으로는, 본 발명에 따른 자동 구름 정보 시스템은 구름영역이 포함된 대기의 영상을 입력하는 영상입력부; 상기 입력 영상에서 구름영역을 추출하는 구름영역추출부; 상기 구름영역을 이용하여 운량 및 운고를 산출하는 운량운고산출부; 상기 운량운고산출부에서 산출된 구름의 패턴을 분석하여 운형을 분석하는 구름패턴분석부;를 포함하여 구성될 수 있다.Specifically, the automatic cloud information system according to the present invention comprises an image input unit for inputting the image of the atmosphere including the cloud area; A cloud region extraction unit for extracting a cloud region from the input image; A cloud cloud computing unit for calculating cloud clouds and cloud height using the cloud area; It may be configured to include; cloud pattern analysis unit for analyzing the cloud shape by analyzing the cloud pattern calculated by the cloud cloud height calculation unit.
또한, 상기 영상입력부는 좌, 우 2개의 카메라로 구성되는 영상입력기로 구성되어, 관측지점의 영상이미지를 제공하도록 할 수 있다.In addition, the image input unit may be configured as an image input unit consisting of two cameras, left and right, to provide an image image of the observation point.
또한, 상기 운량운고산출부는, 입력되는 영상이미지에서 구름영역의 이미지만을 결정화하여 전체 영상이미지에서 구름영역만의 양을 퍼센티지(%)화하는 픽셀별운량산출부;와 상기 영상이미지에서의 구름영역만을 운고처리하여 평균 구름 높이를 산출하는 픽셀별운고산출부;를 포함하여 이루어질 수 있다.In addition, the cloud cloud computing unit, the pixel-specific cloud computing unit for crystallizing only the image of the cloud region in the input image image by the percentage (%) of only the cloud region in the entire image image; and the cloud region in the video image And a cloud-by-pixel computing unit for calculating an average cloud height by unrolling the bay.
또한, 상기 구름패턴분석부는, 관측지역에 최적화된 구름운형조견테이블과 실체 관측한 구름의 패턴을 비교 분석하여 상, 중, 하층 별 운형은 산출할 수 있다.In addition, the cloud pattern analysis unit, by comparing the cloud cloud pattern lookup table optimized for the observation area and the actual cloud pattern can be compared to calculate the cloud shape for each of the upper, middle, and lower layers.
본 발명에 따르면, 구름영상을 포함하는 영상이미지를 분석하여 산출된 운량, 운고값을 이용하여 상층운, 중층운, 하층운의 운형을 자동으로 산출하여, 자동화된 층별 구름의 객관적인 관측자료를 얻을 수 있는 효과가 있다.According to the present invention, by automatically calculating the cloud shape of the upper cloud, the middle cloud, the lower cloud by using the cloud amount, cloud height value calculated by analyzing the image image including the cloud image, an automated observation of the objective cloud data of the layered cloud There is.
본 발명에 따른 자동구름정보 산출방법으로 인해, 구름관측 자동화에 의한 관측효율을 극대화할 수 있으며, 불확실도가 큰 구름에 대한 높이와 양에 대한 고해상도의 객관적인 자료를 확보하여 기상예보 및 기후변화예측 기술을 현저하게 향상시킬 수 있는 효과도 있다.Due to the automatic cloud information calculation method according to the present invention, it is possible to maximize the observation efficiency by cloud observation automation, weather forecasting and climate change prediction technology by securing high-resolution objective data on the height and quantity of clouds with high uncertainty There is also an effect that can be significantly improved.
도 1은 본 발명에 따라 하늘 상태 상, 중 하층운의 구름관측정보 산출 시스템의 개념도를 도시한 것이다.1 is a conceptual diagram of a cloud observation information calculation system of the upper and lower middle clouds in the sky state according to the present invention.
도 2는 본 발명에 따른 자동구름관측시스템(100)의 구성을 도시한 블럭도이다.2 is a block diagram showing the configuration of the automatic cloud observation system 100 according to the present invention.
도 3은 본 발명에 따른 자동 구름정보 산출방법에 관한 순서도를 도시한 것이다.3 is a flowchart illustrating a method for calculating automatic cloud information according to the present invention.
도 4는 구름운형 조견표의 형성과정을 도시한 개념도이다.4 is a conceptual diagram illustrating a process of forming a cloud cloud form look-up table.
이하에서는 첨부한 도면을 참조하여 본 발명에 따른 구성 및 작용을 구체적으로 설명한다. 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성요소는 동일한 참조부여를 부여하고, 이에 대한 중복설명은 생략하기로 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Hereinafter, with reference to the accompanying drawings will be described in detail the configuration and operation according to the present invention. In the description with reference to the accompanying drawings, the same components are given the same reference numerals regardless of the reference numerals, and duplicate description thereof will be omitted. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
본 발명은 전세계 기상 및 기후 관측분야에서 목측으로 수행하는 하늘(구름)상태를 상, 중, 하층별 운량, 운고, 운형에 대한 통합적 자동 관측 및 산출함으로서, 자동화된 층별(상, 중, 하층별)구름의 객관적 관측자료를 만들어내는 방법 및 시스템을 제공하는 것을 요지로 한다.The present invention is an automatic floor-by-bed (upper, middle, lower layer) by integrated automatic observation and calculation of the cloud (cloud) conditions performed by the eye in the field of meteorological and climate observation worldwide, cloud, cloud, cloud form The objective is to provide a method and system for producing objective observation data of clouds.
도 1은 본 발명에 따라 하늘 상태 상, 중 하층운의 구름관측정보 산출 시스템의 개념도를 도시한 것이다. 본 발명에서는 운량, 운고 운형의 상호관련성을 이용하여 지역적으로 발생하는 운량, 운고, 운형을 원격으로 관리할 수 있도록 한다. 특히, 구름영상을 자동관측하기 위한 영상입력부(10)과, 정규화된 구름패턴정보와 실시관 관측된 구름정보의 비교를 통한 운형의 최적정보를 산출하는 본 발명에 따른 자동구름관측시스템(100)을 구비하는 것을 특징으로 한다.1 is a conceptual diagram of a cloud observation information calculation system of the upper and lower middle clouds in the sky state according to the present invention. In the present invention, it is possible to remotely manage the cloudiness, cloud height, cloud shape occurring locally by using the correlation between cloud and cloud shape. In particular, the automatic cloud observation system 100 according to the present invention for calculating the optimal information of the cloud shape by comparing the image input unit 10 for automatic observation of the cloud image, and the normalized cloud pattern information and the observed cloud information carried out It characterized by having a.
도 2는 본 발명에 따른 자동구름관측시스템(100)의 구성을 도시한 블럭도이다.2 is a block diagram showing the configuration of the automatic cloud observation system 100 according to the present invention.
도시된 도면을 참조하면, 본 발명에 따른 자동 구름관측시스템은 구름영역이 포함된 대기의 영상을 입력하는 영상입력부(10)와 상기 입력 영상에서 구름영역을 추출하는 구름영역추출부(110), 상기 구름영역을 이용하여 운량 및 운고를 산출하는 운량운고산출부(120), 상기 운량운고산출부(120)에서 산출된 구름의 패턴을 분석하여 운형을 분석하는 구름패턴분석부(130)와 최종 운형을 산출하는 운형산출부(140)을 포함하여 구성된다.Referring to the drawings, the automatic cloud observation system according to the present invention includes an image input unit 10 for inputting the image of the atmosphere including the cloud region and the cloud region extraction unit 110 for extracting the cloud region from the input image, Cloud pattern analysis unit 130 and the cloud pattern analysis unit 130 that calculates the cloud and cloud height by using the cloud area, cloud pattern analysis unit 130 to analyze the cloud pattern calculated by the cloud cloud cloud computing unit 120 and the final It is configured to include a cloud shape calculation unit 140 for calculating the cloud shape.
상기 영상입력부(10)는 좌, 우 2개의 카메라로 구성되는 영상입력기로 구성되어, 관측지점의 영상이미지를 제공할 수 있다.The image input unit 10 may be configured as an image input unit consisting of two cameras, left and right, to provide an image image of an observation point.
아울러, 상기 운량운고산출부(120)는, 상기 영상입력부(10)에서 입력되는 영상이미지에서 구름영역의 이미지만을 결정화하여 전체 영상이미지에서 구름영역만의 양을 퍼센티지(%)화하는 픽셀별운량산출부(121)와 상기 영상이미지에서의 구름영역만을 운고처리하여 평균 구름 높이를 산출하는 픽셀별운고산출부(122)를 포함하여 구성될 수 있다. 운량, 운고 관측에 있어서는 2대 카메라를 이용하는 방법에 주간에는 컬러 구름이미지와 야간에는 명암도를 이용하여 산출한다. In addition, the cloudiness cloud computing unit 120 crystallizes only the cloud region image in the image image input from the image input unit 10 to form a percentage (%) of only the cloud region in the entire image image. It may be configured to include a calculation unit 121 and the pixel-specific cloud computing unit 122 for calculating the average cloud height by clouding only the cloud area in the image image. For cloud and cloud observation, two cameras are used, and color cloud images are used during the day and contrast is measured at night.
상기 구름패턴분석부(130)는, 관측지역에 최적화된 구름운형조견테이블(150)과 실체 관측한 구름의 패턴을 비교 분석하여 상, 중, 하층 별 운형은 산출하는 기능을 수행하며, 구체적으로는 관측된 운량, 운고 정보를 기본으로 구름영상 패턴분석(PCA (Principle Component Analysis), PNN (Probailistic Neural Network 등)함으로서 운량, 운고, 운형을 통합적으로 산출할 수 있게 한다. 특히, 지역적으로 발생하는 운형을 분류하기 위해서는 장기간의 상,중,하층운별 구름영상 패턴을 운량과 운고를 고려하여 정규화된 각 고도별 운형특성을 정의되어야 하는바, 이런 지역별 특성에 맞게 정규화된 고도별 운형특성을 조견표로 생성하고, 실시간으로 관측되는 구름영상의 운량, 운고 등을 고려한 운형을 자동으로 산출시키도록 할 수 있다.The cloud pattern analysis unit 130 performs a function of calculating cloud patterns for upper, middle, and lower layers by comparing and analyzing the cloud cloud lookup table 150 optimized for the observation area and the cloud patterns observed in reality. Based on the observed cloudiness and cloudage information, cloud image pattern analysis (PCA (Principle Component Analysis), PNN (Probailistic Neural Network, etc.) enables the integrated calculation of cloudiness, cloudiness, and cloud shape. In order to classify cloud types, cloud image patterns of long-term upper, middle and lower stratum cloud images should be defined in consideration of cloud volume and cloud height. It can be generated and automatically calculate the cloud shape considering the cloud quantity, cloud height, etc. of the cloud image observed in real time.
이러한 각 구성요소의 기능을 이용하여 운량, 운고, 운형의 통합정보의 산출방법을 도 3을 통하여 설명하기로 한다.A method of calculating integrated information of cloud volume, cloud height, and cloud shape using the functions of each component will be described with reference to FIG. 3.
도 3은 본 발명에 따른 자동 구름정보 산출방법에 관한 순서도를 도시한 것이다.3 is a flowchart illustrating a method for calculating automatic cloud information according to the present invention.
도시된 순서도를 참조하여 보면, 본 발명에 따른 자동구름정보산출방법은 구름영역이 포함된 대기의 영상이미지를 입력하는 1단계와 상기 입력되는 영상이미지에서 구름영역을 추출하는 2단계, 그리고 상기 구름영역을 이용하여 운량 및 운고를 산출하는 3단계, 상기 산출된 운량 및 운고를 이용하여 구름패턴은 분석하여 운형을 분석하는 4단계 및 상, 중, 하층운별 운형을 산출하는 5단계를 포함하여 구성된다.Referring to the flowchart shown, the automatic cloud information calculation method according to the present invention comprises the first step of inputting the image image of the atmosphere including the cloud region, the second step of extracting the cloud region from the input image image, and the cloud Three steps of calculating the cloud and cloud by using the region, the cloud pattern is analyzed using the cloud and cloud calculated by using the cloud pattern comprises four steps to analyze the cloud shape and five steps to calculate the upper, middle, lower cloud rhyme do.
상기 1단계는 상술한 본 발명에 따른 영상입력부인 좌우 카메라를 이용하여 대기의 영상을 획득하여 시스템에 입력하는 단계이며, 상기 2단계는 입력되는 영상에서 그름영역만을 추출하는 과정이다. 이 경우 운량을 추정하기 위한 기본적인 전처리, 이를 테면 태양, 달 등에 의한 효과를 제거하여 구름영역만을 추출하는 것이 바람직하다.The first step is a step of acquiring an atmospheric image using the left and right cameras as the image input unit according to the present invention and inputting it into the system, and the second step is extracting only the wrong region from the input image. In this case, it is preferable to extract only the cloud area by eliminating the effects of the basic preprocessing for estimating the cloud, such as the sun and the moon.
상기 3단계는, 구름영역만의 운량을 산출하는 것으로, 상술한 본 시스템에서의 픽셀별운량산출부에서 수행되는 것이다. 구체적으로는, 획득된 영상이미지에서 구름영역과 하늘영역을 구별 하기 위해 주간에는 컬러이미지의 변화를 이용하고, 야간에는 명암도를 이용한다. 운량을 추정하기 위해 기본적인 전처리(태양, 달 등에 의한 효과 제거 등), 영상 픽셀별 구름인 부분과 아닌 부분에 대한 표시를 한 후, 구름영역만 결정화 하여 전체화면에서 구름영역만의 양을 %로 계산하여 운량을 산출하게 된다(픽셀별 운량산출단계). The third step is to calculate the cloud amount of only the cloud area, which is performed by the pixel-specific cloud computing unit in the above-described system. Specifically, in order to distinguish the cloud area from the sky area in the acquired image image, the change of the color image is used during the day, and the contrast is used at night. In order to estimate the cloudiness, basic pre-processing (remove effect by sun, moon, etc.), display the cloud part and non-cloud part by image pixel, and then crystallize only the cloud area to change the amount of cloud area only in% in full screen. The cloud is calculated to calculate the cloud volume (pixel level calculation step).
이후, 픽셀별 운고산출단계에서는 운량 계산을 위해 획득된 영상이미지의 구름영역만을 운고 처리하여 평균높이를 산출한다. 이런 픽셀별 운고는 2 개의 카메라를 이용하여 대응되는 위치의 구름영역 높이를 결정하고, 그 높이를 그 영상영역의 운고라고 정의한다. 이때 픽셀별 구름높이를 히스토그램으로 구분하여 구름이 단층인지 다층인지 구분한다. 한 개의 구름층이 있을 경우, 이 픽셀영역들의 평균높이를 그 시간에 관측된 운고가 된다. 2 개 이상의 구름층이 있을 경우, 관측 영상내의 분류를 하여 하층운고와 중층운고 또는 상층운고 등으로 나누어, 층별 평균운고를 따로 계산한다. 이는 운형을 분류하기 위한 기본적인 자료로 이용된다. 이런 운고관측의 결과를 검증하기 위해 기존의 운고계인 방식이 다른 실로미터(Ceilometer,레이저 반사도 이용방법)와 동시관측을 하여 비교한다. 즉, 운량과 운고가 산출된 후, 단층운 인지 또는 다층운인지 분류가 이루어질 수 있다.Subsequently, in the cloud-by-pixel calculation step for each cloud, only the cloud area of the acquired image image is clouded and the average height is calculated. This pixel-specific cloud height is determined by using two cameras to determine the height of the cloud region at the corresponding position, and define the height as the cloud height of the image region. At this time, the cloud height for each pixel is divided into histograms to distinguish whether a cloud is a single layer or a multilayer. If there is a cloud layer, the average height of these pixel areas is the cloud height observed at that time. If there are two or more cloud layers, the observations are classified in the observation image and divided into lower and middle clouds or upper clouds, and the average cloud is calculated separately. This is used as the basic data for classifying rhymes. In order to verify the results of these observations, the existing observation system is compared with other cilometers (Ceilometer). In other words, after the cloud amount and cloud height are calculated, whether a single cloud or a multi-layer cloud may be classified.
상술한 3단계에서 이루어진 상, 중, 하층운 분류에 따른 영상 및 통계 처리에 의한 구름의 패턴을 분석하는 4단계가 수행될 수 있다. 본 4단계에서는 지역에 최적화된 운형 분류 체계와 DB를 구축하여 운형분류가 자동화될 수 있도록 함이 바람직하다.Four steps of analyzing the cloud pattern by the image and statistical processing according to the upper, middle, lower cloud classification made in the above three steps may be performed. In this step 4, it is desirable to build a zonal classification system and DB optimized for the region so that the rhythm classification can be automated.
이를 테면, 세계기상기구(WMO) 구름분류기준에 의해 운형을 분류하는 과정을 통해 운형을 데이터베이스화할 수 있는 충분한 관측자료를 형성하는 것이 바람직하다. 즉, 상, 중, 하층운 분류에 의한 운형의 관측자료를 확보함이 선행되어야 한다.For example, it is desirable to form sufficient observation data to database the cloud form by classifying cloud form according to WMO cloud classification criteria. That is, it is necessary to secure observation data of cloud type by upper, middle, and lower cloud classification.
운형 분류를 위한 구름패턴의 분석방법은 다음과 같은 방법으로 수행될 수 있다.The cloud pattern analysis method for cloud classification can be performed as follows.
즉 운형 분류를 위한 구름패턴의 분석방법은 다양한 영상처리를 위한 통계적 방법이 있으며, 관측하고자 하는 지역의 최적방법을 선택하여 적용함이 바람직하다. 이런 구름패턴을 분석하기 위해서는 그 지역에 최적화된 구름운형 조견표(look-up table)를 형성하는 과정과 실시간 관측된 구름영상을 이 구름운형 조견표와 비교하여 어떤 운형인가를 인식시키는 과정으로 나눌 수 있다. That is, the cloud pattern analysis method for cloud classification has statistical methods for various image processing, and it is preferable to select and apply the optimal method for the region to be observed. To analyze these cloud patterns, it can be divided into the process of forming a look-up table optimized for the area and the process of recognizing cloud type by comparing the cloud image with the real-time observed cloud image. .
이러한 과정은 도 4를 참조하여 설명하면 다음과 같이 설명될 수 있다.This process can be described as follows with reference to FIG.
- Step 1 : 구름운형 조견표를 만들기 위한 기술적 알고리즘 선택하는 과정이 수행된다. 이 경우 각 지역에 가장 적합한 구름조견표를 만들기 위해 PCA (Principle Component Analysis), SVM (Super Vector Machine) 등 적합한 방법을 택한다. 이런 모든 방법들의 기본은 각 관측 픽셀이미지를 벡터형식으로 전환하는 것이 우선적으로 이루어져야한다.    Step 1: The process of selecting a technical algorithm to create a cloud cloud lookup table is performed. In this case, a suitable method such as PCA (Principle Component Analysis) or SVM (Super Vector Machine) is used to create the most suitable cloud lookup table for each region. The basis of all these methods is that the conversion of each observation pixel image into a vector form must be done first.
- Step 2 : 구름운형 조견표를 만들기 위해 step 1에서 선택된 방법들에 의해 생성되는 구름이미지를 신경망 분석 방법 등을 통하여 유사 구름패턴을 분류 시킨다. 구름패턴 분석시 운량과 운고를 고려하여 구름패턴을 분석함으로서 운형분류 정확도를 높이도록 한다.  Step 2: Classify similar cloud patterns through neural network analysis of cloud images generated by the method selected in step 1 to create cloud cloud lookup table. In analyzing cloud patterns, cloud patterns are analyzed in consideration of cloud volume and cloud height to improve cloud classification classification accuracy.
- Step 3 : 분류된 구름패턴을 WMO 구름운형 기준인 10종의 운형로 분류하여 지역에 최적화된 구름운형 조견표를 생성한다.  Step 3: The classified cloud patterns are classified into 10 types of cloud types, which are the WMO cloud cloud standard, to generate a cloud cloud survey table optimized for the region.
- Step 4 : 각 지역에 최적화된 구름운형 조견표를 기준으로, 실시간으로 관측되는 구름영상이미지를 step 1에서 적용된 같은 방법에 의해 구름패턴을 분석하고, 산출된 상·중·하층운량, 운고를 고려하여 구름운형 조견표와 비교한다. 이런 비교과정을 반복적으로 수행함으로서, 최적의 운형을 산출한다.  -Step 4: Based on the cloud cloud lookup table optimized for each region, the cloud patterns are analyzed in real time by the same method applied in step 1, and the calculated upper, middle, lower cloud and cloud height are considered. Compare with cloud cloud form chart. By performing this comparison process repeatedly, the best rhyme is calculated.
종합하면, 본 발명에 따른 자동 구름정보 산출방법은 관측된 운량, 운고 정보를 기본으로 구름영상 패턴분석(PCA (Principle Component Analysis), PNN (Probailistic Neural Network 등)함으로서 운량, 운고, 운형을 통합적으로 산출할 수 있도록 한다. 특히 지역적으로 발생하는 운형을 분류하기 위해, 장기간의 상, 중, 하층운별 구름영상 패턴을 운량과 운고를 고려하여 정규화된 각 고도별 운형특성을 정의하고, 이런 지역별 특성에 맞게 정규화된 고도별 운형특성을 조견표로 형성하며, 실시간으로 관측되는 구름영상의 운량, 운고 등을 고려한 운형을 자동으로 산출시킬 수 있도록 한다. 따라서, 기존 운량, 운고, 운형 관측 및 알고리즘은 각각을 산출하는 방법이었지만, 본 발명에서는 통합적으로 운량, 운고, 운형이 유기적으로 결합되어 자동산출될 수 있게 된다.In summary, the automatic cloud information calculation method according to the present invention integrates cloud, cloud and cloud type by analyzing cloud image pattern (PCA (Principle Component Analysis), PNN (Probailistic Neural Network, etc.) based on observed cloud and cloud information. In particular, to classify cloud patterns that occur locally, the cloud image patterns of long-term upper, middle, and lower stratum clouds are normalized by considering the cloud volume and cloud height, and the cloud characteristics of each altitude are defined. The cloud form can be automatically calculated by considering the cloudiness, cloud height, etc. of the cloud image observed in real time. Although it was a method of calculating, in the present invention, cloudiness, cloudiness, and cloud form are organically combined and automatically calculated.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 기술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.In the detailed description of the invention as described above, specific embodiments have been described. However, many modifications are possible without departing from the scope of the invention. The technical spirit of the present invention should not be limited to the described embodiments of the present invention, but should be determined not only by the claims, but also by those equivalent to the claims.

Claims (11)

  1. 구름영역이 포함된 대기의 영상이미지를 입력하는 1단계;Inputting a video image of an atmosphere including a cloud area;
    상기 입력되는 영상이미지에서 구름영역을 추출하는 2단계;Extracting a cloud region from the input image image;
    상기 구름영역을 이용하여 운량 및 운고를 산출하는 3단계;Calculating cloud and cloud height using the cloud area;
    상기 산출된 운량 및 운고를 이용하여 구름패턴은 분석하여 운형을 분석하는 4단계; 및Analyzing cloud patterns by analyzing cloud patterns using the calculated clouds and clouds; And
    상, 중, 하층운별 운형을 산출하는 5단계;5 steps to calculate the upper, middle, lower rhyme;
    를 포함하는 자동 구름 정보 산출방법.Automatic cloud information calculation method comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 1단계는,The first step,
    2대의 좌, 우 카메라를 이용하여 구름영역이 포함된 대기의 영상이미지를 획득하여 입력하는 단계인 자동 구름 정보 산출방법.An automatic cloud information calculating method comprising obtaining and inputting an image of an air including a cloud area using two left and right cameras.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 2단계는,The second step,
    상기 영상이미지에서 컬러이미지의 변화 또는 명암도를 이용하여 구름영역과 하늘영역을 구분하여 구름영역만을 추출하는 단계인 자동 구름 정보 산출방법.Automatic cloud information calculation method comprising the step of extracting only the cloud region by separating the cloud region and the sky region using the change or contrast of the color image in the image image.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 3단계는,The third step,
    추출된 구름영역에 대하여 영상픽셀별 구름인 영역과 구름이 아닌 영역에 대한 구분 후, 구름 영역만을 결정화하여 전체 이미지에서의 구름영역만의 양을 퍼센티지(%)도 도출하는 픽셀별 운량산출단계;와Cloud-by-pixel cloud computing step of deriving a percentage (%) of only the cloud area in the entire image by crystallizing only the cloud area after distinguishing the cloud area and the non-cloud area for each image pixel with respect to the extracted cloud area; Wow
    상기 2대의 좌, 우 카메라에서 획득된 좌우 영상이미지의 대응되는 위치의 구름영역의 높이를 결정하여 운고를 도출하는 픽셀별 운고산출단계;A cloud-by-pixel calculation step for deriving a cloud height by determining a height of a cloud area at a corresponding position of the left and right image images obtained by the two left and right cameras;
    로 구성되는 자동 구름 정보 산출방법.Automatic cloud information calculation method composed of.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 픽셀별운고산출단계는,The pixel-specific cloud height calculation step,
    한 개의 구름층이 있을 경우, 픽셀영역들의 평균높이를 그 시간에 관측된 운고로 도출하고, 다수의 구름층이 있는 경오 관측 영상내의 분류를 상, 중, 하층 운고로 나누어 층별 평균운고를 운고로 도출하는 것을 특징으로 하는 자동 구름 정보 산출방법.If there is one cloud layer, the average height of the pixel regions is derived from the cloud height observed at that time, and the average cloud level is divided into upper, middle, and lower cloud heights. Automatic cloud information calculation method, characterized in that deriving.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 4단계는,The fourth step,
    지역적 특성에 최적화된 운형 데이터베이스를 형성하는 구름운형조견테이블 정보와 실제 관측된 상기 영상이미지를 비교하여 구름 패턴을 분석하는 단계인 자동구름정보 산출방법.Comparing cloud cloud lookup table information forming a cloud shape database optimized for the regional characteristics and the observed image image is a step of analyzing the cloud pattern automatic cloud information calculation method.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 4단계는,The fourth step,
    관측 지역의 픽셀이미지를 벡터형식으로 변환하는 a1단계;A1 step of converting the pixel image of the observation area into a vector format;
    상기 a1단계에서 생성된 정보를 신경망분석방법을 통해 유사 구름패턴을 분류하는 a2)단계;A2) classifying the similar cloud pattern through the neural network analysis method using the information generated in step a1;
    상기 a2)단계에서 분류된 구름패턴을 WMO(세계기상기구) 구름운형 기준인 10종의 운형으로 분류하여 지역에 최적화된 구름운형조견표를 생성하는 a3)단계;A3) generating cloud-optimized lookup tables optimized for regions by classifying the cloud patterns classified in step a2) into 10 types of cloud types based on WMO cloud cloud standards;
    각 지역에 최적화된 구름운형 조견표와 실시간으로 관측되는 구름영상이미지를 비교하여 최족의 운형을 산출하는 a4)단계;A4) calculating the best cloud form by comparing cloud cloud form lookup tables optimized for each region with cloud image images observed in real time;
    를 포함하여 구성되는 자동구름정보 산출방법.Automatic cloud information calculation method comprising a.
  8. 구름영역이 포함된 대기의 영상을 입력하는 영상입력부;An image input unit which inputs an image of the atmosphere including a cloud area;
    상기 입력 영상에서 구름영역을 추출하는 구름영역추출부;A cloud region extraction unit for extracting a cloud region from the input image;
    상기 구름영역을 이용하여 운량 및 운고를 산출하는 운량운고산출부;A cloud cloud computing unit for calculating cloud clouds and cloud height using the cloud area;
    상기 운량운고산출부에서 산출된 구름의 패턴을 분석하여 운형을 분석하는 구름패턴분석부;A cloud pattern analysis unit for analyzing cloud patterns by analyzing cloud patterns calculated by the cloud cloud computing unit;
    를 포함하는 자동 구름 정보 시스템.Automatic cloud information system comprising a.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 영상입력부는 좌, 우 2개의 카메라로 구성되는 영상입력기로 구성되어, 관측지점의 영상이미지를 제공하는 것을 특징으로 하는 자동구름정보 산출시스템.The image input unit comprises an image input unit consisting of two cameras, the left and right, automatic cloud information calculation system, characterized in that to provide a video image of the observation point.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 운량운고산출부는,The cloud cloud computing unit,
    입력되는 영상이미지에서 구름영역의 이미지만을 결정화하여 전체 영상이미지에서 구름영역만의 양을 퍼센티지(%)화하는 픽셀별운량산출부;와Cloud-by-pixel calculation unit that crystallizes only the image of the cloud region in the input image image to make a percentage (%) of only the cloud region in the entire image image; and
    상기 영상이미지에서의 구름영역만을 운고처리하여 평균 구름 높이를 산출하는 픽셀별운고산출부;A cloud-by-pixel calculation unit for calculating an average cloud height by clouding only the cloud area in the video image;
    를 포함하여 이루어지는 자동구름정보 산출 시스템.Automatic cloud information calculation system comprising a.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 구름패턴분석부는,The cloud pattern analysis unit,
    관측지역에 최적화된 구름운형조견테이블과 실체 관측한 구름의 패턴을 비교 분석하여 상, 중, 하층 별 운형은 산출하는 것을 특징으로 하는 자동구름정보 산출시스템.Automatic cloud information calculation system, characterized in that the cloud cloud form lookup table optimized for the observation area and the cloud pattern observed in the real world is compared and analyzed to calculate the cloud shape for each of the upper, middle, and lower layers.
PCT/KR2011/004628 2010-07-09 2011-06-24 Method for automatically calculating information on clouds WO2012005461A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100066194A KR101183105B1 (en) 2010-07-09 2010-07-09 Method of establishing information of cloud data and establishing system of information of cloud data
KR10-2010-0066194 2010-07-09

Publications (2)

Publication Number Publication Date
WO2012005461A2 true WO2012005461A2 (en) 2012-01-12
WO2012005461A3 WO2012005461A3 (en) 2012-05-03

Family

ID=45441622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004628 WO2012005461A2 (en) 2010-07-09 2011-06-24 Method for automatically calculating information on clouds

Country Status (2)

Country Link
KR (1) KR101183105B1 (en)
WO (1) WO2012005461A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014036559A1 (en) * 2012-08-31 2014-03-06 Loisos, George Expert system for prediction of changes to local environment
CN113361414A (en) * 2021-06-08 2021-09-07 天津大学 Remote sensing image cloud amount calculation method based on composite neural network

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102359306B1 (en) * 2019-09-16 2022-02-07 (주)시정 System for image analysis using artificial intelligence and method using the same
KR102040562B1 (en) * 2019-09-16 2019-11-06 주식회사 아라종합기술 Method to estimate visibility distance using image information
KR102501853B1 (en) 2019-11-20 2023-02-22 주식회사 에이앤디시스템 Method for observing cloud through smoothing correction
KR102396001B1 (en) 2019-11-20 2022-05-11 주식회사 에이앤디시스템 Method for calculating amount of clouds through photographing whole sky
KR102384533B1 (en) 2019-11-20 2022-04-11 주식회사 에이앤디시스템 Wether survey apparatus
KR102473048B1 (en) * 2020-06-24 2022-12-05 대한민국 detecting method of effective cloud for artificial weather test based on meteorological aircraft
KR102576427B1 (en) * 2021-04-19 2023-09-08 중앙대학교 산학협력단 Real-time Rainfall Prediction Device using Cloud Images, and Rainfall Prediction Method using the same, and a computer-readable storage medium
KR102358472B1 (en) 2021-08-27 2022-02-08 주식회사 에스아이에이 Method for scheduling of shooting satellite images based on deep learning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329780A (en) * 2002-05-14 2003-11-19 Communication Research Laboratory Night time cloud amount measuring method and device therefor
KR20090051785A (en) * 2007-11-19 2009-05-25 (주)뉴멀티테크 System for observing wether and thereof method
KR20100042711A (en) * 2008-10-17 2010-04-27 (주)뉴멀티테크 System and method for automatic observing of sky climatic conditions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329780A (en) * 2002-05-14 2003-11-19 Communication Research Laboratory Night time cloud amount measuring method and device therefor
KR20090051785A (en) * 2007-11-19 2009-05-25 (주)뉴멀티테크 System for observing wether and thereof method
KR20100042711A (en) * 2008-10-17 2010-04-27 (주)뉴멀티테크 System and method for automatic observing of sky climatic conditions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUN-HO CHO ET AL.: 'Study on technical development of meteorological control and meteorological equipment' REPORT OF NATIONAL INSTITUTE OF METEOROLOGICAL RESEARCH December 2009, pages 1 - 142 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014036559A1 (en) * 2012-08-31 2014-03-06 Loisos, George Expert system for prediction of changes to local environment
US9406028B2 (en) 2012-08-31 2016-08-02 Christian Humann Expert system for prediction of changes to local environment
US10579024B2 (en) 2012-08-31 2020-03-03 Kinestral Technologies, Inc. Expert system for prediction of changes to local environment
US11740593B2 (en) 2012-08-31 2023-08-29 Halio, Inc. Expert system for controlling local environment based on radiance map of sky
CN113361414A (en) * 2021-06-08 2021-09-07 天津大学 Remote sensing image cloud amount calculation method based on composite neural network
CN113361414B (en) * 2021-06-08 2022-09-02 天津大学 Remote sensing image cloud amount calculation method based on composite neural network

Also Published As

Publication number Publication date
KR20120005654A (en) 2012-01-17
WO2012005461A3 (en) 2012-05-03
KR101183105B1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
WO2012005461A2 (en) Method for automatically calculating information on clouds
CN111784685B (en) Power transmission line defect image identification method based on cloud edge cooperative detection
CN108596277B (en) Vehicle identity recognition method and device and storage medium
CN106910203B (en) The quick determination method of moving target in a kind of video surveillance
CN104063883B (en) A kind of monitor video abstraction generating method being combined based on object and key frame
CN103425967B (en) A kind of based on stream of people's monitoring method of pedestrian detection and tracking
CN109598794B (en) Construction method of three-dimensional GIS dynamic model
CN110598736A (en) Power equipment infrared image fault positioning, identifying and predicting method
CN111881730A (en) Wearing detection method for on-site safety helmet of thermal power plant
CN109118479A (en) Defects of insulator identification positioning device and method based on capsule network
TW202013252A (en) License plate recognition system and license plate recognition method
CN109935080B (en) Monitoring system and method for real-time calculation of traffic flow on traffic line
CN107220603A (en) Vehicle checking method and device based on deep learning
CN111967313B (en) Unmanned aerial vehicle image annotation method assisted by deep learning target detection algorithm
US20060221181A1 (en) Video ghost detection by outline
CN102073846A (en) Method for acquiring traffic information based on aerial images
CN106096603A (en) A kind of dynamic flame detection method merging multiple features and device
CN110659546B (en) Illegal booth detection method and device
CN112365467B (en) Foggy image visibility estimation method based on single image depth estimation
WO2022213540A1 (en) Object detecting, attribute identifying and tracking method and system
CN114972177A (en) Road disease identification management method and device and intelligent terminal
CN108898098A (en) Early stage video smoke detection method based on monitor supervision platform
CN112884795A (en) Power transmission line inspection foreground and background segmentation method based on multi-feature significance fusion
CN111259736A (en) Real-time pedestrian detection method based on deep learning in complex environment
CN114155551A (en) Improved pedestrian detection method and device based on YOLOv3 under complex environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803747

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803747

Country of ref document: EP

Kind code of ref document: A2