WO2022097863A1 - Bridge real-time safety monitoring method, and system thereof - Google Patents

Bridge real-time safety monitoring method, and system thereof Download PDF

Info

Publication number
WO2022097863A1
WO2022097863A1 PCT/KR2021/006630 KR2021006630W WO2022097863A1 WO 2022097863 A1 WO2022097863 A1 WO 2022097863A1 KR 2021006630 W KR2021006630 W KR 2021006630W WO 2022097863 A1 WO2022097863 A1 WO 2022097863A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
potential difference
module
difference data
electrode
Prior art date
Application number
PCT/KR2021/006630
Other languages
French (fr)
Korean (ko)
Inventor
강광운
한만교
강신현
최제홍
조경원
이래철
손호웅
정재권
Original Assignee
에스큐엔지니어링 주식회사
주식회사 큐센텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스큐엔지니어링 주식회사, 주식회사 큐센텍 filed Critical 에스큐엔지니어링 주식회사
Publication of WO2022097863A1 publication Critical patent/WO2022097863A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Definitions

  • the present invention relates to a bridge real-time safety monitoring method and system for detecting and analyzing anomalies in an electric method for inhibiting corrosion of reinforcing bars included in pier bearings or steel pipe piles of bridges in an operating environment of a bridge facility.
  • a bridge real-time safety monitoring method and system for diagnosing the state of a bridge in real time by wirelessly transmitting and receiving a signal from a sensor for measuring an electrical method.
  • Bridges are constructed for the purpose of crossing rivers, valleys, rivers, lakes, coasts, straits, etc. that are obstructed on transportation routes such as roads, railroads, waterways, etc. is a structure that becomes
  • Bridges can be buried using materials such as wood, stone, and steel. In recent years, the tensile strength has been improved by embedding bridges using reinforced concrete with reinforcing bars in concrete.
  • a bridge installed on a river or the sea consists of an upper plate for passage, a pier supporting the upper plate, a pier support located under the pier, and a steel pipe pile supporting the pier support.
  • salt damage may occur due to corrosion of reinforcing bars contained in seawater. For this reason, the durability of the bridge buried with reinforced concrete is seriously reduced, which may pose a great threat to the safety of the structure.
  • Corrosion of rebar can occur by chemical reaction with various materials around it, or by electrochemical reaction.
  • electrolysis action of the leakage current present in the water an electro-chemical corrosion phenomenon in which the reinforcing bar is corroded may occur.
  • an insulating material may be applied to the outside of the reinforcing bar, or a method of forming a coating layer using a packaging material such as vinyl may be used.
  • this method has a disadvantage that the applied insulating material or the pavement coating layer may be damaged, or the reinforcing bar may be exposed due to deterioration according to the use of the bridge.
  • the electric corrosion method is a method to prevent corrosion by flowing an anticorrosive current to the reinforcing bar.
  • the electrical protection method can be classified into an anodic protection and a cathodic protection.
  • the cathodic method is more widely used than the anode method, which is expensive to install.
  • Cathodic protection can be further divided into sacrificial anode type and external power type.
  • the double sacrificial anode method is a method in which a metal having a lower potential as a corrosion target than a reinforcing bar, which is a corrosion protection target, is directly contacted with the reinforcing bar or connected with a conducting wire. Since electrons from the metal, which is a target of corrosion with a low potential, are transferred to a reinforcing bar that is a target of corrosion with a high potential, the reinforcing bar can be protected from corrosion.
  • the sacrificial anode type does not require an external power supply and has the advantage of simple design and installation. Therefore, in order to prevent corrosion of the reinforcing bars of the bridge, the sacrificial anode type is mainly used.
  • the on-site inspection method may not be able to measure or measure the condition of the bridge normally, depending on the weather conditions and environment around the bridge.
  • workers directly inspect the bridge they may be exposed to accidents such as falls and drowning. Therefore, there is a need for a system that can monitor the safety status of the bridge in real time.
  • An object of the present invention is to solve the above problems, and to provide a bridge real-time safety monitoring method and system capable of detecting an abnormality in an operating environment of a bridge facility of an electric method and analyzing it.
  • a bridge real-time safety monitoring method and system capable of diagnosing the state of a bridge in real time by wirelessly transmitting and receiving a signal from a sensor measuring an electrical method.
  • the present invention is to measure the potential difference between the steel material and the anode metal included in the monitoring target bridge to generate potential difference data, and a bridge state measuring unit attached to the monitoring target bridge;
  • a real-time bridge safety monitoring system including a bridge condition monitoring unit that receives the potential difference data, calculates bridge safety grade data of the monitoring target bridge, and is located at a remote location from the monitoring target bridge.
  • Another embodiment of the present invention provides a bridge safety monitoring system, comprising the steps of: (S1), by the bridge state collection module, transmitting a potential difference data acquisition control command to the bridge state measurement control module; (S2) causing the bridge state measurement control module to operate the potential difference sensing module to measure the potential at the first electrode and the potential at the second electrode, respectively; (S3) generating, by the potential difference sensing module, potential difference data from a potential difference between the first electrode and the second electrode; (S4) transmitting, by the bridge state measurement control module, the potential difference data to the bridge state collection module; (S5) the bridge condition analysis module, receiving the potential difference data, calculating the bridge safety grade data; (S6) provides a bridge real-time safety monitoring method comprising the step of outputting, by the bridge state output module, the potential difference data and the bridge safety grade data for each time, each bridge, and each position of the bridge.
  • the present invention reduces the risk of accidents that may occur when checking the condition of the bridge in the field because it is possible to check the degree of corrosion of the bridge by time, by bridge, by pier position of the bridge, at a remote location without directly visiting the bridge It is possible to reduce the bridge inspection cost when visiting the site.
  • the safety grade of the bridge can be checked without being affected by the weather conditions and environment around the bridge, the accuracy of the bridge condition measurement can be improved.
  • FIG. 1 is a block diagram schematically illustrating a bridge safety monitoring system according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a protection module included in a bridge safety monitoring system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart schematically illustrating a bridge safety monitoring method according to an embodiment of the present invention.
  • 1 is a block diagram schematically illustrating a bridge real-time safety monitoring system according to an embodiment of the present invention.
  • 2 is a diagram schematically illustrating a protection module included in a real-time bridge safety monitoring system according to an embodiment of the present invention.
  • the real-time bridge safety monitoring system 100 may include a bridge condition measurement unit 110 and a bridge condition monitoring unit 120 .
  • the bridge state measurement unit 110 may measure a potential difference between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge. For example, it is possible to measure the potential difference between the steel material (ST1) and the anode metal (ST2) included in the pier bearing of the monitoring target bridge or the steel pipe pile.
  • the steel material ST1 included in the monitoring target bridge may be a steel structure when it is a steel bridge, and is not limited thereto, and may be any one of all steels included in the bridge.
  • the anode metal ST2 may be a metal electrically connected to the steel material ST1 included in the monitoring target bridge to prevent corrosion from occurring in the steel material ST1 included in the monitoring target bridge due to salinity or the like.
  • the anode metal ST2 is a sacrificial anode type that acts as an anode to supply electrons to the steel material ST1 included in the monitoring target bridge, and can protect the steel material ST1 included in the monitoring target bridge.
  • the anode metal ST2 may be an alloy metal of any one of magnesium (Mg), aluminum (Al), and zinc (Zn), but is not limited thereto, and may be another metal having a high ionization tendency.
  • the bridge state measuring unit 110 may be attached to the monitoring target bridge or located adjacent to the monitoring target bridge.
  • the bridge safety monitoring system 100 may include one or more bridge condition measurement units 110 , and each bridge condition measurement unit 110 is attached to various positions of one or more bridges. can be
  • the bridge state measurement unit 110 includes a metal contact electrode module 111 , a potential difference detection module 112 , a bridge state measurement control module 113 , a first communication module 114 , and a protection module 115 . may include
  • the metal contact electrode module 111 may be in electrical contact with the steel material ST1 and the anode metal ST2 included in the monitoring target bridge, respectively.
  • the metal contact electrode module 111 may include a first electrode 111a and a second electrode 111b.
  • the first electrode 111a may be in electrical contact with the steel material ST1 included in the monitoring target bridge.
  • the second electrode 111b may be in electrical contact with the anode metal ST2 .
  • the potential difference detection module 112 may measure a potential difference between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge.
  • the potential difference sensing module 112 may be electrically connected to the metal contact electrode module 111 . In addition, the potential difference sensing module 112 may be electrically connected to the first electrode 111a and the second electrode 111b, respectively.
  • the potential difference sensing module 112 detects the potential difference between the steel material ST1 included in the monitoring target bridge in electrical contact with the first electrode 111a and the anode metal ST2 in electrical contact with the second electrode 111b can be measured
  • the potential difference detection module 112 may be connected to the bridge state measurement control module 113 . And the potential difference sensing module 112 calculates the potential difference between the first electrode 111a and the second electrode 111b, and then the potential difference data between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge ( PD) may be generated and transmitted to the bridge condition measurement control module 113 .
  • the bridge state measurement control module 113 may acquire the potential difference data PD according to a control command.
  • the bridge condition measurement control module 113 may receive a potential difference data acquisition control command PDRC from the bridge condition monitoring unit 120 . After receiving the potential difference data acquisition control command (PDRC), the bridge state measurement control module 113 operates the potential difference detection module 112 to determine the potential at the first electrode 111a and the potential at the second electrode 111b. Each potential can be measured. The bridge state measurement control module 113 may receive and acquire the potential difference data PD between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge, and this is transmitted to the first communication module 114 . can be transmitted
  • the bridge state measurement control module 113 operates the potential difference detection module 112 at each set period to measure the potential at the first electrode 111a and the potential at the second electrode 111b, respectively.
  • the potential difference data PD between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge may be transmitted and acquired.
  • the potential difference detection module 112 and the bridge state measurement control module 113 may each include a Universal Asynchronous Receiver/Transmitter (UART), and can transmit and receive potential difference data (PD) using them. .
  • UART Universal Asynchronous Receiver/Transmitter
  • the first communication module 114 may transmit/receive data and control commands between the bridge condition measurement unit 110 and the bridge condition monitoring unit 120 .
  • the first communication module 114 may include a universal unsynchronized transceiver (UART), and may transmit/receive data and control commands between the bridge state measurement control modules 113 using this.
  • UART universal unsynchronized transceiver
  • the first communication module 114 may transmit the potential difference data PD to the bridge condition monitoring unit 120 using a wireless communication protocol, and a potential difference data acquisition control command (PDRC) from the bridge condition monitoring unit 120 .
  • PDRC potential difference data acquisition control command
  • the wireless communication protocol may be, for example, Long Tern Evolution (LTE).
  • the first communication module 114 may include an LTE modem 114a , and the LTE modem 114a may be connected to the bridge condition measurement control module 113 .
  • the LTE modem 114a may be connected to an LTE network using an LTE protocol.
  • the first communication module 114 may transmit the potential difference data PD to the bridge condition monitoring unit 120 by using a LoRa (Long Range) protocol, and a control command for obtaining potential difference data from the bridge condition monitoring unit 120 . (PDRC) can be received.
  • LoRa Long Range
  • PDRC control command for obtaining potential difference data from the bridge condition monitoring unit 120 .
  • the first communication module 114 may include a LoRa modem 114b , and the LoRa modem 114b may be connected to the bridge condition measurement control module 113 .
  • the bridge safety monitoring system 100 may further include a LoRa gateway module 130 .
  • the LoRa gateway module 130 may transmit/receive data and control commands between the bridge condition measurement unit 110 and the bridge condition monitoring unit 120 .
  • the LoRa gateway module 130 may transmit a potential difference data acquisition control command PDRC to the first communication module 114 . Also, the LoRa gateway module 130 may receive the potential difference data PD from the first communication module 114 .
  • the LoRa gateway module 130 may transmit the potential difference data PD to the bridge condition monitoring unit 120 . Also, the LoRa gateway module 130 may receive a potential difference data acquisition control command PDRC from the bridge condition monitoring unit 120 .
  • the LoRa gateway module 130 may be located within a range of an effective wireless communication distance in a bridge to be monitored, for example, within a range of 16 km in a straight line.
  • the LoRa gateway module 130 may be connected to a wired communication modem MODEM1 .
  • the LoRa gateway module 130 may be connected to the wired communication modem MODEM1 through wired Ethernet or Wi-Fi.
  • the wired communication modem MODEM1 may be connected to a wide area network (WAN) through a local area network (LAN).
  • WAN wide area network
  • LAN local area network
  • the LoRa gateway module 130 may be connected to a wireless communication modem (MODEM2).
  • the wireless communication modem (MODEM2) may be connected to the LTE network by using the LTE protocol.
  • the protection module 115 accommodates the potential difference detection module 112 , the bridge condition measurement control module 113 , and the first communication module 114 , and can protect these configurations.
  • the protection module 115 may include a module accommodation unit 116a, a bridge attachment unit 116b, a bridge fixing unit 116c, and an electrode connection port 116d.
  • a potential difference detection module 112 , a bridge state measurement control module 113 , and a first communication module 114 may be located inside the module accommodating unit 116a .
  • the module accommodation unit 115 may have a double waterproof structure to prevent corrosion by seawater.
  • the bridge attachment unit 116b may be coupled to the module accommodating unit 116a, and may be attached to a bridge subject to safety condition monitoring.
  • the bridge fixing unit 116c may be fixed between the bridge attachment unit 116b and the bridge to be monitored for safety conditions.
  • the bridge fixing unit 116c may be formed of, for example, a bolt.
  • the electrode connection port 116d is electrically connected between the metal contact electrode module 111 positioned outside the module accommodating unit 116a and the potential difference sensing module 112 positioned inside the module accommodating unit 116a.
  • the bridge condition monitoring unit 120 may monitor the potential difference between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge.
  • the bridge condition monitoring unit 120 may be located at a remote location from the monitoring target bridge.
  • the bridge condition monitoring unit 120 may include a bridge condition collection module 121 , a bridge condition analysis module 122 , a bridge condition output module 123 , and a second communication module 124 .
  • the bridge state collection module 121 may collect or receive state information of a bridge to be monitored.
  • the bridge state collection module 121 may transmit a potential difference data acquisition control command PDRC to the bridge state measurement control module 113 .
  • the bridge state collection module 121 may receive the potential difference data PD obtained by the bridge state measurement control module 113 .
  • the bridge state collection module 121 may receive the potential difference data PD obtained by the bridge state measurement control module 113 every period set from the potential difference detection module 112 .
  • the bridge state collection module 121 may store the transmitted potential difference data PD, and may include a storage device for this purpose.
  • Storage devices include hard disk drives, optical disc drives, magnetic tapes, floppy disks, flash memory, solid state drives (SSDs), and the like. It may be a non-volatile memory device or a volatile memory device such as a random access memory (RAM), but is not limited thereto and may be a different type of memory device.
  • RAM random access memory
  • the bridge state collection module 121 may store the potential difference data PD in a file or database format.
  • the bridge state analysis module 122 may analyze the state of a bridge to be monitored.
  • the bridge state analysis module 122 may learn in advance the bridge safety grade data BSL according to the potential difference data PD.
  • the bridge state analysis module 122 may receive the potential difference data PD collected by the bridge state collection module 121 as input, and calculate the bridge safety grade data BSL.
  • the bridge condition analysis module 122 may calculate the bridge safety class data BSL from the potential difference data PD using, for example, a neural network or a Naive Bayes Classifier.
  • the bridge condition analysis module 122 receives the bridge safety rating data (BSL). It can be calculated by classifying it into the first grade (L1) indicating the state in which the steel is completely protected. If the potential difference is 820mV or more and less than 1100mV, the bridge safety grade data (BSL) can be calculated by classifying it into the second grade (L2) indicating a state in which the force is properly protected.
  • the potential difference is 700mV or more and less than 820mV, it can be calculated by classifying the bridge safety class data (BSL) into a third class (L3) indicating a state in which the force is partially protected. If the potential difference is less than 700 mV, the bridge safety class data (BSL) can be calculated by classifying it into the fourth class (L4), which indicates a state in which the steel is not protected by an electrical method.
  • the bridge state output module 123 may output the state of a bridge to be monitored.
  • the bridge state output module 123 may output the potential difference data PD and the bridge safety grade data BSL for each time, each bridge, and each position of the bridge.
  • the bridge state output module 123 may output the potential difference data PD and the bridge safety grade data BSL using HTTP or another protocol.
  • a web browser or other application installed in the user's terminal device of the bridge real-time safety monitoring system 100 is output from the bridge status output module 123 output by the bridge status output module 123
  • Potential difference data (PD) and bridge safety class data (BSL) can be transmitted and displayed.
  • the bridge state output module 123 from the outside of the real-time bridge safety monitoring system 100 according to an embodiment of the present invention, the potential difference data (PD) for each time, each bridge, and each position of the bridge, and the bridge safety grade
  • An application programming interface (API) capable of acquiring data (BSL) may be provided.
  • the second communication module 124 may transmit/receive data and control commands between the bridge condition measurement unit 110 and the bridge condition monitoring unit 120 .
  • the second communication module 124 may receive the potential difference data acquisition control command PDRC from the bridge state collection module 121 , and then transmit it to the first communication module 114 .
  • the second communication module 124 may transmit it to the bridge state collection module 121 .
  • the second communication module 124 may transmit a potential difference data acquisition control command (PDRC) to the LoRa gateway module 130 . Also, the second communication module 124 may receive the potential difference data PD from the LoRa gateway module 130 .
  • PDRC potential difference data acquisition control command
  • FIG. 3 is a flowchart schematically illustrating a bridge safety monitoring method according to an embodiment of the present invention.
  • the first step (S1) of the bridge safety monitoring method is a step in which the bridge state collection module 121 transmits a control command.
  • the bridge state collection module 121 may transmit a potential difference data acquisition control command PDRC to the bridge state measurement control module 113 .
  • the second step (S2) is a step in which the bridge state measurement control module 113 operates the potential difference detection module 112 .
  • the bridge state measurement control module 113 After receiving the potential difference data acquisition control command (PDRC), the bridge state measurement control module 113 operates the potential difference detection module 112 to determine the potential at the first electrode 111a and the potential at the second electrode 111b. Each potential can be measured.
  • PDRC potential difference data acquisition control command
  • the third step S3 is a step in which the potential difference sensing module 112 generates the potential difference data PD.
  • the potential difference sensing module 112 may generate potential difference data PD from a potential difference between the first electrode 111a and the second electrode 111b.
  • the fourth step (S4) is a step in which the bridge condition measurement control module 113 transmits data.
  • the bridge state measurement control module 113 may transmit the potential difference data PD to the bridge state collection module 121 .
  • the bridge state collection module 121 may classify and store the transmitted potential difference data PD by time, by bridge, and by position of the bridge.
  • the fifth step (S5) is a step in which the bridge condition analysis module 122 analyzes the condition of the bridge.
  • the bridge state analysis module 122 may receive the potential difference data PD stored in the bridge state collection module 121 and calculate the bridge safety grade data BSL.
  • the sixth step (S6) is a step in which the bridge state output module 123 outputs the state of the bridge.
  • the bridge state output module 123 may output the potential difference data PD and the bridge safety grade data BSL for each time, each bridge, and each position of the bridge.
  • the web browser or other application installed in the user's terminal device transmits the potential difference data PD output from the bridge state output module 123 output by the bridge state output module 123, and the bridge safety rating data (BSL) can be received and displayed.
  • BSL bridge safety rating data

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

The present invention relates to a real-time bridge safety diagnostic monitoring method and system which wirelessly transmits/receives signals to/from a sensor for electric anti-corrosion measurement to diagnose the state of a bridge. An embodiment of the present invention provides a real-time bridge safety monitoring system comprising: a bridge state measurement unit which measures a potential difference between a steel member and an anode metal included in a bridge to be monitored, so as to generate potential difference data, and is attached to the bridge to be monitored; and a bridge state monitoring unit which receives an input of the potential difference data to calculate bridge safety grade data of the bridge to be monitored, and is located remotely from the bridge to be monitored.

Description

교량 실시간 안전 모니터링 방법 및 시스템Bridge real-time safety monitoring method and system
본 발명은 교량의 교각 받침 또는 강관 파일에 포함된 철근의 부식을 억제하기 위한 전기 방식 방법의 교량 시설 운영 환경에서, 이상을 감지하고 분석하는 교량 실시간 안전 모니터링 방법 및 시스템에 관한 것이다.The present invention relates to a bridge real-time safety monitoring method and system for detecting and analyzing anomalies in an electric method for inhibiting corrosion of reinforcing bars included in pier bearings or steel pipe piles of bridges in an operating environment of a bridge facility.
더욱 상세하게는, 전기 방식을 측정하는 센서로부터 무선으로 신호를 송수신하여 교량의 상태를 실시간으로 진단하는, 교량 실시간 안전 모니터링 방법 및 시스템에 관한 것이다.More particularly, it relates to a bridge real-time safety monitoring method and system for diagnosing the state of a bridge in real time by wirelessly transmitting and receiving a signal from a sensor for measuring an electrical method.
교량은, 도로, 철도, 수로 등의 운송로 상에서 장애가 되는 하천, 계곡, 강, 호수, 해안, 해협 등을 건너거나, 다른 도로, 철도, 수로, 가옥, 농경지, 시가지 등을 통과할 목적으로 건설되는 구조물이다.Bridges are constructed for the purpose of crossing rivers, valleys, rivers, lakes, coasts, straits, etc. that are obstructed on transportation routes such as roads, railroads, waterways, etc. is a structure that becomes
교량은 목재, 돌, 강철 등의 재료를 이용하여 매설할 수 있다. 최근에는 콘크리트 안에 철근을 넣은 철근 콘크리트를 이용하여 교량을 매설함으로써, 인장 강도를 향상하고 있다.Bridges can be buried using materials such as wood, stone, and steel. In recent years, the tensile strength has been improved by embedding bridges using reinforced concrete with reinforcing bars in concrete.
철근 콘크리트로 매설한 교량에 있어서 그 내구성에 가장 큰 영향을 미치는 요인은, 콘크리트의 내부에 배근 된 철근에서 발생하는 부식이다.In a bridge built with reinforced concrete, the factor that has the greatest influence on the durability of the bridge is corrosion occurring in the reinforced steel reinforced inside the concrete.
강 또는 바다 상에 설치되는 교량은, 통행을 위한 상판과, 상판을 지지하는 교각과, 교각의 하부에 위치하는 교각 받침과, 교각 받침을 지지하는 강관 파일로 구성된다. 이중 교각 받침과 강관 파일은 해수 등에 포함된 염분에 의해 철근이 부식되어 염해가 발생할 수 있다. 이 때문에 철근 콘크리트로 매설한 교량의 내구성이 심각하게 저하되어, 구조물의 안전에 큰 위협을 줄 수 있다.A bridge installed on a river or the sea consists of an upper plate for passage, a pier supporting the upper plate, a pier support located under the pier, and a steel pipe pile supporting the pier support. In double pier bearings and steel pipe piles, salt damage may occur due to corrosion of reinforcing bars contained in seawater. For this reason, the durability of the bridge buried with reinforced concrete is seriously reduced, which may pose a great threat to the safety of the structure.
철근의 부식은 그 주위의 여러 물질과 화학적 반응을 하거나, 전기 화학적 반응을 하여 일어날 수 있다. 특히, 물 속에 존재하는 누설 전류의 전기 분해 작용에 의해, 철근이 부식하는 전식(電蝕, electro-chemical corrosion) 현상이 발생할 수 있다.Corrosion of rebar can occur by chemical reaction with various materials around it, or by electrochemical reaction. In particular, due to the electrolysis action of the leakage current present in the water, an electro-chemical corrosion phenomenon in which the reinforcing bar is corroded may occur.
교량의 전식을 방지하기 위하여, 다양한 방식(防蝕, anti-corrosion) 방법을 이용할 수 있다. 예를 들어, 철근의 외부에 절연 물질을 도포하거나, 비닐 등의 포장재를 이용하여 피복층을 만드는 방법을 이용할 수 있다.In order to prevent corrosion of the bridge, various anti-corrosion methods can be used. For example, an insulating material may be applied to the outside of the reinforcing bar, or a method of forming a coating layer using a packaging material such as vinyl may be used.
그러나 이와 같은 방법은 도포된 절연 물질 또는 포장된 피복층이 손상되거나, 교량 사용에 따라 열화가 발생하여 철근이 노출될 수 있는 단점을 가진다.However, this method has a disadvantage that the applied insulating material or the pavement coating layer may be damaged, or the reinforcing bar may be exposed due to deterioration according to the use of the bridge.
전기 방식 방법은 철근에 방식 전류를 흘려 보내 전식을 방지하는 방법이다. 전기 방식 방법은 양극 방식(anodic protection)과 음극 방식(cathodic protection)으로 분류할 수 있다. 이중 설치 비용이 많이 드는 양극 방식 보다는 음극 방식을 많이 이용하고 있다.The electric corrosion method is a method to prevent corrosion by flowing an anticorrosive current to the reinforcing bar. The electrical protection method can be classified into an anodic protection and a cathodic protection. The cathodic method is more widely used than the anode method, which is expensive to install.
음극 방식은 다시 희생 양극식과 외부 전원식으로 분류할 수 있다. 이중 희생 양극식은, 방식 대상체인 철근 보다 피방식 대상체인 전위가 낮은 금속을 철근에 직접 접촉시키거나, 도선으로 연결하는 방식이다. 저전위의 피방식 대상체인 금속에서 나오는 전자가, 고전위의 방식 대상체인 철근으로 전달되므로, 철근을 부식으로부터 보호할 수 있다. 또한 희생 양극식은 외부 전원이 필요하지 않고, 설계와 설치가 간단한 장점을 가진다. 따라서, 교량의 철근 부식을 방지하기 위하여, 희생 양극식을 주로 이용하고 있다.Cathodic protection can be further divided into sacrificial anode type and external power type. The double sacrificial anode method is a method in which a metal having a lower potential as a corrosion target than a reinforcing bar, which is a corrosion protection target, is directly contacted with the reinforcing bar or connected with a conducting wire. Since electrons from the metal, which is a target of corrosion with a low potential, are transferred to a reinforcing bar that is a target of corrosion with a high potential, the reinforcing bar can be protected from corrosion. In addition, the sacrificial anode type does not require an external power supply and has the advantage of simple design and installation. Therefore, in order to prevent corrosion of the reinforcing bars of the bridge, the sacrificial anode type is mainly used.
이와 같이 전기 방식 방법으로 운영하는 교량은, 상시적으로 교량의 상태를 측정하여 안전 상태를 확인할 필요가 있다. 교량의 안전 상태를 측정하는 계측기가 폭우, 낙뢰, 태풍 등으로 손상이 발생할 수 있으므로, 현장에 직접 방문하여 무정전 전원 장치와 연결된 계측기의 상태를 측정해야 한다. As such, it is necessary to check the safety status of the bridge operated by the electric method by constantly measuring the status of the bridge. Since the instrument that measures the safety condition of a bridge may be damaged by heavy rain, lightning, typhoon, etc., it is necessary to directly visit the site and measure the condition of the instrument connected to the uninterruptible power supply.
그러나 현장 점검 방식은 교량 주위의 기상 조건 및 환경에 따라, 교량의 상태를 측정하지 못하거나 정상적으로 측정하지 못할 수 있다. 또한 작업자가 교량에서 직접 점검을 하기 때문에, 낙상, 익사 등의 사고에 노출될 수 있다. 따라서 교량의 안전 상태를 실시간으로 모니터링 할 수 있는 시스템이 필요하다.However, the on-site inspection method may not be able to measure or measure the condition of the bridge normally, depending on the weather conditions and environment around the bridge. In addition, since workers directly inspect the bridge, they may be exposed to accidents such as falls and drowning. Therefore, there is a need for a system that can monitor the safety status of the bridge in real time.
본 발명의 목적은 상기와 같은 문제점을 해결하기 위한 것으로, 전기 방식 방법의 교량 시설 운영 환경에서 이상을 감지할 수 있고, 이를 분석할 수 있는 교량 실시간 안전 모니터링 방법 및 시스템을 제공하는 것이다.An object of the present invention is to solve the above problems, and to provide a bridge real-time safety monitoring method and system capable of detecting an abnormality in an operating environment of a bridge facility of an electric method and analyzing it.
더욱 상세하게는 전기 방식을 측정하는 센서로부터 무선으로 신호를 송수신하여 교량의 상태를 실시간 진단할 수 있는 교량 실시간 안전 모니터링 방법 및 시스템을 제공하는 것이다.More specifically, it is to provide a bridge real-time safety monitoring method and system capable of diagnosing the state of a bridge in real time by wirelessly transmitting and receiving a signal from a sensor measuring an electrical method.
상기와 같은 목적을 달성하기 위하여 본 발명은, 모니터링 대상 교량에 포함된 강재와 양극 금속 사이의 전위차를 측정하여 전위차 데이터를 생성하고, 상기 모니터링 대상 교량에 부착되는 교량 상태 측정부와; 상기 전위차 데이터를 입력 받아 상기 모니터링 대상 교량의 교량 안전 등급 데이터를 산출하고, 상기 모니터링 대상 교량에서 원격지에 위치하는 교량 상태 모니터링부를 포함하는 교량 실시간 안전 모니터링 시스템을 제공한다.In order to achieve the above object, the present invention is to measure the potential difference between the steel material and the anode metal included in the monitoring target bridge to generate potential difference data, and a bridge state measuring unit attached to the monitoring target bridge; Provided is a real-time bridge safety monitoring system including a bridge condition monitoring unit that receives the potential difference data, calculates bridge safety grade data of the monitoring target bridge, and is located at a remote location from the monitoring target bridge.
본 발명의 다른 실시예는, 교량 안전 모니터링 시스템에 있어서, (S1) 교량 상태 수집 모듈이, 전위차 데이터 획득 제어 명령을 교량 상태 측정 제어 모듈로 전송하는 단계와; (S2) 상기 교량 상태 측정 제어 모듈이, 전위차 감지 모듈을 작동시켜 제 1 전극에서의 전위와, 제 2 전극에서의 전위를 각각 측정하게 하는 단계와; (S3) 상기 전위차 감지 모듈이, 상기 제 1 전극과 상기 제 2 전극 사이의 전위 차이로부터 전위차 데이터를 생성하는 단계와; (S4) 상기 교량 상태 측정 제어 모듈이, 상기 전위차 데이터를 상기 교량 상태 수집 모듈로 전송하는 단계와; (S5) 교량 상태 분석 모듈이, 상기 전위차 데이터를 입력 받아, 교량 안전 등급 데이터를 산출하는 단계와; (S6) 교량 상태 출력 모듈이, 시간 별, 교량 별, 교량의 위치 별로 상기 전위차 데이터와, 상기 교량 안전 등급 데이터를 출력하는 단계를 포함하는 교량 실시간 안전 모니터링 방법을 제공한다.Another embodiment of the present invention provides a bridge safety monitoring system, comprising the steps of: (S1), by the bridge state collection module, transmitting a potential difference data acquisition control command to the bridge state measurement control module; (S2) causing the bridge state measurement control module to operate the potential difference sensing module to measure the potential at the first electrode and the potential at the second electrode, respectively; (S3) generating, by the potential difference sensing module, potential difference data from a potential difference between the first electrode and the second electrode; (S4) transmitting, by the bridge state measurement control module, the potential difference data to the bridge state collection module; (S5) the bridge condition analysis module, receiving the potential difference data, calculating the bridge safety grade data; (S6) provides a bridge real-time safety monitoring method comprising the step of outputting, by the bridge state output module, the potential difference data and the bridge safety grade data for each time, each bridge, and each position of the bridge.
본 발명은, 교량을 직접 방문하지 않고 원격지에서, 시간별, 교량별, 교량의 교각 위치 별로, 교량의 전식 정도를 확인할 수 있기 때문에, 현장에서 교량의 상태를 확인할 때 발생할 수 있는 사고의 위험을 줄일 수 있고, 현장을 방문할 때의 교량 검사 비용을 절감할 수 있다.The present invention reduces the risk of accidents that may occur when checking the condition of the bridge in the field because it is possible to check the degree of corrosion of the bridge by time, by bridge, by pier position of the bridge, at a remote location without directly visiting the bridge It is possible to reduce the bridge inspection cost when visiting the site.
또한 교량 주위의 기상 조건 및 환경에 영향을 받지 않고 교량의 안전 등급을 확인할 수 있기 때문에, 교량 상태 측정의 정확도를 향상할 수 있다.In addition, since the safety grade of the bridge can be checked without being affected by the weather conditions and environment around the bridge, the accuracy of the bridge condition measurement can be improved.
도 1은 본 발명의 일 실시 예에 따른 교량 안전 모니터링 시스템을 간략하게 나타낸 블록도이다.1 is a block diagram schematically illustrating a bridge safety monitoring system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따른 교량 안전 모니터링 시스템에 포함된 보호 모듈을 간략하게 나타낸 도면이다.2 is a diagram schematically illustrating a protection module included in a bridge safety monitoring system according to an embodiment of the present invention.
도 3은 본 발명의 일 실시 예에 따른 교량 안전 모니터링 방법을 간략하게 나타낸 순서도이다.3 is a flowchart schematically illustrating a bridge safety monitoring method according to an embodiment of the present invention.
본 발명은 취지를 벗어나지 않는 한도에서 다양하게 변경하여 실시할 수 있고, 하나 이상의 실시 예를 가질 수 있다. 그리고 본 발명에서 “발명을 실시하기 위한 구체적인 내용” 및 “도면” 등에 기재한 실시 예는, 본 발명을 구체적으로 설명하기 위한 예시이며, 본 발명의 권리 범위를 제한하거나 한정하는 것은 아니다.The present invention may be practiced with various modifications without departing from the spirit, and may have one or more embodiments. In the present invention, the embodiments described in “specific content for carrying out the invention” and “drawings” are examples for describing the present invention in detail, and do not limit or limit the scope of the present invention.
따라서, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자가, 본 발명의 “발명을 실시하기 위한 구체적인 내용” 및 “도면” 등으로부터 용이하게 유추할 수 있는 것은, 본 발명의 범위에 속하는 것으로 해석할 수 있다.Accordingly, those with ordinary knowledge in the technical field to which the present invention pertains can easily infer from "specific contents for carrying out the invention" and "drawings" of the present invention are interpreted as belonging to the scope of the present invention. can do.
또한, 도면에 표시한 각 구성 요소들의 크기와 형태는, 실시 예의 설명을 위해 과장되어 표현한 것 일 수 있으며, 실제로 실시되는 발명의 크기와 형태를 한정하는 것은 아니다.In addition, the size and shape of each component shown in the drawings may be exaggerated for the description of the embodiment, and do not limit the size and shape of the actually implemented invention.
본 발명의 명세서에서 사용되는 용어를 특별히 정의하지 않는 이상, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 것과 동일한 의미를 가질 수 있다.Unless a term used in the specification of the present invention is specifically defined, it may have the same meaning as commonly understood by a person of ordinary skill in the art to which the present invention belongs.
이하, 도면을 참조하여 본 발명의 실시 예를 상세하게 설명한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
도 1은 본 발명의 일 실시 예에 따른 교량 실시간 안전 모니터링 시스템을 간략하게 나타낸 블록도이다. 도 2는 본 발명의 일 실시 예에 따른 교량 실시간 안전 모니터링 시스템에 포함된 보호 모듈을 간략하게 나타낸 도면이다.1 is a block diagram schematically illustrating a bridge real-time safety monitoring system according to an embodiment of the present invention. 2 is a diagram schematically illustrating a protection module included in a real-time bridge safety monitoring system according to an embodiment of the present invention.
본 발명의 일 실시 예에 따른 교량 실시간 안전 모니터링 시스템(100)은, 교량 상태 측정부(110)와 교량 상태 모니터링부(120)를 포함할 수 있다.The real-time bridge safety monitoring system 100 according to an embodiment of the present invention may include a bridge condition measurement unit 110 and a bridge condition monitoring unit 120 .
교량 상태 측정부(110)는, 모니터링 대상 교량에 포함된 강재(ST1)와 양극 금속(ST2) 사이의 전위차를 측정할 수 있다. 예를 들어, 모니터링 대상 교량의 교각 받침 또는 강관 파일에 포함된 강재(ST1)와 양극 금속(ST2) 사이의 전위차를 측정할 수 있다.The bridge state measurement unit 110 may measure a potential difference between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge. For example, it is possible to measure the potential difference between the steel material (ST1) and the anode metal (ST2) included in the pier bearing of the monitoring target bridge or the steel pipe pile.
모니터링 대상 교량에 포함된 강재(ST1)는, 강 교량(steel bridge)일 때 철골 구조물일 수 있으며, 어느 것에 한정하지 않고 교량에 포함된 모든 강철 중 어느 하나일 수 있다.The steel material ST1 included in the monitoring target bridge may be a steel structure when it is a steel bridge, and is not limited thereto, and may be any one of all steels included in the bridge.
양극 금속(ST2)은, 염분 등에 의해 모니터링 대상 교량에 포함된 강재(ST1)에서 전식이 발생하는 것을 방지하기 위하여, 모니터링 대상 교량에 포함된 강재(ST1)와 전기적으로 연결된 금속일 수 있다. 양극 금속(ST2)은 양극(anode)으로 작용하여 모니터링 대상 교량에 포함된 강재(ST1)에 전자를 공급하는 희생 양극식으로, 모니터링 대상 교량에 포함된 강재(ST1)를 방식 할 수 있다. 양극 금속(ST2)은 마그네슘(Mg), 알루미늄(Al), 아연(Zn) 중 어느 하나의 합금 금속일 수 있으며, 이에 한정하지 않고 이온화 경향(ionization tendency)이 높은 다른 금속일 수도 있다.The anode metal ST2 may be a metal electrically connected to the steel material ST1 included in the monitoring target bridge to prevent corrosion from occurring in the steel material ST1 included in the monitoring target bridge due to salinity or the like. The anode metal ST2 is a sacrificial anode type that acts as an anode to supply electrons to the steel material ST1 included in the monitoring target bridge, and can protect the steel material ST1 included in the monitoring target bridge. The anode metal ST2 may be an alloy metal of any one of magnesium (Mg), aluminum (Al), and zinc (Zn), but is not limited thereto, and may be another metal having a high ionization tendency.
교량 상태 측정부(110)는 모니터링 대상 교량에 부착되거나, 모니터링 대상 교량에 인접하여 위치할 수 있다.The bridge state measuring unit 110 may be attached to the monitoring target bridge or located adjacent to the monitoring target bridge.
또한 본 발명의 일 실시 예에 따른 교량 안전 모니터링 시스템(100)은 하나 이상의 교량 상태 측정부(110)를 포함할 수 있고, 각각의 교량 상태 측정부(110)는 하나 이상의 교량의 여러 위치에 부착될 수 있다.In addition, the bridge safety monitoring system 100 according to an embodiment of the present invention may include one or more bridge condition measurement units 110 , and each bridge condition measurement unit 110 is attached to various positions of one or more bridges. can be
교량 상태 측정부(110)는, 금속 접촉 전극 모듈(111)과, 전위차 감지 모듈(112)과, 교량 상태 측정 제어 모듈(113)과, 제 1 통신 모듈(114), 보호 모듈(115)을 포함할 수 있다.The bridge state measurement unit 110 includes a metal contact electrode module 111 , a potential difference detection module 112 , a bridge state measurement control module 113 , a first communication module 114 , and a protection module 115 . may include
금속 접촉 전극 모듈(111)은, 모니터링 대상 교량에 포함된 강재(ST1) 및 양극 금속(ST2)과 각각 전기적으로 접촉할 수 있다.The metal contact electrode module 111 may be in electrical contact with the steel material ST1 and the anode metal ST2 included in the monitoring target bridge, respectively.
금속 접촉 전극 모듈(111)은 제 1 전극(111a)과 제 2 전극(111b)을 포함할 수 있다.The metal contact electrode module 111 may include a first electrode 111a and a second electrode 111b.
제 1 전극(111a)은 모니터링 대상 교량에 포함된 강재(ST1)와 전기적으로 접촉할 수 있다.The first electrode 111a may be in electrical contact with the steel material ST1 included in the monitoring target bridge.
제 2 전극(111b)은 양극 금속(ST2)과 전기적으로 접촉할 수 있다.The second electrode 111b may be in electrical contact with the anode metal ST2 .
전위차 감지 모듈(112)은, 모니터링 대상 교량에 포함된 강재(ST1)와 양극 금속(ST2) 사이의 전위차를 측정할 수 있다.The potential difference detection module 112 may measure a potential difference between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge.
전위차 감지 모듈(112)은 금속 접촉 전극 모듈(111)과 전기적으로 연결될 수 있다. 그리고 전위차 감지 모듈(112)은 제 1 전극(111a) 및 제 2 전극(111b)과 각각 전기적으로 연결될 수 있다.The potential difference sensing module 112 may be electrically connected to the metal contact electrode module 111 . In addition, the potential difference sensing module 112 may be electrically connected to the first electrode 111a and the second electrode 111b, respectively.
전위차 감지 모듈(112)은 제 1 전극(111a)과 전기적으로 접촉하는 모니터링 대상 교량에 포함된 강재(ST1)와, 제 2 전극(111b)과 전기적으로 접촉하는 양극 금속(ST2) 사이의 전위차를 측정할 수 있다.The potential difference sensing module 112 detects the potential difference between the steel material ST1 included in the monitoring target bridge in electrical contact with the first electrode 111a and the anode metal ST2 in electrical contact with the second electrode 111b can be measured
전위차 감지 모듈(112)은 교량 상태 측정 제어 모듈(113)과 연결될 수 있다. 그리고 전위차 감지 모듈(112)은 제 1 전극(111a)과 제 2 전극(111b) 사이의 전위차를 계산한 후, 모니터링 대상 교량에 포함된 강재(ST1)와 양극 금속(ST2) 사이의 전위차 데이터(PD)를 생성하여, 교량 상태 측정 제어 모듈(113)로 전송할 수 있다.The potential difference detection module 112 may be connected to the bridge state measurement control module 113 . And the potential difference sensing module 112 calculates the potential difference between the first electrode 111a and the second electrode 111b, and then the potential difference data between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge ( PD) may be generated and transmitted to the bridge condition measurement control module 113 .
교량 상태 측정 제어 모듈(113)은, 제어 명령에 따라 전위차 데이터(PD) 를 획득할 수 있다.The bridge state measurement control module 113 may acquire the potential difference data PD according to a control command.
교량 상태 측정 제어 모듈(113)은 교량 상태 모니터링부(120)로부터, 전위차 데이터 획득 제어 명령(PDRC)을 전송 받을 수 있다. 교량 상태 측정 제어 모듈(113)은 전위차 데이터 획득 제어 명령(PDRC)을 전송 받은 후, 전위차 감지 모듈(112)을 작동시켜 제 1 전극(111a)에서의 전위와, 제 2 전극(111b)에서의 전위를 각각 측정하게 할 수 있다. 교량 상태 측정 제어 모듈(113)은, 모니터링 대상 교량에 포함된 강재(ST1)와 양극 금속(ST2) 사이의 전위차 데이터(PD)를 전송 받아 획득할 수 있고, 이를 제 1 통신 모듈(114)로 전송할 수 있다.The bridge condition measurement control module 113 may receive a potential difference data acquisition control command PDRC from the bridge condition monitoring unit 120 . After receiving the potential difference data acquisition control command (PDRC), the bridge state measurement control module 113 operates the potential difference detection module 112 to determine the potential at the first electrode 111a and the potential at the second electrode 111b. Each potential can be measured. The bridge state measurement control module 113 may receive and acquire the potential difference data PD between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge, and this is transmitted to the first communication module 114 . can be transmitted
또는 교량 상태 측정 제어 모듈(113)은 설정된 주기 마다, 전위차 감지 모듈(112)을 작동시켜 제 1 전극(111a)에서의 전위와, 제 2 전극(111b)에서의 전위를 각각 측정하게 한 후, 모니터링 대상 교량에 포함된 강재(ST1)와 양극 금속(ST2) 사이의 전위차 데이터(PD)를 전송 받아 획득할 수 있다.Alternatively, the bridge state measurement control module 113 operates the potential difference detection module 112 at each set period to measure the potential at the first electrode 111a and the potential at the second electrode 111b, respectively, The potential difference data PD between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge may be transmitted and acquired.
전위차 감지 모듈(112)과 교량 상태 측정 제어 모듈(113)은 각각, 범용 비동기화 송수신기(Universal Asynchronous Receiver/Transmitter, UART)를 포함할 수 있고, 이를 이용하여 전위차 데이터(PD)를 송수신 할 수 있다.The potential difference detection module 112 and the bridge state measurement control module 113 may each include a Universal Asynchronous Receiver/Transmitter (UART), and can transmit and receive potential difference data (PD) using them. .
제 1 통신 모듈(114)은, 교량 상태 측정부(110)와 교량 상태 모니터링부(120) 사이에서, 데이터 및 제어 명령을 송수신 할 수 있다.The first communication module 114 may transmit/receive data and control commands between the bridge condition measurement unit 110 and the bridge condition monitoring unit 120 .
제 1 통신 모듈(114)은 범용 비동기화 송수신기(UART)를 포함할 수 있고, 이를 이용하여 교량 상태 측정 제어 모듈(113) 사이에서 데이터 및 제어 명령을 송수신 할 수 있다.The first communication module 114 may include a universal unsynchronized transceiver (UART), and may transmit/receive data and control commands between the bridge state measurement control modules 113 using this.
제 1 통신 모듈(114)은 무선 통신 프로토콜을 이용하여, 교량 상태 모니터링부(120)에 전위차 데이터(PD)를 송신할 수 있고, 교량 상태 모니터링부(120)로부터 전위차 데이터 획득 제어 명령(PDRC)을 수신할 수 있다. 무선 통신 프로토콜은, 예를 들어 LTE(Long Tern Evolution)일 수 있다.The first communication module 114 may transmit the potential difference data PD to the bridge condition monitoring unit 120 using a wireless communication protocol, and a potential difference data acquisition control command (PDRC) from the bridge condition monitoring unit 120 . can receive The wireless communication protocol may be, for example, Long Tern Evolution (LTE).
제 1 통신 모듈(114)은 LTE 모뎀(114a)을 포함할 수 있으며, LTE 모뎀(114a)은 교량 상태 측정 제어 모듈(113)과 연결될 수 있다. 또한 LTE 모뎀(114a)은 LTE 프로토콜을 이용하여, LTE 망과 연결될 수 있다.The first communication module 114 may include an LTE modem 114a , and the LTE modem 114a may be connected to the bridge condition measurement control module 113 . In addition, the LTE modem 114a may be connected to an LTE network using an LTE protocol.
제 1 통신 모듈(114)은 LoRa(Long Range) 프로토콜을 이용하여, 교량 상태 모니터링부(120)에 전위차 데이터(PD)를 송신할 수 있고, 교량 상태 모니터링부(120)로부터 전위차 데이터 획득 제어 명령(PDRC)을 수신할 수 있다.The first communication module 114 may transmit the potential difference data PD to the bridge condition monitoring unit 120 by using a LoRa (Long Range) protocol, and a control command for obtaining potential difference data from the bridge condition monitoring unit 120 . (PDRC) can be received.
제 1 통신 모듈(114)은 LoRa 모뎀(114b)을 포함할 수 있으며, LoRa 모뎀(114b)은 교량 상태 측정 제어 모듈(113)과 연결될 수 있다.The first communication module 114 may include a LoRa modem 114b , and the LoRa modem 114b may be connected to the bridge condition measurement control module 113 .
제 1 통신 모듈(114)이 LoRa 프로토콜을 이용할 때, 본 발명의 일 실시 예에 따른 교량 안전 모니터링 시스템(100)은 LoRa 게이트웨이 모듈(130)을 더 포함할 수 있다.When the first communication module 114 uses the LoRa protocol, the bridge safety monitoring system 100 according to an embodiment of the present invention may further include a LoRa gateway module 130 .
LoRa 게이트웨이 모듈(130)은, 교량 상태 측정부(110)와 교량 상태 모니터링부(120) 사이에서, 데이터 및 제어 명령을 송수신을 중계할 수 있다.The LoRa gateway module 130 may transmit/receive data and control commands between the bridge condition measurement unit 110 and the bridge condition monitoring unit 120 .
LoRa 게이트웨이 모듈(130)은 제 1 통신 모듈(114)로, 전위차 데이터 획득 제어 명령(PDRC)을 송신할 수 있다. 또한 LoRa 게이트웨이 모듈(130)은 제 1 통신 모듈(114)로부터, 전위차 데이터(PD)를 수신할 수 있다.The LoRa gateway module 130 may transmit a potential difference data acquisition control command PDRC to the first communication module 114 . Also, the LoRa gateway module 130 may receive the potential difference data PD from the first communication module 114 .
LoRa 게이트웨이 모듈(130)은 교량 상태 모니터링부(120)로, 전위차 데이터(PD)를 송신할 수 있다. 또한 LoRa 게이트웨이 모듈(130)은 교량 상태 모니터링부(120)로부터, 전위차 데이터 획득 제어 명령(PDRC) 을 수신할 수 있다.The LoRa gateway module 130 may transmit the potential difference data PD to the bridge condition monitoring unit 120 . Also, the LoRa gateway module 130 may receive a potential difference data acquisition control command PDRC from the bridge condition monitoring unit 120 .
LoRa 게이트웨이 모듈(130)은 모니터링 대상인 교량에서, 무선 통신 유효 거리 범위 안에 위치할 수 있으며, 예를 들어 직선 거리 16km 범위 안에 위치할 수 있다.The LoRa gateway module 130 may be located within a range of an effective wireless communication distance in a bridge to be monitored, for example, within a range of 16 km in a straight line.
LoRa 게이트웨이 모듈(130)은 유선 통신 모뎀(MODEM1)과 연결될 수 있다. 예를 들어 LoRa 게이트웨이 모듈(130)은 유선 이더넷 또는 Wi-Fi를 통해 유선 통신 모뎀(MODEM1)과 연결될 수 있다. 그리고 유선 통신 모뎀(MODEM1)은 근거리 통신망(Local Area Network, LAN)을 통해 광역 통신망(Wide Area Network, WAN)과 연결될 수 있다.The LoRa gateway module 130 may be connected to a wired communication modem MODEM1 . For example, the LoRa gateway module 130 may be connected to the wired communication modem MODEM1 through wired Ethernet or Wi-Fi. In addition, the wired communication modem MODEM1 may be connected to a wide area network (WAN) through a local area network (LAN).
LoRa 게이트웨이 모듈(130)은 무선 통신 모뎀(MODEM2)과 연결될 수도 있다. 예를 들어 무선 통신 모뎀(MODEM2)은 LTE 프로토콜을 이용하여, LTE 망과 연결될 수 있다.The LoRa gateway module 130 may be connected to a wireless communication modem (MODEM2). For example, the wireless communication modem (MODEM2) may be connected to the LTE network by using the LTE protocol.
보호 모듈(115)은, 전위차 감지 모듈(112)과, 교량 상태 측정 제어 모듈(113)과, 제 1 통신 모듈(114)을, 수용하며 이들 구성을 보호할 수 있다.The protection module 115 accommodates the potential difference detection module 112 , the bridge condition measurement control module 113 , and the first communication module 114 , and can protect these configurations.
보호 모듈(115)은 모듈 수용 유닛(116a)과, 교량 부착 유닛(116b)과, 교량 고정 유닛(116c)과, 전극 연결 포트(116d)를 포함할 수 있다.The protection module 115 may include a module accommodation unit 116a, a bridge attachment unit 116b, a bridge fixing unit 116c, and an electrode connection port 116d.
모듈 수용 유닛(116a)의 내부에는 전위차 감지 모듈(112)과, 교량 상태 측정 제어 모듈(113)과, 제 1 통신 모듈(114)이 위치할 수 있다. 모듈 수용 유닛(115)은 2중 방수 구조를 이루어, 해수에 의한 부식을 방지할 수 있다.A potential difference detection module 112 , a bridge state measurement control module 113 , and a first communication module 114 may be located inside the module accommodating unit 116a . The module accommodation unit 115 may have a double waterproof structure to prevent corrosion by seawater.
교량 부착 유닛(116b)은 모듈 수용 유닛(116a)과 결합할 수 있고, 안전 상태 모니터링 대상인 교량에 부착할 수 있다.The bridge attachment unit 116b may be coupled to the module accommodating unit 116a, and may be attached to a bridge subject to safety condition monitoring.
교량 고정 유닛(116c)은 교량 부착 유닛(116b)과 안전 상태 모니터링 대상인 교량 사이를 고정할 수 있다. 교량 고정 유닛(116c)은 예를 들어, 볼트로 이루어질 수 있다.The bridge fixing unit 116c may be fixed between the bridge attachment unit 116b and the bridge to be monitored for safety conditions. The bridge fixing unit 116c may be formed of, for example, a bolt.
전극 연결 포트(116d)는, 모듈 수용 유닛(116a)의 외부에 위치하는 금속 접촉 전극 모듈(111)과, 모듈 수용 유닛(116a)의 내부에 위치하는 전위차 감지 모듈(112) 사이를 전기적으로 연결할 수 있다.The electrode connection port 116d is electrically connected between the metal contact electrode module 111 positioned outside the module accommodating unit 116a and the potential difference sensing module 112 positioned inside the module accommodating unit 116a. can
교량 상태 모니터링부(120)는, 모니터링 대상 교량에 포함된 강재(ST1)와 양극 금속(ST2) 사이의 전위차를 모니터링 할 수 있다.The bridge condition monitoring unit 120 may monitor the potential difference between the steel material ST1 and the anode metal ST2 included in the monitoring target bridge.
교량 상태 모니터링부(120)는, 모니터링 대상 교량에서 원격지에 위치할 수 있다.The bridge condition monitoring unit 120 may be located at a remote location from the monitoring target bridge.
교량 상태 모니터링부(120)는, 교량 상태 수집 모듈(121)과, 교량 상태 분석 모듈(122)과, 교량 상태 출력 모듈(123)과, 제 2 통신 모듈(124)을 포함할 수 있다.The bridge condition monitoring unit 120 may include a bridge condition collection module 121 , a bridge condition analysis module 122 , a bridge condition output module 123 , and a second communication module 124 .
교량 상태 수집 모듈(121)은, 모니터링 대상인 교량의 상태 정보를 수집하거나 입력 받을 수 있다.The bridge state collection module 121 may collect or receive state information of a bridge to be monitored.
교량 상태 수집 모듈(121)은 전위차 데이터 획득 제어 명령(PDRC)을 교량 상태 측정 제어 모듈(113)로 전송할 수 있다. 그리고 교량 상태 수집 모듈(121)은, 교량 상태 측정 제어 모듈(113)이 획득한 전위차 데이터(PD)를 전송 받을 수 있다.The bridge state collection module 121 may transmit a potential difference data acquisition control command PDRC to the bridge state measurement control module 113 . In addition, the bridge state collection module 121 may receive the potential difference data PD obtained by the bridge state measurement control module 113 .
또는 교량 상태 수집 모듈(121)은, 교량 상태 측정 제어 모듈(113)이 전위차 감지 모듈(112)로부터 설정된 주기 마다 획득한 전위차 데이터(PD)를 전송 받을 수도 있다.Alternatively, the bridge state collection module 121 may receive the potential difference data PD obtained by the bridge state measurement control module 113 every period set from the potential difference detection module 112 .
교량 상태 수집 모듈(121)은 전송 받은 전위차 데이터(PD)를 저장할 수 있으며, 이를 위해 기억 장치를 포함할 수 있다.The bridge state collection module 121 may store the transmitted potential difference data PD, and may include a storage device for this purpose.
기억 장치는 하드 디스크 드라이브(hard disk drive), 광학 디스크 드라이브(optical disc drive), 자기 테이프(magnetic tape), 플로피 디스크(floppy disk), 플래시 메모리(flash memory), SSD(Solid State Drive) 등의 비휘발성 메모리 장치이거나, 램(Random Access Memory) 등의 휘발성 메모리 장치일 수 있으며, 이중 어느 것에 한정하지 않고 다른 종류의 기억 장치일 수도 있다.Storage devices include hard disk drives, optical disc drives, magnetic tapes, floppy disks, flash memory, solid state drives (SSDs), and the like. It may be a non-volatile memory device or a volatile memory device such as a random access memory (RAM), but is not limited thereto and may be a different type of memory device.
또한 교량 상태 수집 모듈(121)은 전위차 데이터(PD)를 파일 또는 데이터베이스 형식으로 저장할 수 있다.In addition, the bridge state collection module 121 may store the potential difference data PD in a file or database format.
교량 상태 분석 모듈(122)은, 모니터링 대상인 교량의 상태를 분석할 수 있다.The bridge state analysis module 122 may analyze the state of a bridge to be monitored.
교량 상태 분석 모듈(122)은, 전위차 데이터(PD)에 따른 교량 안전 등급 데이터(BSL)를 사전에 학습할 수 있다.The bridge state analysis module 122 may learn in advance the bridge safety grade data BSL according to the potential difference data PD.
교량 상태 분석 모듈(122)은, 교량 상태 수집 모듈(121)이 수집한 전위차 데이터(PD)를 입력 받아, 교량 안전 등급 데이터(BSL)를 산출할 수 있다. 교량 상태 분석 모듈(122)은 예를 들어 신경망 또는 나이브 베이즈 분류 방법(Naive Bayes Classifier)을 이용하여, 전위차 데이터(PD)로부터 교량 안전 등급 데이터(BSL)를 산출할 수 있다.The bridge state analysis module 122 may receive the potential difference data PD collected by the bridge state collection module 121 as input, and calculate the bridge safety grade data BSL. The bridge condition analysis module 122 may calculate the bridge safety class data BSL from the potential difference data PD using, for example, a neural network or a Naive Bayes Classifier.
예를 들어 교량 상태 분석 모듈(122)은 전위차 데이터(PD)에서, 모니터링 대상 교량에 포함된 강재(ST1)와 양극 금속(ST2) 사이의 전위차가, 1100mV 이상이면 교량 안전 등급 데이터(BSL)를 강재가 완전히 보호되고 있는 상태를 나타내는 제 1 등급(L1)으로 분류하여 산출할 수 있다. 전위차가 820mV 이상이고 1100mV 미만이면 교량 안전 등급 데이터(BSL)를 강제가 적절히 보호되고 있는 상태를 나타내는 제 2 등급(L2)으로 분류하여 산출할 수 있다. 전위차가 700mV 이상이고 820mV 미만이면 교량 안전 등급 데이터(BSL)를 강제가 부분적으로 보호되고 있는 상태를 나타내는 제 3 등급(L3)으로 분류하여 산출할 수 있다. 전위차가 700mV 미만이면 교량 안전 등급 데이터(BSL)를 강재가 전기 방식 방법으로 보호되지 않는 상태를 나타내는 제 4 등급(L4)으로 분류하여 산출할 수 있다.For example, if the potential difference between the steel material (ST1) and the anode metal (ST2) included in the bridge to be monitored in the potential difference data (PD) is 1100 mV or more, the bridge condition analysis module 122 receives the bridge safety rating data (BSL). It can be calculated by classifying it into the first grade (L1) indicating the state in which the steel is completely protected. If the potential difference is 820mV or more and less than 1100mV, the bridge safety grade data (BSL) can be calculated by classifying it into the second grade (L2) indicating a state in which the force is properly protected. If the potential difference is 700mV or more and less than 820mV, it can be calculated by classifying the bridge safety class data (BSL) into a third class (L3) indicating a state in which the force is partially protected. If the potential difference is less than 700 mV, the bridge safety class data (BSL) can be calculated by classifying it into the fourth class (L4), which indicates a state in which the steel is not protected by an electrical method.
교량 상태 출력 모듈(123)은, 모니터링 대상인 교량의 상태를 출력할 수 있다.The bridge state output module 123 may output the state of a bridge to be monitored.
교량 상태 출력 모듈(123)은, 시간 별, 교량 별, 교량의 위치 별로 전위차 데이터(PD)와, 교량 안전 등급 데이터(BSL)를 출력할 수 있다.The bridge state output module 123 may output the potential difference data PD and the bridge safety grade data BSL for each time, each bridge, and each position of the bridge.
교량 상태 출력 모듈(123)은, HTTP 또는 다른 프로토콜을 이용하여, 전위차 데이터(PD)와, 교량 안전 등급 데이터(BSL)를 출력할 수 있다.The bridge state output module 123 may output the potential difference data PD and the bridge safety grade data BSL using HTTP or another protocol.
본 발명의 일 실시 예에 따른 교량 실시간 안전 모니터링 시스템(100) 사용자의 단말 장치에 설치된 웹 브라우저 또는 다른 응용 프로그램은, 교량 상태 출력 모듈(123)이 출력한 교량 상태 출력 모듈(123)에서 출력한 전위차 데이터(PD)와, 교량 안전 등급 데이터(BSL)를 전송 받아 표시할 수 있다.A web browser or other application installed in the user's terminal device of the bridge real-time safety monitoring system 100 according to an embodiment of the present invention is output from the bridge status output module 123 output by the bridge status output module 123 Potential difference data (PD) and bridge safety class data (BSL) can be transmitted and displayed.
또한 교량 상태 출력 모듈(123)은, 본 발명의 일 실시 예에 따른 교량 실시간 안전 모니터링 시스템(100)의 외부에서, 시간 별, 교량 별, 교량의 위치 별로 전위차 데이터(PD)와, 교량 안전 등급 데이터(BSL)를 획득할 수 있는 API(Application Programming Interface)를 제공할 수 있다.In addition, the bridge state output module 123, from the outside of the real-time bridge safety monitoring system 100 according to an embodiment of the present invention, the potential difference data (PD) for each time, each bridge, and each position of the bridge, and the bridge safety grade An application programming interface (API) capable of acquiring data (BSL) may be provided.
제 2 통신 모듈(124)은, 교량 상태 측정부(110)와 교량 상태 모니터링부(120) 사이에서, 데이터 및 제어 명령을 송수신 할 수 있다.The second communication module 124 may transmit/receive data and control commands between the bridge condition measurement unit 110 and the bridge condition monitoring unit 120 .
제 2 통신 모듈(124)은 교량 상태 수집 모듈(121)로부터 전위차 데이터 획득 제어 명령(PDRC)을 수신한 후, 제 1 통신 모듈(114)로 전송할 수 있다.The second communication module 124 may receive the potential difference data acquisition control command PDRC from the bridge state collection module 121 , and then transmit it to the first communication module 114 .
제 2 통신 모듈(124)은 제 1 통신 모듈(114)로부터 전위차 데이터(PD)를 수신한 후, 교량 상태 수집 모듈(121)로 전송할 수 있다.After receiving the potential difference data PD from the first communication module 114 , the second communication module 124 may transmit it to the bridge state collection module 121 .
제 2 통신 모듈(124)은 LoRa 게이트웨이 모듈(130)로, 전위차 데이터 획득 제어 명령(PDRC)을 송신할 수 있다. 또한 제 2 통신 모듈(124)은 LoRa 게이트웨이 모듈(130)로부터, 전위차 데이터(PD)를 수신할 수 있다.The second communication module 124 may transmit a potential difference data acquisition control command (PDRC) to the LoRa gateway module 130 . Also, the second communication module 124 may receive the potential difference data PD from the LoRa gateway module 130 .
도 3은 본 발명의 일 실시 예에 따른 교량 안전 모니터링 방법을 간략하게 나타낸 순서도이다.3 is a flowchart schematically illustrating a bridge safety monitoring method according to an embodiment of the present invention.
본 발명의 일 실시 예에 따른 교량 안전 모니터링 방법의 제 1 단계(S1)는, 교량 상태 수집 모듈(121)이 제어 명령을 전송하는 단계이다.The first step (S1) of the bridge safety monitoring method according to an embodiment of the present invention is a step in which the bridge state collection module 121 transmits a control command.
교량 상태 수집 모듈(121)은 전위차 데이터 획득 제어 명령(PDRC)을 교량 상태 측정 제어 모듈(113)로 전송할 수 있다.The bridge state collection module 121 may transmit a potential difference data acquisition control command PDRC to the bridge state measurement control module 113 .
제 2 단계(S2)는, 교량 상태 측정 제어 모듈(113)이 전위차 감지 모듈(112)을 작동시키는 단계이다.The second step (S2) is a step in which the bridge state measurement control module 113 operates the potential difference detection module 112 .
교량 상태 측정 제어 모듈(113)은 전위차 데이터 획득 제어 명령(PDRC)을 전송 받은 후, 전위차 감지 모듈(112)을 작동시켜 제 1 전극(111a)에서의 전위와, 제 2 전극(111b)에서의 전위를 각각 측정하게 할 수 있다.After receiving the potential difference data acquisition control command (PDRC), the bridge state measurement control module 113 operates the potential difference detection module 112 to determine the potential at the first electrode 111a and the potential at the second electrode 111b. Each potential can be measured.
제 3 단계(S3)는, 전위차 감지 모듈(112)이 전위차 데이터(PD)를 생성하는 단계이다.The third step S3 is a step in which the potential difference sensing module 112 generates the potential difference data PD.
전위차 감지 모듈(112)은 제 1 전극(111a)과 제 2 전극(111b) 사이의 전위 차이로부터 전위차 데이터(PD)를 생성할 수 있다.The potential difference sensing module 112 may generate potential difference data PD from a potential difference between the first electrode 111a and the second electrode 111b.
제 4 단계(S4)는, 교량 상태 측정 제어 모듈(113)이 데이터를 전송하는 단계이다.The fourth step (S4) is a step in which the bridge condition measurement control module 113 transmits data.
교량 상태 측정 제어 모듈(113)은 전위차 데이터(PD)를 교량 상태 수집 모듈(121)로 전송할 수 있다.The bridge state measurement control module 113 may transmit the potential difference data PD to the bridge state collection module 121 .
교량 상태 수집 모듈(121)은 전송 받은 전위차 데이터(PD)를, 시간 별, 교량 별, 교량의 위치 별로 구분하여 저장할 수 있다.The bridge state collection module 121 may classify and store the transmitted potential difference data PD by time, by bridge, and by position of the bridge.
제 5 단계(S5)는, 교량 상태 분석 모듈(122)이 교량의 상태를 분석하는 단계이다.The fifth step (S5) is a step in which the bridge condition analysis module 122 analyzes the condition of the bridge.
교량 상태 분석 모듈(122)은, 교량 상태 수집 모듈(121)에 저장된 전위차 데이터(PD)를 입력 받아, 교량 안전 등급 데이터(BSL)를 산출할 수 있다.The bridge state analysis module 122 may receive the potential difference data PD stored in the bridge state collection module 121 and calculate the bridge safety grade data BSL.
제 6 단계(S6)는, 교량 상태 출력 모듈(123)이 교량의 상태를 출력하는 단계이다.The sixth step (S6) is a step in which the bridge state output module 123 outputs the state of the bridge.
교량 상태 출력 모듈(123)은, 시간 별, 교량 별, 교량의 위치 별로 전위차 데이터(PD)와, 교량 안전 등급 데이터(BSL)를 출력할 수 있다.The bridge state output module 123 may output the potential difference data PD and the bridge safety grade data BSL for each time, each bridge, and each position of the bridge.
사용자의 단말 장치에 설치된 웹 브라우저 또는 다른 응용 프로그램은, 교량 상태 출력 모듈(123)이 출력한 교량 상태 출력 모듈(123)에서 출력한 전위차 데이터(PD)와, 교량 안전 등급 데이터(BSL)를 전송 받아 표시할 수 있다.The web browser or other application installed in the user's terminal device transmits the potential difference data PD output from the bridge state output module 123 output by the bridge state output module 123, and the bridge safety rating data (BSL) can be received and displayed.
이상을 통해 본 발명의 실시 예에 대하여 설명하였지만, 본 발명은 상기 실시 예에 한정되지 않고, 본 발명의 취지를 벗어나지 않고 효과를 저해하지 않는 한, 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 다양하게 변경하여 실시할 수 있다. 또한 그러한 실시 예가 본 발명의 범위에 속하는 것은 당연하다.Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and as long as it does not deviate from the spirit of the present invention and does not impair the effect, it may be various within the scope of the detailed description and accompanying drawings of the present invention. It can be changed and implemented. It is also natural that such an embodiment falls within the scope of the present invention.

Claims (10)

  1. 모니터링 대상 교량에 포함된 강재와 양극 금속 사이의 전위차를 측정하여 전위차 데이터를 생성하고, 상기 모니터링 대상 교량에 부착되는 교량 상태 측정부와;a bridge state measuring unit attached to the monitoring target bridge and generating potential difference data by measuring the potential difference between the steel material and the anode metal included in the monitoring target bridge;
    상기 전위차 데이터를 입력 받아 상기 모니터링 대상 교량의 교량 안전 등급 데이터를 산출하고, 상기 모니터링 대상 교량에서 원격지에 위치하는 교량 상태 모니터링부를 포함하는 교량 실시간 안전 모니터링 시스템.A bridge real-time safety monitoring system comprising a bridge condition monitoring unit that receives the potential difference data, calculates bridge safety grade data of the monitoring target bridge, and is located at a remote location from the monitoring target bridge.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 교량 상태 측정부는,The bridge condition measurement unit,
    상기 모니터링 대상 교량에 포함된 강재 및 상기 양극 금속과 각각 전기적으로 접촉하는 금속 접촉 전극 모듈과;a metal contact electrode module in electrical contact with the steel material and the anode metal included in the monitoring target bridge, respectively;
    상기 모니터링 대상 교량에 포함된 강재와 상기 양극 금속 사이의 전위차를 측정하여, 상기 전위차 데이터를 생성하는 전위차 감지 모듈과;a potential difference sensing module for generating the potential difference data by measuring the potential difference between the steel material included in the monitoring target bridge and the anode metal;
    상기 교량 상태 모니터링부에서 전송된, 전위차 데이터 획득 제어 명령에 따라 상기 전위차 감지 모듈을 작동시켜 상기 전위차 데이터를 획득하는 교량 상태 측정 제어 모듈과;a bridge condition measurement control module for acquiring the potential difference data by operating the potential difference detection module according to a potential difference data acquisition control command transmitted from the bridge condition monitoring unit;
    상기 교량 상태 모니터링부로부터 상기 전위차 데이터 획득 제어 명령을 수신하고, 상기 교량 상태 모니터링부로 상기 전위차 데이터를 송신하는 제 1 통신 모듈과;a first communication module for receiving the potential difference data acquisition control command from the bridge condition monitoring unit and transmitting the potential difference data to the bridge condition monitoring unit;
    상기 전위차 감지 모듈과, 상기 교량 상태 측정 제어 모듈과, 상기 제 1 통신 모듈을 수용하는 보호 모듈The protection module for accommodating the potential difference detection module, the bridge state measurement control module, and the first communication module
    을 포함하는 교량 실시간 안전 모니터링 시스템.A bridge real-time safety monitoring system that includes.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 금속 접촉 전극 모듈은, 제 1 전극과 제 2 전극을 포함하고,The metal contact electrode module includes a first electrode and a second electrode,
    상기 제 1 전극은 상기 모니터링 대상 교량에 포함된 강재와 전기적으로 접촉하고, 상기 제 2 전극은 상기 양극 금속과 전기적으로 접촉하는 교량 실시간 안전 모니터링 시스템.The first electrode is in electrical contact with the steel material included in the monitoring target bridge, and the second electrode is in electrical contact with the anode metal bridge real-time safety monitoring system.
  4. 제 3 항에 있어서,4. The method of claim 3,
    상기 전위차 감지 모듈은, 상기 제 1 전극과 상기 제 2 전극 사이의 전위차를 계산한 후, 상기 전위차 데이터를 생성하는 교량 실시간 안전 모니터링 시스템.The potential difference sensing module calculates the potential difference between the first electrode and the second electrode, and then generates the potential difference data in a bridge real-time safety monitoring system.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 교량 상태 측정 제어 모듈은, 설정된 주기 마다 상기 전위차 감지 모듈을 작동시켜 상기 전위차 데이터를 획득하는 교량 실시간 안전 모니터링 시스템.The bridge state measurement control module operates the potential difference detection module at set intervals to obtain the potential difference data.
  6. 제 4 항에 있어서,5. The method of claim 4,
    LoRa 프로토콜 이용하여, 상기 제 1 통신 모듈에 상기 전위차 데이터 획득 제어 명령을 송신하고, 상기 제 1 통신 모듈로부터 상기 전위차 데이터를 수신하여 상기 교량 상태 모니터링부로 송신하는 LoRa 게이트웨이 모듈을 더 포함하는 교량 실시간 안전 모니터링 시스템.Bridge real-time safety further comprising a LoRa gateway module that transmits the potential difference data acquisition control command to the first communication module using LoRa protocol, receives the potential difference data from the first communication module, and transmits it to the bridge condition monitoring unit monitoring system.
  7. 제 6 항에 있어서,7. The method of claim 6,
    상기 교량 상태 모니터링부는,The bridge condition monitoring unit,
    상기 교량 상태 측정 제어 모듈로 상기 전위차 데이터 획득 제어 명령을 전송하고, 상기 교량 상태 측정 제어 모듈로부터 상기 전위차 데이터를 전송 받아 저장하는 교량 상태 수집 모듈과;a bridge state collecting module for transmitting the electric potential difference data acquisition control command to the bridge state measurement control module, and receiving and storing the electric potential difference data from the bridge state measurement control module;
    상기 전위차 데이터를 입력 받아 교량 안전 등급 데이터를 산출하는 교량 상태 분석 모듈과;a bridge condition analysis module that receives the potential difference data and calculates bridge safety grade data;
    시간 별, 교량 별, 교량의 위치 별로, 상기 전위차 데이터와, 상기 교량 안전 등급 데이터를 출력하는 교량 상태 출력 모듈과;a bridge state output module for outputting the potential difference data and the bridge safety grade data by time, by bridge, by position of the bridge;
    상기 LoRa 게이트웨이 모듈로 상기 전위차 데이터 획득 제어 명령을 송신하고, 상기 LoRa 게이트웨이 모듈로부터 상기 전위차 데이터를 수신하는 제 2 통신 모듈A second communication module for transmitting the potential difference data acquisition control command to the LoRa gateway module and receiving the potential difference data from the LoRa gateway module
    을 포함하는 교량 실시간 안전 모니터링 시스템.A bridge real-time safety monitoring system that includes.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 교량 상태 분석 모듈은,The bridge condition analysis module,
    상기 제 1 전극과 상기 제 2 전극 사이의 전위차가,a potential difference between the first electrode and the second electrode,
    1100mV 이상인 경우 제 1 등급으로 분류하고,If it is more than 1100mV, it is classified as 1st class,
    820mV 이상이고 1100mV 미만인 경우 제 2 등급으로 분류하며,If it is more than 820mV and less than 1100mV, it is classified as Class 2,
    700mV 이상이고 820mV 미만인 경우 제 3 등급으로 분류하고,If it is more than 700mV and less than 820mV, it is classified as 3rd class,
    700mV 미만인 경우 제 4 등급으로 분류하여, 상기 교량 안전 등급 데이터를 산출하는 교량 실시간 안전 모니터링 시스템.A bridge real-time safety monitoring system that calculates the bridge safety grade data by classifying it as a fourth grade if it is less than 700mV.
  9. 교량 안전 모니터링 시스템에 있어서,In the bridge safety monitoring system,
    (S1) 교량 상태 수집 모듈이, 전위차 데이터 획득 제어 명령을 교량 상태 측정 제어 모듈로 전송하는 단계와;(S1), by the bridge state collection module, transmitting a potential difference data acquisition control command to the bridge state measurement control module;
    (S2) 상기 교량 상태 측정 제어 모듈이, 전위차 감지 모듈을 작동시켜 제 1 전극에서의 전위와, 제 2 전극에서의 전위를 각각 측정하게 하는 단계와;(S2) causing the bridge state measurement control module to operate the potential difference sensing module to measure the potential at the first electrode and the potential at the second electrode, respectively;
    (S3) 상기 전위차 감지 모듈이, 상기 제 1 전극과 상기 제 2 전극 사이의 전위 차이로부터 전위차 데이터를 생성하는 단계와;(S3) generating, by the potential difference sensing module, potential difference data from a potential difference between the first electrode and the second electrode;
    (S4) 상기 교량 상태 측정 제어 모듈이, 상기 전위차 데이터를 상기 교량 상태 수집 모듈로 전송하는 단계와;(S4) transmitting, by the bridge state measurement control module, the potential difference data to the bridge state collection module;
    (S5) 교량 상태 분석 모듈이, 상기 전위차 데이터를 입력 받아, 교량 안전 등급 데이터를 산출하는 단계와;(S5) the bridge condition analysis module, receiving the potential difference data, and calculating the bridge safety grade data;
    (S6) 교량 상태 출력 모듈이, 시간 별, 교량 별, 교량의 위치 별로 상기 전위차 데이터와, 상기 교량 안전 등급 데이터를 출력하는 단계(S6) step of the bridge state output module outputting the potential difference data and the bridge safety class data for each time, each bridge, and each position of the bridge
    를 포함하는 교량 실시간 안전 모니터링 방법.A bridge real-time safety monitoring method comprising a.
  10. 제 9 항에 있어서,10. The method of claim 9,
    상기 (S5) 단계에서In the step (S5)
    상기 교량 상태 분석 모듈은,The bridge condition analysis module,
    상기 제 1 전극과 상기 제 2 전극 사이의 전위 차이가,a potential difference between the first electrode and the second electrode,
    1100mV 이상인 경우 제 1 등급으로 분류하고,If it is more than 1100mV, it is classified as 1st class,
    820mV 이상이고 1100mV 미만인 경우 제 2 등급으로 분류하며,If it is more than 820mV and less than 1100mV, it is classified as Class 2,
    700mV 이상이고 820mV 미만인 경우 제 3 등급으로 분류하고,If it is more than 700mV and less than 820mV, it is classified as 3rd class,
    700mV 미만인 경우 제 4 등급으로 분류하여, 상기 교량 안전 등급 데이터를 산출하는 교량 실시간 안전 모니터링 방법.A bridge real-time safety monitoring method for calculating the bridge safety grade data by classifying it into a fourth grade if it is less than 700mV.
PCT/KR2021/006630 2020-11-09 2021-05-28 Bridge real-time safety monitoring method, and system thereof WO2022097863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200148351A KR102304606B1 (en) 2020-11-09 2020-11-09 Bridge real-time safety monitoring method, and system thereof
KR10-2020-0148351 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022097863A1 true WO2022097863A1 (en) 2022-05-12

Family

ID=77925131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006630 WO2022097863A1 (en) 2020-11-09 2021-05-28 Bridge real-time safety monitoring method, and system thereof

Country Status (2)

Country Link
KR (1) KR102304606B1 (en)
WO (1) WO2022097863A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564879B1 (en) * 2005-07-13 2006-03-30 이승경 Monitoring sensor of corrosion rate and corrosion environment of steel reinforcement embedded in concrete
KR20120077999A (en) * 2010-12-31 2012-07-10 (주)라이온플러스 Monitoring system of ship tank corrosion in use corrosion sense
KR20180085193A (en) * 2017-01-18 2018-07-26 경희대학교 산학협력단 Concrete structures diagnostic monitoring system and method thereof
KR20180124436A (en) * 2017-05-11 2018-11-21 한국도로공사 Monitoring System of Corrosion in Concrete Structure
KR20200077325A (en) * 2018-12-20 2020-06-30 대한민국(행정안전부 국립재난안전연구원장) The Easy Installation Type Inundation Monitoring System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564879B1 (en) * 2005-07-13 2006-03-30 이승경 Monitoring sensor of corrosion rate and corrosion environment of steel reinforcement embedded in concrete
KR20120077999A (en) * 2010-12-31 2012-07-10 (주)라이온플러스 Monitoring system of ship tank corrosion in use corrosion sense
KR20180085193A (en) * 2017-01-18 2018-07-26 경희대학교 산학협력단 Concrete structures diagnostic monitoring system and method thereof
KR20180124436A (en) * 2017-05-11 2018-11-21 한국도로공사 Monitoring System of Corrosion in Concrete Structure
KR20200077325A (en) * 2018-12-20 2020-06-30 대한민국(행정안전부 국립재난안전연구원장) The Easy Installation Type Inundation Monitoring System

Also Published As

Publication number Publication date
KR102304606B1 (en) 2021-09-27

Similar Documents

Publication Publication Date Title
KR100537899B1 (en) Data logger apparatus for measurement stray current of subway and power line
CN107424380A (en) Urban Underground pipe gallery monitoring and warning system and method
CN102337542A (en) Detection method and apparatus for buried metal pipeline cathode protection system
CN102021584A (en) Pipe transmission oriented cathode protection system
WO2021172719A1 (en) Iot-based groundwater monitoring system using lidar sensor technology
KR101072968B1 (en) current/electric potential monitoring device
WO2016036040A1 (en) Low-power-based, high-speed movement system for measuring protection potential of pipe buried under ground
CN111307110A (en) Personnel positioning system in foundation pit construction and risk assessment method
KR101828520B1 (en) Integrated monitoring system and the method for dangerous weak structure using the integrated triggering of electrical resistivity monitoring and earthquake data, and drone images
WO2022097863A1 (en) Bridge real-time safety monitoring method, and system thereof
CN108871449A (en) A kind of transmission line online monitoring system with electric field monitoring
KR100405590B1 (en) The system for on-line monitoring and controlling corrosion and corrosion protection through wire and wireless communication system
JP3770856B2 (en) Cathodic protection facility remote monitoring system
JP4698318B2 (en) Anticorrosion state monitoring method and system
CN215833317U (en) Monitoring system for monitoring tunnel condition
CN213517304U (en) Monitoring device for potential change of town gas pipeline
WO2018225888A1 (en) Method for predicting specification of steel tower foundation
CN115325466A (en) Comprehensive monitoring pile for buried pipeline
KR200215750Y1 (en) Wireless measuring system for detecting electrical status
WO2024063551A1 (en) Protective potential monitoring device
CN110617401A (en) Intelligent pipeline drainage system
CN110470949A (en) Fault positioning method for transmission line
CN219772263U (en) Cathode protection system for buried metal structures
CN216815336U (en) Railway beam type bridge displacement monitoring device
CN216274378U (en) Cathodic protection monitoring and detecting test pile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889331

Country of ref document: EP

Kind code of ref document: A1