WO2022098055A1 - 다중 물질 전달 마이크로 시스템 - Google Patents

다중 물질 전달 마이크로 시스템 Download PDF

Info

Publication number
WO2022098055A1
WO2022098055A1 PCT/KR2021/015701 KR2021015701W WO2022098055A1 WO 2022098055 A1 WO2022098055 A1 WO 2022098055A1 KR 2021015701 W KR2021015701 W KR 2021015701W WO 2022098055 A1 WO2022098055 A1 WO 2022098055A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage space
microsystem
space
base film
partition wall
Prior art date
Application number
PCT/KR2021/015701
Other languages
English (en)
French (fr)
Inventor
김용희
라히지샤얀 파크레이
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210102892A external-priority patent/KR102665358B1/ko
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to JP2023527296A priority Critical patent/JP2023548219A/ja
Priority to EP21889520.9A priority patent/EP4241823A4/en
Priority to CN202180089207.9A priority patent/CN116669702A/zh
Publication of WO2022098055A1 publication Critical patent/WO2022098055A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0023Drug applicators using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0046Solid microneedles

Definitions

  • the present invention relates to a multi-substance delivery microsystem, and more particularly, to a microsystem capable of penetrating the skin to deliver multiple substances.
  • Oral administration is the most common and convenient way to deliver active ingredients to the body in the form of capsules, tablets, and syrup.
  • some of the active ingredients may be inactivated due to first-pass metabolism in the liver, etc. Therefore, in order to enhance the effect of the active ingredient, it is administered in an injectable form by breaking through the body's defense and barriers.
  • injection type there are advantages of being delivered and the activity of the active ingredient is maintained, but there are disadvantages such as risk of infection, inaccurate dosage, administration, fear, pain.
  • biodegradable microstructure is a system that formulates various active ingredients, including polymers, cosmetics, pharmaceuticals, etc., in the form of a microneedle, and delivers the effective ingredients to the skin without pain.
  • the biodegradable microstructure has a limit in the loading amount of active ingredients (limited encapsulation capacity). Since general biodegradable micro structures are manufactured in tens to hundreds of microns, the load capacity is limited. Therefore, it has limitations in that it cannot deliver the desired amount of active ingredient into the body and is mainly applied to cosmetics.
  • the biodegradable microstructure has the inconvenience of attachment (Inconvenience of continuous skin attachment).
  • the biodegradable microstructure is attached to the skin in the form of a patch, and the dissolution time takes from a few minutes to several hours. Therefore, there are limitations such as the risk of causing various skin diseases, including itchiness, dermatitis, and allergies due to attachment of the patch, and the adhesion and discomfort.
  • the time of attachment because of the pointed tip and wide base of the micro structure, it is not perfectly inserted into the skin and is not delivered effectively.
  • the biodegradable microstructure has the problem of inactivation when mixing multiple active ingredients (Activity, loss, risk, inability, multi-compound, mixtures). Specifically, depending on the nature of the active ingredient, it can be inactivated due to various chemical reactions when mixed with biomaterials, polymers, active ingredients, etc. Therefore, when multiple materials are mounted on a microstructure, there are disadvantages that activation and stability of active ingredients can be reduced.
  • biodegradable microstructure has limitations on the loading of hydrophobic active ingredients (Limitations, incapsulation, of poorly soluble compounds).
  • Biodegradable microstructures are fabricated based on hydrophilicity and polymers. Therefore, in order to mount hydrophobic molecules (molecule) active ingredients to microstructures that cannot be mounted, or to mount them, a complex target treatment process is required.
  • the present invention provides a multi-mass delivery microsystem capable of increasing the load and delivery amount of a substance to be delivered and maximally maintaining the activity of the substance.
  • the present invention provides a multi-material delivery microsystem capable of rapidly penetrating the material mounted on the microneedle into the skin.
  • the multi-mass transfer microsystem includes a microstructure in which microneedles are formed on one surface of a base film, and made of a first material; It may include a material accommodating part located in one area of the microstructure and having an accommodating space for accommodating a second material different from the first material.
  • one surface of the base film is a central region; and a peripheral region surrounding the central region in which the microneedles are formed, and the material receiving part may be located in the central region of the base film.
  • the accommodating space may have a center of its bottom surface positioned lower than one surface of the base film.
  • the material accommodating part may further include a ring-shaped barrier rib that surrounds the receiving space, the upper end of which is located lower than the tip of the microneedle.
  • the partition wall may be provided as a corrugated wall having an upper end positioned at a first height in an expanded state and a second height lower than the first height in a contracted state.
  • the barrier rib may include a ring-shaped first barrier rib layer; and a second barrier rib layer positioned below the first barrier rib layer and having a space therein for accommodating the first barrier rib layer, wherein the first barrier rib layer and the second barrier rib layer are multi-layered.
  • a first state and a second state in which the first barrier rib layer is positioned inside the second barrier rib layer may be switchable.
  • the barrier ribs may include support portions positioned sequentially to be spaced apart from each other along the circumference of the receiving space; and a connection part positioned between the support parts and having a thickness smaller than that of the support part.
  • the diameter and thickness of the partition wall may gradually decrease from the lower end to the upper end.
  • the partition wall may have a diameter gradually increasing from a lower end to an upper end, and a thickness gradually decreasing.
  • the material accommodating part may further include a support plate positioned below the base film and integrally formed with the partition wall in a central region thereof.
  • a storage space in which the second material is stored may be formed in the support plate, and an opening connecting the storage space and the accommodation space may be formed.
  • a storage space connected to the storage space is formed in the support plate, and a bottom surface of the storage space is provided with a thin film, the bottom surface of the storage space is punched, and the storage space is inserted into the storage space. It may further include a pushing unit for pushing the second material stored in the storage space.
  • a storage space connected to the storage space is formed in the support plate, and a bottom surface of the storage space is provided as a convex and thin film, and when the bottom surface of the storage space is pressed from the outside, the A bottom surface of the storage space may be pressed toward the receiving space.
  • a plurality of storage spaces partitioned by a partition wall are formed in the material accommodating part, and the membrane is positioned in the opening of the base film; a leak prevention film blocking an opening formed in the base film between the storage space and the membrane; and a punching rod having a plurality of ends located in each of the storage spaces and capable of striking the leak prevention film, wherein different materials are stored in each of the storage spaces, and the respective materials are displaced by the blow of the punching rod. It may flow into the membrane through a hole in the leak prevention membrane and mix with each other.
  • the second material can rapidly dissolve the first material, the first material can penetrate into the skin within a short time.
  • FIG. 1 is an exploded perspective view showing a multi-mass transfer microsystem according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the microstructure of FIG. 1 .
  • FIG. 3 is a view showing a sample photograph of a microstructure manufactured according to an embodiment of the present invention.
  • FIG. 4 is a sample photograph showing a state in which the second material is mounted on the material receiving part of the microstructure.
  • 5 and 6 are views sequentially illustrating a process of delivering a first material and a second material into the skin using a multi-material delivery microsystem according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention.
  • FIGS. 8 and 9 are cross-sectional views illustrating a multi-mass transfer microsystem according to another embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention.
  • FIG. 11 is an exploded perspective view illustrating the multi-mass transfer microsystem of FIG. 10 .
  • FIG. 12 is a cross-sectional view illustrating the multi-mass transfer microsystem of FIG. 10 .
  • FIG. 13 is a diagram illustrating a process of inserting a microneedle into the skin using the multi-mass delivery microsystem according to the embodiment of FIG. 12 .
  • FIG. 14 is a cross-sectional view showing a partition structure according to another embodiment of the present invention.
  • FIG. 15 is a view showing a state in which the partition structure of FIG. 14 is deformed.
  • 16 is a cross-sectional view illustrating a structure of a partition wall according to another embodiment of the present invention.
  • FIG. 17 is a view showing a state in which the structure of the partition wall of FIG. 16 is deformed.
  • FIG. 18 is a cross-sectional view illustrating a structure of a partition wall according to another embodiment of the present invention.
  • FIG. 19 is a view showing a state in which the barrier rib structure of FIG. 18 is deformed.
  • FIG. 20 is a cross-sectional view showing a partition structure according to another embodiment of the present invention.
  • FIG. 21 is a view showing a state in which the barrier rib structure of FIG. 20 is deformed
  • FIG. 22 is a view displayed on an XY plane showing a partition structure according to another embodiment of the present invention.
  • FIG. 23 is a view showing a state in which the structure of the partition wall of FIG. 22 is deformed.
  • 24 is a cross-sectional view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention.
  • 25 is a diagram illustrating a state of use of the multi-mass transfer microsystem of FIG. 24 .
  • 26 is a cross-sectional view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention.
  • FIG. 27 is a cross-sectional view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention.
  • FIG. 28 is a cross-sectional view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention.
  • 29 is a diagram illustrating an operation process of the multi-mass transfer microsystem of FIG. 28 .
  • 30 to 32 are plan views illustrating microstructures according to various embodiments.
  • the multi-mass transfer microsystem includes a microstructure in which microneedles are formed on one surface of a base film, and made of a first material; It may include a material accommodating part located in one area of the microstructure and having an accommodating space for accommodating a second material different from the first material.
  • first, second, third, etc. are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another. Accordingly, what is referred to as a first component in one embodiment may be referred to as a second component in another embodiment.
  • a first component in one embodiment may be referred to as a second component in another embodiment.
  • Each embodiment described and illustrated herein also includes a complementary embodiment thereof.
  • 'and/or' is used in the sense of including at least one of the components listed before and after.
  • connection is used in a sense including both indirectly connecting a plurality of components and directly connecting a plurality of components.
  • FIG. 1 is an exploded perspective view illustrating a multi-mass transfer microsystem according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view illustrating the microstructure of FIG. 1 .
  • the multi-material delivery microsystem 10 may deliver a first material and a second material to the user's skin.
  • the first material is a biodegradable material that is dissolved after penetrating into the skin, and may be a material that is not toxic to the human body, is chemically inert, and has no immunogenicity.
  • the first material may be decomposed by body fluids or microorganisms in a living body.
  • the first material may include hyaluronic acid, polyester, polyhydroxyalkanoates (PHAs), poly( ⁇ -hydroxyacid), poly( ⁇ -hydroxyacid), poly(3- Hydroxybutyrate-co-valerate; PHBV), poly(3-hydroxypropionate; PHP), poly(3-hydroxyhexanoate; PHH), poly(4-hydroxyacid), poly (4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), poly(esteramide), polycaprolactone, polylactide, polyglycolide, poly(lactone) Tide-co-glycolide; PLGA), polydioxanone, polyorthoester, polyetherester, polyanhydride, poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane , poly(amino acid), polycyanoacrylate, poly(trimethylene carbonate), poly(iminocarbonate),
  • the first substance may be a drug.
  • a drug means a broad concept, and may include energy, nanocomponents, cosmetic ingredients (eg, wrinkle improvement agents, skin aging inhibitors and skin whitening agents), cell culture solutions, as well as therapeutic agents for therapeutic purposes in a narrow sense.
  • the therapeutic agent may include chemical drugs, protein/peptide drugs, peptide drugs, nucleic acid molecules for gene therapy, and the like.
  • protein/peptide drugs include hormones, hormone analogs, enzymes, enzyme inhibitors, signal transduction proteins or parts thereof, antibodies or parts thereof, single-chain antibodies, binding proteins or binding domains thereof, antigens, adhesion proteins, structural proteins, regulatory proteins, Toxin proteins, cytokines, transcriptional regulatory factors, blood coagulation factors and vaccines may be included.
  • the protein / peptide drug is insulin, IGF-1 (insulin-like growth factor 1), growth hormone, erythropoietin, G-CSFs (granulocyte-colony stimulating factors), GM-CSFs (granulocytes) /macrophagecolony stimulating factors), interferon alpha, interferon beta, interferon gamma, interleukin-1 alpha and beta, interleukin-3, interleukin-4, interleukin-6, interleukin-2, EGFs (epidermal growth factors), calcitonin, ACTH (adrenocorticotropic hormone), TNF (tumor necrosis factor), atobisban, buserelin, cetrorelix, deslorelin, desmopressin, dynorphin A (1-13), elcatonin, eleidosin, eptifibatide, growth hormone releasing hormone-II (GHRHII), gonadorelin , gose
  • the energy may include thermal energy, light energy, electrical energy, and the like.
  • a microstructure induces light to a specific area in the body so that light can act directly on tissue or act on a medium such as a lightsensitive molecule. can be used to
  • the first substance may be a water-soluble drug.
  • the first material may be in a solid, liquid, powder or highly concentrated state.
  • the second material may be a drug like the first material, a material capable of dissolving the first material, or a material capable of increasing the efficiency and speed of delivery of the first material.
  • the second material As the second material is delivered to the body together with the first material, various effects can be expected. And by the interaction between the first material and the second material, the dissolution rate of the first material in the body is controlled, so that the efficacy can be maximized. In addition, since the second material has an adhesive strength of a predetermined strength due to its characteristic, the multi-mass transfer microsystem can be in close contact with the skin.
  • the second material may include a fat-soluble material.
  • the second material includes at least one fat-soluble substance selected from the group consisting of horse oil, vitamin A and its derivatives, vitamin D and its derivatives, vitamin E and its derivatives, vitamin K and its derivatives, organic sunscreen agents, and fat-soluble plant extracts. can do.
  • the second material may be a material capable of dissolving the first material or rapidly adjusting the dissolution rate.
  • the second material may include at least one selected from the group consisting of water, C1-C4 anhydrous or hydrous lower alcohol, benzene, toluene, xylene (xylene), hexane, chloroform, ether, acetone, and amine. .
  • the second material may include a material for protecting the skin.
  • the second material may include a moisturizing agent, a skin cleaning agent, a disinfectant, a skin restoration agent, a soothing agent, and the like.
  • the moisturizing agent may include glycerin, propylene glycol, sorbitol, amino acids, butylene glycol, hyaluronic acid, etc.
  • the skin cleanser may include various high molecular compounds, polyols, ester oils, oils and fats, silicone compounds, etc.
  • the disinfectant is C1 -C4 lower alcohol, salicylic acid, camphor, etc.
  • the skin restoration agent may include ceramide, almond or argan vegetable oil or shea butter, and the like.
  • the multi-mass transfer microsystem 10 includes a microstructure 100 , a substance receiving unit 200 , and a protective cap 300 .
  • the microstructure 100 is made of a first material, and microneedles 120 are formed on one surface of the base film 110 .
  • the base film 110 is provided in the form of a thin film and has a predetermined width.
  • the base film 110 may be provided in a circular or polygonal shape.
  • the width of the base film 110 may be 1 to 200 mm 2 or 1 to 100 mm 2 .
  • the microneedle 120 protrudes from one surface of the base film 110 to a predetermined height, and the tip of the microneedle 120 is provided sharply to facilitate skin penetration.
  • the height of the microneedle 120 may be 10 to 20,000 ⁇ m, 10 to 10,000 ⁇ m, 20 to 10,000 ⁇ m, 30 to 8,000 ⁇ m, or 50 to 2,000 ⁇ m.
  • Each region of the tip of the microneedle 120 may have a minimum diameter of 1 to 500 ⁇ m, 2 to 300 ⁇ m, or 5 to 100 ⁇ m, and a maximum diameter of 50 to 1,000 ⁇ m.
  • the microneedles 120 may be provided at predetermined intervals in the remaining area except for the area where the material receiving part 200 is located on one surface of the base film 110 . According to an embodiment, the microneedles 120 may be provided to surround the central region of the base film 110 . The microneedles 120 may be formed at a density of 1 to 5 pieces/mm 2 .
  • a skin barrier 130 may be formed in the microstructure 100 along an edge region of the base film 110 .
  • the skin barrier 130 has an upper end higher than one surface of the base film 110 , and a lower height than the end of the microneedle 120 .
  • the material accommodating part 200 provides an accommodation space for accommodating the second material 20 .
  • the material receiving part 200 may be formed in the central region of the microstructure 100 .
  • the material receiving part 200 may be integrally formed with the base film 110 in the central region of the base film 110 .
  • the bottom surface of the receiving space 210 may have a lower height than one surface of the base film 110 on which the microneedles 120 are formed.
  • the bottom surface of the accommodation space 210 may have a downward concave shape.
  • the protective cap 300 has a width corresponding to or greater than that of the microstructure 100 and covers the upper portion of the microstructure 300 to block the microneedle 120 from being exposed to the outside.
  • the protective cap 300 is combined with the microstructure 100 when the multi-mass transfer microsystem 10 is stored, and is removed from the microstructure 100 during the procedure.
  • FIG. 3 is a view showing a sample photograph of a microstructure manufactured according to an embodiment of the present invention
  • FIG. 4 is a sample photograph showing a state in which the second material is mounted on the material receiving part of the microstructure.
  • the material receiving part 200 is formed in a concave groove shape in the central region of the microstructure 100 , and the second material 20 is mounted in the material receiving part 200 . .
  • 5 and 6 are views sequentially illustrating a process of delivering a first material and a second material into the skin using a multi-material delivery microsystem according to an embodiment of the present invention.
  • the user places the multi-mass transfer microsystem 10 so that the microneedle 120 comes into contact with the skin 50 , and the base film 110 with a finger. Press the back side of In this process, the microneedle 120 penetrates the skin 40, and the second material 20 accommodated in the material receiving unit 200 passes through the space between the base film 110 and the skin 40 to the base film ( 110) spread over the entire area. The second material 20 is blocked from leaking out of the microstructure 100 due to the skin barrier 130 pressing the peripheral area of the skin.
  • the first material constituting the microneedle 120 is dissolved and penetrated into the skin.
  • the second material 20 penetrates into the skin together with the first material, and promotes dissolution of the first material. And the second material 20 protects the skin surface penetrated by the microneedle 120, or suppresses the occurrence of irritation.
  • FIG. 7 is a cross-sectional view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention.
  • a space 210 for storing the second material 20 is formed in the material receiving unit 200 .
  • an opening 111 is formed in the central region of the base film 110 .
  • the multi-mass transfer microsystem 10 further includes a leak prevention membrane 410 , a membrane 420 , a punching part 430 , and an elastic spring 440 .
  • the leak prevention film 410 is a thin film, and blocks the opening 111 of the base film 100 .
  • the leak prevention film 410 is provided of a material that is not dissolved by the second material 20 , and the outflow of the second material 20 is blocked by the leak prevention film 410 .
  • the leak prevention film 410 may be made of a synthetic resin or rubber material.
  • the membrane 420 is positioned in the opening 111 of the base film 100 and is made of a porous material.
  • the membrane 420 controls the rate at which the second material 20 flows out.
  • the second material 20 may be gradually introduced into the microneedle 120 side by the membrane 420 .
  • the membrane 420 may be made of a ceramic or fiber material.
  • the punching unit 430 opens the leak prevention film 410 by a user's manipulation.
  • the punching unit 430 includes a punching rod 431 , an elastic spring 432 , and an operation button 433 .
  • the punching rod 431 has an end positioned in the inner space 210 of the material receiving part 200 and has a pointed tip.
  • the elastic spring 432 is positioned outside the material receiving part 200 , and the punching rod 431 is inserted therein.
  • the operation button 433 engages with the upper end of the punching rod 431 .
  • the punching rod 431 moves forward, and the sharp end strikes the leak prevention film 410 . Accordingly, a hole is formed in the leakage preventing film 410 , and the second material 20 flows into the membrane 420 through the hole. The second material 20 is absorbed by the membrane 420 and flows into the microneedle 120 side while the outflow rate is controlled.
  • the multi-mass transfer microsystem 10 according to the present embodiment may be suitable for use when the fluidity of the second material 20 is high.
  • FIGS. 8 and 9 are cross-sectional views illustrating a multi-mass transfer microsystem according to another embodiment of the present invention.
  • partition walls 220a to 220c are formed in the material accommodating part 200 .
  • the partition walls 220a to 220c partition the inner space of the material accommodating part 200 into a plurality of spaces 210a to 210c. In each of the spaces 210a to 210c, materials different from each other among the above-described second materials are provided.
  • the punching rods 431a to 431c have their ends separated by a number corresponding to the number of the spaces 210a to 210c, and strike the leak prevention film 410 in each space 210a to 210c.
  • each space 210a to 210c flows out through the opening 111 and is absorbed by the membrane 420 .
  • Each material is mixed in the membrane 420 and then provided to the microneedle 120 as a mixed material.
  • the multi-mass transfer microsystem 10 when stored as a mixed material, substances whose effects may be reduced or material properties may change are partitioned and stored in separate spaces 210a to 210c, and skin invasion It is possible to create mixtures of materials.
  • FIG. 10 is a perspective view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention
  • FIG. 11 is an exploded perspective view illustrating the multi-mass transfer microsystem of FIG. 10
  • FIG. 12 is the multi-mass transfer microsystem of FIG. It is a cross-sectional view showing
  • the second material 20 is a material that dissolves the first material
  • the microstructure 100 when the second material 20 is stored in contact with the microstructure 100 , the microstructure 100 . can be dissolved. To prevent this, it is necessary to separate the second material 20 from the microstructure 100 .
  • the multi-substance transfer microsystem 10 includes a microstructure 100 and a substance accommodating part 200 .
  • the microstructure 100 is made of the above-described first material, and includes a base film 110 and a microneedle 120 .
  • the base film 110 may have the thickness and width described in the embodiment of FIG. 1 .
  • One surface of the base film 110 includes a central region and a peripheral region.
  • An opening 111 is formed in the central region of the base film 110 .
  • the peripheral region is a region surrounding the central region, in which the microneedles 120 are formed.
  • the microneedle 120 has the same structure and size as the microneedle described in FIG. 1 .
  • the material accommodating part 200 is provided separately from the microstructure 100 , and is provided with a material that is not dissolved by the second material 20 .
  • the material receiving unit 200 may be made of a flexible and human-friendly material.
  • the material accommodating part 200 may be provided with a synthetic resin, silicone, or rubber material.
  • the material receiving unit 200 includes a support plate 210 , a partition wall 220 , and a skin barrier wall 230 .
  • the support plate 210 is provided as a thin plate having a width and shape corresponding to that of the base film 110 .
  • the partition wall 220 is formed in the central region of the support plate 210 .
  • the partition wall 220 has a ring shape having an outer diameter corresponding to the opening 111 of the base film 110 , and is provided at a predetermined height from one surface of the support plate 210 .
  • the inner space of the partition wall 220 is provided as an accommodation space 221 capable of accommodating the second drug 20 .
  • the bottom surface of the accommodation space 221 may be provided as a concave curved surface.
  • the skin barrier 230 is provided at a predetermined height along the edge region of the support plate 210 .
  • the skin barrier 230 has an upper end higher than one surface of the base film 110 , and a lower height than the end of the microneedle 120 .
  • the skin barrier 230 may have various widths in the radial direction of the support plate 110 .
  • one side of the skin barrier wall 230 facing the partition wall 220 may be provided as a curved surface.
  • FIG. 13 is a diagram illustrating a process of inserting a microneedle into the skin using the multi-mass delivery microsystem according to the embodiment of FIG. 12 .
  • the second material 20 is stored in a state in which contact with the microstructure 100 is blocked by the barrier rib 220 of the material accommodating part 200 . Therefore, during the storage period, the microstructure 100 is not dissolved and can maintain its original appearance.
  • the microstructure 100 is in contact with the skin 50 and presses the back of the support plate 210 to press the microneedle (120) is penetrated into the skin (50).
  • the second material 20 flows out into the gap between the skin 50 and the partition wall 220 and spreads out toward the microneedle 120 .
  • leakage to the outside is blocked by the skin barrier 230 pressing the surrounding area.
  • the second material 20 is in contact with the micro-needle 120 to promote the decomposition of the micro-needle (120). Due to this, the first material may penetrate into the skin 50 within the sucking time.
  • FIG. 14 is a cross-sectional view showing a partition structure according to another embodiment of the present invention
  • FIG. 15 is a view showing a state in which the partition wall structure of FIG. 14 is deformed.
  • the partition wall 220 may have a thin thickness, and wrinkles may be formed in the height direction.
  • the partition wall 220 has an upper end positioned at the first height in a state in which the wrinkles are expanded, and accommodates the second material in the receiving space 221 inside.
  • the partition wall 220 is pressed against the skin 50 and contracted. For this reason, the upper end of the partition wall 220 is located at a second height lower than the first height, and the second material can be easily spread through the gap between the skin 50 and the partition wall 220 .
  • FIG. 16 is a cross-sectional view showing a partition structure according to another embodiment of the present invention
  • FIG. 17 is a view showing a state in which the partition structure of FIG. 16 is deformed.
  • the barrier rib 220 has a structure in which a plurality of ring-shaped barrier rib layers 225 to 227 are stacked in multiple stages. At least two barrier rib layers 225 to 227 may be provided. In this embodiment, three barrier rib layers 225 to 227 are provided as an example.
  • the first barrier rib layer 225 has a ring shape and is located on the upper end of the barrier rib 220 .
  • the second barrier rib layer 226 is positioned below the first barrier rib layer 225 , and a space for accommodating the first barrier rib layer 225 is formed therein.
  • the third barrier rib layer 227 is located below the second barrier rib layer 226 , and a space for accommodating the second barrier rib layer 226 is formed therein.
  • the third partition wall layer 227 is coupled to one surface of the support plate 210 .
  • the partition wall 220 can be switched between the first state and the second state.
  • the first to third barrier rib layers 225 to 226 are sequentially stacked, and the upper end of the first barrier rib layer 225 is positioned at the first height.
  • the first barrier rib layer 225 is positioned in the inner space of the second barrier rib layer 226
  • the second barrier rib layer 226 is positioned in the inner space of the third barrier rib layer 227 . Therefore, the upper end of the barrier rib 220 has a second height lower than the first height, that is, the same height as the upper end of the third barrier rib layer 227 .
  • the partition wall 220 accommodates the second material 20 therein in the first state. And in the process in which the microneedle 120 is inserted into the skin 50, it is pressed against the skin 50 and converted to the second state. In the second state, the second material 20 may easily spread through the gap between the skin 50 and the partition wall 220 .
  • FIG. 18 is a cross-sectional view illustrating a barrier rib structure according to another embodiment of the present invention
  • FIG. 19 is a view showing a state in which the barrier rib structure of FIG. 18 is deformed.
  • the diameter and thickness of the partition wall 220 gradually decrease from the lower end adjacent to the support plate 210 to the upper end.
  • the lower end of the partition wall 220 has a first diameter
  • the upper end has a second diameter smaller than the first diameter.
  • the partition wall 220 has a dome structure.
  • the second material 20 is accommodated inside the partition wall 220 .
  • the partition wall 220 is sequentially pressed against the skin 50 from the top. Accordingly, the partition wall 220 is bent toward the accommodation space 221 . Since the partition wall 220 has a thin top thickness, it can be easily pressed with a small force. In this process, the second material 20 may easily spread through the gap between the skin 50 and the partition wall 220 .
  • FIG. 20 is a cross-sectional view illustrating a barrier rib structure according to another embodiment of the present invention
  • FIG. 21 is a view illustrating a deformed structure of the barrier rib structure of FIG. 20 .
  • the partition wall 220 gradually increases in diameter and decreases in thickness from the lower end adjacent to the supporting plate 210 to the upper end.
  • the lower end of the partition wall 220 has a first diameter, and the upper end has a second diameter greater than the first diameter.
  • the second material 20 is accommodated inside the partition wall 220 .
  • the microneedle 120 In the process in which the microneedle 120 is inserted into the skin 50 , it is sequentially pressed against the skin 50 from the top of the partition wall 220 .
  • the partition wall 220 is bent to the outside of the accommodation space 221 so that the diameter of the upper end becomes larger. Since the partition wall 220 has a thin top thickness, it can be easily pressed with a small force. In this process, the second material 20 may easily spread through the gap between the skin 50 and the partition wall 220 .
  • FIG. 22 is a view displayed on an XY plane showing a barrier rib structure according to another embodiment of the present invention
  • FIG. 23 is a view showing a state in which the barrier rib structure of FIG. 22 is deformed.
  • the partition wall 220 is provided by combining the support part 228 and the connection part 229 .
  • the support part 228 is an arc-shaped plate having a predetermined length, and a plurality of them are sequentially arranged to be spaced apart from each other along the circumference of the accommodation space 221 .
  • connection part 229 connects both sides of the adjacent support parts 228 to each other between the support parts 228 .
  • the connecting portion 229 has a thickness smaller than that of the supporting portion 228 .
  • the connection part 229 has a thickness enough to be easily torn when an external force is applied.
  • the partition wall 220 is provided as a structure in which the support part 228 and the connection part 229 are combined, and accommodates the second material 20 in the accommodating space 221 .
  • the support part 228 is bent outward of the receiving space 221 by pressing the upper end of the support part 228 by the skin 50 .
  • the connection part 229 is torn, and the second material 20 is introduced into the microneedle 120 side through the space between the support parts 228 where the connection part 229 is torn.
  • FIG. 24 is a cross-sectional view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention
  • FIG. 25 is a view illustrating a state of use of the multi-mass transfer microsystem of FIG. 24 .
  • a storage space 211 capable of storing the second material 20 is formed inside the support plate 210 .
  • a bottom surface of the storage space 211 may be provided to be flat.
  • the storage amount of the second material 20 may be increased.
  • an opening 212 is formed in the central region of the support plate 210 on which the partition wall 220 is formed. The opening 212 is connected to the storage space 211 and the storage space 221 inside the partition wall 220 , and provides a passage through which the second material 20 stored in the storage space 211 can flow out.
  • the support plate 210 is made of a flexible material, when the user presses the bottom surface of the support plate 210 , the bottom surface is deformed toward the opening 211 . This facilitates the flow of the second material 20 stored in the storage space 211 to the opening 212 .
  • 26 is a cross-sectional view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention.
  • the bottom surface of the storage space 211 may be provided as a concave curved surface.
  • the concave curved surface facilitates the flow of the second material 20 to the opening side 212 .
  • FIG. 27 is a cross-sectional view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention.
  • the support plate 210 is provided as a curved surface in which the bottom surface 210a of the region where the partition wall 220 is located is convex downward.
  • the bottom surface 210a may have various depths depending on the storage capacity of the second material 20 .
  • the user may supply the second material 20 to the microneedle 120 side by pressing the bottom surface 210a.
  • FIG. 28 is a cross-sectional view illustrating a multi-mass transfer microsystem according to another embodiment of the present invention
  • FIG. 29 is a diagram illustrating an operation process of the multi-mass transfer microsystem of FIG. 28 .
  • the region in which the storage space is formed is provided with a thin film having a bottom surface thereof.
  • the multi-mass transfer microsystem 10 further includes a pushing unit 240 .
  • the pushing unit 240 is insertable into the storage space 211 .
  • the bottom surface provided as a thin film is torn and the pushing unit 240 is inserted into the storage space 211 .
  • the second material 20 stored in the storage space 211 may be supplied to the microneedle 120 side by being pushed by the fusing unit 240 .
  • 30 to 32 are plan views illustrating microstructures according to various embodiments.
  • the opening 111 is formed in the central region of the base film 110 in the above-described embodiment, a plurality of openings 111 may be formed in various regions.
  • the microneedle 120 may be formed in a peripheral region where the opening 111 is not formed.
  • the base film 110 may be provided in a rectangular shape as well as a circular shape. According to an embodiment, the base film 110 may be provided in a rectangular shape. In addition, a plurality of openings 111 may be formed to be spaced apart from each other in the longitudinal direction of the base film 120 .
  • the opening 111 may be formed in a slit shape in the longitudinal direction of the base film 110 .
  • microstructure according to the present invention can be used for medical and skin care.

Landscapes

  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Medical Informatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

다중 물질 전달 마이크로 시스템이 개시된다. 다중 물질 전달 마이크로 시스템은 베이스 필름의 일면에 마이크로 니들이 형성되며, 제1물질로 이루어진 마이크로 구조체; 상기 마이크로 구조체의 일 영역에 위치하며, 상기 제1물질과 상이한 제2물질을 수용하는 수용공간을 갖는 물질 수용부를 포함할 수 있다.

Description

다중 물질 전달 마이크로 시스템
본 발명은 다중 물질 전달 마이크로 시스템에 관한 것으로, 보다 상세하게는 피부에 침투하여 다중 물질을 전달할 수 있는 마이크로 시스템에 관한 것이다.
의약품 또는 화장품을 포함한 물질을 신체에 전달하는 투여경로에는 경구형, 주사형 및 경피형 등이 있다. 경구형 투여는 가장 일반적이고 편리한 방법으로 유효성분을 캡슐, 정제, 시럽 형태로 신체에 전달한다. 그러나 간에서의 초회통과대사(first-pass metabolism) 등으로 인해 유효성분의 일부는 불활성화될 수 있다. 따라서, 유효성분의 효과를 높이기 위해 주사형으로 인체의 방어 장벽을 뚫어서 투여한다. 주사형의 경우, 전달되는 유효성분의 활성이 유지된다는 장점이 있으나, 감염의 위험, 정확하지 않은 용량 투여, 공포, 고통 등의 단점이 있다. 
따라서, 기존 경구형과 주사형 경로투여의 한계점을 극복하기 위해서 최소 침투 생분해성 마이크로니들을 포함한 다양한 마이크로 구조체 기반 경피형 유효성분전달 시스템들이 개발되고 있다. 생분해성 마이크로 구조체는 고분자와 화장품, 의약품, 등을 포함한 다양한 유효성분을 미세바늘 형태로 제형화하여 피부에 삽입 후 체액에 의해 용해되어 탑재된 유효성분을 통증 없이 전달하는 경피 전달시스템이다.
그러나, 생분해성 마이크로 구조체는 유효성분의 탑재량에서 한계를 가진다(limited encapsulation capacity). 일반적인 생분해성 마이크로 구조체는 수십에서 수백 마이크로의 미세 크기로 제작되므로, 탑재량이 제한적이다. 따라서, 원하는 유효성분의 양을 체내에 전달할 수 없으며, 주로 화장품 분야에 적용된다는 한계점을 가진다.
또한, 생분해성 마이크로 구조체는 부착의 불편함을 가진다(Inconvenience of continuous skin attachment). 일반적으로 생분해성 마이크로 구조체는 패치 형태로 피부에 부착되어 용해 시간이 몇 분에서 몇 시간이 걸린다. 따라서, 패치 부착으로 인해 가려움, 피부염, 알레르기를 포함한 다양한 피부 질환을 일으킬 위험성과 부착 불편함 등의 한계점들이 있다. 또한, 부착 시간과 상관없이, 마이크로 구조체의 뾰쪽한 팁(tip)과 넓은 베이스(base) 때문에 피부에 완벽하게 삽입이 되지 않아 탑재된 유효성분을 효율적으로 전달하지 못할 우려가 있다. 
또한, 생분해성 마이크로 구조체는 다중 유효성분 혼합 시 불활성화의 문제점을 가진다(Activity loss risk in multi compound mixtures). 구체적으로, 유효성분의 성질에 따라 생체재료, 고분자, 타 유효성분 등과 혼합 시 다양한 화학 반응(chemical reaction)으로 인해 불활성화될 수 있다. 따라서, 마이크로 구조체에 다중 물질을 탑재 시, 유효성분의 활성화와 안정성이 감소될 수 있는 단점이 있다.
또한, 생분해성 마이크로 구조체는 소수성 유효성분의 탑재에 제한을 가진다(Limitations in encapsulation of poorly soluble compounds). 생분해성 마이크로 구조체는 친수성 고분자 기반으로 제작된다. 따라서, 소수성 분자(molecule)를 가진 유효성분을 마이크로 구조체에 탑재할 수 없거나 탑재하기 위해서 복잡한 표적 처리 과정이 필요하다.
본 발명은 전달하고자 하는 물질의 탑재량과 전달량을 높일 수 있고, 물질의 활성을 최대한 유지할 수 있는 다중 물질 전달 마이크로 시스템을 제공한다.
또한, 본 발명은 마이크로 니들에 탑재된 물질을 신속하게 피부에 침투시킬 수 있는 다중 물질 전달 마이크로 시스템을 제공한다.
본 발명에 따른 다중 물질 전달 마이크로 시스템은 베이스 필름의 일면에 마이크로 니들이 형성되며, 제1물질로 이루어진 마이크로 구조체; 상기 마이크로 구조체의 일 영역에 위치하며, 상기 제1물질과 상이한 제2물질을 수용하는 수용공간을 갖는 물질 수용부를 포함할 수 있다.
또한, 상기 베이스 필름의 일 면은 중심 영역; 및 상기 중심 영역을 에워싸며, 상기 마이크로 니들이 형성된 주변 영역을 포함하고, 상기 물질 수용부는 상기 베이스 필름의 중심 영역에 위치할 수 있다.
또한, 상기 수용공간은 그 바닥면의 중심이 상기 베이스 필름의 일 면보다 낮게 위치할 수 있다.
또한, 상기 물질 수용부는, 상기 수용공간을 에워싸며, 그 상단이 상기 마이크로 니들의 첨단보다 낮게 위치하는 링 형상의 격벽을 더 포함할 수 있다.
또한, 상기 격벽은 팽창 상태에서 상단이 제1높이에 위치하고, 수축 상태에서 상단이 제1높이보다 낮은 제2높이에 위치하는 주름벽으로 제공될 수 있다.
또한, 상기 격벽은 링 형상의 제1격벽 레이어; 및 상기 제1격벽 레이어의 하부에 위치하고, 내부에 상기 제1격벽 레이어를 수용할 수 있는 공간이 형성된 제2격벽 레이어를 포함하며, 상기 제1 격벽 레이어와 상기 제2격벽 레이어는 다단이 적층된 제1상태와, 상기 제1격벽 레이어가 상기 제2격벽 레이어의 내부에 위치하는 제2상태간에 전환가능할 수 있다.
또한, 상기 격벽은 상기 수용공간의 둘레를 따라 서로 이격하여 순차적으로 위치하는 지지부; 및 상기 지지부들 사이에 위치하며, 상기 지지부보다 얇은 두께를 갖는 연결부를 포함할 수 있다.
또한, 상기 격벽은 하단으로부터 상단으로 갈수록 직경과 두께가 점차 감소할 수 있다.
또한, 상기 격벽은 하단으로부터 상단으로 갈수록 직경이 점차 증가하고, 두께가 점차 감소할 수 있다.
또한, 상기 물질 수용부는 상기 베이스 필름의 하부에 위치하며, 그 중심 영역에 상기 격벽이 일체로 형성된 지지 플레이트를 더 포함할 수 있다.
또한, 상기 지지 플레이트의 내부에는 상기 제2물질이 저장되는 저장공간이 형성되며, 상기 저장공간과 상기 수용 공간을 연결하는 개구가 형성될 수 있다.
또한, 상기 지지 플레이트에는 상기 수용 공간과 연결되는 저장 공간이 형성되고, 상기 저장 공간의 바닥면은 두께가 얇은 막으로 제공되며, 상기 저장 공간의 바닥면을 펀칭하고, 상기 저장 공간으로 삽입되어 상기 저장 공간에 저장된 상기 제2물질을 밀어주는 푸싱부를 더 포함할 수 있다.
또한, 상기 지지 플레이트에는 상기 수용 공간과 연결되는 저장 공간이 형성되고, 상기 저장 공간의 바닥면은 아래로 볼록하고 두께가 얇은 막으로 제공되며, 외부에서 상기 저장 공간의 바닥면을 누를 경우, 상기 저장 공간이 바닥면이 상기 수용 공간 측으로 눌려질 수 있다.
또한, 상기 물질 수용부 내에는 구획 벽에 의해 구획된 복수 개의 저장 공간이 형성되고, 상기 베이스 필름의 개구 내에 위치하는 멤브레인; 상기 저장 공간과 상기 멤브레인의 사이에서 상기 베이스 필름에 형성된 개구를 막는 유출 방지막; 및 복수 개의 끝단이 상기 저장 공간들 각각에 위치하며, 상기 유출 방지막을 타격가능한 펀칭 로드를 포함하되, 상기 저장 공간들 각각에는 서로 상이한 물질들이 저장되며, 각각의 물질들은 상기 펀칭 로드의 타격으로 상기 유출 방지막에 생긴 구멍을 통해 상기 멤브레인으로 유입되어 서로 혼합될 수 있다.
본 발명에 의하면, 마이크로 니들에 탑재된 물질과 물질 수용부에 수용된 물질을 동시에 피부 속으로 침투시킬 수 있다.
또한, 본 발명에 의하면, 제2물질이 제1물질의 신속하게 용해시킬 수 있으므로, 제1물질이 짧은 시간 안에 피부 속으로 침투될 수 있다.
도 1은 본 발명의 일 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 분해 사시도이다.
도 2는 도 1의 마이크로 구조체를 나타내는 단면도이다.
도 3은 본 발명의 실시 예에 따라 제작된 마이크로 구조체의 샘플 사진을 나타내는 도면이다.
도 4는 마이크로 구조체의 물질 수용부에 제2물질이 탑재된 상태를 나타내는 샘플 사진이다.
도 5 및 도 6은 본 발명의 실시 예에 따른 다중 물질 전달 마이크로 시스템을 이용하여 피부 속으로 제1물질과 제2물질을 전달하는 과정을 순차적으로 나타내는 도면이다.
도 7은 본 발명의 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 8 및 도 9는 본 발명의 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 10은 본 발명의 또 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 사시도이다.
도 11은 도 10의 다중 물질 전달 마이크로 시스템을 나타내는 분해 사시도이다.
도 12는 도 10의 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 13은 도 12의 실시 예에 따른 다중 물질 전달 마이크로 시스템을 이용하여 마이크로 니들을 피부에 삽입하는 과정을 나타내는 도면이다.
도 14는 본 발명의 다른 실시 예에 따른 격벽 구조를 나타내는 단면도이다.
도 15는 도 14의 격벽 구조가 변형되는 모습을 나타내는 도면이다.
도 16은 본 발명의 다른 실시 예에 따른 격벽 구조를 나타내는 단면도이다.
도 17은 도 16의 격벽 구조가 변형되는 모습을 나타내는 도면이다.
도 18은 본 발명의 다른 실시 예에 따른 격벽 구조를 나타내는 단면도이다.
도 19는 도 18의 격벽 구조가 변형되는 모습을 나타내는 도면이다.
도 20는 본 발명의 다른 실시 예에 따른 격벽 구조를 나타내는 단면도이다.
도 21는 도 20의 격벽 구조가 변형되는 모습을 나타내는 도면이다.
도 22는 본 발명의 다른 실시 예에 따른 격벽 구조를 나타내는 XY 평면상으로 표시한 도면이다.
도 23는 도 22의 격벽 구조가 변형되는 모습을 나타내는 도면이다.
도 24는 본 발명의 또 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 25는 도 24의 다중 물질 전달 마이크로 시스템의 사용 상태를 나타내는 도면이다.
도 26은 본 발명의 또 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 27은 본 발명의 또 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 28은 본 발명의 또 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 29는 도 28의 다중 물질 전달 마이크로 시스템의 작동 과정을 나타내는 도면이다.
도 30 내지 도 32는 다양한 실시 예에 따른 마이크로 구조체를 나타내는 평면도이다.
본 발명에 따른 다중 물질 전달 마이크로 시스템은 베이스 필름의 일면에 마이크로 니들이 형성되며, 제1물질로 이루어진 마이크로 구조체; 상기 마이크로 구조체의 일 영역에 위치하며, 상기 제1물질과 상이한 제2물질을 수용하는 수용공간을 갖는 물질 수용부를 포함할 수 있다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
도 1은 본 발명의 일 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 분해 사시도이고, 도 2는 도 1의 마이크로 구조체를 나타내는 단면도이다.
도 1 및 도 2를 참조하면, 다중 물질 전달 마이크로 시스템(10)은 사용자의 피부에 제1물질과 제2물질을 전달할 수 있다.
제1물질은 피부 속으로 침투 후 용해되는 생분해성 물질로, 인체에 독성이 없고 화학적으로 불활성이며 면역원성이 없는 물질일 수 있다. 제1물질은 생체 내에서 체액 또는 미생물 등에 의해서 분해될 수 있다.
일 실시 예에 의하면, 제1 물질은 히알루론산, 폴리에스테르, 폴리하이드록시알카노에이트(PHAs), 폴리(α-하이드록시액시드), 폴리(β-하이드록시액시드), 폴리(3-하이드록시부티레이트-co-발러레이트; PHBV), 폴리(3-하이드록시프로프리오네이트; PHP), 폴리(3-하이드록시헥사노에이트; PHH), 폴리(4-하이드록시액시드), 폴리(4-하이드록시부티레이트), 폴리(4-하이드록시발러레이트), 폴리(4-하이드록시헥사노에이트), 폴리(에스테르아마이드), 폴리카프로락톤, 폴리락타이드, 폴리글리코라이드, 폴리(락타이드-co-글리코라이드; PLGA), 폴리디옥사논, 폴리오르토에스테르, 폴리에테르에스테르, 폴리언하이드라이드, 폴리(글리콜산-co-트리메틸렌 카보네이트), 폴리포스포에스테르, 폴리포스포에스테르 우레탄, 폴리(아미노산), 폴리사이아노아크릴레이트, 폴리(트리메틸렌 카보네이트), 폴리(이미노카보네이트), 폴리(타이로신 카보네이트), 폴리카보네이트, 폴리(타이로신 아릴레이트), 폴리알킬렌 옥살레이트, 폴리포스파젠스, PHA-PEG, 에틸렌 비닐 알코올 코폴리머(EVOH), 폴리우레탄, 실리콘, 폴리에스테르, 폴리올레핀, 폴리이소부틸렌과 에틸렌-알파올레핀 공중합체, 스틸렌-이소브틸렌-스틸렌 트리블록 공중합체, 아크릴 중합체 및 공중합체, 비닐 할라이드 중합체 및 공중합체, 폴리비닐 클 로라이드, 폴리비닐 에테르, 폴리비닐 메틸 에테르, 폴리비닐리덴 할라이드, 폴리비닐리덴 플루오라이드, 폴리비닐리덴 클로라이드, 폴리플루오로알켄, 폴리퍼플루오로알켄, 폴리아크릴로니트릴, 폴리비닐 케톤, 폴리비닐아로마틱스, 폴리스틸렌, 폴리비닐 에스테르, 폴리비닐 아세테이트, 에틸렌-메틸 메타크릴레이트 공중합체, 아크릴로니트릴-스틸렌 공중합체, ABS 수지와 에틸렌-비닐 아세테이트 공중합체, 폴리아마이드, 알키드 수지, 폴리옥시메틸렌, 폴리이미드, 폴리에테르, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리아크릴산-co-말레산, 키토산, 덱스트란, 셀룰로오스, 헤파린, 알기네이트, 이눌린, 녹말 또는 글리코겐을 사용할 수 있고, 히알루론산, 폴리에스테르, 폴리하이드록시알카노에이트(PHAs), 폴리(α-하이드록시액시드), 폴리(β-하이드록시액시드), 폴리(3-하이드록시부티레이트-co-발러레이트; PHBV), 폴리(3-하이드록시프로프리오네이트; PHP), 폴리(3-하이드록시헥사노에이트; PHH), 폴리(4-하이드록시액시드), 폴리(4-하이드록시부티레이트), 폴리(4-하이드록시발러레이트), 폴리(4-하이드록시헥사노에이트), 폴리(에스테르아마이드), 폴리카프로락톤, 폴리락타이드, 폴리글리코라이드, 폴리(락타이드-co-글리코라이드; PLGA), 폴리디옥사논, 폴리오르토에스테르, 폴리에테르에스테르, 폴리언하이드라이드, 폴리(글리콜산-co-트리메틸렌 카보네이트), 폴리포스포에스테르, 폴리포스포에스테르우레탄, 폴리(아미노산), 폴리사이아노아크릴레이트, 폴리(트리메틸렌 카보네이트), 폴리(이미노카보네이트), 폴리(타이로신 카보네이트), 폴리카보네이트, 폴리(타이로신 아릴레이트), 폴리알킬렌 옥살레이트, 폴리포스파젠스, PHAPEG, 키토산, 덱스트란, 셀룰로오스, 헤파린, 알기네이트, 이눌린, 녹말 및 글리코겐으로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다.
다른 실시 예에 의하면, 제1물질은 약물일 수 있다. 약물은 광의의 개념을 의미하며, 협의의 치료 목적의 치료제뿐만 아니라, 에너지, 나노성분, 미용 성분(예컨대, 주름개선제, 피부노화 억제제 및 피부미백제), 세포 배양액 등을 모두 포함할 수 있다. 구체적으로, 상기 치료제로는 화학약물, 단백질/펩타이드 의약, 펩타이드 의약, 유전자 치료용 핵산 분자 등을 포함할 수 있다.
예를 들어, 치료제는 항염증제, 진통제, 항관절염제, 진경제, 항우울증제, 항정신병약물, 신경안정제, 항불안제, 마약길항제, 항파킨스질환 약물, 콜린성 아고니스트, 항암제, 항혈관신생억제제, 면역억제제, 항바이러스제, 항생제, 식욕억제제, 진통제, 항콜린제, 항히스타민제, 항편두통제, 호르몬제, 관상혈관, 뇌혈관 또는 말초혈관 확장제, 피임약, 항혈전제, 이뇨제, 항고혈압제, 심혈관질환 치료제 등을 포함할 수 있다.
특히, 단백질/펩타이드 의약은 호르몬, 호르몬 유사체, 효소, 효소저해제, 신호전달단백질 또는 그 일부분, 항체 또는 그 일부분, 단쇄항체, 결합단백질 또는 그 결합도메인, 항원, 부착단백질, 구조단백질, 조절단백질, 독소단백질, 사이토카인, 전사조절 인자, 혈액 응고 인자 및 백신 등을 포함할 수 있다. 보다 상세하게는, 상기 단백질/펩타이드 의약은 인슐린, IGF-1(insulin-like growth factor 1), 성장호르몬, 에리쓰로포이에틴, G-CSFs (granulocyte-colony stimulating factors), GM-CSFs(granulocyte/macrophagecolony stimulating factors), 인터페론 알파, 인터페론 베타, 인터페론 감마, 인터루킨-1 알파 및 베타, 인터루킨-3, 인터루킨-4, 인터루킨-6, 인터루킨-2, EGFs (epidermal growth factors), 칼시토닌(calcitonin), ACTH(adrenocorticotropic hormone), TNF (tumor necrosis factor), 아토비스반(atobisban), 부세레린(buserelin), 세트로렉릭스(cetrorelix), 데스로레린(deslorelin), 데스모프레신(desmopressin), 디노르핀 A(dynorphin A) (1-13), 엘카토닌(elcatonin), 엘레이도신(eleidosin), 엡티피바타이드(eptifibatide), GHRHII(growth hormone releasing hormone-II), 고나도레린(gonadorelin), 고세레린(goserelin), 히스트레린(histrelin), 류프로레린(leuprorelin), 라이프레신(lypressin), 옥트레오타이드(octreotide), 옥시토신(oxytocin), 피트레신(pitressin), 세크레틴(secretin), 신칼라이드(sincalide), 테르리프레신(terlipressin), 티모펜틴(thymopentin), 티모신(thymosine) α1, 트리프토레린(triptorelin), 바이발리루딘(bivalirudin), 카르베토신(carbetocin), 사이클로스포린, 엑세딘(exedine), 란레오타이드(lanreotide), LHRH (luteinizing hormone-releasing hormone), 나파레린(nafarelin), 부갑상선 호르몬, 프람린타이드(pramlintide), T-20(enfuvirtide), 타이말파신(thymalfasin) 및 지코노타이드를 포함할 수 있다.
또한, 에너지는 열에너지, 빛에너지, 전기에너지 등을 포함할 수 있다. 예를 들어, 광역동 치료(photodynamic therapy)에서 마이크로 구조체는 광이 직접적으로 조직에 작용할 수 있도록 하거나 또는 광감응성(lightsensitive) 분자와 같은 매개체에 광이 작용하도록, 신체내의 특정부위에 광을 유도하는 데 이용될 수 있다.
또한, 제1물질은 수용성 약물일 수 있다. 제1 물질은 고상, 액상, 분말 또는 고농축 상태일 수 있다.
제2물질은 제1 물질과 같이 약물이거나, 제1물질을 녹일 수 있는 물질이거나, 제1 물질의 전달 효율 및 속도를 높일 수 있는 물질일 수 있다.
제2물질이 제1 물질과 함께 체내에 전달됨으로써 다양한 효능을 기대할 수 있다. 그리고 제1물질과 제2물질의 상호작용으로, 제1물질이 체내에서 용해되는 속도가 조절됨으로써, 효능이 극대화될 수 있다. 또한, 제2물질이 그 특성 상 소정 강도의 접착력을 가짐으로써, 다중 물질 전달 마이크로 시스템이 피부에 밀착 접촉될 수 있다.
일 실시 예에 의하면, 제2 물질은 지용성 물질을 포함할 수 있다. 구체적으로 제2물질은 마유, 비타민 A 및 그 유도체, 비타민 D 및 그 유도체, 비타민 E 및 그 유도체, 비타민 K 및 그 유도체, 유기자외선 차단제 및 지용성 식물 추출물로 이루어진 그룹으로부터 선택된 하나 이상의 지용성 물질을 포함할 수 있다.
다른 실시 예에 의하면, 제2물질은 제1물질을 용해시키거나, 용해 속도를 빠르게 조절할 수 있는 물질일 수 있다. 구체적으로, 제2물질은 물, C1-C4의 무수 또는 함수 저급 알코올, 벤젠, 톨루엔, 크실렌(자일렌), 헥산, 클로로포름, 에테르, 아세톤 및 아민으로 이루어진 그룹으로부터 선택된 하나 이상을 포함할 수 있다.
또 다른 실시 예에 의하면, 제2물질은 피부를 보호하기 위한 물질을 포함할 수 있다. 구체적으로, 제2물질은 보습제, 피부 세정제, 소독제, 피부 복원제, 진정제 등을 포함할 수 있다. 보습제는 글리세린, 프로필렌글리콜, 소르비톨, 아미노산, 부틸렌글리콜, 히알루론산 등을 포함할 수 있고, 피부 세정제는 각종 고분자 화합물, 폴리올, 에스터오일, 유지, 실리콘 화합물 등을 포함할 수 있으며, 소독제는 C1-C4의 저급 알코올, 살리실산, 캄포(camphor) 등을 포함할 수 있고, 피부 복원제는 세라미드, 아몬드 또는 아르간 식물성 오일 또는 시어버터(shea butter) 등을 포함할 수 있다.
다중 물질 전달 마이크로 시스템(10)은 마이크로 구조체(100), 물질 수용부(200), 그리고 보호 캡(300)을 포함한다.
마이크로 구조체(100)는 제1물질로 이루어지며, 베이스 필름(110)의 일면에 마이크로 니들(120)이 형성된다.
베이스 필름(110)은 두께가 얇은 필름 형태로, 소정 너비로 제공된다. 베이스 필름(110)은 원형 또는 다각 형상으로 제공될 수 있다. 베이스 필름(110)의 너비는 1 내지 200 mm2 또는 1 내지 100 mm2 일 수 있다.
마이크로 니들(120)은 베이스 필름(110)의 일 면으로부터 소정 높이로 돌출되며, 그 끝단이 피부 침투에 용이하도록 뾰족하게 제공된다. 실시 예에 의하면, 마이크로 니들(120)의 높이는 10 내지 20,000 ㎛, 10 내지 10,000 ㎛, 20 내지 10,000 ㎛, 30 내지 8,000 ㎛ 또는 50 내지 2,000 ㎛ 일 수 있다. 마이크로 니들(120)의 첨단의 각 영역은 최소 직경이 1 내지 500 ㎛, 2 내지 300 ㎛ 또는 5 내지 100 ㎛로 제공되고, 최대 직경이 50 내지 1,000 ㎛로 제공될 수 있다.
마이크로 니들(120)은 베이스 필름(110)의 일면 중 물질 수용부(200)가 위치되는 영역을 제외한 나머지 영역에 기 설정된 간격으로 제공될 수 있다. 실시 예에 의하면, 마이크로 니들(120)은 베이스 필름(110)의 중심 영역을 에워싸도록 제공될 수 있다. 마이크로 니들(120)은 1 내지 5 개/mm2의 밀도로 형성될 수 있다.
마이크로 구조체(100)에는 베이스 필름(110)의 가장자리영역을 따라 피부 격리벽(130)이 형성될 수 있다. 피부 격리벽(130)은 그 상단이 베이스 필름(110)의 일면보다 높고, 마이크로 니들(120)의 끝단보다 낮은 높이를 갖는다.
물질 수용부(200)는 제2물질(20)을 수용하는 수용 공간을 제공한다. 물질 수용부(200)는 마이크로 구조체(100)의 중심 영역에 형성될 수 있다. 실시 예에 의하면, 물질 수용부(200)는 베이스 필름(110)의 중심 영역에 베이스 필름(110)과 일체로 형성될 수 있다. 물질 수용부(200)는 수용 공간(210)의 바닥면이 마이크로 니들(120)이 형성된 베이스 필름(110)의 일면보다 낮은 높이를 가질 수 있다. 수용 공간(210)의 바닥면은 아래로 오목한 형상을 가질 수 있다.
보호 캡(300)은 마이크로 구조체(100)에 상응하거나, 그보다 큰 너비를 가지며, 마이크로 구조체(300)의 상부를 덮어, 마이크로 니들(120)이 외부로 노출되는 것을 차단한다. 보호 캡(300)은 다중 물질 전달 마이크로 시스템(10)의 보관 시 마이크로 구조체(100)와 결합하고, 시술 시 마이크로 구조체(100)로부터 제거된다.
도 3은 본 발명의 실시 예에 따라 제작된 마이크로 구조체의 샘플 사진을 나타내는 도면이고, 도 4는 마이크로 구조체의 물질 수용부에 제2물질이 탑재된 상태를 나타내는 샘플 사진이다.
도 3 및 4를 참조하면, 마이크로 구조체(100)의 중심 영역에 물질 수용부(200)가 오목한 홈 형상으로 형성되며, 제2물질(20)이 물질 수용부(200)에 탑재됨을 확인할 수 있다.
도 5 및 도 6은 본 발명의 실시 예에 따른 다중 물질 전달 마이크로 시스템을 이용하여 피부 속으로 제1물질과 제2물질을 전달하는 과정을 순차적으로 나타내는 도면이다.
도 5를 참조하면, 사용자는 보호 캡(300)을 제거 후, 마이크로 니들(120)이 피부(50)와 접촉되도록 다중 물질 전달 마이크로 시스템(10)을 위치시킨 상태에서 손가락으로 베이스 필름(110)의 뒷면을 눌러준다. 이 과정에서, 마이크로 니들(120)이 피부(40)에 침투하고, 물질 수용부(200)에 수용된 제2물질(20)이 베이스 필름(110)과 피부(40) 사이 공간을 통해 베이스 필름(110)의 전체 영역으로 퍼진다. 제2물질(20)은 피부 격리벽(130)이 피부의 주변 영역을 누름으로 인해, 마이크로 구조체(100) 외부로 새어 나가는 것이 차단된다.
시간이 경과됨에 따라, 마이크로 니들(120)을 이루는 제1물질이 용해되면서 피부 속으로 침투된다. 제2물질(20)은 제1물질과 함께 피부 속으로 침투되고, 제1물질의 용해를 촉진시킨다. 그리고 제2물질(20)은 마이크로 니들(120)이 침투한 피부 표면을 보호하거나, 자극 발생을 억제한다.
도 7은 본 발명의 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 7을 참조하면, 물질 수용부(200)에는 제2물질(20)을 저장하는 공간(210)이 내부에 형성된다. 그리고 베이스 필름(110)의 중심 영역에는 개구(111)가 형성된다.
다중 물질 전달 마이크로 시스템(10)은 유출 방지막(410), 멤브레인(420), 펀칭부(430), 그리고 탄성 스프링(440)를 더 포함한다.
유출 방지막(410)은 두께가 얇은 막으로, 베이스 필름(100)의 개구(111)를 막는다. 유출 방지막(410)은 제2물질(20)에 의해 용해되지 않는 물질로 제공되며, 유출 방지막(410)에 의해 제2물질(20)의 유출이 차단된다. 유출 방지막(410)은 합성 수지, 또는 고무 재질로 제공될 수 있다.
멤브레인(420)은 베이스 필름(100)의 개구(111) 내에 위치하며, 다공성 재질로 제공된다. 멤브레인(420)은 제2물질(20)이 유출되는 속도를 조절한다. 제2물질(20)은 멤브레인(420)에 의해, 마이크로 니들(120) 측으로 서서히 유입될 수 있다. 실시 예에 의하면, 멤브레인(420)은 세라믹 또는 섬유 재질로 제공될 수 있다.
펀칭부(430)는 사용자의 조작에 의해, 유출 방지막(410)을 개방시킨다. 펀칭부(430)는 펀칭 로드(431), 탄성 스프링(432), 그리고 작동 버튼(433)을 포함한다.
펀칭 로드(431)는 그 끝단이 물질 수용부(200)의 내부 공간(210)에 위치하고, 뾰족한 팁을 갖는다.
탄성 스프링(432)는 물질 수용부(200)의 외부에 위치하며, 내측으로 펀칭 로드(431)가 삽입된다.
작동 버튼(433)은 펀칭 로드(431)의 상단과 결합한다.
사용자가 작동 버튼(433)을 누를 경우, 펀칭 로드(431)가 전방으로 이동하면서, 뾰족한 끝단이 유출 방지막(410)을 타격한다. 이에 의해, 유출 방지막(410)에는 구멍이 생기며, 제2물질(20)이 구멍을 통해 멤브레인(420) 측으로 유입된다. 제2물질(20)은 멤브레인(420)에 흡수되고, 유출 속도가 조절되면서 마이크로 니들(120)측으로 유입된다.
작동 버튼(433)을 누르는 힘이 제거되면, 탄성 스프링(432)의 탄성력에 의해 펀칭 로드(431)는 본래의 위치로 이동한다.
본 실시 예에 따른 다중 물질 전달 마이크로 시스템(10)은, 제2물질(20)의 유동성이 높을 경우 사용에 적합할 수 있다.
도 8 및 도 9는 본 발명의 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 8 및 도 9를 참조하면, 물질 수용부(200) 내에는 구획 벽(220a 내지 220c)들이 형성된다. 구획 벽(220a 내지 220c)들은 물질 수용부(200)의 내부 공간을 복수 개의 공간(210a 내지 210c)을 구획한다. 각각의 공간(210a 내지 210c)에는 상술한 제2물질들 중 서로 상이한 물질들이 제공된다.
펀칭 로드(431a 내지 431c)는 그 끝단이 상기 공간(210a 내지 210c)의 개수에 대응하는 개수로 분리되며, 각 공간(210a 내지 210c)에서 유출 방지막(410)을 타격한다.
유출 방지막(410)의 타격으로, 각 공간(210a 내지 210c)에 저장된 물질이 개구(111)를 통해 흘러나오며, 멤브레인(420)에 흡수된다. 각 물질들은 멤브레인 (420)내에서 혼합된 후, 혼합 물질로 마이크로 니들(120)에 제공된다.
본 발명의 실시 예에 따른 다중 물질 전달 마이크로 시스템(10)은 혼합 물질로 저장 시, 효과가 저하되거나 물질 특성이 변할 수 있는 물질들을 분리된 공간(210a 내지 210c)에 구획하여 저장하고, 피부 침습 시 혼합 물질을 생성할 수 있다.
도 10은 본 발명의 또 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 사시도이고, 도 11은 도 10의 다중 물질 전달 마이크로 시스템을 나타내는 분해 사시도이고, 도 12는 도 10의 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 10 내지 도 12를 참조하면, 제2물질(20)이 제1물질을 용해시키는 물질일 경우, 제2물질(20)이 마이크로 구조체(100)와 접촉된 상태로 보관되면 마이크로 구조체(100)가 용해될 수 있다. 이를 방지하기 위해, 제2물질(20)을 마이크로 구조체(100)와 분리할 필요가 있다.
본 발명의 실시 예에 따른 다중 물질 전달 마이크로 시스템(10)은 마이크로 구조체(100)와 물질 수용부(200)를 포함한다.
마이크로 구조체(100)는 상술한 제1물질로 제조되며, 베이스 필름(110)과 마이크로 니들(120)을 포함한다.
베이스 필름(110)은 도 1의 실시 예에서 설명한 두께와 너비를 가질 수 있다. 베이스 필름(110)의 일면은 중심 영역과 주변 영역을 포함한다.
베이스 필름(110)의 중심 영역에는 개구(111)가 형성된다. 주변 영역은 중심 영역을 에워싸는 영역으로, 마이크로 니들(120)이 형성된다. 마이크로 니들(120)은 도 1에서 설명한 마이크로 니들과 동일한 구조 및 크기를 갖는다.
물질 수용부(200)는 마이크로 구조체(100)와 분리되어 제공되며, 제2물질(20)에 의해 용해되지 않는 재질로 제공된다. 실시 예에 의하면, 물질 수용부(200)는 유연하고 인체 친화적인 물질로 제조될 수 있다. 물질 수용부(200)는 합성수지, 실리콘, 또는 고무 재질로 제공될 수 있다.
물질 수용부(200)는 지지 플레이트(210), 격벽(220), 그리고 피부 격리벽(230)을 포함한다.
지지 플레이트(210)는 베이스 필름(110)에 상응하는 너비 및 형상을 갖는 두께가 얇은 판으로 제공된다.
격벽(220)은 지지 플레이트(210)의 중심 영역에 형성된다. 격벽(220)은 베이스 필름(110)의 개구(111)와 상응하는 외경을 갖는 링 형상으로, 지지 플레이트(210)의 일 면으로부터 소정 높이로 제공된다. 격벽(220)의 내측 공간은 제2약물(20)을 수용할 수 있는 수용 공간(221)으로 제공된다. 수용 공간(221)의 바닥면은 오목한 곡면으로 제공될 수 있다. 마이크로 구조체(100)가 지지 플레이트(210)의 일 면에 놓일 경우, 격벽(220)은 베이스 필름(110)의 개구(111) 내에 삽입된다. 그리고 격벽(220)의 상단은 베이스 필름(110)의 일면보다 높고, 마이크로 니들(120)의 끝단보다 낮은 높이를 갖는다.
피부 격리벽(230)은 지지 플레이트(210)의 가장자리영역을 따라 소정 높이로 제공된다. 피부 격리벽(230)은 그 상단이 베이스 필름(110)의 일면보다 높고, 마이크로 니들(120)의 끝단보다 낮은 높이를 갖는다. 피부 격리벽(230)은 지지 플레이트(110)의 반경 방향으로 다양한 너비를 가질 수 있다. 또한 피부 격리벽(230)는 격벽(220)을 향하는 일 측면이 곡면으로 제공될 수 있다.
도 13은 도 12의 실시 예에 따른 다중 물질 전달 마이크로 시스템을 이용하여 마이크로 니들을 피부에 삽입하는 과정을 나타내는 도면이다.
먼저 도 12를 참조하면, 제2물질(20)은 물질 수용부(200)의 격벽(220)에 의해 마이크로 구조체(100)와의 접촉이 차단된 상태로 보관된다. 때문에, 보관 기간동안 마이크로 구조체(100)는 용해되지 않고 본래의 모습을 유지할 수 있다.
도 13을 참조하면, 사용자는 마이크로 니들(120)을 피부(50)에 삽입하고자 하는 경우, 마이크로 구조체(100)가 피부(50)에 접촉한 상태에서 지지 플레이트(210)의 후면을 눌러 마이크로 니들(120)을 피부(50)에 침투시킨다. 이 과정에서, 제2물질(20)은 피부(50)와 격벽(220) 사이 틈으로 흘러나와 마이크로 니들(120) 측으로 퍼져 나간다. 그리고, 주변 영역을 누르고 있는 피부 격리벽(230)에 의해 외부로 새어 나가는 것이 차단된다. 제2물질(20)은 마이크로 니들(120)과 접촉하여 마이크로 니들(120)의 분해를 촉진한다. 이로 인해, 제1물질이 빠는 시간 내에 피부(50)에 침투할 수 있다.
도 14는 본 발명의 다른 실시 예에 따른 격벽 구조를 나타내는 단면도이고, 도 15는 도 14의 격벽 구조가 변형되는 모습을 나타내는 도면이다.
도 14를 참조하면, 격벽(220)은 얇은 두께를 가지며, 높이 방향으로 주름이 형성될 수 있다. 격벽(220)은 주름이 팽창한 상태에서 상단이 제1높이에 위치하고, 내측의 수용 공간(221)에 제2물질을 수용한다.
도 15를 참조하면, 마이크로 니들(120)이 피부(50)에 삽입되는 과정에서, 격벽(220)은 피부(50)에 눌러져 수축된다. 이로 인해, 격벽(220)의 상단은 제1높이보다 낮은 제2높이에 위치하고, 피부(50)와 격벽(220) 사이 틈으로 제2물질이 용이하게 퍼질 수 있다.
도 16은 본 발명의 다른 실시 예에 따른 격벽 구조를 나타내는 단면도이고, 도 17은 도 16의 격벽 구조가 변형되는 모습을 나타내는 도면이다.
도 16을 참조하면, 격벽(220)은 링 형상의 복수의 격벽 레이어(225 내지 227)들이 다단으로 적층된 구조를 갖는다. 격벽 레이어(225 내지 227)는 적어도 두 개 이상 제공될 수 있다. 본 실시 예에서는 격벽 레이어(225 내지 227)가 3개 제공되는 것을 예를 들어 설명한다.
제1격벽 레이어(225)는 링 형상을 가지며, 격벽(220)의 상단에 위치한다.
제2격벽 레이어(226)는 제1격벽 레이어(225)의 하부에 위치하고, 내부에 제1격벽 레이어(225)를 수용할 수 있는 공간이 형성되다.
제3격벽 레이어(227)는 제2격벽 레이어(226)의 하부에 위치하고, 내부에 제2격벽 레이어(226)를 수용할 수 있는 공간이 형성된다. 제3격벽 레이어(227)는 지지 플레이트(210)의 일 면과 결합한다.
격벽(220)은 제1상태와 제2상태간에 전환이 가능하다. 제1상태는 제1격벽 레이어 내지 제3격벽 레이어(225 내지 226)가 순차적으로 적층된 상태로, 제1격벽 레이어(225)의 상단이 제1높이에 위치한다. 제2상태에서는 제1격벽 레이어(225)가 제2격벽 레이어(226)의 내부 공간에 위치하고, 제2격벽 레이어(226)가 제3격벽 레이어(227)의 내부 공간에 위치한다. 때문에, 격벽(220)의 상단은 제1높이보다 낮은 제2높이, 즉 제3격벽 레이어(227)의 상단과 동일한 높이를 갖는다.
격벽(220)은 제1상태에서 내부에 제2물질(20)을 수용한다. 그리고 마이크로 니들(120)이 피부(50)에 삽입되는 과정에서, 피부(50)에 눌러져 제2상태로 전환된다. 제2상태에서 피부(50)와 격벽(220) 사이 틈으로 제2물질(20)이 용이하게 퍼질 수 있다.
도 18은 본 발명의 다른 실시 예에 따른 격벽 구조를 나타내는 단면도이고, 도 19는 도 18의 격벽 구조가 변형되는 모습을 나타내는 도면이다.
도 18 및 도 19를 참조하면, 격벽(220)은 지지 플레이트(210)에 인접한 하단에서 상단으로 갈수록 직경과 두께가 점차 감소한다. 격벽(220)의 하단은 제1직경을 갖고, 상단은 제1직경보다 작은 제2직경을 갖는다. 대체로 격벽(220)은 돔 구조를 갖는다. 격벽(220)의 내측에는 제2물질(20)이 수용된다.
마이크로 니들(120)이 피부(50)에 삽입되는 과정에서, 격벽(220)은 상단부터 순차적으로 피부(50)에 눌러진다. 이에 의해, 격벽(220)은 수용 공간(221) 측으로 휘어진다. 격벽(220)은 상단의 두께가 얇게 제공되므로, 적은 힘으로 쉽게 눌러질 수 있다. 이 과정에서 피부(50)와 격벽(220) 사이 틈으로 제2물질(20)이 용이하게 퍼질 수 있다.
도 20는 본 발명의 다른 실시 예에 따른 격벽 구조를 나타내는 단면도이고, 도 21는 도 20의 격벽 구조가 변형되는 모습을 나타내는 도면이다.
도 20 및 도 21을 참조하면, 격벽(220)은 지지 플레이트(210)에 인접한 하단에서 상단으로 갈수록 직경이 점차 커지고 두께가 점차 감소한다. 격벽(220)의 하단은 제1직경을 갖고, 상단은 제1직경보다 큰 제2직경을 갖는다. 격벽(220)의 내측에는 제2물질(20)이 수용된다.
마이크로 니들(120)이 피부(50)에 삽입되는 과정에서, 격벽(220)의 상단부터 순차적으로 피부(50)에 눌러진다. 격벽(220)은 수용 공간(221)의 바깥 측으로 휘어져 상단의 직경이 더 커진다. 격벽(220)은 상단의 두께가 얇게 제공되므로, 적은 힘으로 쉽게 눌러질 수 있다. 이 과정에서 피부(50)와 격벽(220) 사이 틈으로 제2물질(20)이 용이하게 퍼질 수 있다.
도 22는 본 발명의 다른 실시 예에 따른 격벽 구조를 나타내는 XY 평면상으로 표시한 도면이고, 도 23는 도 22의 격벽 구조가 변형되는 모습을 나타내는 도면이다.
도 22 및 도 23을 참조하면, 격벽(220)은 지지부(228)와 연결부(229)의 결합으로 제공된다.
지지부(228)는 소정 길이를 갖는 호 형상의 판으로, 복수 개가 수용 공간(221)의 둘레를 따라 서로 이격하여 순차적으로 배치된다.
연결부(229)는 지지부(228)들 사이에서, 인접한 지지부(228)들의 양 측부를 서로 연결한다. 연결부(229)는 지지부(228)보다 얇은 두께를 가진다. 연결부(229)는 외력이 가해졌을 때, 쉽게 찢어질 수 있을 정도의 두께를 갖는다.
상술한 바와 같이, 격벽(220)은 지지부(228)와 연결부(229)의 결합 구조로 제공되며, 수용 공간(221)에 제2물질(20)을 수용한다.
마이크로 니들(120)이 피부(5))에 삽입되는 과정에서, 지지부(228)는 피부(50)에 의해 상단이 눌러져 수용 공간(221)의 바깥쪽으로 휘어진다. 이 과정에서 연결부(229)가 찢어지며, 연결부(229)가 찢어진 지지부(228)들의 사이 공간을 통해 제2물질(20)이 마이크로 니들(120) 측으로 유입된다.
도 24는 본 발명의 또 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이고, 도 25는 도 24의 다중 물질 전달 마이크로 시스템의 사용 상태를 나타내는 도면이다.
도 24를 참조하면, 지지 플레이트(210)의 내부에는 제2물질(20)을 저장할 수 있는 저장 공간(211)이 형성된다. 저장 공간(211)의 바닥면은 평평하게 제공될 수 있다. 지지 플레이트(210)의 내부에 별도 저장 공간(211)을 형성함으로써, 제2물질(20)의 저장량이 증가될 수 있다. 그리고 격벽(220)이 형성된 지지 플레이트(210)의 중심 영역에는 개구(212)가 형성된다. 개구(212)는 저장 공간(211)과 격벽(220) 내측의 수용 공간(221)과 연결되며, 저장 공간(211)에 저장된 제2물질(20)이 유출될 수 있는 통로를 제공한다.
도 25를 참조하면, 지지 플레이트(210)는 유연한 재질로 제공되므로, 사용자가 지지 플레이트(210)의 바닥면을 누를 경우 바닥면이 개구(211) 측으로 변형된다. 이는 저장 공간(211)에 저장된 제2물질(20)이 개구(212)로 유출되는 것을 촉진한다.
도 26은 본 발명의 또 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 26을 참조하면, 도 24의 실시 예와 달리, 저장 공간(211)의 바닥면은 오목한 곡면으로 제공될 수 있다. 오목한 곡면은 제2물질(20)이 개구측(212)으로 유출되는 것을 용이하게 한다.
도 27은 본 발명의 또 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이다.
도 27을 참조하면, 지지 플레이트(210)는 격벽(220)이 위치한 영역의 바닥면(210a)이 아래로 볼록한 곡면으로 제공된다. 바닥면(210a)은, 제2물질(20)의 저장 용량에 따라 다양한 깊이로 제공될 수 있다. 사용자는 바닥면(210a)을 눌러, 제2물질(20)을 마이크로 니들(120) 측으로 공급할 수 있다.
도 28은 본 발명의 또 다른 실시 예에 따른 다중 물질 전달 마이크로 시스템을 나타내는 단면도이고, 도 29는 도 28의 다중 물질 전달 마이크로 시스템의 작동 과정을 나타내는 도면이다.
도 28 및 도 29를 참조하면, 지지 플레이트(210)에서, 저장 공간이 형성된 영역은 바닥면이 두께가 얇은 막으로 제공된다.
다중 물질 전달 마이크로 시스템(10)은 푸싱부(240)를 더 포함한다. 푸싱부(240)는 저장 공간(211)으로 삽입 가능하다. 사용자가 푸싱부(240)의 선단을 저장 공간(211)의 바닥면에 대고 밀 경우, 얇은 막으로 제공되는 바닥면이 찢어지고 푸싱부(240)가 저장 공간(211) 안으로 삽입된다. 저장 공간(211)에 저장된 제2물질(20)은 푸징부(240)에 밀려 마이크로 니들(120) 측으로 공급될 수 있다.
도 30 내지 도 32는 다양한 실시 예에 따른 마이크로 구조체를 나타내는 평면도이다.
먼저, 도 30을 참조하면, 상술한 실시 예에서는 베이스 필름(110)의 중심 영역에 개구(111)가 형성된다고 설명하였으나, 개구(111)는 복수 개가 다양한 영역에 형성될 수 있다. 그리고, 개구(111)가 형성되지 않는 주변 영역에 마이크로 니들(120)이 형성될 수 있다.
도 31을 참조하면, 베이스 필름(110)은 원형뿐만 아니라 사각 형상으로 제공될 수 있다. 실시 예에 의하면, 베이스 필름(110)은 직사각 형상으로 제공될 수 있다. 그리고, 개구(111)는 베이스 필름(120)의 길이 방향을 따라 서로 이격하여 복수 개 형성될 수 있다.
도 32를 참조하면, 개구(111)는 슬릿 형상으로 베이스 필름(110)의 길이 방향으로 형성될 수 있다.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
본 발명에 따른 마이크로 구조체는 의료 및 피부 미용에 사용될 수 있다.

Claims (14)

  1. 베이스 필름의 일면에 마이크로 니들이 형성되며, 제1물질로 이루어진 마이크로 구조체;
    상기 마이크로 구조체의 일 영역에 위치하며, 상기 제1물질과 상이한 제2물질을 수용하는 수용공간을 갖는 물질 수용부를 포함하는 다중 물질 전달 마이크로 시스템.
  2. 제 1 항에 있어서,
    상기 베이스 필름의 일 면은
    중심 영역; 및
    상기 중심 영역을 에워싸며, 상기 마이크로 니들이 형성된 주변 영역을 포함하고,
    상기 물질 수용부는 상기 베이스 필름의 중심 영역에 위치하는 다중 물질 전달 마이크로 시스템.
  3. 제 2 항에 있어서,
    상기 수용공간은 그 바닥면의 중심이 상기 베이스 필름의 일 면보다 낮게 위치하는 다중 물질 전달 마이크로 시스템.
  4. 제 1 항에 있어서,
    상기 물질 수용부는,
    상기 수용공간을 에워싸며, 그 상단이 상기 마이크로 니들의 첨단보다 낮게 위치하는 링 형상의 격벽을 더 포함하는 다중 물질 전달 마이크로 시스템.
  5. 제 4 항에 있어서,
    상기 격벽은
    팽창 상태에서 상단이 제1높이에 위치하고, 수축 상태에서 상단이 제1높이보다 낮은 제2높이에 위치하는 주름벽으로 제공되는 다중 물질 전달 마이크로 시스템.
  6. 제 4 항에 있어서,
    상기 격벽은
    링 형상의 제1격벽 레이어; 및
    상기 제1격벽 레이어의 하부에 위치하고, 내부에 상기 제1격벽 레이어를 수용할 수 있는 공간이 형성된 제2격벽 레이어를 포함하며,
    상기 제1 격벽 레이어와 상기 제2격벽 레이어는 다단이 적층된 제1상태와,
    상기 제1격벽 레이어가 상기 제2격벽 레이어의 내부에 위치하는 제2상태간에 전환가능한 다중 물질 전달 마이크로 시스템.
  7. 제 4 항에 있어서,
    상기 격벽은
    상기 수용공간의 둘레를 따라 서로 이격하여 순차적으로 위치하는 지지부; 및
    상기 지지부들 사이에 위치하며, 상기 지지부보다 얇은 두께를 갖는 연결부를 포함하는 다중 물질 전달 마이크로 시스템.
  8. 제 4 항에 있어서,
    상기 격벽은 하단으로부터 상단으로 갈수록 직경과 두께가 점차 감소하는 다중 물질 전달 시스템.
  9. 제 4 항에 있어서,
    상기 격벽은 하단으로부터 상단으로 갈수록 직경이 점차 증가하고, 두께가 점차 감소하는 다중 물질 전달 마이크로 시스템.
  10. 제 4 항에 있어서,
    상기 물질 수용부는
    상기 베이스 필름의 하부에 위치하며, 그 중심 영역에 상기 격벽이 일체로 형성된 지지 플레이트를 더 포함하는 다중 물질 전달 마이크로 시스템.
  11. 제 10 항에 있어서,
    상기 지지 플레이트의 내부에는 상기 제2물질이 저장되는 저장공간이 형성되며, 상기 저장공간과 상기 수용 공간을 연결하는 개구가 형성된 다중 물질 전달 마이크로 시스템.
  12. 제 10 항에 있어서,
    상기 지지 플레이트에는 상기 수용 공간과 연결되는 저장 공간이 형성되고, 상기 저장 공간의 바닥면은 두께가 얇은 막으로 제공되며,
    상기 저장 공간의 바닥면을 펀칭하고, 상기 저장 공간으로 삽입되어 상기 저장 공간에 저장된 상기 제2물질을 밀어주는 푸싱부를 더 포함하는 다중 물질 전달 마이크로 시스템.
  13. 제 10 항에 있어서,
    상기 지지 플레이트에는 상기 수용 공간과 연결되는 저장 공간이 형성되고, 상기 저장 공간의 바닥면은 아래로 볼록하고 두께가 얇은 막으로 제공되며,
    외부에서 상기 저장 공간의 바닥면을 누를 경우, 상기 저장 공간이 바닥면이 상기 수용 공간 측으로 눌려지는 다중 물질 전달 마이크로 시스템.
  14. 제 1 항에 있어서,
    상기 물질 수용부 내에는 구획 벽에 의해 구획된 복수 개의 저장 공간이 형성되고,
    상기 베이스 필름의 개구 내에 위치하는 멤브레인;
    상기 저장 공간과 상기 멤브레인의 사이에서 상기 베이스 필름에 형성된 개구를 막는 유출 방지막; 및
    복수 개의 끝단이 상기 저장 공간들 각각에 위치하며, 상기 유출 방지막을 타격가능한 펀칭 로드를 포함하되,
    상기 저장 공간들 각각에는 서로 상이한 물질들이 저장되며, 각각의 물질들은 상기 펀칭 로드의 타격으로 상기 유출 방지막에 생긴 구멍을 통해 상기 멤브레인으로 유입되어 서로 혼합되는 다중 물질 전달 마이크로 시스템.
PCT/KR2021/015701 2020-11-04 2021-11-02 다중 물질 전달 마이크로 시스템 WO2022098055A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023527296A JP2023548219A (ja) 2020-11-04 2021-11-02 多重物質伝達マイクロシステム
EP21889520.9A EP4241823A4 (en) 2020-11-04 2021-11-02 MICROSYSTEM FOR THE ADMINISTRATION OF MULTIPLE MATERIALS
CN202180089207.9A CN116669702A (zh) 2020-11-04 2021-11-02 用于递送多种材料的微系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0146144 2020-11-04
KR20200146144 2020-11-04
KR10-2021-0102892 2021-08-05
KR1020210102892A KR102665358B1 (ko) 2020-11-04 2021-08-05 다중 물질 전달 마이크로 시스템

Publications (1)

Publication Number Publication Date
WO2022098055A1 true WO2022098055A1 (ko) 2022-05-12

Family

ID=81458096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015701 WO2022098055A1 (ko) 2020-11-04 2021-11-02 다중 물질 전달 마이크로 시스템

Country Status (3)

Country Link
EP (1) EP4241823A4 (ko)
JP (1) JP2023548219A (ko)
WO (1) WO2022098055A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070250018A1 (en) * 2004-08-12 2007-10-25 Hirotoshi Adachi Transdermal Drug Administration System with Microneedles
JP2015136527A (ja) * 2014-01-23 2015-07-30 凸版印刷株式会社 マイクロニードルユニット
US20170304603A1 (en) * 2015-01-13 2017-10-26 Toppan Printing Co., Ltd. Transdermal administration device
KR20180056411A (ko) * 2016-11-18 2018-05-28 연세대학교 산학협력단 복합 제형이 적용된 마이크로니들 어레이 및 이의 제조방법
KR20190114815A (ko) * 2018-03-30 2019-10-10 랩앤피플주식회사 멀티형 마이크로 니들
KR20200040329A (ko) * 2018-10-08 2020-04-20 연세대학교 산학협력단 다기능 마이크로구조체 패치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008008845A2 (en) * 2006-07-11 2008-01-17 Microchips, Inc. Multi-reservoir pump device for dialysis, biosensing, or delivery of substances
WO2014142135A1 (ja) * 2013-03-12 2014-09-18 武田薬品工業株式会社 マイクロニードルパッチ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070250018A1 (en) * 2004-08-12 2007-10-25 Hirotoshi Adachi Transdermal Drug Administration System with Microneedles
JP2015136527A (ja) * 2014-01-23 2015-07-30 凸版印刷株式会社 マイクロニードルユニット
US20170304603A1 (en) * 2015-01-13 2017-10-26 Toppan Printing Co., Ltd. Transdermal administration device
KR20180056411A (ko) * 2016-11-18 2018-05-28 연세대학교 산학협력단 복합 제형이 적용된 마이크로니들 어레이 및 이의 제조방법
KR20190114815A (ko) * 2018-03-30 2019-10-10 랩앤피플주식회사 멀티형 마이크로 니들
KR20200040329A (ko) * 2018-10-08 2020-04-20 연세대학교 산학협력단 다기능 마이크로구조체 패치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4241823A4 *

Also Published As

Publication number Publication date
EP4241823A1 (en) 2023-09-13
JP2023548219A (ja) 2023-11-15
EP4241823A4 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
WO2018093218A1 (ko) 복합 제형이 적용된 마이크로니들 어레이 및 이의 제조방법
KR101830398B1 (ko) 무고통 및 무패치의 슈팅 마이크로구조체
KR101061975B1 (ko) 약물 송달 및 다른 용도를 위한 신속 용해형 마이크로 퍼포레이터를 포함하는 어레이
WO2017150824A1 (ko) 마이크로 니들 및 이의 제조방법
WO2015186940A1 (ko) 마이크로 니들 패치 및 그의 제조 방법
WO2020076017A1 (ko) 다기능 마이크로구조체 패치
KR20170103273A (ko) 마이크로 니들 및 이의 제조방법
US20230330010A1 (en) Microneedle system for the delivery of interferon
WO2022098055A1 (ko) 다중 물질 전달 마이크로 시스템
WO2020075997A1 (ko) 마이크로 구조체
WO2020153802A1 (ko) 3층 이상 구조의 마이크로 니들 및 이의 제조방법
WO2019146884A1 (ko) 마이크로 니들 및 이의 제조방법
WO2020060195A1 (ko) 미세 구조체 기반 약물 주입장치 및 이의 제조 방법
KR20220060470A (ko) 다중 물질 전달 마이크로 시스템
WO2022108185A1 (ko) 자가 인터로킹이 가능한 마이크로 구조체
KR102198437B1 (ko) 슈팅 마이크로 구조체 및 이의 어플리케이터
KR20190117874A (ko) 캔들형 마이크로 구조체 및 이의 제조 방법, 캔들형 마이크로 구조체의 피부 내 삽입 방법
KR20220135131A (ko) 마이크로 구조체 제조용 몰드 지지 유닛 및 이를 포함하는 마이크로 구조체 제조 장치
WO2023085754A1 (ko) 마이크로 구조체 제조용 몰드 유닛
WO2023017907A1 (ko) 마이크로니들 패치
WO2023229079A1 (ko) 마이크로 구조체 제조용 몰드 지지 유닛 및 이를 포함하는 마이크로 구조체 제조 장치
WO2022250199A1 (ko) 다중층 마이크로니들 어레이 및 그 제조 방법
WO2020184909A1 (ko) 3층 이상 구조의 마이크로 니들 및 이의 제조방법
WO2024005439A1 (ko) 마이크로니들 패치 제조 시스템 및 마이크로니들 패치 제조 방법
CN116669702A (zh) 用于递送多种材料的微系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527296

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021889520

Country of ref document: EP

Effective date: 20230605

WWE Wipo information: entry into national phase

Ref document number: 202180089207.9

Country of ref document: CN