WO2022097741A1 - Sheet, method for manufacturing article with pattern layer, and article with pattern layer - Google Patents

Sheet, method for manufacturing article with pattern layer, and article with pattern layer Download PDF

Info

Publication number
WO2022097741A1
WO2022097741A1 PCT/JP2021/040898 JP2021040898W WO2022097741A1 WO 2022097741 A1 WO2022097741 A1 WO 2022097741A1 JP 2021040898 W JP2021040898 W JP 2021040898W WO 2022097741 A1 WO2022097741 A1 WO 2022097741A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base material
pattern layer
article
photocurable
Prior art date
Application number
PCT/JP2021/040898
Other languages
French (fr)
Japanese (ja)
Inventor
英司 大嶋
則夫 松田
Original Assignee
株式会社Tkr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tkr filed Critical 株式会社Tkr
Publication of WO2022097741A1 publication Critical patent/WO2022097741A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a sheet, a method for manufacturing an article with a pattern layer, and an article with a pattern layer.
  • Patent Document 1 discloses a pattern-forming sheet having a sheet material layer having light transmission and a paste-like photocurable layer containing a photocurable resin provided on the sheet material layer. Has been done.
  • the photo-curing layer of this pattern-forming sheet is attached to the work, and in this state, the work is irradiated with light to form a latent image of the pattern on the photo-curing layer. Then, by peeling the pattern-forming sheet from the work, a pattern layer made of a cured photo-cured layer can be formed on the work.
  • the pattern layer is formed on the curved surface (curved surface or bent surface) of the work by the method of Patent Document 1, since the irradiation surface is distorted, the pattern of the light irradiated there is also distorted. Further, as the curvature of the curved surface becomes smaller, the range that can be exposed becomes smaller, so that the pattern layer located on the opposite side of the curved surface cannot be formed at one time. Further, it is necessary to wash the uncured photocurable resin remaining on the curved surface (surface) with alcohol (for example, isopropanol).
  • alcohol for example, isopropanol
  • An object of the present invention is to provide a technique for solving the above-mentioned problems, and even if a pattern layer is formed on a curved surface, there is no distortion due to curved surface irradiation, or a sheet capable of collectively forming an extremely small number of pattern layers. , A method of manufacturing an article with a pattern layer using such a sheet, and an article with a pattern layer having a pattern layer formed on a curved surface.
  • the sheet according to the present invention is A sheet-shaped or flat plate-shaped first base material and An uncured photocured layer provided in contact with one surface of the first substrate and containing a photocurable resin, It has a second base material in the form of a sheet, which is provided in contact with the surface of the photo-curing layer opposite to the first base material and has light transmittance.
  • the photocurable layer is cured by irradiating the photocurable layer with light of a predetermined pattern via the second substrate and then the second substrate is peeled off from the photocurable layer, the exposure of the photocurable layer is achieved.
  • the portion is held by the first base material, and the unexposed portion of the photocurable layer is held by the second base material.
  • the method for manufacturing an article with a pattern layer is: A method for manufacturing an article with a pattern layer having an article and a pattern layer formed on the surface of the article by using the sheet.
  • the process of preparing the sheet and the article A step of irradiating the photo-curing layer with light of a negative pattern opposite to the pattern of the pattern layer through the second base material to cure the exposed portion.
  • a step of forming the pattern layer by irradiating the unexposed portion with light through the second base material and curing the unexposed portion. It has a step of peeling the second base material from the pattern layer.
  • the article with a pattern layer according to the present invention is Articles with curved surfaces and It has a pattern layer provided on the curved surface and containing conductive particles and a cured product of a photocurable resin.
  • the average thickness of the pattern layer is 5 ⁇ m or more.
  • the present invention even if a pattern layer is formed on a curved surface, it is possible to collectively form a pattern layer that is not distorted by curved surface irradiation or has very little distortion. Further, according to the present invention, it is possible to manufacture an article with a pattern layer which has no distortion due to curved surface irradiation or has an extremely small number of pattern layers.
  • FIG. 1 is a plan view showing an embodiment of the sheet of the present invention (the second base material is slightly displaced).
  • FIG. 2 is a cross-sectional view of the sheet shown in FIG.
  • FIG. 3 is a plan view of the sheet shown in FIG. 1 after being irradiated with light.
  • FIG. 4 is a plan view showing a state in which the sheet shown in FIG. 3 is separated.
  • FIG. 5 is a process diagram for explaining an embodiment of the method for manufacturing an article with a pattern layer of the present invention.
  • FIG. 6 is a photograph of the appearance of the article with the pattern layer obtained in Example 1.
  • FIG. 7 is a photograph of the appearance of the article with the pattern layer obtained in Example 3.
  • FIG. 8 is a photograph of the appearance of the article with the pattern layer obtained in Example 4.
  • FIG. 6 is a photograph of the appearance of the article with the pattern layer obtained in Example 1.
  • FIG. 7 is a photograph of the appearance of the article with the pattern layer obtained in Example 3.
  • FIG. 8 is
  • FIG. 9A is a photograph showing the appearance of the material of the article with the pattern layer obtained in Example 5 before pattern formation.
  • FIG. 9B is an enlarged photograph of the surface of the material before pattern formation of the article with the pattern layer obtained in Example 5.
  • FIG. 9C is a photograph of the appearance of the article with the pattern layer obtained in Example 5.
  • FIG. 10 is a photograph of the appearance of the article with the pattern layer obtained in the comparative example.
  • FIG. 1 is a sectional view showing an embodiment of the sheet of the present invention
  • FIG. 2 is a sectional view of the sheet shown in FIG. 1
  • FIG. 3 is a plan view of the sheet shown in FIG. 1 after irradiation with light
  • FIG. I s a plan view showing a state in which the sheets shown in FIG. 3 are separated.
  • the front side of the paper in FIGS. 1, 3 and 4 is referred to as "top”
  • the back side of the paper is referred to as "bottom”.
  • the upper side in FIG. 2 is referred to as “upper” and the lower side is referred to as "lower”.
  • the sheet 1 shown in FIGS. 1 and 2 is in an uncured state provided in contact with the sheet-shaped or flat plate-shaped first base material 2 and the upper surface (one side) 21 of the first base material 2. It has a light-curing layer 3 and a sheet-shaped second base material 4 provided in contact with the upper surface of the photo-curing layer 3 (the surface opposite to the first base material 2) and having light transmission. Further, the photocurable layer 3 of the present embodiment contains the conductive particles 31 and the photocurable resin 32. When it is not necessary to distinguish between the first base material 2 and the second base material 4, they are collectively referred to as "base material".
  • the uncured photo-cured layer 3 is a layer formed in a fluid semi-solid state (that is, a paste state).
  • the constituent materials of the base materials 2 and 4, the type of the photocurable resin 32, the surface texture of the base material 2.4 and the like are appropriately set.
  • the adhesion of the photo-cured layer 3 to the substrates 2 and 4 can be changed depending on the degree of the cured state.
  • the sheet 1 as shown in FIG. 2, after the photo-curing layer 3 is cured by irradiating the photo-curing layer 3 with light of a predetermined pattern via the second base material 4, the second base material 4 is the photo-curing layer 3. Is peeled off from.
  • the exposed portion 3b of the photo-curing layer 3 is held by the first base material 2, and the unexposed portion 3a of the photo-curing layer 3 is held by the second base material 4. Will be done.
  • the exposed portion 3b of the photo-cured layer 3 is in a cured state, while the unexposed portion 3a of the photo-cured layer 3 is maintained in an uncured state. Then, in the present embodiment, light of a negative pattern (predetermined pattern) opposite to the pattern of the pattern layer to be formed is irradiated. Therefore, the exposed portion 3b held on the first base material 2 is the photocurable layer 3 of the negative pattern.
  • the unexposed portion 3a held by the second base material 4 is a photo-curing layer 3 of a pattern (positive pattern) of the pattern layer to be formed. After that, by irradiating the unexposed portion 3a with light, the conductive particles 31 are fixed in contact with each other, and a conductive pattern layer (that is, a conductive pattern layer) is formed.
  • the average thickness of the photocurable layer 3 is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more. In this case, since the conductive pattern layer to be formed has a sufficient thickness, it can be joined by a brazing material (for example, solder or the like).
  • the upper limit of the average thickness of the photocurable layer 3 is usually 20 ⁇ m.
  • the size of the photo-curing layer 3 in a plan view is set to, for example, A9 plate (length: about 37 mm ⁇ width: about 52 mm), but is not limited thereto.
  • the photocurable composition for forming the photocurable layer 3 of the present embodiment contains conductive particles 31, a photocurable resin 32, and a photopolymerization initiator.
  • the constituent material of the conductive particles 31 examples include silver, gold, copper, platinum, lead, zinc, tin, iron, aluminum, palladium, carbon and the like. These constituent materials may be used alone or in combination of two or more. Above all, it is desirable that the conductive particles 31 are silver particles.
  • the conductive pattern layer made of silver particles has excellent conductivity. Further, by using the conductive pattern layer as a seed layer and performing electroless plating or electrolytic plating, it is possible to increase the thickness of the conductive pattern layer.
  • the average particle diameter (D50) of the conductive particles 31 is preferably 1.5 ⁇ m or more, and more preferably 2.5 ⁇ m or more.
  • the D50 of the conductive particles 31 is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • D50 represents a particle size at which the integrated volume fraction is 50%.
  • the particle size distribution in the present specification is a value obtained by the laser diffraction / scattering method.
  • the content of the conductive particles 31 in the photocurable composition is preferably 50% by mass or more, more preferably 60% by mass or more.
  • the content of the conductive particles 31 in the photocurable composition is preferably 95% by mass or less, more preferably 90% by mass or less. Thereby, the mechanical strength and the conductivity of the formed conductive pattern layer can be further improved.
  • the photocurable resin 32 is a monomer that polymerizes with each other by light (active energy rays) such as ultraviolet rays, electron beams, and gamma rays.
  • the photocurable resin 32 is a compound having one or more photocurable functional groups (functional groups having a double bond) such as a vinyl group, an acrylic group, and a methacrylic group in the molecule.
  • the photocurable resin 32 preferably contains, but is not limited to, a compound having a (meth) acrylic group ((meth) acrylate).
  • (meth) acrylate refers to acrylate, methacrylate or a mixture thereof.
  • Examples of the (meth) acrylate include monofunctional acrylate, polyfunctional acrylate, monofunctional methacrylate, polyfunctional methacrylate, urethane acrylate, urethane methacrylate, epoxy acrylate, epoxy methacrylate, polyester acrylate and the like. These (meth) acrylates may be used alone or in combination of two or more.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and 2-hydroxypropyl (meth) acrylate.
  • Acrylate (meth) acrylates such as acrylates, cyclopentyl (meth) acrylates, cyclohexyl (meth) acrylates, isobornyl (meth) acrylates, 3-methyl-3-oxetanylmethyl (meth) acrylates, 1-adamantyl (meth) acrylates.
  • bifunctional (meth) acrylate examples include aliphatic (meth) acrylates such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerin di (meth) acrylate, and tricyclodecanedimethanol (meth) acrylate.
  • Acrylic (meth) acrylates such as acrylates, cyclohexanedimethanol (meth) acrylates, hydrogenated bisphenol A di (meth) acrylates, hydrogenated bisphenol F di (meth) acrylates, bisphenol A di (meth) acrylates, bisphenol F Di (meth) acrylates, ethoxylated bisphenol A di (meth) acrylates, aromatic (meth) acrylates such as fluorene-type di (meth) acrylates, heterocyclic (meth) acrylates such as isocyanuric acid di (meth) acrylates. And so on.
  • trifunctional or higher functional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and ethoxylated glycerin tri (meth) acrylate.
  • examples thereof include aliphatic (meth) acrylates and heterocyclic (meth) acrylates such as tri (meth) acrylates of isocyanuric acid.
  • the content of the photocurable resin 32 in the photocurable composition is preferably 0.1% by mass or more, and more preferably 1% by mass or more. This makes it possible to further improve the mechanical strength and conductivity of the cured photocured layer 3.
  • the content of the photocurable resin 32 in the photocurable composition is preferably 20% by mass or less, more preferably 15% by mass or less. As a result, it is possible to improve the balance between the adhesion of the cured photo-cured layer 3 to the first base material 2 and the peelability to the second base material 4.
  • the photopolymerization initiator a compound that generates radical species by light such as ultraviolet rays is desirable, but the photopolymerization initiator is not limited to this.
  • the photopolymerization initiator an addition reaction due to the double bond of the photocurable functional groups of the photocurable resin occurs rapidly, and the photocurable functional groups are linked to each other. That is, the polymerization reaction between the photocurable resins (monomers) proceeds.
  • photopolymerization initiator examples include acylphosphine oxide, halomethylated triazine, halomethylated oxadiazole, imidazole, benzoin, benzoin alkyl ether, anthraquinone, benzanthrone, benzophenone, acetophenone, thioxanthone, benzoic acid ester, aclysine and phenazine. , Titanocene, ⁇ -aminoalkylphenone, oxime or derivatives thereof and the like. These compounds may be used alone or in combination of two or more. Of these, anthraquinone and benzophenone are desirable because the photocurable layer 3 can be quickly and reliably cured.
  • the content of the photopolymerization initiator in the photocurable composition is preferably 1 part by weight or more, more preferably 3 parts by weight or more, based on 100 parts by weight of the photocurable resin.
  • the content of the photopolymerization initiator is preferably 20 parts by weight or less, and more preferably 15 parts by weight or less.
  • the photo-curing composition may contain various additives.
  • additives include organic solvents, colorants, defoamers, leveling agents, foaming agents, antioxidants, flame retardants, ion scavengers, plasticizers and the like. These additives may be used alone or in combination of two or more.
  • the viscosity of the photocurable composition at 25 ° C. is preferably 0.1 to 50 Pa ⁇ s, more preferably 1 to 10 Pa ⁇ s. In this case, the handleability of the photo-curing composition is improved, and the flat photo-curing layer 3 can be efficiently formed regardless of the surface texture of the base materials 2 and 4.
  • the photocurable composition is obtained by kneading each component using various mixers such as a bead mill type, a jet mill type, a high-speed shear type, a rotation / revolution type, an ultrasonic type, a high-pressure collision type, and a high-speed rotation type. Can be prepared.
  • the first base material 2 is a sheet-like or flat plate-like base material that holds the photocurable layer 3 (exposed portion 3b) that has been cured by being irradiated with light.
  • the constituent materials thereof include, for example, a liquid crystal polymer, polyester (for example, polyethylene terephthalate, polybutylene terephthalate, etc.), polyvinyl chloride, polystyrene, vinyl acetate, and polymethyl methacrylate.
  • the constituent materials include acrylic resin, polycarbonate resin, hard resin material such as ABS resin, glass material, and metal material in addition to the soft resin material. , Ceramic materials and the like.
  • the first base material 2 preferably contains a soft resin material, and more preferably contains at least one selected from the group consisting of liquid crystal polymers and polyesters.
  • the first base material 2 containing these materials is preferable because it has high adhesion to the cured photo-cured layer 3 (photo-cured resin after curing).
  • a fluorine-based resin such as polytetrafluoroethylene (PTFE) may be mixed with the resin material. In this case, the uncured photo-cured layer 3 is easily peeled off from the first base material 2.
  • the melting point of the resin material is preferably 250 to 350 ° C, more preferably 280 to 310 ° C.
  • the melting point of the resin material is the peak temperature measured by the differential scanning calorimetry (DSC) method.
  • the content of the resin material in the first base material 2 is preferably 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass.
  • the first base material 2 has a size that includes the photocurable layer 3 in a plan view.
  • the arithmetic average roughness Ra of the upper surface (the surface on the photocurable layer 3 side) 21 of the first substrate 2 is the arithmetic average roughness Ra of the lower surface (the surface on the photocurable layer 3 side) 41 of the second substrate 4. Larger is desirable. In this case, the anchor effect of the cured photo-cured layer 3 on the first substrate 2 is stronger. As a result, the adhesion of the cured photo-cured layer 3 to the first base material 2 can be set to be larger than the adhesion to the second base material 4.
  • the cured photo-curing layer 3 (exposed portion 3b) is likely to remain on the first base material 2.
  • the arithmetic average roughness Ra of the upper surface 21 of the first base material 2 depends on the type of the photo-curing resin, but the cured photo-cured layer 3 has high adhesion to the first base material 2. Is obtained, and the adhesion of the uncured photocured layer 3 to the first base material 2 is set so as not to be unnecessarily high.
  • the second base material 4 is a sheet-like base material that holds the photocurable layer 3 (unexposed portion 3a) that is not irradiated with light and maintains an uncured state.
  • the second substrate 4 preferably contains at least one selected from the group consisting of polyolefins and fluoropolymers. It is considered that these polymers exhibit high affinity with the uncured photocurable resin 32 by, for example, interacting with the photocurable functional group of the uncured photocurable resin 32.
  • polystyrene resin 32 On the other hand, these polymers have become the photo-curing resin 32 in a cured state due to the progress of the curing reaction (polymerization reaction) of the photo-curing resin 32, the decrease in the number of photo-curing functional groups, the increase in molecular weight, and the like. It is considered that the affinity of the light is reduced.
  • polyolefin is desirable as the constituent material of the second base material 4. Polyolefins are preferable because they have high light transmittance in addition to the above performance.
  • polystyrene resin examples include polyethylene, polypropylene, propylene-ethylene copolymer, ethylene-propylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, and poly4-methyl.
  • examples thereof include polymers having a non-polar side chain (hydrocarbon chain) such as Penten-1, and polymers having an aliphatic ring in the main chain such as a cycloolefin polymer (for example, an ethylene-norbornene copolymer). ..
  • the polyolefin high density polyethylene (HDPE), poly4-methylpentene-1 or cycloolefin polymer (COP) is desirable.
  • HDPE high density polyethylene
  • COP cycloolefin polymer
  • the melting point of the polymer (second substrate 4) is preferably 200 to 260 ° C, more preferably 220 to 240 ° C.
  • the average thickness of the second base material 4 is preferably 10 to 200 ⁇ m, more preferably about 50 to 150 ⁇ m.
  • the second base material 4 having such a thickness has sufficient mechanical strength and can also maintain high flexibility (flexibility). Therefore, when the unexposed portion 3a is attached to the surface of the article, it is possible to prevent the unexposed portion 3a from being unintentionally deformed or the like.
  • the arithmetic mean roughness Ra of the lower surface 41 of the second base material 4 depends on the type of the photocurable resin, high adhesion of the uncured photocured layer 3 to the second base material 4 can be obtained.
  • the adhesion of the cured photo-cured layer 3 to the second substrate 4 is set so as not to be unnecessarily high.
  • the size of the second base material 4 in a plan view is substantially equal to the size of the first base material 2 in a plan view.
  • the second base material 4 exhibits high transparency to light having a relatively wide wavelength.
  • the transmittance of the light having a wavelength of 300 nm of the second substrate 4 is A [%] and the transmittance of the light having a wavelength of 600 nm is B [%]
  • the transmittance of BA is 10% or less. Desirably, 5% or less is more desirable.
  • the second base material 4 having such characteristics can transmit light necessary and sufficient for curing the uncured photocured layer 3.
  • the transmittance of the light having a wavelength of 450 nm of the second base material 4 is preferably 90% or more, and more preferably 95% or more.
  • the upper limit of this light transmittance is usually 99% or less.
  • the softening temperature of the second substrate 4 is preferably 70 ° C. or lower, more preferably 50 ° C. or lower.
  • the conductive pattern layer photo-cured layer 3 in a cured state
  • the following effects can be obtained. That is, since the second base material 4 having the softening temperature is softened by heating at a relatively low temperature, even if the conductive pattern layer is thermally shrunk, it can follow it. As a result, it is possible to suitably prevent defects (for example, cracks, defects, etc.) from occurring in the conductive pattern layer.
  • the lower limit of the softening temperature of the second base material 4 is usually 30 ° C. This makes it possible to suitably prevent unintentional deformation of the second base material 4 at room temperature (room temperature).
  • the softening temperature is the temperature at which the tensile elastic modulus of the second base material 4 becomes 300 MPa.
  • FIG. 5 is a process diagram for explaining an embodiment of the method for manufacturing an article with a pattern layer of the present invention.
  • the method for producing an article with a pattern layer of the present invention is a method for producing an article with a pattern layer by forming a pattern layer on the surface of the article using the sheet of the present invention.
  • the method for manufacturing an article with a pattern layer shown in FIG. 5 is as follows: [1] a first step of preparing the sheet 1 and the article 10, and [2] a pattern of the conductive pattern layer 30 via a second base material 4.
  • the fourth step of attaching the article 10 to the article 10 and [5] the second base material 4 and curing the light has 5 steps, [6] a sixth step of heating the conductive pattern layer 30, and [7] a seventh step of peeling the second base material 4 from the conductive pattern layer 30.
  • each step will be described in sequence.
  • the article 10 and the sheet 1 are prepared.
  • the article 10 for example, an article having a surface including a curved surface (curved surface or bent surface) is preferable. According to the present invention, even with such a curved surface, it is possible to collectively form the conductive pattern layer 30 which is not distorted by the curved surface irradiation or has very little distortion.
  • Examples of such an article 10 include, but are not limited to, a cylindrical bottle or bottle, a rectangular case, and the like. Note that FIG. 5 shows a cylindrical bottle as an example of the article 10.
  • the photocurable layer 3 is irradiated with light having a negative pattern opposite to the pattern of the conductive pattern layer 30 to be formed, via the second base material 4. do.
  • the pattern (positive pattern) of the conductive pattern layer 30 to be formed is an elongated dumbbell shape as shown in FIG. 3 and the like. Therefore, the pattern of light emitted in the second step is a pattern (negative pattern) having a shape excluding the elongated dumbbell shape.
  • the wavelength of the irradiated light is preferably 200 to 650 nm, more preferably 200 to 450 nm. Specific examples of the light to be irradiated include laser light having a wavelength of about 405 nm.
  • the integrated amount of light to be irradiated is preferably 50 to 500 mJ / cm 2 , and more preferably 100 to 300 mJ / cm 2 . By irradiating the uncured photocured layer 3 with the integrated light amount, the exposed portion 3b can be sufficiently cured.
  • the light of the negative pattern may be irradiated through a photomask or may be irradiated using a direct exposure machine.
  • the second base material 4 is peeled from the photocurable layer 3.
  • the exposed portion 3b photo-cured layer 3 in the cured state
  • the unexposed portion 3a photo-cured layer 3 in the uncured state
  • the second base material 4 holding the unexposed portion 3a is recovered and used.
  • the light conditions used in this step can be the same as the light conditions used in the second step.
  • the pattern of the light to be irradiated may be any shape as long as it includes the unexposed portion 3a, and may have any shape such as a rectangular shape (rectangular shape) or a circular shape. Further, the light to be irradiated may be natural light.
  • the conductive pattern layer 30 is heated.
  • the degree of contact between the conductive particles 31 can be further increased, and therefore the conductivity of the conductive pattern layer 30 can be further improved.
  • the heating temperature is preferably 40 to 150 ° C, more preferably 75 to 125 ° C.
  • the heating time is preferably 0.1 to 3 hours, more preferably 0.5 to 2 hours.
  • the second base material 4 is peeled from the conductive pattern layer 30.
  • the article 100 with a pattern layer is obtained.
  • the sixth step may be omitted or may be performed after the seventh step.
  • the unexposed portion 3a (the uncured photocured layer 3) of the positive pattern corresponding to the conductive pattern layer 30 to be formed is formed in advance. This is attached to the surface of the article 10 and then cured. Therefore, distortion at the end of the conductive pattern layer 30 is unlikely to occur. Further, the conductive pattern layer 30 to be formed can be collectively formed regardless of the radius of curvature of the curved surface. Further, since the unnecessary uncured photocured layer 3 is not attached to the surface of the article 10, the cleaning required when the portion remains on the surface of the article 10 (for example, alcohol cleaning) is omitted. be able to.
  • the pattern layer can be formed accurately and easily even by a non-skilled worker. Since the cleaning step is not required, even if the target article 10 is a water-absorbent material such as paper or cloth, the pattern layer can be formed accurately and easily.
  • the conductive pattern layer 30 can be formed on a biological organ such as the skin of a human body, and in that case, the conductive pattern layer 30 can also function as an electrode for detecting a biological signal.
  • the article 100 with a pattern layer of the present embodiment has an article 10 having a curved surface, and a conductive pattern layer 30 provided on the curved surface and containing conductive particles and a cured product of a photocurable resin.
  • the average thickness of the conductive pattern layer 30 is 5 ⁇ m or more. Since the conductive pattern layer 30 has a sufficient thickness, it can be joined by a brazing material (for example, solder or the like).
  • the average thickness of the conductive pattern layer 30 is preferably 10 to 20 ⁇ m.
  • the article 100 with a pattern layer can be manufactured, for example, by the method for manufacturing an article with a pattern layer according to the present embodiment described above.
  • the photo-curing layer 3 does not have to contain conductive particles.
  • the formed pattern layer can be an insulating pattern layer. By alternately laminating the insulating pattern layer and the conductive pattern layer, the multilayer conductive pattern layer can be easily and inexpensively manufactured.
  • the present invention is not limited thereto.
  • the sheet and the article with the pattern layer of the present invention can be replaced with any configuration capable of exhibiting the same function, respectively, and any configuration may be added.
  • the method for producing an article with a pattern layer of the present invention can be replaced with an arbitrary step capable of exhibiting the same effect, and an arbitrary step may be added.
  • Example 1 a sheet-shaped second base material made of poly4-methylpentene-1 was prepared.
  • the melting point of the second base material was 230 ° C., and the softening point was 47 ° C.
  • the average thickness of the second substrate was 50 ⁇ m, and the transmittance of light having a wavelength of 450 nm was 96%.
  • a silver paste manufactured by Toyo Ink Co., Ltd., "RAFS FD 076" was applied to the second substrate by rotary screen printing so that the dry thickness was 10 ⁇ m to form a photocurable layer.
  • the viscosity of the silver paste at 25 ° C. measured by an E-type viscometer was 5 Pa ⁇ s.
  • a sheet-shaped first base material made of a liquid crystal polymer was attached to the surface of the photocurable layer opposite to the second base material. This gave a sheet.
  • the melting point of the first substrate was 310 ° C., and the average thickness was 50 ⁇ m.
  • the photocurable layer was irradiated with a laser beam having a wavelength of 405 nm by scanning with a MEMS mirror without using a photomask.
  • the integrated light amount of the laser light is preferably 200 mJ / cm 2 .
  • the second substrate was peeled off from the photocurable layer. The unexposed portion of the positive pattern shown in FIG. 3 was held on the second base material.
  • the second base material was attached to the glass bottle so that the unexposed portion was in contact with the outer surface (curved surface) of the cylindrical glass bottle.
  • the unexposed portion was irradiated with light via the second substrate under the same conditions as described above.
  • the unexposed portion was cured to form a conductive pattern layer.
  • the second base material was peeled off from the conductive pattern layer.
  • FIG. 6 shows a photograph of the appearance of the obtained article with a pattern layer.
  • the volume resistivity of the obtained conductive pattern layer was 3.7 ⁇ 10 -4 ⁇ ⁇ cm.
  • Example 2 Further, an article with a pattern layer was obtained in the same manner as in Example 1 except that the conductive pattern layer was heated at 80 ° C. for 1 hour. The volume resistivity of the obtained conductive pattern layer was 0.7 ⁇ 10 -4 ⁇ ⁇ cm.
  • Example 3 An article with a pattern layer was obtained in the same manner as in Example 1 except that a rectangular polystyrene case was used instead of the cylindrical glass bottle.
  • the conductive pattern layer was formed on the inner surface (bent surface) of the case.
  • FIG. 7 shows a photograph of the appearance of the obtained article with a pattern layer.
  • Example 4 An article with a pattern layer was obtained in the same manner as in Example 1 except that a paper material was used instead of the cylindrical glass bottle. The conductive pattern layer was formed on the surface of the paper. FIG. 8 shows a photograph of the appearance of the obtained article with a pattern layer.
  • the paper material in this example graph paper that is generally commercially available was used.
  • Example 5 An article with a pattern layer was obtained in the same manner as in Example 1 except that a cloth material was used instead of the cylindrical glass bottle.
  • the conductive pattern layer was formed on the surface of the cloth.
  • a cool towel generally commercially available was used as the cloth used in this example.
  • the appearance of the material surface is shown in FIG. 9A, and the enlarged view (100 ⁇ m / scale) of the material surface is shown in FIG. 9B.
  • FIG. 9C shows a photograph of the appearance of the obtained article with a pattern layer.
  • the first base material was omitted, and first, the second base material was attached to the glass bottle so that the rectangular photocurable layer was in contact with the surface of the cylindrical glass bottle.
  • the photocured layer was irradiated with light of a positive pattern under the same conditions as in Example 1.
  • a conductive pattern layer was formed.
  • the second substrate was peeled off from the photocurable layer.
  • the uncured photocured layer remaining around the conductive pattern layer was washed with isopropanol to remove it.
  • FIG. 10 shows a photograph of the appearance of the obtained article with a pattern layer.
  • the conductive pattern layer formed in the comparative example is confirmed to have a large distortion due to curved surface irradiation.
  • the article with the conductive pattern layer obtained in each embodiment is an example in which the conductive pattern is formed by a single layer, but from the viewpoint of ensuring stable electrical conductivity and passing a high capacity current, a plurality of layers are stacked. May be formed.

Abstract

[Problem] To provide: a sheet that allows batch formation of a pattern layer on a curved surface, such that the pattern layer is free of distortion, or has very little distortion, caused by curved surface irradiation; a method for manufacturing an article with a pattern layer by using such sheet; and an article with a pattern layer having a pattern layer formed on a curved surface. [Solution] This sheet (1) includes: a first base material (2); a photocurable layer (3) in an uncured state, which is provided on an upper surface (21) of the first base material 2 and includes a photocurable resin (32); and a second base material (4) which is light transmissive and provided in contact with the surface of the photocurable layer (3) on the side opposite from the first base material (2). When the photocurable layer (3) is irradiated with light of a prescribed pattern via the second base material (4), the photocurable layer (3) is cured, and the second base material (4) is peeled off from the photocurable layer (3), an exposed part (3b) of the photocurable layer (3) is held on the first base material (2), and an unexposed part (3a) of the photocurable layer (3) is held on the second base material (4).

Description

シート、パターン層付き物品の製造方法およびパターン層付き物品Manufacturing method of sheet, article with pattern layer and article with pattern layer
 本発明は、シート、パターン層付き物品の製造方法およびパターン層付き物品に関する。 The present invention relates to a sheet, a method for manufacturing an article with a pattern layer, and an article with a pattern layer.
 上記技術分野において、特許文献1には、光透過性を有するシート材層と、シート材層に上に設けられた光硬化樹脂を含むペースト状の光硬化層とを有するパターン形成用シートが開示されている。 In the above technical field, Patent Document 1 discloses a pattern-forming sheet having a sheet material layer having light transmission and a paste-like photocurable layer containing a photocurable resin provided on the sheet material layer. Has been done.
 このパターン形成用シートの光硬化層をワークに貼り付け、この状態でワーク上に光を照射して、光硬化層にパターンの潜像を形成する。その後、パターン形成用シートをワークから剥離することにより、硬化状態の光硬化層からなるパターン層をワーク上に形成することができる。 The photo-curing layer of this pattern-forming sheet is attached to the work, and in this state, the work is irradiated with light to form a latent image of the pattern on the photo-curing layer. Then, by peeling the pattern-forming sheet from the work, a pattern layer made of a cured photo-cured layer can be formed on the work.
特開2018-54665号公報Japanese Unexamined Patent Publication No. 2018-54665
 しかしながら、特許文献1の方法で、ワークの曲面(湾曲面または屈曲面)にパターン層を形成する場合、照射面が歪んでいるため、そこに照射した光のパターンも歪んでしまう。また、曲面の曲率が小さくなるほど、露光可能な範囲が小さくなるので、曲面の反対側に位置するパターン層を一度に形成することができない。さらに、曲面(表面)上に残存する未硬化の光硬化樹脂をアルコール(例えば、イソプロパノール)で洗浄する必要がある。 However, when the pattern layer is formed on the curved surface (curved surface or bent surface) of the work by the method of Patent Document 1, since the irradiation surface is distorted, the pattern of the light irradiated there is also distorted. Further, as the curvature of the curved surface becomes smaller, the range that can be exposed becomes smaller, so that the pattern layer located on the opposite side of the curved surface cannot be formed at one time. Further, it is necessary to wash the uncured photocurable resin remaining on the curved surface (surface) with alcohol (for example, isopropanol).
 本発明の目的は、上述の課題を解決する技術を提供するものであり、曲面にパターン層を形成しても、曲面照射による歪みがないか、極めて少ないパターン層を一括して形成し得るシート、かかるシートを使用したパターン層付き物品の製造方法、および曲面に形成されたパターン層を有するパターン層付き物品を提供することにある。 An object of the present invention is to provide a technique for solving the above-mentioned problems, and even if a pattern layer is formed on a curved surface, there is no distortion due to curved surface irradiation, or a sheet capable of collectively forming an extremely small number of pattern layers. , A method of manufacturing an article with a pattern layer using such a sheet, and an article with a pattern layer having a pattern layer formed on a curved surface.
 上記の目的を達成するため、本発明に係るシートは、
 シート状または平板状の第1の基材と、
 前記第1の基材の一方の面に接触して設けられ、光硬化樹脂を含む未硬化状態の光硬化層と、
 前記光硬化層の前記第1の基材と反対側の面に接触して設けられ、光透過性を有するシート状の第2の基材とを有し、
 前記第2の基材を介して、所定パターンの光を前記光硬化層に照射して硬化させた後、前記第2の基材を前記光硬化層から剥離したとき、前記光硬化層の露光部が前記第1の基材に保持され、前記光硬化層の未露光部が前記第2の基材に保持される。
In order to achieve the above object, the sheet according to the present invention is
A sheet-shaped or flat plate-shaped first base material and
An uncured photocured layer provided in contact with one surface of the first substrate and containing a photocurable resin,
It has a second base material in the form of a sheet, which is provided in contact with the surface of the photo-curing layer opposite to the first base material and has light transmittance.
When the photocurable layer is cured by irradiating the photocurable layer with light of a predetermined pattern via the second substrate and then the second substrate is peeled off from the photocurable layer, the exposure of the photocurable layer is achieved. The portion is held by the first base material, and the unexposed portion of the photocurable layer is held by the second base material.
 上記の目的を達成するため、本発明に係るパターン層付き物品の製造方法は、
 物品と、前記物品の表面に上記シートを用いて形成されたパターン層とを有するパターン層付き物品の製造方法であって、
 前記シートと、前記物品とを準備する工程と、
 前記第2の基材を介して、前記パターン層のパターンと反対のネガパターンの光を前記光硬化層に照射して、その露光部を硬化させる工程と、
 前記第2の基材を前記光硬化層から剥離して、前記光硬化層の未露光部を保持した前記第2の基材を回収する工程と、
 前記未露光部が前記物品の表面に接触するように、前記第2の基材を前記物品に貼着する工程と、
 前記第2の基材を介して、光を前記未露光部に照射して、硬化させることにより、前記パターン層を形成する工程と、
 前記第2の基材を前記パターン層から剥離する工程とを有する。
In order to achieve the above object, the method for manufacturing an article with a pattern layer according to the present invention is:
A method for manufacturing an article with a pattern layer having an article and a pattern layer formed on the surface of the article by using the sheet.
The process of preparing the sheet and the article,
A step of irradiating the photo-curing layer with light of a negative pattern opposite to the pattern of the pattern layer through the second base material to cure the exposed portion.
A step of peeling the second base material from the photo-curing layer and recovering the second base material holding an unexposed portion of the photo-curing layer.
A step of attaching the second base material to the article so that the unexposed portion comes into contact with the surface of the article.
A step of forming the pattern layer by irradiating the unexposed portion with light through the second base material and curing the unexposed portion.
It has a step of peeling the second base material from the pattern layer.
 上記の目的を達成するため、本発明に係るパターン層付き物品は、
 曲面を備える物品と、
 前記曲面に設けられ、導電粒子と光硬化樹脂の硬化物とを含有するパターン層とを有し、
 前記パターン層の平均厚さが、5μm以上である。
In order to achieve the above object, the article with a pattern layer according to the present invention is
Articles with curved surfaces and
It has a pattern layer provided on the curved surface and containing conductive particles and a cured product of a photocurable resin.
The average thickness of the pattern layer is 5 μm or more.
 本発明によれば、曲面にパターン層を形成しても、曲面照射による歪みがないか、極めて少ないパターン層を一括して形成することができる。また、本発明によれば、曲面照射による歪みがないか、極めて少ないパターン層を有するパターン層付き物品を製造することができる。 According to the present invention, even if a pattern layer is formed on a curved surface, it is possible to collectively form a pattern layer that is not distorted by curved surface irradiation or has very little distortion. Further, according to the present invention, it is possible to manufacture an article with a pattern layer which has no distortion due to curved surface irradiation or has an extremely small number of pattern layers.
図1は、本発明のシートの実施形態を示す平面図(第2の基材を若干ズラして示す。)である。FIG. 1 is a plan view showing an embodiment of the sheet of the present invention (the second base material is slightly displaced). 図2は、図1に示すシートの断面図である。FIG. 2 is a cross-sectional view of the sheet shown in FIG. 図3は、光を照射した後の図1に示すシートの平面図である。FIG. 3 is a plan view of the sheet shown in FIG. 1 after being irradiated with light. 図4は、図3に示すシートを分離した状態を示す平面図である。FIG. 4 is a plan view showing a state in which the sheet shown in FIG. 3 is separated. 図5は、本発明のパターン層付き物品の製造方法の実施形態を説明するための工程図である。FIG. 5 is a process diagram for explaining an embodiment of the method for manufacturing an article with a pattern layer of the present invention. 図6は、実施例1で得られたパターン層付き物品の外観の写真である。FIG. 6 is a photograph of the appearance of the article with the pattern layer obtained in Example 1. 図7は、実施例3で得られたパターン層付き物品の外観の写真である。FIG. 7 is a photograph of the appearance of the article with the pattern layer obtained in Example 3. 図8は、実施例4で得られたパターン層付き物品の外観の写真である。FIG. 8 is a photograph of the appearance of the article with the pattern layer obtained in Example 4. 図9Aは、実施例5で得られたパターン層付き物品の、パターン形成前の素材の外観を示す写真である。FIG. 9A is a photograph showing the appearance of the material of the article with the pattern layer obtained in Example 5 before pattern formation. 図9Bは、実施例5で得られたパターン層付き物品の、パターン形成前の素材の表面を拡大した写真である。FIG. 9B is an enlarged photograph of the surface of the material before pattern formation of the article with the pattern layer obtained in Example 5. 図9Cは、実施例5で得られたパターン層付き物品の外観の写真である。FIG. 9C is a photograph of the appearance of the article with the pattern layer obtained in Example 5. 図10は、比較例で得られたパターン層付き物品の外観の写真である。FIG. 10 is a photograph of the appearance of the article with the pattern layer obtained in the comparative example.
 以下、本発明のシート、パターン層付き物品の製造方法およびパターン層付き物品を添付図面に示す好適な実施形態に基づいて詳細に説明する。
 <シート>
 まず、本発明のシートについて説明する。
 図1は、本発明のシートの実施形態を示す断面図、図2は、図1に示すシートの断面図、図3は、光を照射した後の図1に示すシートの平面図、図4は、図3に示すシートを分離した状態を示す平面図である。
 なお、以下の説明では、図1、図3および図4中の紙面手前側を「上」と言い、紙面奥側を「下」と言う。また、図2中の上側を「上」と言い、下側を「下」と言う。
Hereinafter, the sheet of the present invention, the method for producing an article with a pattern layer, and the article with a pattern layer will be described in detail based on the preferred embodiments shown in the accompanying drawings.
<Sheet>
First, the sheet of the present invention will be described.
1 is a sectional view showing an embodiment of the sheet of the present invention, FIG. 2 is a sectional view of the sheet shown in FIG. 1, FIG. 3 is a plan view of the sheet shown in FIG. 1 after irradiation with light, and FIG. Is a plan view showing a state in which the sheets shown in FIG. 3 are separated.
In the following description, the front side of the paper in FIGS. 1, 3 and 4 is referred to as "top", and the back side of the paper is referred to as "bottom". Further, the upper side in FIG. 2 is referred to as "upper" and the lower side is referred to as "lower".
 図1および図2に示すシート1は、シート状または平板状の第1の基材2と、第1の基材2の上面(一方の面)21に接触して設けられた未硬化状態の光硬化層3と、光硬化層3の上面(第1の基材2と反対側の面)に接触して設けられ、光透過性を有するシート状の第2の基材4とを有する。また、本実施形態の光硬化層3は、導電粒子31および光硬化樹脂32を含んでいる。
 なお、第1の基材2と第2の基材4とを、特に区別する必要がない場合、これらを、まとめて「基材」と記載する。
 ここで、未硬化状態の光硬化層3とは、流動性のある半固形状態(すなわち、ペースト状態)に形成された層である。
The sheet 1 shown in FIGS. 1 and 2 is in an uncured state provided in contact with the sheet-shaped or flat plate-shaped first base material 2 and the upper surface (one side) 21 of the first base material 2. It has a light-curing layer 3 and a sheet-shaped second base material 4 provided in contact with the upper surface of the photo-curing layer 3 (the surface opposite to the first base material 2) and having light transmission. Further, the photocurable layer 3 of the present embodiment contains the conductive particles 31 and the photocurable resin 32.
When it is not necessary to distinguish between the first base material 2 and the second base material 4, they are collectively referred to as "base material".
Here, the uncured photo-cured layer 3 is a layer formed in a fluid semi-solid state (that is, a paste state).
 かかるシート1では、基材2、4の構成材料および光硬化樹脂32の種類、基材2.4の表面性状等が適切に設定されている。これにより、硬化状態の程度の違いに応じて、光硬化層3の基材2、4に対する密着性に変化を生じさせ得るように構成されている。
 シート1では、図2に示すように、第2の基材4を介して、所定パターンの光を光硬化層3に照射して硬化させた後、第2の基材4が光硬化層3から剥離される。そして、剥離後には、図4に示すように、光硬化層3の露光部3bが第1の基材2に保持され、光硬化層3の未露光部3aが第2の基材4に保持される。
In the sheet 1, the constituent materials of the base materials 2 and 4, the type of the photocurable resin 32, the surface texture of the base material 2.4 and the like are appropriately set. As a result, the adhesion of the photo-cured layer 3 to the substrates 2 and 4 can be changed depending on the degree of the cured state.
In the sheet 1, as shown in FIG. 2, after the photo-curing layer 3 is cured by irradiating the photo-curing layer 3 with light of a predetermined pattern via the second base material 4, the second base material 4 is the photo-curing layer 3. Is peeled off from. After the peeling, as shown in FIG. 4, the exposed portion 3b of the photo-curing layer 3 is held by the first base material 2, and the unexposed portion 3a of the photo-curing layer 3 is held by the second base material 4. Will be done.
 本実施形態では、光硬化層3の露光部3bが硬化状態となる一方、光硬化層3の未露光部3aは未硬化状態を維持する。
 そして、本実施形態では、形成すべきパターン層のパターンと反対のネガパターン(所定パターン)の光を照射する。したがって、第1の基材2に保持される露光部3bは、ネガパターンの光硬化層3である。一方、第2の基材4に保持される未露光部3aは、形成すべきパターン層のパターン(ポジパターン)の光硬化層3である。その後、この未露光部3aに光を照射することにより、導電粒子31同士が接触した状態で固定され、導電性を有するパターン層(すなわち、導電パターン層)が形成される。
In the present embodiment, the exposed portion 3b of the photo-cured layer 3 is in a cured state, while the unexposed portion 3a of the photo-cured layer 3 is maintained in an uncured state.
Then, in the present embodiment, light of a negative pattern (predetermined pattern) opposite to the pattern of the pattern layer to be formed is irradiated. Therefore, the exposed portion 3b held on the first base material 2 is the photocurable layer 3 of the negative pattern. On the other hand, the unexposed portion 3a held by the second base material 4 is a photo-curing layer 3 of a pattern (positive pattern) of the pattern layer to be formed. After that, by irradiating the unexposed portion 3a with light, the conductive particles 31 are fixed in contact with each other, and a conductive pattern layer (that is, a conductive pattern layer) is formed.
 光硬化層3の平均厚さは、5μm以上が望ましく、10μm以上がより望ましい。この場合、形成される導電パターン層は、十分な厚さを有するため、ろう材(例えば、半田等)による接合が可能である。なお、光硬化層3の平均厚さの上限は、通常、20μmである。
 また、光硬化層3の平面視でのサイズは、例えば、A9版(縦:約37mm×横:約52mm)に設定されるが、これに限定されない。
 本実施形態の光硬化層3を形成するための光硬化組成物は、導電粒子31と、光硬化樹脂32と、光重合開始剤とを含有している。
The average thickness of the photocurable layer 3 is preferably 5 μm or more, and more preferably 10 μm or more. In this case, since the conductive pattern layer to be formed has a sufficient thickness, it can be joined by a brazing material (for example, solder or the like). The upper limit of the average thickness of the photocurable layer 3 is usually 20 μm.
Further, the size of the photo-curing layer 3 in a plan view is set to, for example, A9 plate (length: about 37 mm × width: about 52 mm), but is not limited thereto.
The photocurable composition for forming the photocurable layer 3 of the present embodiment contains conductive particles 31, a photocurable resin 32, and a photopolymerization initiator.
 導電粒子31の構成材料としては、例えば、銀、金、銅、白金、鉛、亜鉛、錫、鉄、アルミニウム、パラジウム、カーボン等が挙げられる。これらの構成材料は、1種を単独で使用しても、2種以上を併用してもよい。
 中でも、導電粒子31は、銀粒子であることが望ましい。銀粒子による導電パターン層は、導電性に優れる。また、導電パターン層をシード層として使用し、無電解めっきまたは電解めっきを行うことにより、導電パターン層の厚膜化が可能である。
Examples of the constituent material of the conductive particles 31 include silver, gold, copper, platinum, lead, zinc, tin, iron, aluminum, palladium, carbon and the like. These constituent materials may be used alone or in combination of two or more.
Above all, it is desirable that the conductive particles 31 are silver particles. The conductive pattern layer made of silver particles has excellent conductivity. Further, by using the conductive pattern layer as a seed layer and performing electroless plating or electrolytic plating, it is possible to increase the thickness of the conductive pattern layer.
 導電粒子31の平均粒子径(D50)は、1.5μm以上が望ましく、2.5μm以上がより望ましい。また、導電粒子31のD50は、10μm以下が望ましく、5μm以下がより望ましい。かかるD50の導電粒子31を使用することにより、形成される導電パターン層の接続信頼性を一層高めることができる。
 なお、D50は、積算体積分率が50%となる粒径を表す。また、本明細書における粒度分布は、レーザ回折散乱法によって求められる値である。
 光硬化組成物中の導電粒子31の含有量は、50質量%以上が望ましく、60質量%以上がより望ましい。また、光硬化組成物中の導電粒子31の含有量は、95質量%以下が望ましく、90質量%以下がより望ましい。これにより、形成される導電パターン層の機械的強度と導電性とをより向上させることができる。
The average particle diameter (D50) of the conductive particles 31 is preferably 1.5 μm or more, and more preferably 2.5 μm or more. The D50 of the conductive particles 31 is preferably 10 μm or less, and more preferably 5 μm or less. By using the conductive particles 31 of D50, the connection reliability of the formed conductive pattern layer can be further improved.
Note that D50 represents a particle size at which the integrated volume fraction is 50%. Further, the particle size distribution in the present specification is a value obtained by the laser diffraction / scattering method.
The content of the conductive particles 31 in the photocurable composition is preferably 50% by mass or more, more preferably 60% by mass or more. The content of the conductive particles 31 in the photocurable composition is preferably 95% by mass or less, more preferably 90% by mass or less. Thereby, the mechanical strength and the conductivity of the formed conductive pattern layer can be further improved.
 光硬化樹脂32は、紫外線、電子線、ガンマ線のような光(活性エネルギー線)によって互いに重合するモノマーである。具体的には、光硬化樹脂32は、分子内にビニル基、アクリル基、メタクリル基のような光硬化官能基(二重結合を有する官能基)を1つ以上有する化合物である。
 光硬化樹脂32としては、(メタ)アクリル基を有する化合物((メタ)アクリレート)を含むことが望ましいが、これに限定されない。(メタ)アクリレートを含む光硬化樹脂を使用することにより、硬化状態の光硬化層3(露光部3b)と第1の基材2との密着性を高め、未硬化状態の光硬化層3(未露光部3a)と第2の基材4との密着性を高めることができる。
 本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートまたはこれらの混合物を表す。
The photocurable resin 32 is a monomer that polymerizes with each other by light (active energy rays) such as ultraviolet rays, electron beams, and gamma rays. Specifically, the photocurable resin 32 is a compound having one or more photocurable functional groups (functional groups having a double bond) such as a vinyl group, an acrylic group, and a methacrylic group in the molecule.
The photocurable resin 32 preferably contains, but is not limited to, a compound having a (meth) acrylic group ((meth) acrylate). By using a photo-curing resin containing (meth) acrylate, the adhesion between the cured photo-curing layer 3 (exposed portion 3b) and the first base material 2 is enhanced, and the uncured photo-curing layer 3 (the uncured photo-curing layer 3). The adhesion between the unexposed portion 3a) and the second base material 4 can be improved.
As used herein, (meth) acrylate refers to acrylate, methacrylate or a mixture thereof.
 (メタ)アクリレートとしては、例えば、単官能アクリレート、多官能アクリレート、単官能メタクリレート、多官能メタクリレート、ウレタンアクリレート、ウレタンメタクリレート、エポキシアクリレート、エポキシメタクリレート、ポリエステルアクリレート等が挙げられる。これらの(メタ)アクリレートは、1種を単独で使用しても、2種以上を併用してもよい。 Examples of the (meth) acrylate include monofunctional acrylate, polyfunctional acrylate, monofunctional methacrylate, polyfunctional methacrylate, urethane acrylate, urethane methacrylate, epoxy acrylate, epoxy methacrylate, polyester acrylate and the like. These (meth) acrylates may be used alone or in combination of two or more.
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートのような脂肪族(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、3-メチル-3-オキセタニルメチル(メタ)アクリレート、1-アダマンチル(メタ)アクリレートのような脂環式(メタ)アクリレート、フェニル(メタ)アクリレート、p-クミルフェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートのような芳香族(メタ)アクリレート、2-テトラヒドロフルフリル(メタ)アクリレート、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、2-(メタ)アクリロイルオキシエチル-N-カルバゾールのような複素環式(メタ)アクリレート等が挙げられる。 Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, stearyl (meth) acrylate, behenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and 2-hydroxypropyl (meth) acrylate. ) Acrylate (meth) acrylates such as acrylates, cyclopentyl (meth) acrylates, cyclohexyl (meth) acrylates, isobornyl (meth) acrylates, 3-methyl-3-oxetanylmethyl (meth) acrylates, 1-adamantyl (meth) acrylates. Acrylate-type (meth) acrylate, phenyl (meth) acrylate, p-cumylphenyl (meth) acrylate, o-biphenyl (meth) acrylate, 2-naphthyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxy Aromatic (meth) acrylates such as -3-phenoxypropyl (meth) acrylates, 2-tetrahydrofurfuryl (meth) acrylates, N- (meth) acryloyloxyethyl hexahydrophthalimide, 2- (meth) acryloyloxyethyl- Examples thereof include heterocyclic (meth) acrylates such as N-carbazole.
 2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレートのような脂肪族(メタ)アクリレート、シクロヘキサンジメタノール(メタ)アクリレート、水添ビスフェノールAジ(メタ)アクリレート、水添ビスフェノールFジ(メタ)アクリレートのような脂環式(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、フルオレン型ジ(メタ)アクリレートのような芳香族(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレートのような複素環式(メタ)アクリレート等が挙げられる。 Examples of the bifunctional (meth) acrylate include aliphatic (meth) acrylates such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerin di (meth) acrylate, and tricyclodecanedimethanol (meth) acrylate. Acrylic (meth) acrylates such as acrylates, cyclohexanedimethanol (meth) acrylates, hydrogenated bisphenol A di (meth) acrylates, hydrogenated bisphenol F di (meth) acrylates, bisphenol A di (meth) acrylates, bisphenol F Di (meth) acrylates, ethoxylated bisphenol A di (meth) acrylates, aromatic (meth) acrylates such as fluorene-type di (meth) acrylates, heterocyclic (meth) acrylates such as isocyanuric acid di (meth) acrylates. And so on.
 3官能以上の多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレートのような脂肪族(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレートのような複素環式(メタ)アクリレート等が挙げられる。 Examples of the trifunctional or higher functional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and ethoxylated glycerin tri (meth) acrylate. Examples thereof include aliphatic (meth) acrylates and heterocyclic (meth) acrylates such as tri (meth) acrylates of isocyanuric acid.
 光硬化組成物中の光硬化樹脂32の含有量は、0.1質量%以上が望ましく、1質量%以上がより望ましい。これにより、硬化状態の光硬化層3の機械的強度と導電性とをより向上させることができる。
 また、光硬化組成物中の光硬化樹脂32の含有量は、20質量%以下が望ましく、15質量%以下がより望ましい。これにより、硬化状態の光硬化層3の第1の基材2に対する密着性と第2の基材4に対する剥離性とのバランスを高めることができる。
The content of the photocurable resin 32 in the photocurable composition is preferably 0.1% by mass or more, and more preferably 1% by mass or more. This makes it possible to further improve the mechanical strength and conductivity of the cured photocured layer 3.
The content of the photocurable resin 32 in the photocurable composition is preferably 20% by mass or less, more preferably 15% by mass or less. As a result, it is possible to improve the balance between the adhesion of the cured photo-cured layer 3 to the first base material 2 and the peelability to the second base material 4.
 光重合開始剤としては、紫外線等の光によってラジカル種を発生する化合物が望ましいが、これに限定されない。光重合開始剤を使用することにより、光硬化樹脂の光硬化官能基の二重結合による付加反応が迅速に生じ、光硬化官能基同士が連結する。すなわち、光硬化樹脂(モノマー)同士の重合反応が進行する。
 光重合開始剤としては、例えば、アシルフォスフィンオキサイド、ハロメチル化トリアジン、ハロメチル化オキサジアゾール、イミダゾール、ベンゾイン、ベンゾインアルキルエーテル、アントラキノン、ベンズアンスロン、ベンゾフェノン、アセトフェノン、チオキサントン、安息香酸エステル、アクリジン、フェナジン、チタノセン、α-アミノアルキルフェノン、オキシムまたはこれらの誘導体等が挙げられる。これらの化合物は、1種を単独で使用しても、2種以上を併用してもよい。
 中でも、迅速かつ確実に光硬化層3を硬化状態とし得ることから、アントラキノン、ベンゾフェノンが望ましい。
As the photopolymerization initiator, a compound that generates radical species by light such as ultraviolet rays is desirable, but the photopolymerization initiator is not limited to this. By using the photopolymerization initiator, an addition reaction due to the double bond of the photocurable functional groups of the photocurable resin occurs rapidly, and the photocurable functional groups are linked to each other. That is, the polymerization reaction between the photocurable resins (monomers) proceeds.
Examples of the photopolymerization initiator include acylphosphine oxide, halomethylated triazine, halomethylated oxadiazole, imidazole, benzoin, benzoin alkyl ether, anthraquinone, benzanthrone, benzophenone, acetophenone, thioxanthone, benzoic acid ester, aclysine and phenazine. , Titanocene, α-aminoalkylphenone, oxime or derivatives thereof and the like. These compounds may be used alone or in combination of two or more.
Of these, anthraquinone and benzophenone are desirable because the photocurable layer 3 can be quickly and reliably cured.
 光硬化組成物中の光重合開始剤の含有量は、光硬化樹脂100重量部に対して、1重量部以上が望ましく、3重量部以上がより望ましい。また、光重合開始剤の含有量は、20重量部以下が望ましく、15重量部以下がより望ましい。光重合開始剤の含有量を上記範囲に設定することにより、光硬化樹脂32の重合反応を良好に進行させ、未硬化状態の光硬化層3をより効率よく硬化させることができる。 The content of the photopolymerization initiator in the photocurable composition is preferably 1 part by weight or more, more preferably 3 parts by weight or more, based on 100 parts by weight of the photocurable resin. The content of the photopolymerization initiator is preferably 20 parts by weight or less, and more preferably 15 parts by weight or less. By setting the content of the photopolymerization initiator in the above range, the polymerization reaction of the photocurable resin 32 can proceed satisfactorily, and the uncured photocurable layer 3 can be cured more efficiently.
 光硬化組成物は、種々の添加剤を含有してもよい。かかる添加剤としては、例えば、有機溶剤、着色剤、消泡剤、レベリング剤、発泡剤、酸化防止剤、難燃剤、イオン捕捉剤、可塑剤等が挙げられる。これらの添加剤は、1種を単独で使用しても、2種以上を併用してもよい。
 光硬化組成物の25℃での粘度は、0.1~50Pa・sが望ましく、1~10Pa・sがより望ましい。この場合、光硬化組成物の取り扱い性を向上させ、基材2、4の表面性状によらず、平坦な光硬化層3を効率よく形成することができる。
 光硬化組成物は、例えば、ビーズミル式、ジェットミル式、高速剪断式、自転公転式、超音波式、高圧衝突式、高速回転式等の各種混合機を用いて、各成分を混練することにより調製することができる。
The photo-curing composition may contain various additives. Examples of such additives include organic solvents, colorants, defoamers, leveling agents, foaming agents, antioxidants, flame retardants, ion scavengers, plasticizers and the like. These additives may be used alone or in combination of two or more.
The viscosity of the photocurable composition at 25 ° C. is preferably 0.1 to 50 Pa · s, more preferably 1 to 10 Pa · s. In this case, the handleability of the photo-curing composition is improved, and the flat photo-curing layer 3 can be efficiently formed regardless of the surface texture of the base materials 2 and 4.
The photocurable composition is obtained by kneading each component using various mixers such as a bead mill type, a jet mill type, a high-speed shear type, a rotation / revolution type, an ultrasonic type, a high-pressure collision type, and a high-speed rotation type. Can be prepared.
 第1の基材2は、光が照射されることにより、硬化状態となった光硬化層3(露光部3b)を保持するシート状または平板状の基材である。
 第1の基材2をシート状とする場合、その構成材料としては、例えば、液晶ポリマー、ポリエステル(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリウレタン、ポリアミド、ポリアセタール、ポリ乳酸、ポリフェニレンスルファイド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルイミドのような軟質の樹脂材料等が挙げられる。
 また、第1の基材2を平板状とする場合、その構成材料としては、上記軟質の樹脂材料の他、アクリル樹脂、ポリカーボネイト樹脂、ABS樹脂のような硬質の樹脂材料、ガラス材料、金属材料、セラミックス材料等が挙げられる。
 中でも、第1の基材2は、軟質の樹脂材料を含有することが望ましく、液晶ポリマーおよびポリエステルからなる群より選択される少なくとも1種を含有することがより望ましい。これらの材料を含有する第1の基材2は、硬化状態の光硬化層3(硬化後の光硬化樹脂)との密着性が高いことから好ましい。なお、上記樹脂材料には、ポリテトラフルオロエチレン(PTFE)のようなフッ素系樹脂を混合してもよい。この場合、未硬化状態の光硬化層3が第1の基材2から剥離し易くなる。
The first base material 2 is a sheet-like or flat plate-like base material that holds the photocurable layer 3 (exposed portion 3b) that has been cured by being irradiated with light.
When the first base material 2 is in the form of a sheet, the constituent materials thereof include, for example, a liquid crystal polymer, polyester (for example, polyethylene terephthalate, polybutylene terephthalate, etc.), polyvinyl chloride, polystyrene, vinyl acetate, and polymethyl methacrylate. , Polyurethane, Polyester, Polyacetal, Polylactic acid, Polyphenylensulfide, Polysulfone, Polyethersulfone, Polyetheretherketone, Thermoplastic polyimide, Polyesterimide, Polyetherimide and other soft resin materials.
When the first base material 2 is made into a flat plate, the constituent materials include acrylic resin, polycarbonate resin, hard resin material such as ABS resin, glass material, and metal material in addition to the soft resin material. , Ceramic materials and the like.
Among them, the first base material 2 preferably contains a soft resin material, and more preferably contains at least one selected from the group consisting of liquid crystal polymers and polyesters. The first base material 2 containing these materials is preferable because it has high adhesion to the cured photo-cured layer 3 (photo-cured resin after curing). A fluorine-based resin such as polytetrafluoroethylene (PTFE) may be mixed with the resin material. In this case, the uncured photo-cured layer 3 is easily peeled off from the first base material 2.
 上記樹脂材料(第1の基材2)の融点は、250~350℃が望ましく、280~310℃がより望ましい。
 ここで、樹脂材料の融点は、示差走査熱量測定(DSC)法で測定されるピーク温度である。
 第1の基材2中の上記樹脂材料の含有量は、80質量%以上が望ましく、90質量%以上がより望ましく、100質量%であってもよい。
 なお、第1の基材2は、平面視において、光硬化層3を包含するようなサイズを有している。
The melting point of the resin material (first base material 2) is preferably 250 to 350 ° C, more preferably 280 to 310 ° C.
Here, the melting point of the resin material is the peak temperature measured by the differential scanning calorimetry (DSC) method.
The content of the resin material in the first base material 2 is preferably 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass.
The first base material 2 has a size that includes the photocurable layer 3 in a plan view.
 第1の基材2の上面(光硬化層3側の面)21の算術平均粗さRaは、第2の基材4の下面(光硬化層3側の面)41の算術平均粗さRaより大きいことが望ましい。この場合、硬化状態の光硬化層3の第1の基材2に対するアンカー効果がより強く生じる。その結果、硬化状態の光硬化層3の第1の基材2との密着性を、第2の基材4との密着性より大きく設定することができる。このため、シート1へ光を照射し、第2の基材4を光硬化層3から剥離したとき、硬化状態の光硬化層3(露光部3b)を第1の基材2に残存させ易くなる。
 具体的には、第1の基材2の上面21の算術平均粗さRaは、光硬化樹脂の種類にもよるが、硬化状態の光硬化層3の第1の基材2に対する高い密着性が得られ、未硬化状態の光硬化層3の第1の基材2対する密着性が不要に高くなり過ぎないように設定される。
The arithmetic average roughness Ra of the upper surface (the surface on the photocurable layer 3 side) 21 of the first substrate 2 is the arithmetic average roughness Ra of the lower surface (the surface on the photocurable layer 3 side) 41 of the second substrate 4. Larger is desirable. In this case, the anchor effect of the cured photo-cured layer 3 on the first substrate 2 is stronger. As a result, the adhesion of the cured photo-cured layer 3 to the first base material 2 can be set to be larger than the adhesion to the second base material 4. Therefore, when the sheet 1 is irradiated with light and the second base material 4 is peeled off from the photo-curing layer 3, the cured photo-curing layer 3 (exposed portion 3b) is likely to remain on the first base material 2. Become.
Specifically, the arithmetic average roughness Ra of the upper surface 21 of the first base material 2 depends on the type of the photo-curing resin, but the cured photo-cured layer 3 has high adhesion to the first base material 2. Is obtained, and the adhesion of the uncured photocured layer 3 to the first base material 2 is set so as not to be unnecessarily high.
 第2の基材4は、光が照射されず、未硬化状態を維持する光硬化層3(未露光部3a)を保持するシート状の基材である。
 第2の基材4は、ポリオレフィンおよびフッ素系ポリマーからなる群より選択される少なくとも1種を含有することが望ましい。これらのポリマーは、例えば、未硬化状態の光硬化樹脂32が有する光硬化官能基と相互作用すること等によって、未硬化状態の光硬化樹脂32と高い親和性を発揮すると考えられる。一方、これらのポリマーは、光硬化樹脂32の硬化反応(重合反応)が進行し、光硬化官能基の数が減少すること、または分子量が増大すること等によって、硬化状態の光硬化樹脂32との親和性が低下すると考えられる。
 中でも、第2の基材4の構成材料としては、ポリオレフィンが望ましい。ポリオレフィンは、上記性能に加えて、光透過性が高いことからも好ましい。
The second base material 4 is a sheet-like base material that holds the photocurable layer 3 (unexposed portion 3a) that is not irradiated with light and maintains an uncured state.
The second substrate 4 preferably contains at least one selected from the group consisting of polyolefins and fluoropolymers. It is considered that these polymers exhibit high affinity with the uncured photocurable resin 32 by, for example, interacting with the photocurable functional group of the uncured photocurable resin 32. On the other hand, these polymers have become the photo-curing resin 32 in a cured state due to the progress of the curing reaction (polymerization reaction) of the photo-curing resin 32, the decrease in the number of photo-curing functional groups, the increase in molecular weight, and the like. It is considered that the affinity of the light is reduced.
Above all, polyolefin is desirable as the constituent material of the second base material 4. Polyolefins are preferable because they have high light transmittance in addition to the above performance.
 ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、プロピレン-エチレン共重合体、エチレン-プロピレン共重合体、ポリブテン-1、エチレン-ブテン-1共重合体、プロピレン-ブテン-1共重合体、ポリ4-メチルペンテン-1のような非極性の側鎖(炭化水素鎖)を有するポリマー、シクロオレフィンポリマー(例えば、エチレン-ノルボルネン共重合体等)のような脂肪族環を主鎖に有するポリマー等が挙げられる。
 中でも、ポリオレフィンとしては、高密度ポリエチレン(HDPE)、ポリ4-メチルペンテン-1またはシクロオレフィンポリマー(COP)が望ましい。これらのポリオレフィンを使用すれば、第2の基材4に高い可撓性(柔軟性)を付与することもできる。このため、本実施形態のように、曲面に未露光部3aを貼着する際にも、その操作を確実に行うことができる。
 上記ポリマー(第2の基材4)の融点は、200~260℃が望ましく、220~240℃がより望ましい。
Examples of the polyolefin include polyethylene, polypropylene, propylene-ethylene copolymer, ethylene-propylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, and poly4-methyl. Examples thereof include polymers having a non-polar side chain (hydrocarbon chain) such as Penten-1, and polymers having an aliphatic ring in the main chain such as a cycloolefin polymer (for example, an ethylene-norbornene copolymer). ..
Among them, as the polyolefin, high density polyethylene (HDPE), poly4-methylpentene-1 or cycloolefin polymer (COP) is desirable. By using these polyolefins, it is possible to impart high flexibility to the second base material 4. Therefore, even when the unexposed portion 3a is attached to the curved surface as in the present embodiment, the operation can be reliably performed.
The melting point of the polymer (second substrate 4) is preferably 200 to 260 ° C, more preferably 220 to 240 ° C.
 第2の基材4の平均厚さは、10~200μmが好ましく、50~150μm程度がより好ましい。かかる厚さを有する第2の基材4は、十分な機械的強度を有するとともに、高い可撓性(柔軟性)を維持することもできる。このため、未露光部3aを物品の表面に貼着する際に、未露光部3aの不本意な変形等が生じることを防止することもできる。
 第2の基材4の下面41の算術平均粗さRaは、光硬化樹脂の種類にもよるが、未硬化状態の光硬化層3の第2の基材4に対する高い密着性が得られ、硬化状態の光硬化層3の第2の基材4対する密着性が不要に高くなり過ぎないように設定される。
 なお、第2の基材4の平面視でのサイズは、第1の基材2の平面視でのサイズとほぼ等しい。
The average thickness of the second base material 4 is preferably 10 to 200 μm, more preferably about 50 to 150 μm. The second base material 4 having such a thickness has sufficient mechanical strength and can also maintain high flexibility (flexibility). Therefore, when the unexposed portion 3a is attached to the surface of the article, it is possible to prevent the unexposed portion 3a from being unintentionally deformed or the like.
Although the arithmetic mean roughness Ra of the lower surface 41 of the second base material 4 depends on the type of the photocurable resin, high adhesion of the uncured photocured layer 3 to the second base material 4 can be obtained. The adhesion of the cured photo-cured layer 3 to the second substrate 4 is set so as not to be unnecessarily high.
The size of the second base material 4 in a plan view is substantially equal to the size of the first base material 2 in a plan view.
 本実施形態では、光の照射を第2の基材4を介して光硬化層3に対して行う。このため、第2の基材4は、比較的広い波長の光に対して高い透過性を示すことが望ましい。
 具体的には、第2の基材4の波長300nmの光の透過率をA[%]とし、波長600nmの光の透過率をB[%]としたとき、B-Aは10%以下が望ましく、5%以下がより望ましい。かかる特性を有する第2の基材4は、未硬化状態の光硬化層3を硬化させるのに必要かつ十分な光を透過させることができる。
 なお、第2の基材4の波長450nmの光の透過率は、90%以上が望ましく、95%以上がより望ましい。この光の透過率の上限は、通常、99%以下である。
In the present embodiment, light irradiation is performed on the photocurable layer 3 via the second base material 4. Therefore, it is desirable that the second base material 4 exhibits high transparency to light having a relatively wide wavelength.
Specifically, when the transmittance of the light having a wavelength of 300 nm of the second substrate 4 is A [%] and the transmittance of the light having a wavelength of 600 nm is B [%], the transmittance of BA is 10% or less. Desirably, 5% or less is more desirable. The second base material 4 having such characteristics can transmit light necessary and sufficient for curing the uncured photocured layer 3.
The transmittance of the light having a wavelength of 450 nm of the second base material 4 is preferably 90% or more, and more preferably 95% or more. The upper limit of this light transmittance is usually 99% or less.
 また、第2の基材4の軟化温度は、70℃以下が望ましく、50℃以下がより望ましい。導電性の向上等を目的として、導電パターン層(硬化状態の光硬化層3)を加熱する場合には、次のような効果が得られる。すなわち、上記軟化温度の第2の基材4であれば、比較的低温の加熱により軟化するので、仮に導電パターン層が熱収縮しても、これに追従することができる。その結果、導電パターン層に、欠陥(例えば、亀裂、欠損等)が生じるのを好適に防止することができる。
 なお、第2の基材4の軟化温度の下限は、通常、30℃である。これにより、常温(室温)での第2の基材4の不本意な変形を好適に防止することができる。
 ここで、軟化温度とは、第2の基材4の引張弾性率が300MPaとなるときの温度である。
The softening temperature of the second substrate 4 is preferably 70 ° C. or lower, more preferably 50 ° C. or lower. When the conductive pattern layer (photo-cured layer 3 in a cured state) is heated for the purpose of improving conductivity or the like, the following effects can be obtained. That is, since the second base material 4 having the softening temperature is softened by heating at a relatively low temperature, even if the conductive pattern layer is thermally shrunk, it can follow it. As a result, it is possible to suitably prevent defects (for example, cracks, defects, etc.) from occurring in the conductive pattern layer.
The lower limit of the softening temperature of the second base material 4 is usually 30 ° C. This makes it possible to suitably prevent unintentional deformation of the second base material 4 at room temperature (room temperature).
Here, the softening temperature is the temperature at which the tensile elastic modulus of the second base material 4 becomes 300 MPa.
 次に、本発明のパターン層付き物品の製造方法について説明する。
 図5は、本発明のパターン層付き物品の製造方法の実施形態を説明するための工程図である。
 本発明のパターン層付き物品の製造方法は、本発明のシートを用いて、物品の表面にパターン層を形成することにより、パターン層付き物品を製造する方法である。
Next, a method for manufacturing the article with a pattern layer of the present invention will be described.
FIG. 5 is a process diagram for explaining an embodiment of the method for manufacturing an article with a pattern layer of the present invention.
The method for producing an article with a pattern layer of the present invention is a method for producing an article with a pattern layer by forming a pattern layer on the surface of the article using the sheet of the present invention.
 図5に示すパターン層付き物品の製造方法は、[1]シート1と物品10とを準備する第1の工程と、[2]第2の基材4を介して、導電パターン層30のパターンと反対のネガパターンの光を光硬化層3に照射して、その露光部3bを硬化させる第2の工程と、[3]第2の基材4を光硬化層3から剥離して、光硬化層3の未露光部3aを保持した第2の基材4を回収する第3の工程と、[4]未露光部3aが物品10の表面に接触するように、第2の基材4を物品10に貼着する第4の工程と、[5]第2の基材4を介して、光を未露光部3aに照射して、硬化させることにより、導電パターン層30を形成する第5の工程と、[6]導電パターン層30を加熱する第6の工程と、[7]第2の基材4を導電パターン層30から剥離する第7の工程とを有する。
 以下、各工程について順次説明する。
The method for manufacturing an article with a pattern layer shown in FIG. 5 is as follows: [1] a first step of preparing the sheet 1 and the article 10, and [2] a pattern of the conductive pattern layer 30 via a second base material 4. The second step of irradiating the photocurable layer 3 with light having a negative pattern opposite to that of the above to cure the exposed portion 3b, and [3] peeling the second base material 4 from the photocurable layer 3 to obtain light. The third step of recovering the second base material 4 holding the unexposed portion 3a of the cured layer 3, and [4] the second base material 4 so that the unexposed portion 3a comes into contact with the surface of the article 10. To form the conductive pattern layer 30 by irradiating the unexposed portion 3a with light through the fourth step of attaching the article 10 to the article 10 and [5] the second base material 4 and curing the light. It has 5 steps, [6] a sixth step of heating the conductive pattern layer 30, and [7] a seventh step of peeling the second base material 4 from the conductive pattern layer 30.
Hereinafter, each step will be described in sequence.
 [1]第1の工程
 まず、図5に示すように、物品10とシート1とを用意する。
 物品10としては、例えば、曲面(湾曲面または屈曲面)を含む表面を有する物品が好ましい。本発明によれば、かかる曲面であっても、曲面照射による歪みがないか、極めて少ない導電パターン層30を一括して形成することができる。
 かかる物品10としては、例えば、円筒形の瓶またはボトル、矩形のケース等が挙げられるが、これらに限定されない。なお、図5には、物品10の一例として、円筒形の瓶を示す。
[1] First Step First, as shown in FIG. 5, the article 10 and the sheet 1 are prepared.
As the article 10, for example, an article having a surface including a curved surface (curved surface or bent surface) is preferable. According to the present invention, even with such a curved surface, it is possible to collectively form the conductive pattern layer 30 which is not distorted by the curved surface irradiation or has very little distortion.
Examples of such an article 10 include, but are not limited to, a cylindrical bottle or bottle, a rectangular case, and the like. Note that FIG. 5 shows a cylindrical bottle as an example of the article 10.
 [2]第2の工程
 次に、第2の基材4を介して、図2に示すように、形成すべき導電パターン層30のパターンと反対のネガパターンの光を光硬化層3に照射する。本実施形態では、形成すべき導電パターン層30のパターン(ポジパターン)は、図3等に示すような細長いダンベル形状である。したがって、第2の工程で照射する光のパターンは、細長いダンベル形状を除いた形状のパターン(ネガパターン)である。
 この光の照射により、図3に示すように、ネガパターンの露光部3bが硬化状態となり、ポジパターンの未露光部3aは未硬化状態を維持する。
[2] Second Step Next, as shown in FIG. 2, the photocurable layer 3 is irradiated with light having a negative pattern opposite to the pattern of the conductive pattern layer 30 to be formed, via the second base material 4. do. In the present embodiment, the pattern (positive pattern) of the conductive pattern layer 30 to be formed is an elongated dumbbell shape as shown in FIG. 3 and the like. Therefore, the pattern of light emitted in the second step is a pattern (negative pattern) having a shape excluding the elongated dumbbell shape.
By this irradiation of light, as shown in FIG. 3, the exposed portion 3b of the negative pattern is in a cured state, and the unexposed portion 3a of the positive pattern is maintained in the uncured state.
 照射する光の波長は、200~650nmが望ましく、200~450nmがより望ましい。照射する光の具体例としては、約405nmの波長を有するレーザ光が挙げられる。
 照射する光の積算光量は、50~500mJ/cmが望ましく、100~300mJ/cmがより望ましい。かかる積算光量で光を未硬化状態の光硬化層3に照射すれば、露光部3bを十分に硬化させることができる。
 なお、ネガパターンの光は、フォトマスクを介して照射してもよく、ダイレクト露光機を使用して照射してもよい。
The wavelength of the irradiated light is preferably 200 to 650 nm, more preferably 200 to 450 nm. Specific examples of the light to be irradiated include laser light having a wavelength of about 405 nm.
The integrated amount of light to be irradiated is preferably 50 to 500 mJ / cm 2 , and more preferably 100 to 300 mJ / cm 2 . By irradiating the uncured photocured layer 3 with the integrated light amount, the exposed portion 3b can be sufficiently cured.
The light of the negative pattern may be irradiated through a photomask or may be irradiated using a direct exposure machine.
 [3]第3の工程
 次に、第2の基材4を光硬化層3から剥離する。これにより、図4に示すように、露光部3b(硬化状態の光硬化層3)が第1の基材2に保持され、未露光部3a(未硬化状態の光硬化層3)が第2の基材4に保持される。
 本実施形態では、未露光部3aが保持された第2の基材4を回収して、使用する。
[3] Third Step Next, the second base material 4 is peeled from the photocurable layer 3. As a result, as shown in FIG. 4, the exposed portion 3b (photo-cured layer 3 in the cured state) is held by the first base material 2, and the unexposed portion 3a (photo-cured layer 3 in the uncured state) is second. It is held on the base material 4 of.
In the present embodiment, the second base material 4 holding the unexposed portion 3a is recovered and used.
 [4]第4の工程
 次に、未露光部3aが物品10の湾曲面に接触するように、第2の基材4を物品10に貼着する。
[4] Fourth Step Next, the second base material 4 is attached to the article 10 so that the unexposed portion 3a comes into contact with the curved surface of the article 10.
 [5]第5の工程
 次に、第2の基材4を介して、光を未露光部3aの全体に照射する。これにより、未露光部3aが硬化して、導電パターン層30が得られる。
 このとき、第2の基材4は、光透過性が高いため、照射した光を必要かつ十分に未露光部3aに到達させることができる。
 本工程で使用する光の条件は、第2の工程で使用する光の条件と同様とすることができる。照射する光のパターンは、未露光部3aを包含するするサイズであればよく、矩形状(長方形状)、円形状等の如何なる形状であってよい。
 また、照射する光は、自然光であってもよい。
[5] Fifth Step Next, light is applied to the entire unexposed portion 3a via the second base material 4. As a result, the unexposed portion 3a is cured to obtain the conductive pattern layer 30.
At this time, since the second base material 4 has high light transmission, the irradiated light can be sufficiently and sufficiently reached to reach the unexposed portion 3a.
The light conditions used in this step can be the same as the light conditions used in the second step. The pattern of the light to be irradiated may be any shape as long as it includes the unexposed portion 3a, and may have any shape such as a rectangular shape (rectangular shape) or a circular shape.
Further, the light to be irradiated may be natural light.
 [6]第6の工程
 次に、導電パターン層30を加熱する。これにより、導電粒子31同士の接触の程度をより高めることができ、よって、導電パターン層30の導電性がより向上させることができる。
 なお、第2の基材4として、比較的低い軟化温度を有する基材を使用することにより、仮に導電パターン層30が熱収縮しても、これに追従して変形可能である。このため、導電パターン層30に欠陥(例えば、亀裂、欠損等)が生じるのを防止することができる。
 加熱の温度は、40~150℃が望ましく、75~125℃がより望ましい。また、加熱の時間は、0.1~3時間が望ましく、0.5~2時間がより望ましい。かかる条件で、導電パターン層30を加熱することにより、導電パターン層30の導電性をより高めることができる。
[6] Sixth Step Next, the conductive pattern layer 30 is heated. As a result, the degree of contact between the conductive particles 31 can be further increased, and therefore the conductivity of the conductive pattern layer 30 can be further improved.
By using a base material having a relatively low softening temperature as the second base material 4, even if the conductive pattern layer 30 is thermally shrunk, it can be deformed accordingly. Therefore, it is possible to prevent defects (for example, cracks, defects, etc.) from occurring in the conductive pattern layer 30.
The heating temperature is preferably 40 to 150 ° C, more preferably 75 to 125 ° C. The heating time is preferably 0.1 to 3 hours, more preferably 0.5 to 2 hours. By heating the conductive pattern layer 30 under such conditions, the conductivity of the conductive pattern layer 30 can be further enhanced.
 [7]第7の工程
 次に、第2の基材4を導電パターン層30から剥離する。これにより、パターン層付き物品100が得られる。
 なお、上記第6の工程は、省略してもよく、第7の工程の後に行ってもよい。
[7] Seventh Step Next, the second base material 4 is peeled from the conductive pattern layer 30. As a result, the article 100 with a pattern layer is obtained.
The sixth step may be omitted or may be performed after the seventh step.
 以上のようなパターン層付き物品の製造方法によれば、形成すべき導電パターン層30に対応するポジパターンの未露光部3a(未硬化状態の光硬化層3)のみを予め形成しておき、これを物品10の表面に貼着した後、硬化させる。このため、導電パターン層30の端部における歪みが生じ難い。
 また、曲面の曲率半径によらず、形成すべき導電パターン層30を一括して形成することもできる。
 さらに、物品10の表面に、不要な未硬化状態の光硬化層3が貼着されないため、当該部分が物品10の表面に残存した場合に必要となる洗浄(例えば、アルコール洗浄等)を省略することができる。このような洗浄工程(ウェット工程)を省略できれば、熟練の作業者でなくても、正確かつ簡単にパターン層の形成が可能となる。
 洗浄工程が不要のため、例えば対象物品10が紙や布等、吸水性を有する素材であっても、正確かつ簡単にパターン層の形成が可能である。
 さらに、導電パターン層30を、人体の皮膚などの生体器官へ形成することも可能であり、その場合導電パターン層30は、生体信号を検出するための電極として機能させることも可能である。
According to the method for manufacturing an article with a pattern layer as described above, only the unexposed portion 3a (the uncured photocured layer 3) of the positive pattern corresponding to the conductive pattern layer 30 to be formed is formed in advance. This is attached to the surface of the article 10 and then cured. Therefore, distortion at the end of the conductive pattern layer 30 is unlikely to occur.
Further, the conductive pattern layer 30 to be formed can be collectively formed regardless of the radius of curvature of the curved surface.
Further, since the unnecessary uncured photocured layer 3 is not attached to the surface of the article 10, the cleaning required when the portion remains on the surface of the article 10 (for example, alcohol cleaning) is omitted. be able to. If such a cleaning step (wet step) can be omitted, the pattern layer can be formed accurately and easily even by a non-skilled worker.
Since the cleaning step is not required, even if the target article 10 is a water-absorbent material such as paper or cloth, the pattern layer can be formed accurately and easily.
Further, the conductive pattern layer 30 can be formed on a biological organ such as the skin of a human body, and in that case, the conductive pattern layer 30 can also function as an electrode for detecting a biological signal.
 <パターン層付き物品>
 次に、本発明のパターン層付き物品について説明する。
 本実施形態のパターン層付き物品100は、曲面を備える物品10と、曲面に設けられ、導電粒子と光硬化樹脂の硬化物とを含有する導電パターン層30とを有する。そして、導電パターン層30の平均厚さが、5μm以上である。
 かかる導電パターン層30は、十分な厚さを有するため、ろう材(例えば、半田等)による接合が可能である。なお、導電パターン層30の平均厚さは、10~20μmが望ましい。
 かかるパターン層付き物品100は、例えば、上述した本実施形態のパターン層付き物品の製造方法により製造することができる。
<Article with pattern layer>
Next, the article with a pattern layer of the present invention will be described.
The article 100 with a pattern layer of the present embodiment has an article 10 having a curved surface, and a conductive pattern layer 30 provided on the curved surface and containing conductive particles and a cured product of a photocurable resin. The average thickness of the conductive pattern layer 30 is 5 μm or more.
Since the conductive pattern layer 30 has a sufficient thickness, it can be joined by a brazing material (for example, solder or the like). The average thickness of the conductive pattern layer 30 is preferably 10 to 20 μm.
The article 100 with a pattern layer can be manufactured, for example, by the method for manufacturing an article with a pattern layer according to the present embodiment described above.
 なお、光硬化層3は、導電粒子を含んでいなくてもよい。この場合、形成されるパターン層を、絶縁パターン層とすることができる。
 この絶縁パターン層と上記導電パターン層とを交互に積層することにより、多層導電パターン層を容易かつ安価に製造することができる。
The photo-curing layer 3 does not have to contain conductive particles. In this case, the formed pattern layer can be an insulating pattern layer.
By alternately laminating the insulating pattern layer and the conductive pattern layer, the multilayer conductive pattern layer can be easily and inexpensively manufactured.
 以上、本発明のシート、パターン層付き物品の製造方法およびパターン層付き物品を図示の実施形態について説明したが、本発明は、これらに限定されない。
 本発明のシートおよびパターン層付き物品は、それぞれ、同様の機能を発揮し得る任意の構成と置換することができ、任意の構成が付加されていてもよい。
 また、本発明のパターン層付き物品の製造方法は、同様の効果を発揮し得る任意の工程と置換することができ、任意の工程が付加されていてもよい。
Although the sheet of the present invention, the method for producing the article with the pattern layer, and the illustrated embodiment of the article with the pattern layer have been described above, the present invention is not limited thereto.
The sheet and the article with the pattern layer of the present invention can be replaced with any configuration capable of exhibiting the same function, respectively, and any configuration may be added.
Further, the method for producing an article with a pattern layer of the present invention can be replaced with an arbitrary step capable of exhibiting the same effect, and an arbitrary step may be added.
 (実施例1)
 まず、ポリ4-メチルペンテン-1製のシート状の第2の基材を準備した。なお、第2の基材の融点は230℃、軟化点は47℃であった。また、第2の基材の平均厚さは50μm、波長450nmの光の透過率は96%であった。
 次に、銀ペースト(東洋インキ株式会社製、「RAFS FD 076」)を乾燥厚さが10μmとなるように、第2の基材にロータリースクリーン印刷により塗布して、光硬化層を形成した。なお、銀ペーストのE型粘度計により測定された25℃での粘度は5Pa・sであった。
(Example 1)
First, a sheet-shaped second base material made of poly4-methylpentene-1 was prepared. The melting point of the second base material was 230 ° C., and the softening point was 47 ° C. The average thickness of the second substrate was 50 μm, and the transmittance of light having a wavelength of 450 nm was 96%.
Next, a silver paste (manufactured by Toyo Ink Co., Ltd., "RAFS FD 076") was applied to the second substrate by rotary screen printing so that the dry thickness was 10 μm to form a photocurable layer. The viscosity of the silver paste at 25 ° C. measured by an E-type viscometer was 5 Pa · s.
 次に、光硬化層の第2の基材と反対側の面に、液晶ポリマー製のシート状の第1の基材を貼着した。これにより、シートを得た。なお、第1の基材の融点は310℃、平均厚さは50μmであった。
 次に、第2の基材側から、光硬化層に対して、フォトマスクを使用することなく、MEMSミラーによるスキャンニングにより、図3に示すネガパターンを波長405nmのレーザ光で照射した。
 レーザ光の積算光量は200mJ/cmが望ましい。
 次に、第2の基材を光硬化層から剥離した。この第2の基材には、図3に示すポジパターンの未露光部が保持された。
Next, a sheet-shaped first base material made of a liquid crystal polymer was attached to the surface of the photocurable layer opposite to the second base material. This gave a sheet. The melting point of the first substrate was 310 ° C., and the average thickness was 50 μm.
Next, from the second substrate side, the photocurable layer was irradiated with a laser beam having a wavelength of 405 nm by scanning with a MEMS mirror without using a photomask.
The integrated light amount of the laser light is preferably 200 mJ / cm 2 .
Next, the second substrate was peeled off from the photocurable layer. The unexposed portion of the positive pattern shown in FIG. 3 was held on the second base material.
 次に、円筒形のガラス瓶の外表面(湾曲面)に、未露光部が接触するように、第2の基材をガラス瓶に貼着した。
 次に、第2の基材を介して、上記と同様の条件で、光を未露光部に照射した。これにより、未露光部を硬化させて、導電パターン層を形成した。
 次に、導電パターン層から第2の基材を剥離した。これにより、パターン層付き物品を得た。図6に、得られたパターン層付き物品の外観の写真を示す。
 なお、得られた導電パターン層の体積抵抗率は、3.7×10-4Ω・cmであった。
Next, the second base material was attached to the glass bottle so that the unexposed portion was in contact with the outer surface (curved surface) of the cylindrical glass bottle.
Next, the unexposed portion was irradiated with light via the second substrate under the same conditions as described above. As a result, the unexposed portion was cured to form a conductive pattern layer.
Next, the second base material was peeled off from the conductive pattern layer. As a result, an article with a pattern layer was obtained. FIG. 6 shows a photograph of the appearance of the obtained article with a pattern layer.
The volume resistivity of the obtained conductive pattern layer was 3.7 × 10 -4 Ω · cm.
 (実施例2)
 さらに、導電パターン層を80℃で1時間加熱した以外は、実施例1と同様にして、パターン層付き物品を得た。なお、得られた導電パターン層の体積抵抗率は、0.7×10-4Ω・cmであった。
(Example 2)
Further, an article with a pattern layer was obtained in the same manner as in Example 1 except that the conductive pattern layer was heated at 80 ° C. for 1 hour. The volume resistivity of the obtained conductive pattern layer was 0.7 × 10 -4 Ω · cm.
 (実施例3)
 円筒形のガラス瓶に代えて、矩形のポリスチレン製のケースを使用した以外は、実施例1と同様にして、パターン層付き物品を得た。なお、導電パターン層は、ケースの内表面(屈曲面)に形成した。図7に、得られたパターン層付き物品の外観の写真を示す。
(Example 3)
An article with a pattern layer was obtained in the same manner as in Example 1 except that a rectangular polystyrene case was used instead of the cylindrical glass bottle. The conductive pattern layer was formed on the inner surface (bent surface) of the case. FIG. 7 shows a photograph of the appearance of the obtained article with a pattern layer.
 (実施例4)
  円筒形のガラス瓶に代えて、紙素材を使用した以外は、実施例1と同様にして、パターン層付き物品を得た。なお、導電パターン層は、紙の表面に形成した。図8に、得られたパターン層付き物品の外観の写真を示す。
 なお、本実施例における紙素材は、一般に広く市販されている方眼紙を用いた。
(Example 4)
An article with a pattern layer was obtained in the same manner as in Example 1 except that a paper material was used instead of the cylindrical glass bottle. The conductive pattern layer was formed on the surface of the paper. FIG. 8 shows a photograph of the appearance of the obtained article with a pattern layer.
As the paper material in this example, graph paper that is generally commercially available was used.
 (実施例5)
  円筒形のガラス瓶に代えて、布素材を使用した以外は、実施例1と同様にして、パターン層付き物品を得た。なお、導電パターン層は、布の表面に形成した。本実施例において使用した布は、一般に広く市販されているクールタオルを用いた。この素材表面の外観を図9A、素材表面の拡大図(100μm/目盛)を図9Bに示す。図9Cに、得られたパターン層付き物品の外観の写真を示す。
(Example 5)
An article with a pattern layer was obtained in the same manner as in Example 1 except that a cloth material was used instead of the cylindrical glass bottle. The conductive pattern layer was formed on the surface of the cloth. As the cloth used in this example, a cool towel generally commercially available was used. The appearance of the material surface is shown in FIG. 9A, and the enlarged view (100 μm / scale) of the material surface is shown in FIG. 9B. FIG. 9C shows a photograph of the appearance of the obtained article with a pattern layer.
 (比較例)
 第1の基材を省略し、まず、円筒形のガラス瓶の表面に、矩形状の光硬化層が接触するように、第2の基材をガラス瓶に貼着した。
 次に、第2の基材側から、光硬化層に対して、実施例1と同様の条件で、ポジパターンの光を照射した。これにより、導電パターン層を形成した。
 次に、第2の基材を光硬化層から剥離した。
 次に、導電パターン層の周囲に残存する未硬化状態の光硬化層を、イソプロパノールで洗浄して除去した。これにより、パターン層付き物品を得た。図10に、得られたパターン層付き物品の外観の写真を示す。
(Comparative example)
The first base material was omitted, and first, the second base material was attached to the glass bottle so that the rectangular photocurable layer was in contact with the surface of the cylindrical glass bottle.
Next, from the second base material side, the photocured layer was irradiated with light of a positive pattern under the same conditions as in Example 1. As a result, a conductive pattern layer was formed.
Next, the second substrate was peeled off from the photocurable layer.
Next, the uncured photocured layer remaining around the conductive pattern layer was washed with isopropanol to remove it. As a result, an article with a pattern layer was obtained. FIG. 10 shows a photograph of the appearance of the obtained article with a pattern layer.
 各実施例で得られた導電パターン層は、全てのパターン層に歪みが確認されない。これに対して、比較例で形成された導電パターン層は、曲面照射による大きな歪みが確認される。 No distortion was confirmed in all the pattern layers of the conductive pattern layers obtained in each example. On the other hand, the conductive pattern layer formed in the comparative example is confirmed to have a large distortion due to curved surface irradiation.
 なお、各実施例で得られた導電パターン層付き物品は、導電パターンを単層で形成した例であるが、安定した通電性の確保や、高容量電流を流す観点からは複数の層を重ねて形成してもよい。 The article with the conductive pattern layer obtained in each embodiment is an example in which the conductive pattern is formed by a single layer, but from the viewpoint of ensuring stable electrical conductivity and passing a high capacity current, a plurality of layers are stacked. May be formed.
 1      シート
 2      第1の基材
 21     上面
 3      光硬化層
 31     導電粒子
 32     光硬化樹脂
 3a     未露光部
 3b     露光部
 4      第2の基材
 41     下面
 10     物品
 30     導電パターン層
 100    パターン層付き物品

 
1 Sheet 2 First base material 21 Top surface 3 Photo-curing layer 31 Conductive particles 32 Photo-curing resin 3a Unexposed part 3b Exposed part 4 Second base material 41 Bottom surface 10 Article 30 Conductive pattern layer 100 Article with pattern layer

Claims (16)

  1.  シート状または平板状の第1の基材と、
     前記第1の基材の一方の面に接触して設けられ、光硬化樹脂を含む未硬化状態の光硬化層と、
     前記光硬化層の前記第1の基材と反対側の面に接触して設けられ、光透過性を有するシート状の第2の基材とを有し、
     前記第2の基材を介して、所定パターンの光を前記光硬化層に照射して硬化させた後、前記第2の基材を前記光硬化層から剥離したとき、前記光硬化層の露光部が前記第1の基材に保持され、前記光硬化層の未露光部が前記第2の基材に保持されることを特徴とするシート。
    A sheet-shaped or flat plate-shaped first base material and
    An uncured photocured layer provided in contact with one surface of the first substrate and containing a photocurable resin,
    It has a second base material in the form of a sheet, which is provided in contact with the surface of the photo-curing layer opposite to the first base material and has light transmittance.
    When the photocurable layer is cured by irradiating the photocurable layer with light of a predetermined pattern via the second substrate and then the second substrate is peeled off from the photocurable layer, the exposure of the photocurable layer is performed. A sheet characterized in that a portion is held by the first base material and an unexposed portion of the photocurable layer is held by the second base material.
  2.  前記光硬化層は、さらに導電粒子を含むことを特徴とする請求項1に記載のシート。 The sheet according to claim 1, wherein the photocurable layer further contains conductive particles.
  3.  前記第1の基材の前記光硬化層側の面の算術平均粗さRaは、前記第2の基材の前記光硬化層側の面の算術平均粗さRaより大きいことを特徴とする請求項1または2に記載のシート。 A claim characterized in that the arithmetic average roughness Ra of the surface of the first substrate on the photocurable layer side is larger than the arithmetic average roughness Ra of the surface of the second substrate on the photocurable layer side. Item 2. The sheet according to Item 1 or 2.
  4.  前記第1の基材は、液晶ポリマーおよびポリエステルからなる群より選択される少なくとも1種を含有することを特徴とする請求項1~3のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 3, wherein the first base material contains at least one selected from the group consisting of a liquid crystal polymer and polyester.
  5.  前記第2の基材は、ポリオレフィンおよびフッ素系ポリマーからなる群より選択される少なくとも1種を含有することを特徴とする請求項1~4のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 4, wherein the second base material contains at least one selected from the group consisting of polyolefins and fluoropolymers.
  6.  前記第2の基材の平均厚さは、10~200μmであることを特徴とする請求項1~5のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 5, wherein the average thickness of the second base material is 10 to 200 μm.
  7.  前記第2の基材の波長300nmの光の透過率をAとし、波長600nmの光の透過率をBとしたとき、B-Aが10%以下であることを特徴とする請求項1~6のいずれか1項に記載のシート。 Claims 1 to 6 are characterized in that BA is 10% or less when the transmittance of light having a wavelength of 300 nm is A and the transmittance of light having a wavelength of 600 nm is B. The sheet according to any one of the above.
  8.  前記第2の基材の軟化温度は、70℃以下であることを特徴とする請求項1~7のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 7, wherein the softening temperature of the second base material is 70 ° C. or lower.
  9.  前記光硬化層を形成するための光硬化組成物の25℃での粘度は、0.1~50Pa・sであることを特徴とする請求項1~8のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 8, wherein the viscosity of the photo-curing composition for forming the photo-curing layer at 25 ° C. is 0.1 to 50 Pa · s.
  10.  前記光硬化樹脂は、アクリル基を有する化合物を含有することを特徴とする請求項1~9のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 9, wherein the photocurable resin contains a compound having an acrylic group.
  11.  前記光硬化層の平均厚さは、5μm以上であることを特徴とする請求項1~10のいずれか1項に記載のシート。 The sheet according to any one of claims 1 to 10, wherein the photocurable layer has an average thickness of 5 μm or more.
  12.  物品と、前記物品の表面に請求項1~11のいずれか1項に記載のシートを用いて形成されたパターン層とを有するパターン層付き物品の製造方法であって、
     前記シートと、前記物品とを準備する工程と、
     前記第2の基材を介して、前記パターン層のパターンと反対のネガパターンの光を前記光硬化層に照射して、その露光部を硬化させる工程と、
     前記第2の基材を前記光硬化層から剥離して、前記光硬化層の未露光部を保持した前記第2の基材を回収する工程と、
     前記未露光部が前記物品の表面に接触するように、前記第2の基材を前記物品に貼着する工程と、
     前記第2の基材を介して、光を前記未露光部に照射して、硬化させることにより、前記パターン層を形成する工程と、
     前記第2の基材を前記パターン層から剥離する工程とを有することを特徴とする製造方法。
    A method for manufacturing an article with a pattern layer, which comprises an article and a pattern layer formed on the surface of the article by using the sheet according to any one of claims 1 to 11.
    The process of preparing the sheet and the article,
    A step of irradiating the photo-curing layer with light of a negative pattern opposite to the pattern of the pattern layer through the second base material to cure the exposed portion.
    A step of peeling the second base material from the photo-curing layer and recovering the second base material holding an unexposed portion of the photo-curing layer.
    A step of attaching the second base material to the article so that the unexposed portion comes into contact with the surface of the article.
    A step of forming the pattern layer by irradiating the unexposed portion with light through the second base material and curing the unexposed portion.
    A manufacturing method comprising a step of peeling the second base material from the pattern layer.
  13.  前記表面は、曲面を含み、前記パターン層を前記曲面に形成することを特徴とする請求項12に記載の製造方法。 The manufacturing method according to claim 12, wherein the surface includes a curved surface, and the pattern layer is formed on the curved surface.
  14.  前記物品の素材は、紙または布の素材を含み、前記パターン層を前記素材の表面に形成することを特徴とする請求項12に記載の製造方法。 The manufacturing method according to claim 12, wherein the material of the article includes a material of paper or cloth, and the pattern layer is formed on the surface of the material.
  15.  曲面を備える物品と、
     前記曲面に設けられ、導電粒子と光硬化樹脂の硬化物とを含有するパターン層とを有し、
     前記パターン層の平均厚さが、5μm以上であることを特徴とするパターン層付き物品。
    Articles with curved surfaces and
    It has a pattern layer provided on the curved surface and containing conductive particles and a cured product of a photocurable resin.
    An article with a pattern layer, characterized in that the average thickness of the pattern layer is 5 μm or more.
  16.  平面または曲面を有する紙または布の素材の物品と、前記平面または曲面に設けられ、導電粒子と光硬化樹脂の硬化物とを含有するパターン層とを有し、
     前記パターン層の平均厚さが、5μm以上であることを特徴とするパターン層付き物品。

     
    It has an article made of a paper or cloth material having a flat surface or a curved surface, and a pattern layer provided on the flat surface or the curved surface and containing conductive particles and a cured product of a photocurable resin.
    An article with a pattern layer, characterized in that the average thickness of the pattern layer is 5 μm or more.

PCT/JP2021/040898 2020-11-06 2021-11-05 Sheet, method for manufacturing article with pattern layer, and article with pattern layer WO2022097741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020185480 2020-11-06
JP2020-185480 2020-11-06

Publications (1)

Publication Number Publication Date
WO2022097741A1 true WO2022097741A1 (en) 2022-05-12

Family

ID=81457977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040898 WO2022097741A1 (en) 2020-11-06 2021-11-05 Sheet, method for manufacturing article with pattern layer, and article with pattern layer

Country Status (1)

Country Link
WO (1) WO2022097741A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147186A (en) * 1986-12-11 1988-06-20 リンテック株式会社 Label for traffic rule violating vehicle
JPH1016118A (en) * 1996-07-05 1998-01-20 Toppan Printing Co Ltd Photosensitive release developing type laminate and manufacture of thick film circuit using it
JPH10186648A (en) * 1996-12-19 1998-07-14 Ekusen Kk Photosensitive material for production of dry transfer paper
JP2018054665A (en) * 2016-09-26 2018-04-05 カンタツ株式会社 Pattern forming sheet, pattern manufacturing device, pattern manufacturing method, and pattern manufacturing program
WO2019009143A1 (en) * 2017-07-04 2019-01-10 富士フイルム株式会社 Method for manufacturing infrared-receiving element, method for manufacturing optical sensor, laminate, resist composition, and kit
WO2020174870A1 (en) * 2019-02-27 2020-09-03 株式会社ノリタケカンパニーリミテド Inkjet ink

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147186A (en) * 1986-12-11 1988-06-20 リンテック株式会社 Label for traffic rule violating vehicle
JPH1016118A (en) * 1996-07-05 1998-01-20 Toppan Printing Co Ltd Photosensitive release developing type laminate and manufacture of thick film circuit using it
JPH10186648A (en) * 1996-12-19 1998-07-14 Ekusen Kk Photosensitive material for production of dry transfer paper
JP2018054665A (en) * 2016-09-26 2018-04-05 カンタツ株式会社 Pattern forming sheet, pattern manufacturing device, pattern manufacturing method, and pattern manufacturing program
WO2019009143A1 (en) * 2017-07-04 2019-01-10 富士フイルム株式会社 Method for manufacturing infrared-receiving element, method for manufacturing optical sensor, laminate, resist composition, and kit
WO2020174870A1 (en) * 2019-02-27 2020-09-03 株式会社ノリタケカンパニーリミテド Inkjet ink

Similar Documents

Publication Publication Date Title
KR101481212B1 (en) Adhesive for polarizing plate and polarizing plate comprising the same
TWI460245B (en) An adhesive composition and a method using its temporary fixing member
JP6139862B2 (en) (Meth) acrylic resin composition and adhesion / disassembly method
TWI752127B (en) Photocurable composition, adhesive sheet, adhesive sheet laminate, cured product, laminate for image display device configuration, and image display device
TW201114866A (en) Adhesive composition for optics, optical adhesive and optical film
TW201139132A (en) Method for manufacturing hard translucent plate laminate and apparatus for bonding hard translucent plates
TW201021953A (en) Pressure-sensitive adhesive sheet for laser processing and method for laser processing
TW201233558A (en) Flat-plate bonding jig and method of manufacturing flat-plate stacked body
TW201136771A (en) Process for producing laminate of light-transmitting rigid plates and device for laminating light-transmitting rigid plates
TW201137020A (en) Curable composition, dicing-die bonding tape, connecting structure and method for producing semiconductor tape with cohesive/adhesive layer
JP2009260332A (en) Adhesive tape with antistatic property for fixing semiconductor wafer
JP6362394B2 (en) Laminate and carrier film for transparent conductive film
TW200916510A (en) Eco-optical sheet
JP5915291B2 (en) UV curable composition, adhesive and polarizing plate
JP6750685B2 (en) Photosensitive conductive paste and conductive pattern forming film
JP2013213075A (en) Semiconductor processing adhesive tape
JP6210827B2 (en) Semiconductor processing sheet
TW201816572A (en) Conductive sheet for touch sensor, method of manufacturing conductive sheet for touch sensor, touch sensor, touch panel laminate, touch panel, and composition for forming transparent insulating layer
JP6613586B2 (en) Active energy ray polymerizable resin composition and laminate
WO2022097741A1 (en) Sheet, method for manufacturing article with pattern layer, and article with pattern layer
JP2008129212A (en) Optical film, polarizing plate and image display device
JP2009239190A (en) Dicing die-bonding tape
JP7392401B2 (en) Adhesive resin composition, adhesive sheet, active energy ray-curable adhesive sheet, optical member, laminate for image display device, and image display device
JP2008202001A (en) Adhesive tape
JP7052726B2 (en) Adhesive sheet and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP