WO2022097217A1 - Electrical contact and vacuum valve - Google Patents

Electrical contact and vacuum valve Download PDF

Info

Publication number
WO2022097217A1
WO2022097217A1 PCT/JP2020/041286 JP2020041286W WO2022097217A1 WO 2022097217 A1 WO2022097217 A1 WO 2022097217A1 JP 2020041286 W JP2020041286 W JP 2020041286W WO 2022097217 A1 WO2022097217 A1 WO 2022097217A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
electric contact
comparative example
compound
examples
Prior art date
Application number
PCT/JP2020/041286
Other languages
French (fr)
Japanese (ja)
Inventor
康友 谷原
宏幸 千葉原
聡 越智
雄一 高井
弘覚 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022560552A priority Critical patent/JP7351022B2/en
Priority to PCT/JP2020/041286 priority patent/WO2022097217A1/en
Publication of WO2022097217A1 publication Critical patent/WO2022097217A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0233Composite material having a noble metal as the basic material and containing carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings

Definitions

  • This application relates to electrical contacts and vacuum valves.
  • the vacuum breaker installed in the high voltage distribution equipment is used to cut off the current in the event of a failure or abnormality in the high voltage distribution equipment.
  • the vacuum breaker is equipped with a vacuum valve having a function of cutting off a current.
  • the vacuum valve has a structure in which a fixed electrode and a movable electrode are coaxially arranged to face each other inside an insulated container kept in a high vacuum. Electrical contacts are provided on the facing surfaces of the fixed electrode and the movable electrode of the vacuum valve. The vacuum valve is closed and opened when the electrical contacts come into contact with each other and are separated from each other.
  • the movable electrode When an overload current or short-circuit current occurs in the distribution equipment, the movable electrode is instantly opened from the fixed electrode of the vacuum valve and the current is cut off. However, since an arc is generated between the electrodes, the current is not cut off instantly when the electrode is opened. When the alternating current is cut off, the arc becomes weaker as the alternating current becomes smaller, and the arc disappears to establish the cutoff. Cutting is a phenomenon in which the current is cut off before the alternating current becomes zero.
  • a large surge voltage called an opening / closing surge is generated when the electrodes are opened / closed. If the equipment connected to the distribution equipment is capacitive or inductive equipment, the large surge voltage generated can damage these equipment. In order to lower the surge voltage, it is necessary to reduce the cutting current, which is the current at the time of cutting. The cutting current can be reduced by sustaining the arc generated between the electrodes at the time of opening to near the zero point of the alternating current.
  • the electrical contacts of a conventional vacuum valve are a base material containing a conductive substance such as Cu (copper) as a main component, particles of a refractory substance such as Cr (chromium) dispersed in the base material, and Te. It is composed of a low boiling point metal material such as (tellurium) or Se (selenium). A low boiling point metal material such as Te or Se evaporates from an electrical contact due to the heat of the arc when it occurs. In conventional vacuum valves, the evaporated low boiling point metal material can sustain the arc and reduce the cutting current.
  • Such electric contacts are manufactured by mixing the above-mentioned powder raw materials containing a metal element and then sintering them.
  • This application has been made to solve the above-mentioned problems, and even when Ti is further added to an electric contact composed of a base material containing Cu as a main component, a melting point substance particle, and Te, the density becomes high.
  • the purpose is to provide high electrical contacts.
  • the electrical contacts of the present application include a base material containing Cu as a main component, refractory substance particles composed of at least one of a refractory metal and a carbide of the refractory metal present dispersed in the base material, and the base material. It is an electric contact containing Te and Ti that are dispersed in the above, and when the whole is 100% by mass, the concentration of Te is 3.5% by mass or more and 14.5% by mass or less, and the concentration of Ti. Is divided by the concentration of Te and is 0.01 or more and less than 0.12.
  • the concentration of Te when the whole is 100% by mass, the concentration of Te is 3.5% by mass or more and 14.5% by mass or less, and the value obtained by dividing the concentration of Ti by the concentration of Te is 0. Since it is set to 01 or more and less than 0.12, a high-density electric contact can be obtained.
  • FIG. It is sectional drawing of the vacuum valve which concerns on Embodiment 1.
  • FIG. It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example and the comparative example which concerns on Embodiment 1.
  • FIG. It is sectional drawing of the composition analysis result in the electric contact which concerns on Embodiment 1.
  • FIG. It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example and the comparative example which concerns on Embodiment 1.
  • FIG. It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example and the comparative example which concerns on Embodiment 1.
  • FIG. It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example and the comparative example which concerns on Embodiment 1.
  • FIG. It is a figure which tabulated the composition, the
  • FIG. 1 It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example and the comparative example which concerns on Embodiment 1.
  • FIG. It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example which concerns on Embodiment 1.
  • FIG. 1 It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example which concerns on Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view of the vacuum valve according to the first embodiment.
  • the vacuum valve 1 of the present embodiment includes a shutoff chamber 2.
  • the blocking chamber 2 is composed of a cylindrical insulating container 3 and disk-shaped metal lids 5a and 5b. Both ends of the metal lids 5a and 5b are fixed to the insulating container 3 with sealing metal fittings 4a and 4b, respectively.
  • the shutoff chamber 2 sealed with the insulating container 3 and the metal lids 5a and 5b is kept vacuum airtight.
  • a fixed electrode rod 6 and a movable electrode rod 7 are mounted in the shutoff chamber 2 so as to face each other.
  • a fixed electrode 8 and a movable electrode 9 are attached to the ends of the fixed electrode rod 6 and the movable electrode rod 7, respectively. Further, a fixed electric contact 10 and a movable electric contact 11 are attached to the contact portions of the fixed electrode 8 and the movable electrode 9 by brazing, respectively. An electric contact according to the present embodiment is applied to at least one of the fixed electric contact 10 and the movable electric contact 11.
  • a bellows 12 is attached to the movable electrode rod 7.
  • the bellows 12 enables the movable electrode rod 7 to move in the axial direction while keeping the inside of the shutoff chamber 2 in a vacuum airtight manner.
  • the movable electrode 9 comes into contact with or separates from the fixed electrode 8 due to the axial movement of the movable electrode rod 7.
  • a metal bellows arc shield 13 is provided above the bellows 12.
  • the bellows arc shield 13 prevents arc vapor from adhering to the bellows 12.
  • a metal arc shield 14 for an insulating container is provided at a position in the shutoff chamber 2 so as to cover the fixed electrode 8 and the movable electrode 9.
  • the arc shield 14 for the insulating container prevents the arc vapor from adhering to the inner wall of the insulating container 3.
  • the shape of the fixed electrode 8, the movable electrode 9, the fixed electric contact 10 and the movable electric contact 11 is a disk shape.
  • the shape of the electric contact of the present embodiment will be described as being a disk shape.
  • the shape of the electric contact may be a shape other than the disk shape.
  • the electrical contact of the present embodiment is manufactured through the following steps.
  • the steps include a step of mixing the raw material powder, a step of pressing the mixed raw material powder with a press die to prepare a molded body, a step of firing the molded body to form a sintered body, and an electric operation of the sintered body. This is the process of processing into the shape of contacts.
  • the raw material powder for the electric contact of the present embodiment is, for example, Cu powder as a base material of a conductive component, Cr powder as a high melting point substance particle as an arc resistant component, and Te powder which is a low melting point metal for sustaining an arc. , And a Ti powder for thermally stabilizing Te.
  • the raw material powders used in Examples and Comparative Examples described later are, for example, Cu powder having an average particle size of 10 ⁇ m, Cr powder having an average particle size of 40 ⁇ m, Te powder having an average particle size of 40 ⁇ m, and Ti having an average particle size of 30 ⁇ m. It is a powder.
  • the average particle size of the raw material powder can be measured by using a laser diffraction type particle size distribution measuring device based on the laser diffraction scattering method.
  • raw material powders were mixed for 30 minutes or more using a V-type mixing stirrer.
  • This mixed powder was placed in a steel press die having an inner diameter of ⁇ 23 mm and compression-molded at a pressure of 600 MPa using a hydraulic press to obtain a molded body having a thickness of about 5 mm.
  • this molded product was fired in a hydrogen atmosphere at a temperature of 900 ° C. or higher and a melting point of Cu or lower to obtain a sintered body.
  • the shape of the obtained sintered body is a disk shape having a diameter of about ⁇ 23 mm and a thickness of about 5 mm.
  • the shape of the sintered body is not limited to this.
  • the concentrations of Cr, Te and Ti are Cr powder, Te powder and the like when the total mass of the mixed raw material powder is 100% by mass (hereinafter referred to as wt%). It is the ratio of the mass occupied by each Ti powder, and the ratio is expressed in wt%. Further, in the examples described later, a material other than Cr powder may be used as the refractory substance particles.
  • the density evaluation and the processing characteristics were evaluated.
  • the density was evaluated as follows. The density was measured by cutting the sintered body into 1 cm 3 pieces and measuring the mass thereof. Then, the ratio of the measured mass to the theoretical maximum density obtained from the composition ratio (hereinafter referred to as the density ratio) was calculated. It was judged that if the density ratio of the sintered body is 95% or more, it can be applied to an electric contact. When the density ratio of the sintered body is less than 95%, when brazing to the electrode as an electric contact, the brazing material is attracted to the void inside the electric contact by the capillary phenomenon, which causes brazing failure. Therefore, if the density ratio of the sintered body is 95% or more, the result is acceptable, and if the density ratio of the sintered body is less than 95%, the result is rejected.
  • the processing characteristics were evaluated as follows.
  • the obtained sintered body was machined into a disk-shaped electric contact having a diameter of ⁇ 20 mm and a thickness of 3 mm. During this machining, if a chip or crack that can be visually confirmed occurs due to the brittleness of the sintered body and the determined disk shape cannot be obtained, the machining characteristics are rejected. If a predetermined disk shape could be obtained without chipping or cracking during machining, the machining characteristics were accepted.
  • a disk-shaped electrical contact with a diameter of ⁇ 20 mm and a thickness of 3 mm was tapered by about 15 ° from the end to the inner diameter side of 2 mm to form a test contact.
  • Two of these test contacts were manufactured, and a vacuum valve for evaluation was manufactured in which the two test contacts were fixed electrical contacts and movable electrical contacts, respectively.
  • the cutting characteristics were evaluated as follows. A circuit in which a 20 ⁇ resistor and an evaluation vacuum valve were connected in series was assembled. An AC200V power supply was connected to this circuit, and a current of 10A was passed through the evaluation vacuum valve in a closed state. In this state, the evaluation vacuum valve was forcibly opened from the closed state, the current value immediately before the arc current became zero was measured, and the current value was taken as the cutting current value. The cutting current value was measured 1000 times using the same evaluation vacuum valve, and the average value was used as the final cutting current value. The cutting current value needs to be 1 A or less from the viewpoint of avoiding damage to the electric equipment due to an increase in the surge voltage generated at the time of interruption. In the evaluation of the cutting characteristics, the case where the cutting current value was 1 A or less was regarded as acceptable, and the case where the cutting current value exceeded 1 A was regarded as rejected.
  • the welding resistance characteristics were evaluated as follows.
  • the evaluation vacuum valve is provided with a movable screw on the movable electrode rod to move the movable electrode in the direction of pulling it away from the fixed electrode. By applying an axial force to this movable screw, the movable electrode can be separated from the fixed electrode.
  • a current of 10 A was applied in a closed state to obtain a pseudo electric contact welded state.
  • an axial force was applied to the movable screw of the movable electrode rod.
  • the electrical contact was opened by gradually increasing the axial force and the axial force exceeding the welding force of the electrical contact.
  • the welding force was determined by measuring the axial force required when the electrode was opened.
  • the welding force of the conventional Cu—Cr contact measured in this way was about 10 kN, and the welding force of the electric contact to which Te was added was about 5 kN.
  • the cutoff characteristics were evaluated as follows. We assembled a circuit in which a thyristor that opens and closes the capacitor bank and a vacuum valve for evaluation are connected in series. In this circuit, the energization current using the discharge from the capacitor bank was passed through the evaluation vacuum valve in the closed state. The capacitor bank is charged by an external power source. A breaking test was conducted in which the energizing current was increased by 1 kA from 2 kA to forcibly open the evaluation vacuum valve. The pass / fail of the cutoff characteristic was judged by whether or not the cutoff test was successful when the energization current was 4 kA. The success of the cutoff test means that the arc completely disappears when the evaluation vacuum valve is opened.
  • the unsuccessful cutoff test means that when the evaluation vacuum valve is opened, the arc continues or the arc once extinguished reoccurs. That is, in the evaluation of the breaking characteristics, the case where the breaking test was successful when the energizing current was 4 kA was accepted, and the case where the breaking test was unsuccessful when the energized current was 4 kA was rejected.
  • FIG. 2 is a table showing the composition of electrical contacts, mechanical characteristic evaluation results, and electrical characteristic evaluation results of Examples 1 to 4 and Comparative Examples 1 to 3.
  • Examples 1 to 4 and Comparative Examples 1 to 3 show the difference in the characteristics of the electric contact when the Ti concentration is changed when the Cr concentration is 30 wt% and the Te concentration is 8 wt%.
  • the value obtained by subtracting the total of the Cr concentration, the Te concentration and the Ti concentration from 100 wt% is the Cu concentration which is a conductive component.
  • Ti / Te is a value obtained by dividing the Ti concentration by the Te concentration.
  • Comparative Example 3 also passed. The reason is that the cutting characteristics mainly depend on the amount of evaporation of the low melting point metal at the time of arc generation. Since the Te concentration of Examples 1 to 4 and Comparative Example 3 is the same as 8 wt%, it is presumed that all the cutting characteristics are acceptable.
  • FIG. 3 is a schematic cross-sectional view of the composition analysis result.
  • Cr particles 16 which are refractory substance particles, Ti—Te compound particles 17 containing a large amount of Ti, and Cu are contained in a base material 15 made of Cu.
  • the Cu—Te compound particles 18 contained in a large amount were dispersed and present. The particle size of these particles was 0.1 to 100 ⁇ m.
  • the particle size of each particle in the cross section of the electrical contact is the particle size calculated when the shape of the particle is approximately spherically approximated based on the geometric shape of the particle in the observed cross section image.
  • FIG. 4 is a table showing the composition of electrical contacts, mechanical characteristic evaluation results, and electrical characteristic evaluation results of Examples 5 to 8 and Comparative Examples 4 to 7.
  • Comparative Example 4 and Comparative Example 6 in which Ti / Te was less than 0.01, the processing characteristics were unacceptable.
  • the test contacts could not be manufactured and the electrical characteristics could not be evaluated.
  • the densities of Comparative Example 5 and Comparative Example 7 in which Ti / Te exceeded 0.12 were rejected.
  • the processing characteristics were acceptable, the test contacts could be produced, but the welding resistance characteristics and the cutoff characteristics were unacceptable.
  • Example 8 is acceptable when the Ti concentration is 1.67 wt% and the density ratio is 95% or more.
  • Comparative Example 5 was rejected because the Ti concentration was 0.44 wt%, which was lower than that of Example 8, and the density ratio was less than 95%. From this result, it can be seen that the sinterability of the electric contact is not determined only by the Ti concentration but is influenced by Ti / Te. Since the Ti / Te of Example 8 is 0.115 and the Ti / Te of Comparative Example 5 is 0.125, the Ti / Te should be less than 0.12 from the viewpoint of density. I understand. This can be seen from the fact that the density is also unacceptable in Comparative Example 7 having a Ti / Te of 0.125.
  • Comparative Example 5 and Comparative Example 7 whose density was judged to be unacceptable were unacceptable.
  • Comparative Example 3 in which the density was determined to be unacceptable, the welding resistance property and the blocking property were unacceptable.
  • the Ti / Te is 0.01 or more in the electric contact to which Ti is added with a Cr concentration of 30 wt% and a Te concentration of 3.5 to 14.5 wt%. If it is less than 0.12, a dense electrical contact can be obtained, and it can be seen that all of the processing characteristics, cutting characteristics, welding resistance characteristics and breaking characteristics are acceptable.
  • FIG. 5 is a table showing the composition of electrical contacts, mechanical characteristic evaluation results, and electrical characteristic evaluation results of Examples 9 to 11 and Comparative Examples 8 and 9.
  • Examples 9 to 11 and Comparative Examples 8 and 9 show the difference in the characteristics of the electric contact when the Te concentration is changed when the Cr concentration is 30 wt% and the Ti / Te is 0.1. There is.
  • the Ti concentration is also changed with the change of the Te concentration. From Examples 9 to 11, when the Te concentration was 3.5 wt% or more and 14.5 wt% or less, all of the density, processing characteristics, cutting characteristics, welding resistance characteristics and blocking characteristics were acceptable.
  • the base material containing Cu as a main component, the Cr particles dispersed in the base material, and the Cr particles dispersed in the base material are present.
  • the Te concentration is 3.5% by mass or more and 14.5% by mass or less
  • the Ti / Te is 0.01 or more and 0.12. If it is less than, it can be seen that all of the density, processing characteristics, cutting characteristics, welding resistance characteristics and blocking characteristics are acceptable.
  • the firing temperature for obtaining the sintered body is a temperature of 900 ° C. or higher and lower than the melting point of Cu. Even when Ti / Te exceeds 0.12, the density of the sintered body can be increased by increasing the firing temperature. However, when Ti / Te exceeds 0.12, the formation of Ti—Te compound proceeds and it becomes difficult to sinter. Further, since the amount of the Ti—Te compound increases, the amount of the Cu—Te compound decreases and the welding resistance property deteriorates.
  • FIG. 6 is a table showing the composition of electrical contacts, mechanical characteristic evaluation results, and electrical characteristic evaluation results of Examples 12 to 14 and Comparative Examples 10 and 11.
  • Examples 12 to 14 and Comparative Examples 10 and 11 show the difference in the characteristics of the electric contact when the Cr concentration is changed when the Te concentration is 8 wt% and the Ti / Te is 0.1. There is. From Examples 12 to 14, when the Cr concentration was 20 wt% or more and 60 wt% or less, all of the density, processing characteristics, cutting characteristics, welding resistance characteristics and blocking characteristics were acceptable. On the other hand, in the electric contact of Comparative Example 10 having a Cr concentration of 15 wt%, the welding resistance property was unacceptable.
  • FIG. 7 is a table showing the composition of the electric contacts, the mechanical property evaluation result, and the electrical property evaluation result of Examples 15 to 17.
  • Examples 15 to 17 show the characteristics of electric contacts when the arc-resistant component is a material other than Cr when the Te concentration is 8 wt% and Ti / Te is 0.1. In Examples 15 to 17, the concentration of the arc-resistant component is constant at 30 wt%. From Examples 15 to 17, even if the arc resistance component is changed to W (tungsten), WC (tungsten carbide) and Cr 3C 2 (chromium carbide) other than Cr, the density, processing characteristics, cutting characteristics and welding resistance characteristics are changed. And all of the blocking characteristics passed.
  • W tungsten
  • WC tungsten carbide
  • Cr 3C 2 chromium carbide
  • the melting points of Cr, W, WC and Cr 3C 2 are 1907 ° C, 3422 ° C, 2870 ° C and 1895 ° C, respectively. It was found that there is no practical problem as long as the material has a melting point higher than 1800 ° C. as an arc resistant component. Examples of materials having a melting point higher than 1800 ° C. include Mo (molybdenum) and Mo 2 C (molybdenum carbide), and these materials can also be used as an arc-resistant component.
  • the press pressure was set to 600 MPa, but the press pressure can be set in the range of 200 to 1000 MPa depending on the conditions such as the particle size of the raw material powder.
  • the molded body was fired in a hydrogen atmosphere at a temperature of 900 ° C. or higher and lower than the melting point of Cu, but the molded body may be fired in a vacuum having an atmospheric pressure of 1 ⁇ 10-5 Pa or lower. ..
  • Vacuum valve 1 Vacuum valve, 2 Cutoff chamber, 3 Insulated container, 4a, 4b Sealing metal fittings, 5a, 5b Metal lid, 6 Fixed electrode rod, 7 Movable electrode rod, 8 Fixed electrode, 9 Movable electrode, 10 Fixed electrical contact, 11 Movable Electrical contacts, 12 bellows, 13 arc shields for bellows, 14 arc shields for insulated containers, 15 base materials, 16 Cr particles, 17 Ti-Te compound particles, 18 Cu-Te compound particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Abstract

Provided is an electrical contact that has high-density even if Ti is added to an electrical contact constituted of high melting-point material particles, Te, and a base material having Cu as the main component. This electrical contact comprises: a base material (15) having Cu as the main component; high melting-point material particles (16) constituted of at least one of a high melting-point metal and a high melting-point metal carbide dispersed in the base material; and Te and Ti dispersed in the base material. If the total is 100 mass%, the Te concentration is 3.5-14.5 mass%, inclusive, and the value obtained by dividing the Ti concentration by the Te concentration is at least 0.01 and less than 0.12.

Description

電気接点および真空バルブElectrical contacts and vacuum valves
 本願は、電気接点および真空バルブに関する。 This application relates to electrical contacts and vacuum valves.
 高電圧配電設備に備えられた真空遮断器は、高電圧配電設備の故障および異常時に電流を遮断するために用いられている。真空遮断器は、電流を遮断する機能を有する真空バルブを備えている。真空バルブは、高真空に保たれた絶縁容器内部で、固定電極と可動電極とが同軸上に対向配置された構造を有している。真空バルブの固定電極および可動電極の対向面にはそれぞれ電気接点が備えられている。この電気接点同士が接触および離間することで真空バルブの閉極および開極が行われる。 The vacuum breaker installed in the high voltage distribution equipment is used to cut off the current in the event of a failure or abnormality in the high voltage distribution equipment. The vacuum breaker is equipped with a vacuum valve having a function of cutting off a current. The vacuum valve has a structure in which a fixed electrode and a movable electrode are coaxially arranged to face each other inside an insulated container kept in a high vacuum. Electrical contacts are provided on the facing surfaces of the fixed electrode and the movable electrode of the vacuum valve. The vacuum valve is closed and opened when the electrical contacts come into contact with each other and are separated from each other.
 配電設備に過負荷電流または短絡電流が発生した際には、真空バルブの固定電極から可動電極が瞬時に開極されて電流が遮断される。しかし、電極間にアークが発生するため、開極されたときに瞬時に電流が遮断されることはない。交流電流を遮断する際には、交流電流が小さくなるにつれアークが弱くなり、アークが消滅することで遮断が成立する。交流電流がゼロとなる前の時点で電流が遮断される現象が裁断である。 When an overload current or short-circuit current occurs in the distribution equipment, the movable electrode is instantly opened from the fixed electrode of the vacuum valve and the current is cut off. However, since an arc is generated between the electrodes, the current is not cut off instantly when the electrode is opened. When the alternating current is cut off, the arc becomes weaker as the alternating current becomes smaller, and the arc disappears to establish the cutoff. Cutting is a phenomenon in which the current is cut off before the alternating current becomes zero.
 真空バルブにおいては、電極間を開閉した際に開閉サージと呼ばれる大きなサージ電圧が発生する。配電設備に接続されている機器が容量性または誘導性の機器である場合、発生した大きなサージ電圧でこれらの機器が損傷する場合がある。サージ電圧を低くするためには、裁断が発生する時点の電流である裁断電流を小さくする必要がある。裁断電流を小さくするには、開極時に電極間に発生するアークを交流電流のゼロ点近くまで持続させることで実現できる。 In a vacuum valve, a large surge voltage called an opening / closing surge is generated when the electrodes are opened / closed. If the equipment connected to the distribution equipment is capacitive or inductive equipment, the large surge voltage generated can damage these equipment. In order to lower the surge voltage, it is necessary to reduce the cutting current, which is the current at the time of cutting. The cutting current can be reduced by sustaining the arc generated between the electrodes at the time of opening to near the zero point of the alternating current.
 従来の真空バルブの電気接点は、Cu(銅)などの導電性物質を主成分とする母材と、この母材中に分散して存在するCr(クロム)などの高融点物質粒子と、Te(テルル)またはSe(セレン)などの低沸点金属材料とで構成されている。TeまたはSeなどの低沸点金属材料は、アークが発生したときにそのアークの熱によって電気接点から蒸発する。従来の真空バルブは、この蒸発した低沸点金属材料でアークを持続させて裁断電流を小さくすることができる。このような電気接点は、上記の金属元素を含む粉末原料を混合したのち焼結させて製造される。この製造工程中において、低沸点金属材料であるTeはCuと反応して金属間化合物であるCuTeを生成させる。従来の電気接点においては、CuTeは熱的に不安定であるために焼結中にTeが蒸発して電気接点が脆くなる。これを回避した電気接点として、さらにTi(チタン)を添加した電気接点が開示されている(例えば、特許文献1参照)。 The electrical contacts of a conventional vacuum valve are a base material containing a conductive substance such as Cu (copper) as a main component, particles of a refractory substance such as Cr (chromium) dispersed in the base material, and Te. It is composed of a low boiling point metal material such as (tellurium) or Se (selenium). A low boiling point metal material such as Te or Se evaporates from an electrical contact due to the heat of the arc when it occurs. In conventional vacuum valves, the evaporated low boiling point metal material can sustain the arc and reduce the cutting current. Such electric contacts are manufactured by mixing the above-mentioned powder raw materials containing a metal element and then sintering them. During this manufacturing process, Te, which is a low boiling point metal material, reacts with Cu to produce Cu 2 Te, which is an intermetallic compound. In a conventional electric contact, Cu 2 Te is thermally unstable, so that Te evaporates during sintering and the electric contact becomes brittle. As an electric contact that avoids this, an electric contact to which Ti (titanium) is further added is disclosed (see, for example, Patent Document 1).
特開2001-236865号公報Japanese Unexamined Patent Publication No. 2001-236856
 従来のCuを主成分とする母材と高融点物質粒子とTeとで構成された電気接点においてさらにTiを添加した場合、TiとTeとが優先的に反応してTiとTeとの金属間化合物が生成される。そのため、この電気接点においては、CuTeの生成が抑制されて脆くなることが防がれている。しかしながら、従来の電気接点においては、Teに対してTiを重量比で0.2以上添加しているので、電気接点の密度が低下するという問題があった。電気接点の密度の低下は、真空バルブの組み立て工程において固定電極および可動電極に電気接点をロウ付けするときに、ロウ材が毛細管現象によって電気接点の内部の空隙に吸引されてロウ付け不良の原因となる。 When Ti is further added to the conventional electric contact composed of a base material containing Cu as a main component, refractory substance particles and Te, Ti and Te react preferentially and between the metals of Ti and Te. The compound is produced. Therefore, in this electric contact, the formation of Cu 2 Te is suppressed and it is prevented from becoming brittle. However, in the conventional electric contact, since Ti is added in a weight ratio of 0.2 or more to Te, there is a problem that the density of the electric contact decreases. The decrease in the density of electrical contacts is the cause of poor brazing because the brazing material is sucked into the voids inside the electrical contacts by capillarity when the electrical contacts are brazed to the fixed and movable electrodes in the vacuum valve assembly process. It becomes.
 本願は上述のような課題を解決するためになされたもので、Cuを主成分とする母材と高融点物質粒子とTeとで構成された電気接点にさらにTiを添加した場合でも、密度の高い電気接点を提供することを目的とする。 This application has been made to solve the above-mentioned problems, and even when Ti is further added to an electric contact composed of a base material containing Cu as a main component, a melting point substance particle, and Te, the density becomes high. The purpose is to provide high electrical contacts.
 本願の電気接点は、Cuを主成分とする母材と、母材中に分散して存在する高融点金属および高融点金属の炭化物の少なくとも一方で構成された高融点物質粒子と、母材中に分散して存在するTeおよびTiとを含む電気接点であって、全体を100質量%とした場合、Teの濃度は3.5質量%以上14.5質量%以下であると共に、Tiの濃度をTeの濃度で除算した値は0.01以上0.12未満である。 The electrical contacts of the present application include a base material containing Cu as a main component, refractory substance particles composed of at least one of a refractory metal and a carbide of the refractory metal present dispersed in the base material, and the base material. It is an electric contact containing Te and Ti that are dispersed in the above, and when the whole is 100% by mass, the concentration of Te is 3.5% by mass or more and 14.5% by mass or less, and the concentration of Ti. Is divided by the concentration of Te and is 0.01 or more and less than 0.12.
 本願の電気接点においては、全体を100質量%とした場合、Teの濃度を3.5質量%以上14.5質量%以下にすると共に、Tiの濃度をTeの濃度で除算した値を0.01以上0.12未満としているので、密度の高い電気接点が得られる。 In the electrical contacts of the present application, when the whole is 100% by mass, the concentration of Te is 3.5% by mass or more and 14.5% by mass or less, and the value obtained by dividing the concentration of Ti by the concentration of Te is 0. Since it is set to 01 or more and less than 0.12, a high-density electric contact can be obtained.
実施の形態1に係る真空バルブの断面模式図である。It is sectional drawing of the vacuum valve which concerns on Embodiment 1. FIG. 実施の形態1に係る実施例および比較例の電気接点における組成、機械特性評価結果および電気特性評価結果を表にした図である。It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example and the comparative example which concerns on Embodiment 1. FIG. 実施の形態1に係る電気接点における組成分析結果の断面模式図である。It is sectional drawing of the composition analysis result in the electric contact which concerns on Embodiment 1. FIG. 実施の形態1に係る実施例および比較例の電気接点における組成、機械特性評価結果および電気特性評価結果を表にした図である。It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example and the comparative example which concerns on Embodiment 1. FIG. 実施の形態1に係る実施例および比較例の電気接点における組成、機械特性評価結果および電気特性評価結果を表にした図である。It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example and the comparative example which concerns on Embodiment 1. FIG. 実施の形態1に係る実施例および比較例の電気接点における組成、機械特性評価結果および電気特性評価結果を表にした図である。It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example and the comparative example which concerns on Embodiment 1. FIG. 実施の形態1に係る実施例の電気接点における組成、機械特性評価結果および電気特性評価結果を表にした図である。It is a figure which tabulated the composition, the mechanical property evaluation result, and the electrical property evaluation result in the electric contact of the Example which concerns on Embodiment 1. FIG.
 以下、本願を実施するための実施の形態に係る真空バルブおよび電気接点について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。 Hereinafter, the vacuum valve and the electric contact according to the embodiment for carrying out the present application will be described in detail with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
 図1は、実施の形態1に係る真空バルブの断面模式図である。本実施の形態の真空バルブ1は、遮断室2を備えている。遮断室2は、円筒形状の絶縁容器3と、円盤形状の金属蓋5aおよび5bとで構成されている。金属蓋5aおよび5bの両端は、封止金具4aおよび4bで絶縁容器3にそれぞれ固定されている。絶縁容器3、金属蓋5aおよび5bで密封された遮断室2は、真空気密に保たれている。遮断室2内には、固定電極棒6と可動電極棒7とが対向して取り付けられている。固定電極棒6および可動電極棒7の端部には、固定電極8および可動電極9がそれぞれ取り付けられている。また、固定電極8および可動電極9の接触部には、固定電気接点10および可動電気接点11がロウ付けによりそれぞれ取り付けられている。固定電気接点10および可動電気接点11の少なくとも一方には、本実施の形態に係る電気接点が適用されている。
Embodiment 1.
FIG. 1 is a schematic cross-sectional view of the vacuum valve according to the first embodiment. The vacuum valve 1 of the present embodiment includes a shutoff chamber 2. The blocking chamber 2 is composed of a cylindrical insulating container 3 and disk- shaped metal lids 5a and 5b. Both ends of the metal lids 5a and 5b are fixed to the insulating container 3 with sealing metal fittings 4a and 4b, respectively. The shutoff chamber 2 sealed with the insulating container 3 and the metal lids 5a and 5b is kept vacuum airtight. A fixed electrode rod 6 and a movable electrode rod 7 are mounted in the shutoff chamber 2 so as to face each other. A fixed electrode 8 and a movable electrode 9 are attached to the ends of the fixed electrode rod 6 and the movable electrode rod 7, respectively. Further, a fixed electric contact 10 and a movable electric contact 11 are attached to the contact portions of the fixed electrode 8 and the movable electrode 9 by brazing, respectively. An electric contact according to the present embodiment is applied to at least one of the fixed electric contact 10 and the movable electric contact 11.
 可動電極棒7には、ベローズ12が取り付けられている。ベローズ12は、遮断室2の内部を真空気密に保持しながら可動電極棒7の軸方向の移動を可能にしている。可動電極棒7の軸方向の移動によって、可動電極9が固定電極8に接触したり離れたりする。ベローズ12の上部には、金属製のベローズ用アークシールド13が設けられている。ベローズ用アークシールド13は、ベローズ12にアーク蒸気が付着することを防止している。また、遮断室2内の固定電極8および可動電極9を覆う位置に、金属製の絶縁容器用アークシールド14が設けられている。絶縁容器用アークシールド14は、絶縁容器3の内壁にアーク蒸気が付着することを防止している。 A bellows 12 is attached to the movable electrode rod 7. The bellows 12 enables the movable electrode rod 7 to move in the axial direction while keeping the inside of the shutoff chamber 2 in a vacuum airtight manner. The movable electrode 9 comes into contact with or separates from the fixed electrode 8 due to the axial movement of the movable electrode rod 7. A metal bellows arc shield 13 is provided above the bellows 12. The bellows arc shield 13 prevents arc vapor from adhering to the bellows 12. Further, a metal arc shield 14 for an insulating container is provided at a position in the shutoff chamber 2 so as to cover the fixed electrode 8 and the movable electrode 9. The arc shield 14 for the insulating container prevents the arc vapor from adhering to the inner wall of the insulating container 3.
 一般に、固定電極8、可動電極9、固定電気接点10および可動電気接点11の形状は、円盤形状である。以下、本実施の形態の電気接点の形状は、円盤形状であるとして説明する。ただし、電気接点の形状は、円盤形状以外の形状でもよい。 Generally, the shape of the fixed electrode 8, the movable electrode 9, the fixed electric contact 10 and the movable electric contact 11 is a disk shape. Hereinafter, the shape of the electric contact of the present embodiment will be described as being a disk shape. However, the shape of the electric contact may be a shape other than the disk shape.
 これ以降、本実施の形態における電気接点について説明する。始めに本実施の形態の電気接点の製造方法について説明する。
 本実施の形態の電気接点は、次の工程を経て製造される。その工程は、原料粉末を混合する工程、混合された原料粉末をプレス金型でプレスして成形体を作製する工程、成形体を焼成して焼結体とする工程、および焼結体を電気接点の形状に加工する工程である。
Hereinafter, the electric contacts in the present embodiment will be described. First, a method of manufacturing an electric contact according to the present embodiment will be described.
The electrical contact of the present embodiment is manufactured through the following steps. The steps include a step of mixing the raw material powder, a step of pressing the mixed raw material powder with a press die to prepare a molded body, a step of firing the molded body to form a sintered body, and an electric operation of the sintered body. This is the process of processing into the shape of contacts.
 本実施の形態の電気接点の原料粉末は、例えば導電成分の母材としてのCu粉末、耐アーク成分となる高融点物質粒子としてのCr粉末、アークを持続させるための低融点金属であるTe粉末、およびTeを熱的に安定させるためのTi粉末である。後述の実施例および比較例において用いた原料粉末は、例えば平均粒径が10μmのCu粉末、平均粒径が40μmのCr粉末、平均粒径が40μmのTe粉末、および平均粒径が30μmのTi粉末である。なお、原料粉末の平均粒径は、レーザー回折散乱法を原理とするレーザー回折式粒度分布測定装置を用いて測定することができる。 The raw material powder for the electric contact of the present embodiment is, for example, Cu powder as a base material of a conductive component, Cr powder as a high melting point substance particle as an arc resistant component, and Te powder which is a low melting point metal for sustaining an arc. , And a Ti powder for thermally stabilizing Te. The raw material powders used in Examples and Comparative Examples described later are, for example, Cu powder having an average particle size of 10 μm, Cr powder having an average particle size of 40 μm, Te powder having an average particle size of 40 μm, and Ti having an average particle size of 30 μm. It is a powder. The average particle size of the raw material powder can be measured by using a laser diffraction type particle size distribution measuring device based on the laser diffraction scattering method.
 これらの原料粉末をV型混合撹拌機を用いて30分間以上混合した。この混合粉末を内径φ23mmの鋼製のプレス金型に入れ、油圧プレス機を用いて600MPaの圧力で圧縮成形して厚さ約5mmの成形体とした。次にこの成形体を水素雰囲気中において900℃以上Cuの融点以下の温度で焼成して焼結体とした。得られた焼結体の形状は、直径約φ23mm、厚さ約5mmの円盤形状である。ただし、焼結体の形状は、これに限定されない。
 なお、後述する実施例および比較例において、Cr、TeおよびTiの濃度は、混合した原料粉末の全質量を100質量%(以下、wt%と記す)としたときに、Cr粉末、Te粉末およびTi粉末がそれぞれ占める質量の割合であり、その割合をwt%で表す。また、後述する実施例においては、高融点物質粒子としてCr粉末以外の材料を用いている場合もある。
These raw material powders were mixed for 30 minutes or more using a V-type mixing stirrer. This mixed powder was placed in a steel press die having an inner diameter of φ23 mm and compression-molded at a pressure of 600 MPa using a hydraulic press to obtain a molded body having a thickness of about 5 mm. Next, this molded product was fired in a hydrogen atmosphere at a temperature of 900 ° C. or higher and a melting point of Cu or lower to obtain a sintered body. The shape of the obtained sintered body is a disk shape having a diameter of about φ23 mm and a thickness of about 5 mm. However, the shape of the sintered body is not limited to this.
In the examples and comparative examples described later, the concentrations of Cr, Te and Ti are Cr powder, Te powder and the like when the total mass of the mixed raw material powder is 100% by mass (hereinafter referred to as wt%). It is the ratio of the mass occupied by each Ti powder, and the ratio is expressed in wt%. Further, in the examples described later, a material other than Cr powder may be used as the refractory substance particles.
 得られた焼結体の機械特性評価として、密度の評価および加工特性の評価を行った。
 密度の評価は次のようにして行った。密度の測定は、焼結体を1cmに切り出してその質量を測定した。そして、組成比率から得られる理論最大密度に対して測定した質量の比率(以下、密度比と記す)を算出した。焼結体の密度比が95%以上であれば電気接点に適用できると判断した。焼結体の密度比が95%未満の場合、電気接点として電極にロウ付けするときにロウ材が毛細管現象によって電気接点の内部の空隙に吸引されてロウ付け不良の原因となる。そのため、焼結体の密度比が95%以上であれば合格とし、焼結体の密度比が95%未満であれば不合格とした。
As the mechanical characteristics evaluation of the obtained sintered body, the density evaluation and the processing characteristics were evaluated.
The density was evaluated as follows. The density was measured by cutting the sintered body into 1 cm 3 pieces and measuring the mass thereof. Then, the ratio of the measured mass to the theoretical maximum density obtained from the composition ratio (hereinafter referred to as the density ratio) was calculated. It was judged that if the density ratio of the sintered body is 95% or more, it can be applied to an electric contact. When the density ratio of the sintered body is less than 95%, when brazing to the electrode as an electric contact, the brazing material is attracted to the void inside the electric contact by the capillary phenomenon, which causes brazing failure. Therefore, if the density ratio of the sintered body is 95% or more, the result is acceptable, and if the density ratio of the sintered body is less than 95%, the result is rejected.
 加工特性の評価は次のようにして行った。得られた焼結体を直径φ20mm、厚さ3mmの円盤形状の電気接点に機械加工した。この機械加工のときに焼結体の脆さのために目視で確認できる欠けまたは割れなどが発生して決められた円盤形状が得られない場合は、加工特性を不合格とした。機械加工のときに欠けまたは割れなどが発生せず決められた円盤形状が得られる場合は、加工特性を合格とした。 The processing characteristics were evaluated as follows. The obtained sintered body was machined into a disk-shaped electric contact having a diameter of φ20 mm and a thickness of 3 mm. During this machining, if a chip or crack that can be visually confirmed occurs due to the brittleness of the sintered body and the determined disk shape cannot be obtained, the machining characteristics are rejected. If a predetermined disk shape could be obtained without chipping or cracking during machining, the machining characteristics were accepted.
 加工特性で合格となった電気接点の電気特性評価として、裁断特性の評価、耐溶着特性の評価および遮断特性の評価を行った。直径φ20mm、厚さ3mmの円盤形状の電気接点の端部から内径側2mmまでの部分に約15°のテーパー加工を施して試験接点とした。この試験接点を2つ作製し、この2つの試験接点をそれぞれ固定電気接点および可動電気接点とする評価用真空バルブを作製した。 As the electrical characteristics of the electrical contacts that passed the processing characteristics, the cutting characteristics, the welding resistance characteristics, and the cutoff characteristics were evaluated. A disk-shaped electrical contact with a diameter of φ20 mm and a thickness of 3 mm was tapered by about 15 ° from the end to the inner diameter side of 2 mm to form a test contact. Two of these test contacts were manufactured, and a vacuum valve for evaluation was manufactured in which the two test contacts were fixed electrical contacts and movable electrical contacts, respectively.
 裁断特性の評価は、次のようにして行った。20Ωの抵抗と評価用真空バルブとを直列接続した回路を組み立てた。この回路にAC200V電源を接続して閉極した状態の評価用真空バルブに10Aの電流を通電させた。この状態で評価用真空バルブを閉極した状態から強制的に開極し、アーク電流がゼロになる直前の電流値を測定してその電流値を裁断電流値とした。同じ評価用真空バルブを用いて裁断電流値の測定を1000回実施し、その平均値を最終的な裁断電流値とした。遮断時に発生するサージ電圧の上昇による電気機器の損傷を避ける観点から裁断電流値は1A以下である必要がある。裁断特性の評価においては、裁断電流値が1A以下となった場合を合格とし、裁断電流値が1Aを超過した場合を不合格とした。 The cutting characteristics were evaluated as follows. A circuit in which a 20Ω resistor and an evaluation vacuum valve were connected in series was assembled. An AC200V power supply was connected to this circuit, and a current of 10A was passed through the evaluation vacuum valve in a closed state. In this state, the evaluation vacuum valve was forcibly opened from the closed state, the current value immediately before the arc current became zero was measured, and the current value was taken as the cutting current value. The cutting current value was measured 1000 times using the same evaluation vacuum valve, and the average value was used as the final cutting current value. The cutting current value needs to be 1 A or less from the viewpoint of avoiding damage to the electric equipment due to an increase in the surge voltage generated at the time of interruption. In the evaluation of the cutting characteristics, the case where the cutting current value was 1 A or less was regarded as acceptable, and the case where the cutting current value exceeded 1 A was regarded as rejected.
 耐溶着特性の評価は、次のようにして行った。なお、評価用真空バルブには、可動電極棒に可動電極を固定電極から引き離す方向に移動させる可動ネジが備えらえている。この可動ネジに軸力を加えることで可動電極を固定電極から引き離すことができる。評価用真空バルブにおいて、閉極した状態で10Aの電流を通電させて疑似的な電気接点の溶着状態とした。この溶着状態の評価用真空バルブにおいて、可動電極棒の可動ネジに軸力を加えた。軸力を徐々に増大させて軸力が電気接点の溶着力を上回ることで電気接点が開極した。開極したときに必要であった軸力を計測することで溶着力を決定した。なお、このようにして測定された従来型のCu-Cr接点の溶着力は約10kN、さらにTeを添加した電気接点の溶着力は約5kNであった。本実施の形態においては、従来型の電気接点の耐溶着特性と同等以上の耐溶着特性が必要と判断し、溶着力の判定基準を5kNとした。したがって、耐溶着特性の評価においては、溶着力が5kN以下の場合を合格とし、溶着力が5kNを超過した場合を不合格とした。 The welding resistance characteristics were evaluated as follows. The evaluation vacuum valve is provided with a movable screw on the movable electrode rod to move the movable electrode in the direction of pulling it away from the fixed electrode. By applying an axial force to this movable screw, the movable electrode can be separated from the fixed electrode. In the evaluation vacuum valve, a current of 10 A was applied in a closed state to obtain a pseudo electric contact welded state. In this vacuum valve for evaluation of the welded state, an axial force was applied to the movable screw of the movable electrode rod. The electrical contact was opened by gradually increasing the axial force and the axial force exceeding the welding force of the electrical contact. The welding force was determined by measuring the axial force required when the electrode was opened. The welding force of the conventional Cu—Cr contact measured in this way was about 10 kN, and the welding force of the electric contact to which Te was added was about 5 kN. In the present embodiment, it is determined that the welding resistance characteristic equal to or higher than the welding resistance characteristic of the conventional electric contact is required, and the criteria for determining the welding force is set to 5 kN. Therefore, in the evaluation of the welding resistance characteristics, the case where the welding force is 5 kN or less is regarded as acceptable, and the case where the welding force exceeds 5 kN is regarded as rejected.
 遮断特性の評価は、次のようにして行った。コンデンサバンクの開閉を行うサイリスタと評価用真空バルブとを直列接続した回路を組み立てた。この回路において、コンデンサバンクからの放電を利用した通電電流を閉極した状態の評価用真空バルブに流した。コンデンサバンクは外部電源で充電される。通電電流を2kAから1kAずつ上げて評価用真空バルブを強制的に開極する遮断試験を行った。通電電流が4kAのときに遮断試験が成功したか否かで遮断特性の合否を判定した。なお、遮断試験の成功とは、評価用真空バルブを開極したときに、アークが完全に消滅する場合を意味する。遮断試験の不成功とは、評価用真空バルブを開極したときに、アークが継続するかまたは一旦消滅したアークが再度発生する場合を意味する。すなわち、遮断特性の評価においては、通電電流が4kAのときに遮断試験に成功した場合を合格とし、通電電流が4kAのときに遮断試験が不成功の場合を不合格とした。 The cutoff characteristics were evaluated as follows. We assembled a circuit in which a thyristor that opens and closes the capacitor bank and a vacuum valve for evaluation are connected in series. In this circuit, the energization current using the discharge from the capacitor bank was passed through the evaluation vacuum valve in the closed state. The capacitor bank is charged by an external power source. A breaking test was conducted in which the energizing current was increased by 1 kA from 2 kA to forcibly open the evaluation vacuum valve. The pass / fail of the cutoff characteristic was judged by whether or not the cutoff test was successful when the energization current was 4 kA. The success of the cutoff test means that the arc completely disappears when the evaluation vacuum valve is opened. The unsuccessful cutoff test means that when the evaluation vacuum valve is opened, the arc continues or the arc once extinguished reoccurs. That is, in the evaluation of the breaking characteristics, the case where the breaking test was successful when the energizing current was 4 kA was accepted, and the case where the breaking test was unsuccessful when the energized current was 4 kA was rejected.
 以下、本実施の形態の電気接点について、具体的な実施例および比較例を説明する。
[実施例1~4][比較例1~3]
 図2は、実施例1~4および比較例1~3の電気接点の組成、機械特性評価結果および電気特性評価結果を表にした図である。実施例1~4および比較例1~3は、Cr濃度を30wt%、Te濃度を8wt%と一定としたときに、Ti濃度を変化させた場合の電気接点の特性の違いを示している。なお、Cr濃度、Te濃度およびTi濃度の合計を100wt%から差し引いた値は、導電成分であるCu濃度となる。また、図2に示した表において、Ti/Teは、Ti濃度をTe濃度で除算した値である。
Hereinafter, specific examples and comparative examples of the electric contacts of the present embodiment will be described.
[Examples 1 to 4] [Comparative examples 1 to 3]
FIG. 2 is a table showing the composition of electrical contacts, mechanical characteristic evaluation results, and electrical characteristic evaluation results of Examples 1 to 4 and Comparative Examples 1 to 3. Examples 1 to 4 and Comparative Examples 1 to 3 show the difference in the characteristics of the electric contact when the Ti concentration is changed when the Cr concentration is 30 wt% and the Te concentration is 8 wt%. The value obtained by subtracting the total of the Cr concentration, the Te concentration and the Ti concentration from 100 wt% is the Cu concentration which is a conductive component. Further, in the table shown in FIG. 2, Ti / Te is a value obtained by dividing the Ti concentration by the Te concentration.
 実施例1~4から、Ti/Teが0.01以上0.12未満であれば、密度、加工特性、裁断特性、耐溶着特性および遮断特性の全てが合格であった。これに対して、Ti/Teが0.01未満の比較例1および比較例2は、加工特性が不合格であった。比較例1および比較例2は、加工特性が不合格であったので試験接点を作製することができず、電気特性評価を行うことができなかった。一方、Ti/Teが0.12を超過した比較例3は、密度が不合格となった。比較例3は、加工特性は合格であったので試験接点を作製することができたが、耐溶着特性および遮断特性が不合格であった。 From Examples 1 to 4, if Ti / Te was 0.01 or more and less than 0.12, all of the density, processing characteristics, cutting characteristics, welding resistance characteristics and blocking characteristics were acceptable. On the other hand, in Comparative Example 1 and Comparative Example 2 in which Ti / Te was less than 0.01, the processing characteristics were unacceptable. In Comparative Example 1 and Comparative Example 2, since the processing characteristics were unacceptable, the test contacts could not be manufactured and the electrical characteristics could not be evaluated. On the other hand, in Comparative Example 3 in which Ti / Te exceeded 0.12, the density was rejected. In Comparative Example 3, since the processing characteristics were acceptable, the test contacts could be produced, but the welding resistance characteristics and the cutoff characteristics were unacceptable.
 比較例1および比較例2の結果から次のことが推定される。Ti/Teが0.01未満の場合、Teは主にCuTeの生成に寄与するためにCuTeが多くなる。CuTeは熱的に不安定であるために焼結中にTeが蒸発して電気接点が脆くなる。そのため、比較例1および比較例2は加工特性が不合格になったと推定される。一方、比較例3の結果から次のことが推定される。Ti/Teが0.012を超過した場合、TeはTiと反応してTi-Te化合物が生成され、CuTeの生成が抑制される。そのため、比較例3は加工特性が合格になったと推定される。しかしながら、Ti-Te化合物は熱的に安定であるため焼結の進行が抑制されると考えられる。焼結の進行が妨げられた結果、比較例3は密度が不合格になったと推定される。また、比較例3は密度が低いために電気接点の内部に残留するガスが多くなり、遮断特性が不合格になったと推定される。さらに、比較例3は、Ti濃度が高いためにCuTeの生成が必要以上に抑制されてCuTeの生成比率がさらに低くなったために、耐溶着特性が不合格になったと推定される。 The following is presumed from the results of Comparative Example 1 and Comparative Example 2. When Ti / Te is less than 0.01, the amount of Cu 2 Te increases because Te mainly contributes to the production of Cu 2 Te. Since Cu 2 Te is thermally unstable, Te evaporates during sintering and the electric contacts become brittle. Therefore, it is presumed that the processing characteristics of Comparative Example 1 and Comparative Example 2 were rejected. On the other hand, the following is estimated from the results of Comparative Example 3. When Ti / Te exceeds 0.012, Te reacts with Ti to form a Ti—Te compound, and the formation of Cu 2 Te is suppressed. Therefore, it is presumed that the processing characteristics of Comparative Example 3 have passed. However, since the Ti-Te compound is thermally stable, it is considered that the progress of sintering is suppressed. As a result of hindering the progress of sintering, it is presumed that the density of Comparative Example 3 was rejected. Further, it is presumed that in Comparative Example 3, since the density is low, a large amount of gas remains inside the electric contact, and the cutoff characteristic is rejected. Further, in Comparative Example 3, it is presumed that the welding resistance property was rejected because the formation of Cu 2 Te was suppressed more than necessary due to the high Ti concentration and the formation ratio of Cu 2 Te was further lowered. ..
 なお、裁断特性に関しては、比較例3も合格となった。その理由は、裁断特性は主にアーク発生時の低融点金属の蒸発量に依存する。実施例1~4および比較例3はTe濃度が8wt%と同じであるため、裁断特性はすべて合格となったと推定される。 Regarding the cutting characteristics, Comparative Example 3 also passed. The reason is that the cutting characteristics mainly depend on the amount of evaporation of the low melting point metal at the time of arc generation. Since the Te concentration of Examples 1 to 4 and Comparative Example 3 is the same as 8 wt%, it is presumed that all the cutting characteristics are acceptable.
 走査型電子顕微鏡(Scanning Electron Microscope:SEM)とこれに付属するエネルギー分散型X線分析(Energy Dispersive X-ray Spectroscopy)とを用いて実施例2の電気接点の断面の組成分析を実施した。図3は、その組成分析結果の断面模式図である。図3に示すように、実施例2の電気接点には、Cuからなる母材15の中に高融点物質粒子であるCr粒子16、Tiを多く含有するTi-Te化合物粒子17、およびCuを多く含有するCu-Te化合物粒子18が分散して存在していた。これらの粒子の粒径は、0.1~100μmであった。つまり、TeはTiおよびCuの両方と反応し、Ti-Te化合物粒子17およびCu-Te化合物粒子18として存在していることがわかった。さらに、それらの化合物粒子は別々に電気接点の内部に分散しているのではなく、共存して1つの粒子を形成していることが判明した。また、Ti-Te化合物粒子17の点分析モードによる組成分析を実施した結果、TiとTeの原子量比が1:2~3:4であった。この組成分析結果とTi-Teの状態図とから、Ti-Te化合物粒子17はTiTeおよびTiTeが混合した化合物の形態であると推定された。また、Cu-Te化合物粒子18の点分析モードによる組成分析を実施した結果、CuとTeの原子量比が2:1であった。この組成分析結果から、Cu-Te化合物粒子18はCuTeであると推定された。
 なお、電気接点の断面における各粒子の粒径は、観察された断面画像において、粒子の幾何学的な形状に基づいて粒子の形状を球形近似した場合に算出される粒径とした。
A composition analysis of the cross section of the electrical contact of Example 2 was performed using a scanning electron microscope (SEM) and an energy dispersive X-ray analysis (Energy Dispersive X-ray Spectroscopic) attached thereto. FIG. 3 is a schematic cross-sectional view of the composition analysis result. As shown in FIG. 3, at the electrical contacts of Example 2, Cr particles 16 which are refractory substance particles, Ti—Te compound particles 17 containing a large amount of Ti, and Cu are contained in a base material 15 made of Cu. The Cu—Te compound particles 18 contained in a large amount were dispersed and present. The particle size of these particles was 0.1 to 100 μm. That is, it was found that Te reacted with both Ti and Cu and existed as Ti—Te compound particles 17 and Cu—Te compound particles 18. Furthermore, it was found that these compound particles do not disperse separately inside the electrical contacts, but coexist to form one particle. Further, as a result of performing composition analysis of the Ti—Te compound particles 17 in the point analysis mode, the atomic weight ratio of Ti to Te was 1: 2 to 3: 4. From the composition analysis result and the phase diagram of Ti-Te, it was estimated that the Ti-Te compound particles 17 are in the form of a compound in which TiTe 2 and Ti 3 Te 4 are mixed. Further, as a result of performing composition analysis of the Cu—Te compound particles 18 in the point analysis mode, the atomic weight ratio of Cu and Te was 2: 1. From this composition analysis result, it was presumed that the Cu-Te compound particles 18 were Cu 2 Te.
The particle size of each particle in the cross section of the electrical contact is the particle size calculated when the shape of the particle is approximately spherically approximated based on the geometric shape of the particle in the observed cross section image.
[実施例5~8][比較例4~7]
 図4は、実施例5~8および比較例4~7の電気接点の組成、機械特性評価結果および電気特性評価結果を表にした図である。実施例5~8および比較例4~7は、Cr濃度を30wt%、Te濃度を3.5wt%または14.5wt%と一定としたときに、Ti濃度を変化させた場合の電気接点の特性の違いを示している。実施例5~8から、Te濃度が3.5wt%または14.5wt%であっても、Ti/Teが0.01以上0.12未満であれば、密度、加工特性、裁断特性、耐溶着特性および遮断特性の全てが合格であった。これに対して、Ti/Teが0.01未満の比較例4および比較例6は、加工特性が不合格であった。比較例4および比較例6は、加工特性が不合格であったので試験接点を作製することができず、電気特性評価を行うことができなかった。一方、Ti/Teが0.12を超過した比較例5および比較例7は、密度が不合格となった。比較例5および比較例7は、加工特性は合格であったので試験接点を作製することができたが、耐溶着特性および遮断特性が不合格であった。
[Examples 5 to 8] [Comparative examples 4 to 7]
FIG. 4 is a table showing the composition of electrical contacts, mechanical characteristic evaluation results, and electrical characteristic evaluation results of Examples 5 to 8 and Comparative Examples 4 to 7. In Examples 5 to 8 and Comparative Examples 4 to 7, the characteristics of the electric contacts when the Ti concentration is changed when the Cr concentration is kept constant at 30 wt% and the Te concentration is kept constant at 3.5 wt% or 14.5 wt%. Shows the difference. From Examples 5 to 8, even if the Te concentration is 3.5 wt% or 14.5 wt%, if the Ti / Te is 0.01 or more and less than 0.12, the density, processing characteristics, cutting characteristics, and welding resistance are welded. All of the characteristics and blocking characteristics were acceptable. On the other hand, in Comparative Example 4 and Comparative Example 6 in which Ti / Te was less than 0.01, the processing characteristics were unacceptable. In Comparative Example 4 and Comparative Example 6, since the processing characteristics were unacceptable, the test contacts could not be manufactured and the electrical characteristics could not be evaluated. On the other hand, the densities of Comparative Example 5 and Comparative Example 7 in which Ti / Te exceeded 0.12 were rejected. In Comparative Example 5 and Comparative Example 7, since the processing characteristics were acceptable, the test contacts could be produced, but the welding resistance characteristics and the cutoff characteristics were unacceptable.
 比較例4および比較例6の結果から次のことが推定される。Ti/Teが0.01未満の場合、Teは主にCuTeの生成に寄与する。CuTeは熱的に不安定であるために焼結中にTeが蒸発して電気接点が脆くなる。そのため、比較例4および比較例6は加工特性が不合格になったと推定される。一方、比較例5および比較例7の結果から次のことが推定される。Ti/Teが0.012を超過した場合、TeはTiと反応してTi-Te化合物が生成され、CuTeの生成が抑制される。そのため、比較例5および比較例7は加工特性が合格になったと推定される。しかしながら、Ti-Te化合物は熱的に安定であるため焼結の進行が抑制されると考えられる。焼結の進行が妨げられた結果、比較例5および比較例7は密度が不合格になったと推定される。また、比較例5および比較例7は密度が低いために電気接点の内部に残留するガスが多くなったため、遮断特性が不合格になったと推定される。さらに、比較例5および比較例7は、Ti濃度が高いためにCuTeの生成が必要以上に抑制されてCuTeの生成比率がさらに低くなったために、耐溶着特性が不合格になったと推定される。 The following is presumed from the results of Comparative Example 4 and Comparative Example 6. When Ti / Te is less than 0.01, Te mainly contributes to the production of Cu 2 Te. Since Cu 2 Te is thermally unstable, Te evaporates during sintering and the electric contacts become brittle. Therefore, it is presumed that the processing characteristics of Comparative Example 4 and Comparative Example 6 were rejected. On the other hand, the following is presumed from the results of Comparative Example 5 and Comparative Example 7. When Ti / Te exceeds 0.012, Te reacts with Ti to form a Ti—Te compound, and the formation of Cu 2 Te is suppressed. Therefore, it is presumed that the processing characteristics of Comparative Example 5 and Comparative Example 7 have passed. However, since the Ti-Te compound is thermally stable, it is considered that the progress of sintering is suppressed. As a result of the inhibition of the progress of sintering, it is presumed that the densities of Comparative Example 5 and Comparative Example 7 were rejected. Further, it is presumed that the cutoff characteristics of Comparative Example 5 and Comparative Example 7 were rejected because the density was low and the amount of gas remaining inside the electric contact was large. Further, in Comparative Example 5 and Comparative Example 7, the formation of Cu 2 Te was suppressed more than necessary due to the high Ti concentration, and the formation ratio of Cu 2 Te was further lowered, so that the welding resistance was rejected. It is estimated that it was.
 実施例8と比較例5とにおける密度の違いに着目する。実施例8は、Ti濃度が1.67wt%で密度比が95%以上で合格となっている。一方、比較例5は、Ti濃度が0.44wt%と実施例8より低濃度で密度比が95%未満となり不合格となっている。この結果から、電気接点の焼結性はTi濃度のみで決まるものではなく、Ti/Teに影響されることがわかる。実施例8のTi/Teが0.115であるの対して、比較例5のTi/Teが0.125であることから、密度の観点からは、Ti/Teは0.12未満がよいことがわかる。これは、Ti/Teが0.125の比較例7においても密度が不合格となっていることからもわかる。 Pay attention to the difference in density between Example 8 and Comparative Example 5. Example 8 is acceptable when the Ti concentration is 1.67 wt% and the density ratio is 95% or more. On the other hand, Comparative Example 5 was rejected because the Ti concentration was 0.44 wt%, which was lower than that of Example 8, and the density ratio was less than 95%. From this result, it can be seen that the sinterability of the electric contact is not determined only by the Ti concentration but is influenced by Ti / Te. Since the Ti / Te of Example 8 is 0.115 and the Ti / Te of Comparative Example 5 is 0.125, the Ti / Te should be less than 0.12 from the viewpoint of density. I understand. This can be seen from the fact that the density is also unacceptable in Comparative Example 7 having a Ti / Te of 0.125.
 次に、実施例5~8と比較例4~7とにおける加工特性の違いに着目する。Te濃度が3.5wt%または14.5wt%であっても、Ti/Teが0.01以上の実施例5~8および比較例5、7では加工特性は合格であった。一方、Te濃度が3.5wt%または14.5wt%であっても、Ti/Teが0.01未満の比較例4および比較例6では加工特性は不合格となった。この結果から、電気接点の加工特性はTi濃度のみで決まるものではなく、Ti/Teに影響されることがわかる。加工特性の観点からは、Ti/Teは0.01以上がよいことがわかる。 Next, pay attention to the difference in processing characteristics between Examples 5 to 8 and Comparative Examples 4 to 7. Even if the Te concentration was 3.5 wt% or 14.5 wt%, the processing characteristics were acceptable in Examples 5 to 8 and Comparative Examples 5 and 7 having a Ti / Te of 0.01 or more. On the other hand, even if the Te concentration was 3.5 wt% or 14.5 wt%, the processing characteristics were rejected in Comparative Example 4 and Comparative Example 6 in which Ti / Te was less than 0.01. From this result, it can be seen that the processing characteristics of the electric contact are not determined only by the Ti concentration but are influenced by Ti / Te. From the viewpoint of processing characteristics, it can be seen that Ti / Te should be 0.01 or more.
 耐溶着特性および遮断特性に関しては、密度が不合格と判定された比較例5および比較例7で不合格となった。同様に、密度が不合格と判定された比較例3においても、耐溶着特性および遮断特性が不合格となっている。 Regarding the welding resistance and blocking characteristics, Comparative Example 5 and Comparative Example 7 whose density was judged to be unacceptable were unacceptable. Similarly, in Comparative Example 3 in which the density was determined to be unacceptable, the welding resistance property and the blocking property were unacceptable.
 実施例1~8および比較例1~7の結果から、Cr濃度が30wt%、Te濃度が3.5~14.5wt%でTiが添加された電気接点において、Ti/Teが0.01以上0.12未満であれば密度が高い電気接点が得られ、加工特性、裁断特性、耐溶着特性および遮断特性の全てが合格となることがわかる。 From the results of Examples 1 to 8 and Comparative Examples 1 to 7, the Ti / Te is 0.01 or more in the electric contact to which Ti is added with a Cr concentration of 30 wt% and a Te concentration of 3.5 to 14.5 wt%. If it is less than 0.12, a dense electrical contact can be obtained, and it can be seen that all of the processing characteristics, cutting characteristics, welding resistance characteristics and breaking characteristics are acceptable.
[実施例9~11][比較例8、9]
 図5は、実施例9~11および比較例8、9の電気接点の組成、機械特性評価結果および電気特性評価結果を表にした図である。実施例9~11および比較例8、9は、Cr濃度を30wt%、Ti/Teを0.1と一定としたときに、Te濃度を変化させた場合の電気接点の特性の違いを示している。実施例9~11および比較例8~9においては、Ti/Teを0.1と一定するために、Te濃度の変化に伴ってTi濃度も変化させている。実施例9~11から、Te濃度が3.5wt%以上14.5wt%以下であれば、密度、加工特性、裁断特性、耐溶着特性および遮断特性の全てが合格であった。これに対して、Te濃度が3.0wt%の比較例8の電気接点においては、裁断特性が不合格であった。Te濃度が3.5wt%未満の比較例8電気接点においては、アーク発生時にTe蒸気が安定して供給されなくなり、裁断電流が小さくなる前にアークが消滅したためと推定される。また、Te濃度が15wt%の比較例9の電気接点においては、遮断特性が不合格であった。これは、裁断特性と遮断特性とが相反する特性であるためである。Te濃度が14.5wt%を超過した比較例9の電気接点においては、評価用真空バルブを開極したときにTe蒸気の供給が必要以上に継続されて、アークが継続するかまたは一旦消滅したアークが再度発生し易くなったためと推定される。
[Examples 9 to 11] [Comparative Examples 8 and 9]
FIG. 5 is a table showing the composition of electrical contacts, mechanical characteristic evaluation results, and electrical characteristic evaluation results of Examples 9 to 11 and Comparative Examples 8 and 9. Examples 9 to 11 and Comparative Examples 8 and 9 show the difference in the characteristics of the electric contact when the Te concentration is changed when the Cr concentration is 30 wt% and the Ti / Te is 0.1. There is. In Examples 9 to 11 and Comparative Examples 8 to 9, in order to keep Ti / Te constant at 0.1, the Ti concentration is also changed with the change of the Te concentration. From Examples 9 to 11, when the Te concentration was 3.5 wt% or more and 14.5 wt% or less, all of the density, processing characteristics, cutting characteristics, welding resistance characteristics and blocking characteristics were acceptable. On the other hand, in the electric contact of Comparative Example 8 having a Te concentration of 3.0 wt%, the cutting characteristic was unacceptable. It is presumed that in the comparative example 8 electric contact having a Te concentration of less than 3.5 wt%, the Te vapor was not stably supplied when the arc was generated, and the arc disappeared before the cutting current became small. Further, in the electric contact of Comparative Example 9 having a Te concentration of 15 wt%, the breaking characteristic was unacceptable. This is because the cutting characteristics and the blocking characteristics are contradictory characteristics. In the electrical contact of Comparative Example 9 in which the Te concentration exceeded 14.5 wt%, the supply of Te steam was continued more than necessary when the evaluation vacuum valve was opened, and the arc continued or disappeared once. It is presumed that the arc is likely to occur again.
 実施例9~11および比較例8、9の結果から、Cr濃度が30wt%、Ti/Teが0.1の電気接点においては、Te濃度が3.5wt%以上14.5wt%以下であれば、密度、加工特性、裁断特性、耐溶着特性および遮断特性の全てが合格となることがわかる。 From the results of Examples 9 to 11 and Comparative Examples 8 and 9, if the Te concentration is 3.5 wt% or more and 14.5 wt% or less in the electric contact having a Cr concentration of 30 wt% and Ti / Te of 0.1. It can be seen that all of the density, processing characteristics, cutting characteristics, welding resistance characteristics and blocking characteristics are acceptable.
 ここまで説明した実施例1~11および比較例1~9の結果から、Cuを主成分とする母材と、母材中に分散して存在するCr粒子と、母材中に分散して存在するTeおよびTiとを含む電気接点において、全体を100質量%とした場合、Te濃度は3.5質量%以上14.5質量%以下であると共に、Ti/Teが0.01以上0.12未満であれば、密度、加工特性、裁断特性、耐溶着特性および遮断特性の全てが合格となることがわかる。 From the results of Examples 1 to 11 and Comparative Examples 1 to 9 described so far, the base material containing Cu as a main component, the Cr particles dispersed in the base material, and the Cr particles dispersed in the base material are present. When the total is 100% by mass, the Te concentration is 3.5% by mass or more and 14.5% by mass or less, and the Ti / Te is 0.01 or more and 0.12. If it is less than, it can be seen that all of the density, processing characteristics, cutting characteristics, welding resistance characteristics and blocking characteristics are acceptable.
 なお、本実施の形態の電気接点において、焼結体を得るための焼成温度は900℃以上Cuの融点以下の温度である。Ti/Teが0.12を超える場合でも、焼成温度を高くすることで焼結体の密度を上げることはできる。しかしながら、Ti/Teが0.12を超える場合、Ti-Te化合物の生成が進み焼結しにくくなる。また、Ti-Te化合物の量が増えるためにCu-Te化合物の量が減り耐溶着特性が低下する。 In the electric contact of the present embodiment, the firing temperature for obtaining the sintered body is a temperature of 900 ° C. or higher and lower than the melting point of Cu. Even when Ti / Te exceeds 0.12, the density of the sintered body can be increased by increasing the firing temperature. However, when Ti / Te exceeds 0.12, the formation of Ti—Te compound proceeds and it becomes difficult to sinter. Further, since the amount of the Ti—Te compound increases, the amount of the Cu—Te compound decreases and the welding resistance property deteriorates.
[実施例12~14][比較例10、11]
 図6は、実施例12~14および比較例10、11の電気接点の組成、機械特性評価結果および電気特性評価結果を表にした図である。実施例12~14および比較例10、11は、Te濃度を8wt%、Ti/Teを0.1と一定としたときに、Cr濃度を変化させた場合の電気接点の特性の違いを示している。実施例12~14から、Cr濃度が20wt%以上60wt%以下であれば、密度、加工特性、裁断特性、耐溶着特性および遮断特性の全てが合格であった。これに対して、Cr濃度が15wt%の比較例10の電気接点においては、耐溶着特性が不合格であった。Cr濃度が20wt%未満の比較例10の電気接点においては、Cu濃度が高いために閉極した電気接点同士のCu成分が溶着して溶着力が増大したと推定される。また、Cr濃度が70wt%の比較例11の電気接点においては、遮断特性が不合格であった。
[Examples 12 to 14] [Comparative Examples 10 and 11]
FIG. 6 is a table showing the composition of electrical contacts, mechanical characteristic evaluation results, and electrical characteristic evaluation results of Examples 12 to 14 and Comparative Examples 10 and 11. Examples 12 to 14 and Comparative Examples 10 and 11 show the difference in the characteristics of the electric contact when the Cr concentration is changed when the Te concentration is 8 wt% and the Ti / Te is 0.1. There is. From Examples 12 to 14, when the Cr concentration was 20 wt% or more and 60 wt% or less, all of the density, processing characteristics, cutting characteristics, welding resistance characteristics and blocking characteristics were acceptable. On the other hand, in the electric contact of Comparative Example 10 having a Cr concentration of 15 wt%, the welding resistance property was unacceptable. In the electrical contacts of Comparative Example 10 having a Cr concentration of less than 20 wt%, it is presumed that the Cu components of the closed electrical contacts are welded to each other due to the high Cu concentration, and the welding force is increased. Further, in the electric contact of Comparative Example 11 having a Cr concentration of 70 wt%, the breaking characteristic was unacceptable.
 実施例12~14および比較例10、11の結果から次のことがわかる。Ti/Teが0.1の電気接点においては、Cr濃度が20wt%以上60wt%以下であれば、密度、加工特性、裁断特性、耐溶着特性および遮断特性の全てが合格となることがわかる。 The following can be seen from the results of Examples 12 to 14 and Comparative Examples 10 and 11. It can be seen that in an electric contact having a Ti / Te of 0.1, if the Cr concentration is 20 wt% or more and 60 wt% or less, all of the density, processing characteristics, cutting characteristics, welding resistance characteristics and breaking characteristics are acceptable.
[実施例15~17]
 図7は、実施例15~17の電気接点の組成、機械特性評価結果および電気特性評価結果を表にした図である。実施例15~17は、Te濃度を8wt%、Ti/Teを0.1と一定としたときに、耐アーク成分をCr以外の材料とした場合の電気接点の特性を示している。なお、実施例15~17において、耐アーク成分の濃度は30wt%と一定としている。実施例15~17から、耐アーク成分をCr以外のW(タングステン)、WC(タングステンカーバイド)およびCr(炭化クロム)に変更しても、密度、加工特性、裁断特性、耐溶着特性および遮断特性の全てが合格であった。Cr、W、WCおよびCrの融点は、それぞれ1907℃、3422℃、2870℃および1895℃である。耐アーク成分として、1800℃よりも高い融点をもつ材料であれば実用上問題ないことがわかった。1800℃よりも高い融点をもつ材料として、例えばMo(モリブデン)、MoC(炭化モリブデン)などがあり、これらの材料を耐アーク成分として用いることもできる。
[Examples 15 to 17]
FIG. 7 is a table showing the composition of the electric contacts, the mechanical property evaluation result, and the electrical property evaluation result of Examples 15 to 17. Examples 15 to 17 show the characteristics of electric contacts when the arc-resistant component is a material other than Cr when the Te concentration is 8 wt% and Ti / Te is 0.1. In Examples 15 to 17, the concentration of the arc-resistant component is constant at 30 wt%. From Examples 15 to 17, even if the arc resistance component is changed to W (tungsten), WC (tungsten carbide) and Cr 3C 2 (chromium carbide) other than Cr, the density, processing characteristics, cutting characteristics and welding resistance characteristics are changed. And all of the blocking characteristics passed. The melting points of Cr, W, WC and Cr 3C 2 are 1907 ° C, 3422 ° C, 2870 ° C and 1895 ° C, respectively. It was found that there is no practical problem as long as the material has a melting point higher than 1800 ° C. as an arc resistant component. Examples of materials having a melting point higher than 1800 ° C. include Mo (molybdenum) and Mo 2 C (molybdenum carbide), and these materials can also be used as an arc-resistant component.
 なお、本実施の形態の成形体を作製する工程において、プレス圧力を600MPaとしたが、プレス圧力は原料粉末の粒径などの条件によって200~1000MPaの範囲で設定することができる。また、焼結体を作製する工程において、水素雰囲気中において900℃以上Cuの融点以下の温度で成形体を焼成したが、気圧が1×10-5Pa以下の真空中で焼成してもよい。 In the step of producing the molded body of the present embodiment, the press pressure was set to 600 MPa, but the press pressure can be set in the range of 200 to 1000 MPa depending on the conditions such as the particle size of the raw material powder. Further, in the step of producing the sintered body, the molded body was fired in a hydrogen atmosphere at a temperature of 900 ° C. or higher and lower than the melting point of Cu, but the molded body may be fired in a vacuum having an atmospheric pressure of 1 × 10-5 Pa or lower. ..
 本願は、例示的な実施の形態が記載されているが、実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合が含まれるものとする。
Although the present application describes exemplary embodiments, the various features, embodiments, and functions described in the embodiments are not limited to the application of a particular embodiment, either alone or. Various combinations are applicable to the embodiments.
Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted.
 1 真空バルブ、2 遮断室、3 絶縁容器、4a、4b 封止金具、5a、5b 金属蓋、6 固定電極棒、7 可動電極棒、8 固定電極、9 可動電極、10 固定電気接点、11 可動電気接点、12 ベローズ、13 ベローズ用アークシールド、14 絶縁容器用アークシールド、15 母材、16 Cr粒子、17 Ti-Te化合物粒子、18 Cu-Te化合物粒子。 1 Vacuum valve, 2 Cutoff chamber, 3 Insulated container, 4a, 4b Sealing metal fittings, 5a, 5b Metal lid, 6 Fixed electrode rod, 7 Movable electrode rod, 8 Fixed electrode, 9 Movable electrode, 10 Fixed electrical contact, 11 Movable Electrical contacts, 12 bellows, 13 arc shields for bellows, 14 arc shields for insulated containers, 15 base materials, 16 Cr particles, 17 Ti-Te compound particles, 18 Cu-Te compound particles.

Claims (6)

  1.  Cuを主成分とする母材と、
     前記母材中に分散して存在する高融点金属および前記高融点金属の炭化物の少なくとも一方で構成された高融点物質粒子と、
     前記母材中に分散して存在するTeおよびTiとを含む電気接点であって、
     全体を100質量%とした場合、前記Teの濃度は3.5質量%以上14.5質量%以下であると共に、前記Tiの濃度を前記Teの濃度で除算した値が0.01以上0.12未満であることを特徴とする電気接点。
    A base material containing Cu as the main component and
    The refractory substance particles composed of at least one of the refractory metal and the carbide of the refractory metal dispersed in the base metal,
    An electrical contact containing Te and Ti dispersed in the base metal.
    When the whole is 100% by mass, the concentration of the Te is 3.5% by mass or more and 14.5% by mass or less, and the value obtained by dividing the concentration of the Ti by the concentration of the Te is 0.01 or more and 0. An electrical contact characterized by less than 12.
  2.  前記Teは、前記Teと前記Tiとの化合物および前記Teと前記Cuとの化合物として存在し、前記Teと前記Tiとの化合物および前記Teと前記Cuとの化合物は、共存して1つの粒子を形成していることを特徴とする請求項1に記載の電気接点。 The Te exists as a compound of the Te and the Ti and a compound of the Te and the Cu, and the compound of the Te and the Ti and the compound of the Te and the Cu coexist in one particle. The electric contact according to claim 1, wherein the electric contact is formed.
  3.  前記Teと前記Tiとの化合物は、TiTeおよびTiTeの少なくとも一方で構成されており、前記Teと前記Cuとの化合物は、CuTeで構成されていることを特徴とする請求項2に記載の電気接点。 The claim is characterized in that the compound of Te and Ti is composed of at least one of TiTe 2 and Ti 3 Te 4 , and the compound of Te and Cu is composed of Cu 2 Te. Item 2. The electrical contact according to Item 2.
  4.  前記高融点物質粒子は、Cr、Crの炭化物、Mo、Moの炭化物、W、およびWの炭化物の少なくともいずれか1つの粒子であることを特徴とする請求項1から3のいずれか1項に記載の電気接点。 The one according to any one of claims 1 to 3, wherein the melting point substance particles are particles of at least one of Cr, a carbide of Cr, a carbide of Mo, Mo, W, and a carbide of W. Described electrical contacts.
  5.  前記高融点物質粒子はCrの粒子であり、前記Crの濃度は20質量%以上60質量%以下であることを特徴とする請求項4に記載の電気接点。 The electrical contact according to claim 4, wherein the melting point substance particles are Cr particles, and the Cr concentration is 20% by mass or more and 60% by mass or less.
  6.  固定電極と、
     この固定電極に接触したり離れたりする可動電極と、
     前記固定電極および前記可動電極を真空中に保持する遮断室とを備えた真空バルブであって、
     前記固定電極および前記可動電極の接触部にそれぞれ設けられた固定電気接点および可動電気接点の少なくとも一方は、請求項1から5のいずれか1項に記載された電気接点で構成されていることを特徴とする真空バルブ。
    With fixed electrodes
    A movable electrode that comes into contact with or separates from this fixed electrode,
    A vacuum valve provided with a blocking chamber for holding the fixed electrode and the movable electrode in a vacuum.
    At least one of the fixed electric contact and the movable electric contact provided in the contact portion of the fixed electrode and the movable electrode, respectively, is composed of the electric contact according to any one of claims 1 to 5. A characteristic vacuum valve.
PCT/JP2020/041286 2020-11-05 2020-11-05 Electrical contact and vacuum valve WO2022097217A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022560552A JP7351022B2 (en) 2020-11-05 2020-11-05 Electrical contacts and vacuum valves
PCT/JP2020/041286 WO2022097217A1 (en) 2020-11-05 2020-11-05 Electrical contact and vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041286 WO2022097217A1 (en) 2020-11-05 2020-11-05 Electrical contact and vacuum valve

Publications (1)

Publication Number Publication Date
WO2022097217A1 true WO2022097217A1 (en) 2022-05-12

Family

ID=81457000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041286 WO2022097217A1 (en) 2020-11-05 2020-11-05 Electrical contact and vacuum valve

Country Status (2)

Country Link
JP (1) JP7351022B2 (en)
WO (1) WO2022097217A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236865A (en) * 2000-02-25 2001-08-31 Shibafu Engineering Corp Vacuum valve
JP6669327B1 (en) * 2019-08-27 2020-03-18 三菱電機株式会社 Electrical contacts, vacuum valves with electrical contacts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236865A (en) * 2000-02-25 2001-08-31 Shibafu Engineering Corp Vacuum valve
JP6669327B1 (en) * 2019-08-27 2020-03-18 三菱電機株式会社 Electrical contacts, vacuum valves with electrical contacts

Also Published As

Publication number Publication date
JPWO2022097217A1 (en) 2022-05-12
JP7351022B2 (en) 2023-09-26

Similar Documents

Publication Publication Date Title
KR950011980B1 (en) Contact material for vacuum interrupt
US8302303B2 (en) Process for producing a contact piece
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
JP4979993B2 (en) Contact material and manufacturing method thereof
WO2022097217A1 (en) Electrical contact and vacuum valve
JP6669327B1 (en) Electrical contacts, vacuum valves with electrical contacts
JP6497491B1 (en) Electrical contact and vacuum valve using the same
CN111670261B (en) Electric contact and vacuum valve using same
JP5506873B2 (en) Contact material and manufacturing method thereof
JP2006228684A (en) Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof
JP4630686B2 (en) Compound contact
JP5116538B2 (en) Contact material
JP4515696B2 (en) Contact materials for vacuum circuit breakers
JP2911594B2 (en) Vacuum valve
JP3909804B2 (en) Contact material for vacuum valves
JP6983370B1 (en) Manufacturing method of electrical contacts
JP3790055B2 (en) Contact material for vacuum valves
JP6381860B1 (en) Contact material, manufacturing method thereof and vacuum valve
JP4619821B2 (en) Contact material and vacuum valve
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JP2004273342A (en) Contact material for vacuum valve, and vacuum valve
Hassanein et al. Candidate plasma-facing materials for EUV lithography source components
JP2006202568A (en) Method of manufacturing contact material for vacuum valve
JPH0850838A (en) Contact material for vacuum valve
JP2003203544A (en) Contact point material for vacuum valve and method of manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560552

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960770

Country of ref document: EP

Kind code of ref document: A1