WO2022097206A1 - 立方晶窒化硼素焼結体 - Google Patents

立方晶窒化硼素焼結体 Download PDF

Info

Publication number
WO2022097206A1
WO2022097206A1 PCT/JP2020/041222 JP2020041222W WO2022097206A1 WO 2022097206 A1 WO2022097206 A1 WO 2022097206A1 JP 2020041222 W JP2020041222 W JP 2020041222W WO 2022097206 A1 WO2022097206 A1 WO 2022097206A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
cubic boron
sintered body
nitride sintered
cbn
Prior art date
Application number
PCT/JP2020/041222
Other languages
English (en)
French (fr)
Inventor
顕人 石井
克己 岡村
久也 濱
雄 石田
一成 長島
Original Assignee
住友電気工業株式会社
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ハードメタル株式会社 filed Critical 住友電気工業株式会社
Priority to JP2021568124A priority Critical patent/JP7064658B1/ja
Priority to PCT/JP2020/041222 priority patent/WO2022097206A1/ja
Priority to CN202080106661.6A priority patent/CN116348625A/zh
Priority to US17/611,143 priority patent/US20220153651A1/en
Priority to KR1020237014507A priority patent/KR20230073334A/ko
Priority to EP20960760.5A priority patent/EP4242334A4/en
Publication of WO2022097206A1 publication Critical patent/WO2022097206A1/ja
Priority to US17/947,627 priority patent/US11795113B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62836Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/205Cubic boron nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/003Cubic boron nitrides only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/006Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being carbides

Definitions

  • This disclosure relates to a cubic boron nitride sintered body.
  • cubic boron nitride sintered body As a high hardness material used for cutting tools and the like, there is a cubic boron nitride sintered body (hereinafter, also referred to as “cBN sintered body”).
  • the cubic boron nitride sintered body is usually composed of cubic boron nitride particles (hereinafter, also referred to as “cBN particles”) and a binder, and its characteristics tend to differ depending on the content ratio of the cubic boron nitride particles. ..
  • a cubic boron nitride sintered body (hereinafter, also referred to as “High-cBN sintered body”) having a high content ratio of cubic boron nitride (hereinafter, also referred to as “cBN”) particles is a sintered alloy or the like. It can be suitably used for cutting.
  • Patent Document 1 discloses a technique for suppressing the occurrence of sudden defects in a High-cBN sintered body by appropriately selecting a binder.
  • the cubic boron nitride sintered body of the present disclosure is a cubic boron nitride sintered body comprising 80% by volume or more and 96% by volume or less of cubic boron nitride particles and a binder.
  • the binder comprises tungsten carbide, cobalt and an aluminum compound.
  • the hardness Hb of the cubic boron nitride sintered body and the acid-treated cubic body obtained by subjecting the cubic boron nitride sintered body to an acid treatment to substantially remove the binder in the cubic boron nitride sintered body.
  • the hardness Ha of the crystallization boron nitride sintered body satisfies Ha / Hb ⁇ 0.40.
  • FIG. 1 is a diagram showing an example of SEM-EDS analysis results of the cubic boron nitride sintered body (before acid treatment) of the present disclosure.
  • FIG. 2 is a diagram showing an example of SEM-EDS analysis results of the cubic boron nitride sintered body of the present disclosure after acid treatment.
  • the tool using the cubic boron nitride sintered body of the present disclosure can have a long tool life.
  • the present inventors in order to complete a cubic boron nitride sintered body having a longer life, WC (tungsten carbide), Co (cobalt) and Co (cobalt) as raw materials for a binder in a High-cBN sintered body. It was decided to use a binder raw material powder containing Al (aluminum). This is because, according to the studies conducted by the present inventors so far, when such a binder raw material powder is used, the bond strength of the binder to cubic boron nitride particles is particularly high, and as a result, wear resistance and abrasion resistance are obtained. This is because it has been found that a cubic boron nitride sintered body having excellent fracture resistance can be obtained.
  • the present inventors considered that it is not possible to achieve a breakthrough in extending the life of the High-cBN sintered body only by optimizing the binder.
  • the present inventors have largely changed the idea from the conventional method of increasing the bonding force between the binder and the cubic boron nitride particles, and considered that there is a method of increasing the bonding force between the cubic boron nitride particles, and studied diligently. As a result, the cubic boron nitride sintered body of the present disclosure was obtained.
  • the cubic boron nitride sintered body of the present disclosure is a cubic boron nitride sintered body comprising 80% by volume or more and 96% by volume or less of cubic boron nitride particles and a binder.
  • the binder comprises tungsten carbide, cobalt and an aluminum compound.
  • the hardness Hb of the cubic boron nitride sintered body and the acid-treated cubic body obtained by subjecting the cubic boron nitride sintered body to an acid treatment to substantially remove the binder in the cubic boron nitride sintered body.
  • the hardness Ha of the crystallization boron nitride sintered body satisfies Ha / Hb ⁇ 0.40.
  • the cubic boron nitride sintered body of the present disclosure enables a long life of the tool when used as a tool material.
  • the Ha and the Hb satisfy Ha / Hb ⁇ 0.53. According to this, the tool life is improved.
  • the Ha and the Hb satisfy Ha / Hb ⁇ 0.55. According to this, the tool life is further improved.
  • the Ka and the Kb satisfy Ka / Kb ⁇ 0.90. According to this, the tool life is further improved.
  • the Ka and the Kb satisfy Ka / Kb ⁇ 0.95. According to this, the tool life is further improved.
  • the bending test strength Tb of the cubic boron nitride sintered body before the acid treatment and the bending test strength Ta of the cubic boron nitride sintered body after the acid treatment satisfy Ta / Tb ⁇ 0.30. Is preferable. According to this, the tool life is further improved.
  • the Ta and the Tb satisfy Ta / Tb ⁇ 0.35. According to this, the tool life is further improved.
  • the Ta and the Tb satisfy Ta / Tb ⁇ 0.40. According to this, the tool life is further improved.
  • the average particle size of the cubic boron nitride is preferably 0.4 ⁇ m or more and 5 ⁇ m or less. According to this, the tool life is further improved.
  • the average particle size of the cubic boron nitride is preferably 0.5 ⁇ m or more and 3.5 ⁇ m or less. According to this, the tool life is further improved.
  • the present embodiment an embodiment of the present disclosure (hereinafter referred to as “the present embodiment”) will be described. However, this embodiment is not limited to these.
  • the notation in the form of "A to Z” means the upper and lower limits of the range (that is, A or more and Z or less), and there is no description of the unit in A and the unit is described only in Z. , The unit of A and the unit of Z are the same.
  • the cubic boron nitride sintered body of the present embodiment is a cubic boron nitride sintered body including 80% by volume or more and 96% by volume or less of cubic boron nitride particles and a binder.
  • the binder comprises tungsten carbide, cobalt and aluminum compounds.
  • the hardness Hb of the cubic boron nitride sintered body and the acid-treated cubic body obtained by subjecting the cubic boron nitride sintered body to an acid treatment to substantially remove the binder in the cubic boron nitride sintered body.
  • the hardness Ha of the crystallization boron nitride sintered body satisfies Ha / Hb ⁇ 0.40.
  • the cubic boron nitride sintered body of the present embodiment enables a long life of the tool when used as a tool material.
  • the reason for this is presumed to be as follows (i) and (ii).
  • the cubic boron nitride sintered body of the present embodiment contains 80% by volume or more and 96% by volume or less of cubic boron nitride particles having excellent strength and toughness. Therefore, the cubic boron nitride sintered body can also have excellent strength and toughness. Therefore, the cubic boron nitride sintered body has excellent wear resistance and chipping resistance, and a tool using the cubic boron nitride sintered body can have a long tool life.
  • the binder contains tungsten carbide, cobalt, and an aluminum compound.
  • Such a binder has a particularly high binding force to cubic boron nitride particles. Therefore, the cubic boron nitride sintered body has excellent wear resistance and chipping resistance, and a tool using the cubic boron nitride sintered body can have a long tool life.
  • the hardness Hb of the cubic boron nitride sintered body and the cubic boron nitride sintered body are subjected to acid treatment, and the cubic boron nitride sintered body is subjected to acid treatment.
  • the hardness Ha of the cubic boron nitride sintered body after the acid treatment from which the binder inside is substantially removed satisfies Ha / Hb ⁇ 0.40.
  • Such a cubic boron nitride sintered body has a high bonding force between cubic boron nitride particles. Therefore, the cubic boron nitride sintered body is less likely to cause the cubic boron nitride particles to fall off during use of the tool, and has excellent wear resistance and chipping resistance.
  • the tool used can have a long tool life.
  • the cubic boron nitride sintered body according to the present embodiment includes 80% by volume or more and 96% by volume or less of cubic boron nitride particles and a binder. That is, the cubic boron nitride sintered body according to the present embodiment is a so-called High-cBN sintered body.
  • the cubic boron nitride sintered body may contain unavoidable impurities due to the raw materials used, manufacturing conditions, and the like.
  • the content ratio (mass%) of unavoidable impurities in the cubic boron nitride sintered body can be 1% by mass or less.
  • the cubic boron nitride sintered body according to the present embodiment can be composed of cubic boron nitride particles, a binder, and unavoidable impurities.
  • the lower limit of the content ratio (volume%) of the cubic boron nitride particles in the cubic boron nitride sintered body is 80% by volume or more, and can be 81% by volume or more and 82% by volume or more.
  • the upper limit of the content ratio (volume%) of the cubic boron nitride particles in the cubic boron nitride sintered body is 96% by volume or less, and can be 95% by volume or less and 94% by volume or less.
  • the content ratio (volume%) of the cubic boron nitride particles in the cubic boron nitride sintered body can be 81% by volume or more and 95% by volume or less, and 82% by volume or more and 94% by volume or less.
  • the lower limit of the content ratio (% by volume) of the binder in the cubic boron nitride sintered body can be 4% by volume or more, 5% by volume or more, and 6% by volume or more.
  • the upper limit of the content ratio (volume%) of the binder in the cubic boron nitride sintered body can be 20% by volume or less, 19% by volume or less, and 18% by volume or less.
  • the content ratio (% by volume) of the binder in the cubic boron nitride sintered body may be 4% by volume or more and 20% by volume or less, 5% by volume or more and 19% by volume or less, and 6% by volume or more and 18% by volume or less. can.
  • the content ratio (% by volume) of cubic boron nitride in the cubic boron nitride sintered body is quantitatively analyzed by inductively coupled high frequency plasma spectroscopic analysis (ICP) and energy dispersive X-ray analyzer with scanning electron microscope (SEM). It can be confirmed by performing microstructure observation, elemental analysis, etc. on the cubic boron nitride sintered body using EDX) or EDX attached to a transmission electron microscope (TEM). In the present embodiment, unless there is a particular reason, the content ratio of cubic boron nitride particles in the cubic boron nitride sintered body is determined by a method using SEM described later.
  • the content ratio (volume%) of cubic boron nitride particles can be determined as follows. First, an arbitrary position of the cubic boron nitride sintered body is cut to prepare a sample containing a cross section of the cubic boron nitride sintered body. A focused ion beam device, a cross-section polisher device, or the like can be used to prepare the cross section. Next, the cross section is observed with an SEM at a magnification of 2000 to obtain a backscattered electron image. In the backscattered electron image, the region where the cubic boron nitride particles are present is the black region, and the region where the binder is present is the gray region or the white region. The magnification to be observed was appropriately adjusted according to the particle size, and the average value observed and analyzed in 5 or more fields of view was used as the content ratio.
  • the reflected electron image is binarized using image analysis software (for example, "WinROOF” of Mitani Shoji Co., Ltd.), and a black region (cubic crystal nitride) is obtained from the image after the binarization.
  • image analysis software for example, "WinROOF” of Mitani Shoji Co., Ltd.
  • a black region cubic crystal nitride
  • Each area ratio of the region where the boron particles are present) and the white region (the region where the bound phase is present) is calculated.
  • the content ratio (% by volume) of the cubic boron nitride particles can be obtained. From this, the volume% of the binder can be obtained at the same time.
  • the cubic boron nitride particles have high hardness, strength and toughness, and serve as a skeleton in the cubic boron nitride sintered body.
  • the D50 (average particle diameter) of the cubic boron nitride particles is preferably 0.4 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 3.5 ⁇ m or less, from the viewpoint of improving the tool life.
  • D50 of cubic boron nitride particles can be obtained as follows. First, a sample including a cross section of the cubic boron nitride sintered body is prepared according to the above-mentioned method for determining the content of cubic boron nitride particles, and a backscattered electron image is obtained. Next, the equivalent circle diameter (diameter of the equal area circle) of each black region in the backscattered electron image is calculated using image analysis software. It is preferable to calculate the equivalent circle diameter of 100 or more cubic boron nitride particles by observing 5 or more fields.
  • the particle size having a cumulative area of 50% in the cumulative distribution is D50.
  • the circle-equivalent diameter means the diameter of a circle having the same area as the measured area of the cubic boron nitride particles.
  • the binder serves to enable the cubic boron nitride particles, which are difficult-to-sinter materials, to be sintered at an industrial-level pressure temperature.
  • the binder contains WC, Co and Al compounds.
  • the "Al compound” means a compound containing Al as a constituent element.
  • the Al compound include CoAl, Al2O3 , AlN, and AlB2 , and composite compounds thereof.
  • the binder containing the WC, Co and Al compounds is considered to be particularly effective for extending the life of the cubic boron nitride sintered body according to the present embodiment.
  • Co and Al have a catalytic function, it is possible to promote neck gloss between cubic boron nitride particles in the sintering process during the production of the cubic boron nitride sintered body.
  • WC is presumed to be effective for bringing the coefficient of thermal expansion of the binder close to the coefficient of thermal expansion of the cubic boron nitride particles.
  • the above-mentioned catalytic function means that B (boron) and / or N (nitrogen) constituting the cubic boron nitride particles diffuse or precipitate via Co or Al.
  • metal components such as Co play a role in improving toughness, and an appropriate amount of binder improves fracture resistance.
  • the binder in the present embodiment may contain other binders in addition to the WC, Co and Al compounds. Suitable elements constituting other binders are Ni, Fe, Cr, Mn, Ti, V, Zr, Nb, Mo, Hf, Ta, Re and the like.
  • the hardness Hb of the cubic boron nitride sintered body before acid treatment and the cubic boron nitride sintered body are subjected to acid treatment, and the cubic boron nitride sintered body is subjected to acid treatment.
  • the hardness Ha of the cubic boron nitride sintered body after the acid treatment from which the binder inside is substantially removed satisfies Ha / Hb ⁇ 0.40.
  • the hardness Hb (GPa) of the cubic boron nitride sintered body before the acid treatment is measured by the following procedure.
  • a cubic boron nitride sintered body is processed to a thickness of 0.5 mm to prepare a measurement sample A.
  • the hardness of the measurement sample A (cubic boron nitride sintered body before acid treatment) is measured under the condition of a load of 5 kg. The hardness is measured at 6 points, and the average value of the hardness at the 6 points is taken as the hardness Hb of the cubic boron nitride sintered body before the acid treatment.
  • the measurement sample A is put into an acid solution heated to 140 ° C. and acid-treated in a closed container for 48 hours.
  • the measurement sample B (cubic boron nitride sintered body) after the acid treatment is taken out from the acid solution.
  • the hardness is measured at 6 points by the same method as the hardness Hb of the cubic boron nitride sintered body before the acid treatment. The average value of the hardness at these 6 points is defined as the hardness Ha of the cubic boron nitride sintered body after the acid treatment.
  • the binder of the cubic boron nitride sintered body can be substantially removed by the above acid treatment, the binder component may remain even after the acid treatment.
  • the reason for this is presumed to be as follows.
  • the acid treatment is a method of adding a cBN sintered body to the acid solution. Therefore, when a plurality of cBN particles form a region in which the acidic solution cannot permeate inside the cBN sintered body (also referred to as triple point), it is considered that the binder component remains after the acid treatment.
  • a substance having a property of being insoluble in an acid solution such as aluminum oxide is present in the cBN sintered body, it is considered that the binder component remains after the acid treatment. Therefore, if a sufficient amount of binder can be removed to evaluate the binding force between the CBN particles, it can be evaluated that the binder of the cubic boron nitride sintered body has been substantially removed.
  • the binder of the cubic boron nitride sintered body is substantially removed by the above acid treatment.
  • the surface of the measurement sample A (cBN sintered body before acid treatment) is polished (# 2000) so that it can be observed with an SEM (device: "JSM-7800F” (trademark) manufactured by JEOL Ltd.).
  • a line scan is performed with the above SEM so as to include the center of the measurement surface.
  • the width of the line shall be 100 ⁇ m or more. When the line width is 100 ⁇ m or more, the bias of the cBN particles and the binder in the measurement region can be reduced.
  • FIGS. 1 and 2 An example of the SEM-EDS analysis results before and after the acid treatment of the cubic boron nitride sintered body of the present embodiment is shown in FIGS. 1 (before the acid treatment) and FIG. 2 (after the acid treatment).
  • the horizontal axis indicates the measurement position ( ⁇ m) in the sample, and the vertical axis indicates the abundance ratio (wt%) of the element.
  • Al aluminum
  • W tungsten
  • Cr chromium
  • Co cobalt
  • B boron
  • N nitrogen
  • carbon and nitrogen are derived from cubic boron nitride particles, and other elements such as tungsten, aluminum, chromium and cobalt are derived from the bonded phase.
  • the elements other than N (nitrogen) and B (boron) in the cubic boron nitride sintered body in FIG. 2, W (tungsten), Al (aluminum), Cr ( The abundance ratio of both chromium) and Co (cobalt) decreases. This is because when the acid treatment is performed, the binder component of the cubic boron nitride sintered body elutes into the acid treatment liquid.
  • the abundance ratio (mass%) of cobalt (C Cincinnati) in the cubic boron nitride sintered body is calculated.
  • the average value X1 (mass%) of the abundance ratio (mass%) of cobalt (Co) in the region where the cubic boron nitride sintered body is being analyzed is measured.
  • the region in which the cubic boron nitride sintered body is analyzed is identified by the fact that the total abundance ratio (at%) of boron and nitrogen, which are constituent elements of cubic boron nitride, is higher than that of other binder components. ..
  • a line scan is performed on the above-mentioned measurement sample B (cBN sintered body after acid treatment) by the above-mentioned SEM by the same method as the above-mentioned measurement sample A.
  • the abundance ratio (mass%) of cobalt (C Cincinnati) in the cubic boron nitride sintered body is calculated.
  • the average value X2 (mass%) of the abundance ratio of cobalt (Co) in the region where the cubic boron nitride sintered body is being analyzed is measured.
  • the region analyzed for the cubic boron nitride sintered body is identified by the fact that the total abundance ratio (at%) of boron and nitrogen, which are constituent elements of cubic boron nitride, is higher than that of other binder components. ..
  • the measurement of the hardness of the cBN sintered body after the acid treatment in which X2 / X1 is 0.20 or less corresponds to the measurement of the binding force between the cBN particles.
  • the acid treatment time can be appropriately adjusted to more than 48 hours to make X2 / X1 0.20 or less.
  • the cubic boron nitride sintered body satisfying Ha / Hb ⁇ 0.40 has a small hardness reduction rate even after acid treatment.
  • the binder component of the cubic boron nitride sintered body elutes into the acid treatment liquid. Therefore, the fact that the hardness reduction rate of the cubic boron nitride sintered body after the acid treatment is small indicates that the bonding force between the cubic boron nitride particles is strong. Therefore, the cubic boron nitride sintered body is less likely to cause the cubic boron nitride particles to fall off during use of the tool, and has excellent wear resistance and chipping resistance.
  • the tool used can have a long tool life.
  • cubic boron nitride particles are likely to fall off during processing, the shape of the cutting edge becomes dull, and burrs and cloudiness appear on the processed parts. It tended to occur.
  • the bonding force between the cubic boron nitride particles is strong and the falling off is unlikely to occur, so that the surface quality of the work material after processing can be improved. can.
  • Ha / Hb satisfies Ha / Hb ⁇ 0.40, Ha / Hb ⁇ 0.53 is preferable, and Ha / Hb ⁇ 0.55 is more preferable.
  • the upper limit of Ha / Hb can be, for example, 1 or less.
  • Ha / Hb can be 1 ⁇ Ha / Hb ⁇ 0.40, 1 ⁇ Ha / Hb ⁇ 0.53, and 1 ⁇ Ha / Hb ⁇ 0.55.
  • Ha can be, for example, 14 GPa or more and 24 GPa or less, 15 GPa or more and 23 GPa or less, and 16 GPa or more and 24 GPa or less.
  • Hb can be, for example, 34 GPa or more and 45 GPa or less, 35 GPa or more and 44 GPa or less, and 37 GPa or more and 43 GPa or less.
  • the heat diffusion rate Kb of the cubic boron nitride sintered body before the acid treatment and the cubic boron nitride sintered body are subjected to acid treatment, and the cubic boron nitride sintered body is contained in the cubic boron nitride sintered body. It is preferable that the heat diffusion rate Ka of the acid-treated cubic boron nitride sintered body after substantially removing the binder of the above satisfies Ka / Kb ⁇ 0.60.
  • the thermal diffusion rate Kb (mm 2 / s) of the cubic boron nitride sintered body before the acid treatment is such that the cubic boron nitride sintered body has a base of 3.9 mm, an apex angle of 80 °, and a thickness of 0.5 mm.
  • the measurement sample C is prepared by cutting it into an isosceles triangle, and the measurement sample C is measured using a xenon fresh analyzer (LFA467 HyperFlasshu brand name) manufactured by NETZSCH.
  • the thermal diffusivity Ka (mm 2 / s) of the cubic boron nitride sintered body after the acid treatment is measured by the following procedure.
  • the measurement sample C is subjected to acid treatment to prepare a measurement sample D (cubic boron nitride sintered body) after the acid treatment, and the thermal diffusion rate Ka (mm 2 / s) is used for the measurement of the measurement sample C. Measure with the device that was installed. Since the specific method of acid treatment is the same as the method for measuring hardness described above, the description thereof will not be repeated.
  • the cubic boron nitride sintered body satisfying Ka / Kb ⁇ 0.60 has a small rate of decrease in thermal diffusivity even after acid treatment. This indicates that the thermal conductivity between the cubic boron nitride particles is excellent.
  • a tool using the cubic boron nitride sintered body can have a long tool life by reducing damage due to thermal cracks, particularly when used for cast iron processing.
  • Ka / Kb is preferably Ka / Kb ⁇ 0.60, more preferably Ka / Kb ⁇ 0.90, and even more preferably Ka / Kb ⁇ 0.95.
  • the upper limit of Ka / Kb can be, for example, 1 or less.
  • Ka / Kb can be 1 ⁇ Ka / Kb ⁇ 0.60, 1 ⁇ Ka / Kb ⁇ 0.90, 1 ⁇ Ka / Kb ⁇ 0.95.
  • Ka can be, for example, 20 mm 2 / s or more and 62 mm 2 / s or less, 30 mm 2 / s or more and 60 mm 2 / s or less, and 40 mm 2 / s or more and 58 mm 2 / s or less.
  • Kb can be, for example, 39 mm 2 / s or more and 65 mm 2 / s or less, 42 mm 2 / s or more and 62 mm 2 / s or less, and 50 mm 2 / s or more and 60 mm 2 / s or less.
  • the bending test strength b (GPa) of the cubic boron nitride sintered body before the acid treatment is measured by cutting out the cubic boron nitride sintered body into a plate shape of 0.5 mm ⁇ 2 mm ⁇ 5.8 mm and measuring sample E. Is prepared, and the bending test strength (GPa) of the measurement sample E is measured with a 3-point bending tester at a span of 4 mm and a stroke speed of 0.5 mm / min.
  • the average value of the bending test strengths of the 10 measurement samples E is defined as the bending test strength Tb (GPa) of the cubic boron nitride sintered body.
  • the bending test strength Ta (GPa) of the cubic boron nitride sintered body after acid treatment is measured by the following procedure.
  • the measurement sample E is subjected to acid treatment to prepare a measurement sample F (cubic boron nitride sintered body) after the acid treatment, and the bending test strength thereof is 4 mm span and a stroke speed of 0 using a 3-point bending tester. Measure under the condition of 5.5 mm / min.
  • the average value of the bending test strengths of the 10 measurement samples F is defined as the bending test strength Ta (GPa) of the cubic boron nitride sintered body after the acid treatment. Since the specific method of acid treatment is the same as the method for measuring hardness described above, the description thereof will not be repeated.
  • the cubic boron nitride sintered body satisfying Ta / Tb ⁇ 0.30 has a small decrease rate in bending strength even after acid treatment. This indicates that the bonding force between the cubic boron nitride particles is strong. Therefore, the cubic boron nitride sintered body exhibits excellent fracture resistance, especially in the processing of high-strength sintered alloys.
  • Ta / Tb is preferably Ta / Tb ⁇ 0.30, more preferably Ta / Tb ⁇ 0.35, and even more preferably Ta / Tb ⁇ 0.40.
  • the upper limit of Ta / Tb can be, for example, 1 or less.
  • Ta / Tb can be 1 ⁇ Ta / Tb ⁇ 0.30, 1 ⁇ Ta / Tb ⁇ 0.35, 1 ⁇ Ta / Tb ⁇ 0.40.
  • Ta can be, for example, 0.35 GPa or more and 1.2 GPa or less, 0.5 GPa or more and 1.1 GPa or less, and 0.65 GPa or more and 1.0 GPa or less.
  • Tb can be, for example, 1.2 GPa or more and 3.0 GPa or less, 1.5 GPa or more and 2.7 GPa or less, 1.7 GPa or more and 2.5 GPa or less.
  • ⁇ Embodiment 2 Method for Producing Cubic Boron Nitride Sintered Body>
  • the method for producing the cubic boron nitride sintered body according to the first embodiment will be described.
  • the method for producing the cubic boron nitride sintered body is not limited to the following method.
  • coarse-grained cubic boron nitride particles hereinafter, also referred to as “coarse-grain cBN particles”
  • fine particles fine-grained cubic boron nitride particles
  • Ccubic boron nitride raw material powder processing step to obtain cubic boron nitride raw material powder (hereinafter, also referred to as “cBN raw material powder") by adhering (also referred to as “cBN particles”), cubic boron nitride raw material powder, and “Mixed powder manufacturing step” to prepare a mixed powder by mixing with a binder raw material powder containing WC, Co and Al, and "Sintering step” to obtain a cubic boron nitride sintered body by sintering the mixed powder. And can include.
  • Coarse-grained cubic boron nitride powder (average particle size 0.2 to 8 ⁇ m, hereinafter also referred to as “coarse-grained cBN powder”) and fine-grained cBN powder (average particle size 0.05 to 0.1 ⁇ m, hereinafter “fine-grained cBN powder”). ") And prepare.
  • the volume ratio of the fine cBN powder to the coarse cBN powder can be 20:80 to 1:99.
  • the reagent PSS poly (diallyldimometry chloride), polydiallyldimethylammonium chloride) is added to the fine cBN powder, and the mixture is allowed to stand for 30 minutes.
  • the reagent PDDA poly (sodium 4-styrenesulfonate), sodium polystyrene sulfonate) is added to the coarse-grained cBN powder, and the mixture is allowed to stand for 30 minutes. Then, after washing the fine cBN powder and the coarse cBN powder, these are mixed with a planetary mill for 10 minutes to obtain a mixed slurry. The mixed slurry is left to dry for 24 hours to obtain a cBN raw material powder.
  • the obtained cBN raw material powder fine cBN particles are adhered to the surface of the coarse cBN particles by electrostatic adsorption.
  • the presence of fine cBN particles having excellent sinterability between the coarse cBN particles enhances the bonding force between the coarse cBN particles when the cBN raw material powder is sintered. Therefore, the obtained cBN sintered body can have high hardness even after the acid treatment.
  • Ion implantation can be performed on the cBN raw material powder obtained by the above electrostatic adsorption.
  • an ion implanter (“SHX-II” (trademark) manufactured by Sumitomo Heavy Industries, Ltd.) irradiates ions with an energy of 0.2 to 60 KeV.
  • ion cobalt ion, calcium ion, nickel ion, iron ion, aluminum ion and the like can be used.
  • the trace amount of the oxide layer existing on the surface of the cBN particles and the bond between boron and nitrogen on the surface of the cBN particles (BN bond) becomes unstable.
  • dissolution and reprecipitation caused by cobalt and the like in the sintering step described later is promoted, and the bonding force between the coarse cBN particles is further strengthened. Therefore, the obtained cBN sintered body can have high hardness even after the acid treatment.
  • Ammonia treatment can be performed on the cBN raw material powder obtained by the above electrostatic adsorption.
  • the cBN raw material powder is put into an ammonia atmosphere heated to 100 to 1400 ° C. and left for 30 to 540 minutes.
  • the obtained cBN sintered body can have high hardness and high bending test strength even after acid treatment.
  • the binder raw material powder is a raw material for the binder of the cubic boron nitride sintered body.
  • the binder raw material powder can be prepared as follows. First, WC powder, Co powder and Al powder are prepared. Next, each powder is mixed so as to have a predetermined ratio, and this is heat-treated under vacuum (for example, 1200 ° C.) to prepare an intermetallic compound. By pulverizing the intermetallic compound with a wet ball mill, a wet bead mill or the like, a binder raw material powder containing WC, Co and Al is prepared.
  • the mixing method of each powder is not particularly limited, but ball mill mixing, bead mill mixing, planet mill mixing, jet mill mixing and the like are preferable from the viewpoint of efficient and homogeneous mixing. Each mixing method may be wet or dry.
  • the cBN raw material powder and the binder raw material powder are mixed by a wet ball mill mixing using ethanol, acetone or the like as a solvent. After mixing, the solvent is removed by natural drying. After that, it is preferable to remove impurities such as moisture adsorbed on the surface by heat treatment (for example, 850 ° C. or higher under vacuum).
  • the binder raw material powder may contain other elements in addition to WC, Co and Al. Suitable other elements are Ni, Fe, Cr, Mn, Ti, V, Zr, Nb, Mo, Hf, Ta, Re and the like.
  • the mixed powder obtained above is filled in a container and vacuum-sealed.
  • the temperature of the vacuum seal is preferably 850 ° C. or higher. This is a temperature above the melting point of the sealant.
  • the vacuum-sealed mixed powder is sintered to obtain a cubic boron nitride sintered body.
  • Sintering conditions are not particularly limited.
  • the sintering process can be performed for 15 minutes under the conditions of a pressure of 4.5 to 10 GPa and a temperature of 1200 ° C. or higher and 1900 ° C. or lower.
  • the obtained cBN sintered body can have a high thermal diffusivity as well as a high hardness even after the acid treatment.
  • a cubic boron nitride sintered body was produced by sintering the obtained mixed powder. Specifically, the mixed powder was filled in a Ta container in a state of being in contact with a cemented carbide disk of WC-6% Co and vacuum-sealed. This was sintered at 7.0 GPa and 1700 ° C. for 15 minutes using a belt-type ultrahigh pressure and high temperature generator. As a result, a cubic boron nitride sintered body was produced.
  • cBN raw material powder was prepared.
  • the reagent PSS was added to the fine cBN powder and left for 30 minutes.
  • the reagent PDDA was added to the coarse cBN powder and left for 30 minutes. Then, after washing the fine cBN powder and the coarse cBN powder, these were mixed with a planetary mill for 10 minutes to obtain a mixed slurry. The mixed slurry was left to dry for 24 hours to obtain a cBN raw material powder.
  • the binder raw material powder is prepared.
  • the average particle size of each powder was 2 ⁇ m. This was homogenized by heat treatment (under vacuum, 950 ° C., 30 minutes), and then finely pulverized with a cemented carbide ball mill. As a result, a binder raw material powder having an average particle diameter of 1 ⁇ m was obtained.
  • a cubic boron nitride sintered body was produced by sintering the obtained mixed powder. Specifically, the mixed powder was filled in a Ta container in a state of being in contact with a cemented carbide disk of WC-6% Co and vacuum-sealed. This was sintered at 7.0 GPa and 1700 ° C. for 15 minutes using a belt-type ultrahigh pressure and high temperature generator. As a result, a cubic boron nitride sintered body was produced.
  • ⁇ Sample 1-3> a cubic boron nitride sintered body was prepared in the same manner as for Sample 1-2 except for the following points.
  • the volume ratio of the coarse grain cBN powder and the fine grain cBN powder in the "cBN powder treatment step" is described in the "coarse grain: fine grain (volume ratio)" column of "electrostatic adsorption” of "cBN powder treatment” in Table 1. It was a street.
  • the reagent PSS was added to the fine cBN powder and left for 30 minutes.
  • the reagent PDDA was added to the coarse cBN powder and left for 30 minutes. Then, after washing the fine cBN powder and the coarse cBN powder, these were mixed with a planetary mill for 10 minutes to obtain a mixed slurry. The mixed slurry was left to dry for 24 hours to obtain a cBN raw material powder.
  • the obtained cBN raw material powder was irradiated with the element described in the "implantation element” column of “ion implantation” of "cBN powder treatment” in Table 1 with an energy of 100 KeV using an ion implantation device.
  • Samples 1-6 were irradiated with cobalt (Co).
  • Sample 1-20 A cubic boron nitride sintered body of Sample 1-20 was prepared in the same manner as in Sample 1-4 except for the following points.
  • Sample 1-21 A cubic boron nitride sintered body of Sample 1-20 was prepared in the same manner as in Sample 1-4 except for the following points.
  • sintering was performed without using a cemented carbide disk.
  • ⁇ Cutting test Sintered alloy cutting> A cutting tool (base material shape: TNGA160404, cutting edge treatment T01225) was produced using each of the produced cubic boron nitride sintered bodies. Using this, a cutting test was carried out under the following cutting conditions.
  • Cutting speed 180 m / min. Feed rate: 0.1 mm / rev. Notch: 0.2 mm
  • Coolant DRY Cutting method: Continuous end face cutting Lathe: LB4000 (manufactured by Okuma Corporation) Work material: Cylindrical sintered part (End face cutting of sintered alloy D-40 manufactured by Sumitomo Electric Sintered Alloy Co., Ltd .: HRB75)
  • Evaluation method The cutting edge was observed every 0.1 km of cutting distance, and the amount of flank wear was measured. The cutting distance at the time when the maximum flank wear amount was 200 ⁇ m or more was measured. For the cutting distance, the horizontal axis cutting distance km and the vertical axis maximum flank wear amount were plotted for each sample, and after interpolating between the plots with a straight line to obtain a graph, the cutting distance with a graph value of 200 ⁇ m was read. .. The longer the cutting distance, the longer the tool life. The results are shown in the "Cutting distance (km)" column of the "Cutting test" in Table 1.
  • Sample 1-1, Sample 1-20, and Sample 1-21 correspond to Comparative Examples.
  • Samples 1-2 to 1-19 correspond to Examples. It was confirmed that Samples 1-2 to 1-19 (Examples) had a longer tool life than Samples 1-1, 1-20, and Samples 1-21 (Comparative Examples).
  • Example 2 ⁇ Sample 2-1>
  • Sample 2-1 a cubic boron nitride sintered body was prepared in the same manner as in Sample 1-4.
  • Samples 2-2 to 2-5 cubic boron nitride sintered bodies were prepared in the same manner as in Sample 2-1 except for the following points.
  • the pressure was increased to 7 GPa and then heated to 1700 ° C. Then, during the sintering time of 15 minutes, the pressure was changed as described in "Pressure profile (GPa)" of "Sintering step” in Table 2. For example, in sample 2-2, the pressure was changed from 7 GPa to 6 GPa to 7 GPa during the sintering time of 15 minutes.
  • ⁇ Sample 2-6> Cubic boron nitride sintered body in the same manner as in Sample 2-5, except that the cBN raw material powder and the binder raw material powder were mixed in a volume% ratio of cBN raw material powder: binder raw material powder 80:20. Was produced.
  • ⁇ Sample 2-7> Cubic boron nitride sintered body in the same manner as in Sample 2-5, except that the cBN raw material powder and the binder raw material powder were mixed in a volume% ratio of cBN raw material powder: binder raw material powder 65:35. Was produced.
  • ⁇ Sample 2-8> Cubic boron nitride sintered body in the same manner as in Sample 2-5, except that the cBN raw material powder and the binder raw material powder were blended in a volume% ratio of cBN raw material powder: binder raw material powder 97: 3. Was produced.
  • the content of cubic boron nitride in each sample is shown in the "cBN content (% by volume)" column of "cBN sintered body” in Table 2.
  • the composition of the binder it was confirmed that at least WC, Co, and Al compounds were present in all the samples.
  • the Al compound no clear peak was detected in XRD, so it was inferred that the Al compound was a composite compound composed of a plurality of Al compounds.
  • the Ha / Hb of each sample is shown in the "Ha / Hb" column of the "cBN sintered body” in Table 2.
  • Thermal diffusivity> The thermal diffusivity Kb (mm 2 / s) of each cubic boron nitride sintered body before acid treatment was measured.
  • Samples 2-1 to 2-8 corresponded to the examples, and it was confirmed that the tool life was long in each case.
  • Samples 2-2 to 2-8 satisfied Ka / Kb ⁇ 0.60, and it was confirmed that the tool life was particularly long.
  • the pressure was repeatedly changed from high pressure to low pressure in the sintering process, so it is presumed that the fine cBN particles adhering to the coarse cBN particles by electrostatic adsorption promoted the bonding between the coarse cBN particles. Will be done.
  • Example 3 ⁇ Sample 3-1> In Sample 3-1 a cubic boron nitride sintered body was prepared in the same manner as in Sample 1-4.
  • ⁇ Sample 3-7> Cubic boron nitride sintered body in the same manner as in Sample 3-6, except that the cBN raw material powder and the binder raw material powder were mixed in a volume% ratio of cBN raw material powder: binder raw material powder 80:20. Was produced.
  • the content of cubic boron nitride in each sample is shown in the "cBN content (% by volume)" column of "cBN sintered body” in Table 3.
  • the composition of the binder it was confirmed that at least WC, Co, and Al compounds were present in all the samples.
  • the Al compound no clear peak was detected in XRD, so it was inferred that the Al compound was a composite compound composed of a plurality of Al compounds.
  • the Ha / Hb of each sample is shown in the "Ha / Hb" column of the "cBN sintered body” in Table 3.
  • ⁇ Bending test strength> The bending test strength Tb (GPa) of each cubic boron nitride sintered body before acid treatment was measured.
  • Cutting speed 170 m / min. Feed rate: 0.1 mm / rev. Notch: 0.13 mm Coolant: DRY Cutting method: End face intermittent cutting Lathe: LB4000 (manufactured by Okuma Corporation) Work Material: Sprocket (End face cutting of Sumitomo Electric Sintered Alloy DM-50 (quenched): HV440)
  • Samples 3-1 to 3-9 corresponded to the examples, and it was confirmed that the tool life was long in each case.
  • Samples 3-4 to 3-9 satisfy Ta / Tb ⁇ 0.35 and the tool life is particularly long. It is presumed that the reason for this is that since the ammonia treatment time is long, the oxygen on the surface of the CBN is further reduced, and the binding force between the CBNs is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

立方晶窒化硼素焼結体は、80体積%以上96体積%以下の立方晶窒化硼素粒子と、結合材と、を備える立方晶窒化硼素焼結体であって、前記結合材は、炭化タングステン、コバルト及びアルミニウム化合物を含み、前記立方晶窒化硼素焼結体の硬度Hbと、前記立方晶窒化硼素焼結体に酸処理を行い、前記立方晶窒化硼素焼結体中の前記結合材を実質的に除去した酸処理後立方晶窒化硼素焼結体の硬度Haとが、Ha/Hb≧0.40を満たす。

Description

立方晶窒化硼素焼結体
 本開示は、立方晶窒化硼素焼結体に関する。
 切削工具等に用いられる高硬度材料として、立方晶窒化硼素焼結体(以下、「cBN焼結体」ともいう。)がある。立方晶窒化硼素焼結体は、通常、立方晶窒化硼素粒子(以下、「cBN粒子」ともいう。)と結合材とからなり、立方晶窒化硼素粒子の含有割合によってその特性が異なる傾向がある。
 このため、切削加工の分野においては、被削材の材質、要求される加工精度等によって、切削工具に適用される立方晶窒化硼素焼結体の種類が使い分けられる。たとえば、立方晶窒化硼素(以下、「cBN」ともいう)粒子の含有割合の高い立方晶窒化硼素焼結体(以下、「High-cBN焼結体」ともいう。)は、焼結合金等の切削に好適に用いることができる。
 しかし、High-cBN焼結体は、突発的な欠損が発生しやすい傾向がある。この突発的な欠損は、立方晶窒化硼素粒子同士の結合力が弱く、立方晶窒化硼素粒子が脱落してしまうことに起因すると考えられる。たとえば、国際公開第2005/066381号(特許文献1)には、結合材の適切な選択により、High-cBN焼結体における突発的な欠損の発生を抑制する技術が開示されている。
国際公開第2005/066381号
 本開示の立方晶窒化硼素焼結体は、80体積%以上96体積%以下の立方晶窒化硼素粒子と、結合材と、を備える立方晶窒化硼素焼結体であって、
 前記結合材は、炭化タングステン、コバルト及びアルミニウム化合物を含み、
 前記立方晶窒化硼素焼結体の硬度Hbと、前記立方晶窒化硼素焼結体に酸処理を行い、前記立方晶窒化硼素焼結体中の前記結合材を実質的に除去した酸処理後立方晶窒化硼素焼結体の硬度Haとが、Ha/Hb≧0.40を満たす。
図1は、本開示の立方晶窒化硼素焼結体(酸処理前)のSEM-EDS分析結果の一例を示す図である。 図2は、酸処理後の本開示の立方晶窒化硼素焼結体のSEM-EDS分析結果の一例を示す図である。
 [本開示が解決しようとする課題]
 近年、機械部品の急速な高機能化に伴い、機械部品となる被削材の難削化が加速している。これに伴い、切削工具の短寿命化によるコスト増という問題が顕在化している。このため、High-cBN焼結体のさらなる改良が望まれる。この点に鑑み、本開示は、工具材料として用いた場合に、工具の長寿命化を可能とする立方晶窒化硼素焼結体を提供することを目的とする。
 [本開示の効果]
 本開示の立方晶窒化硼素焼結体を用いた工具は、長い工具寿命を有することができる。
 [本開示の実施形態の説明]
 本発明者らはまず、より長寿命化が可能な立方晶窒化硼素焼結体を完成させるべく、High-cBN焼結体における結合材の原料として、WC(炭化タングステン)、Co(コバルト)およびAl(アルミニウム)を含む結合材原料粉末を用いることとした。これは、本発明者らのこれまでの研究により、このような結合材原料粉末を用いた場合に、立方晶窒化硼素粒子に対する結合材の結合力が特に高く、結果的に、耐摩耗性及び耐欠損性に優れた立方晶窒化硼素焼結体が得られることを知見しているためである。
 しかし、High-cBN焼結体においては、結合材の量が立方晶窒化硼素粒子の量に対して顕著に少ないため、結合材が立方晶窒化硼素粒子間に広く行き渡ることが難しい傾向がある。このため本発明者らは、結合材の最適化だけでは、High-cBN焼結体の長寿命化のブレイクスルーは図れないと考えた。
 そこで本発明者らは、結合材と立方晶窒化硼素粒子との結合力を高める従来の手法から大きく発想を転換し、立方晶窒化硼素粒子同士の結合力を高める手法はないかと考え、鋭意検討の結果、本開示の立方晶窒化硼素焼結体を得た。
 本開示は、上述のようにして完成されたものである。以下に、本開示の実施態様を列記して説明する。
 (1)本開示の立方晶窒化硼素焼結体は、80体積%以上96体積%以下の立方晶窒化硼素粒子と、結合材と、を備える立方晶窒化硼素焼結体であって、
 前記結合材は、炭化タングステン、コバルト及びアルミニウム化合物を含み、
 前記立方晶窒化硼素焼結体の硬度Hbと、前記立方晶窒化硼素焼結体に酸処理を行い、前記立方晶窒化硼素焼結体中の前記結合材を実質的に除去した酸処理後立方晶窒化硼素焼結体の硬度Haとが、Ha/Hb≧0.40を満たす。
 本開示の立方晶窒化硼素焼結体は、工具材料として用いた場合に、工具の長寿命化を可能とする。
 (2)前記Haと前記Hbとが、Ha/Hb≧0.53を満たすことが好ましい。これによると、工具寿命が向上する。
 (3)前記Haと前記Hbとが、Ha/Hb≧0.55を満たすことが好ましい。これによると、工具寿命が更に向上する。
 (4)酸処理前の前記立方晶窒化硼素焼結体の熱拡散率Kbと、前記酸処理後立方晶窒化硼素焼結体の熱拡散率Kaとが、Ka/Kb≧0.60を満たすことが好ましい。これによると、工具寿命が更に向上する。
 (5)前記Kaと前記Kbとが、Ka/Kb≧0.90を満たすことが好ましい。これによると、工具寿命が更に向上する。
 (6)前記Kaと前記Kbとが、Ka/Kb≧0.95を満たすことが好ましい。これによると、工具寿命が更に向上する。
 (7)酸処理前の前記立方晶窒化硼素焼結体の曲げ試験強度Tbと、前記酸処理後立方晶窒化硼素焼結体の曲げ試験強度Taとが、Ta/Tb≧0.30を満たすことが好ましい。これによると、工具寿命が更に向上する。
 (8)前記Taと前記Tbとが、Ta/Tb≧0.35を満たすことが好ましい。これによると、工具寿命が更に向上する。
 (9)前記Taと前記Tbとが、Ta/Tb≧0.40を満たすことが好ましい。これによると、工具寿命が更に向上する。
 (10)前記立方晶窒化硼素の平均粒子径は、0.4μm以上5μm以下であることが好ましい。これによると、工具寿命が更に向上する。
 (11)前記立方晶窒化硼素の平均粒子径は、0.5μm以上3.5μm以下であることが好ましい。これによると、工具寿命が更に向上する。
 [本開示の実施形態の詳細]
 以下、本開示の一実施形態(以下「本実施形態」と記す)について説明する。ただし、本実施形態はこれらに限定されるものではない。なお、本明細書において「A~Z」という形式の表記は、範囲の上限下限(すなわちA以上Z以下)を意味し、Aにおいて単位の記載がなく、Zにおいてのみ単位が記載されている場合、Aの単位とZの単位とは同じである。
 <実施形態1:立方晶窒化硼素焼結体>
 本実施形態の立方晶窒化硼素焼結体は、80体積%以上96体積%以下の立方晶窒化硼素粒子と、結合材と、を備える立方晶窒化硼素焼結体であって、
 該結合材は、炭化タングステン、コバルト及びアルミニウム化合物を含み、
 該立方晶窒化硼素焼結体の硬度Hbと、該立方晶窒化硼素焼結体に酸処理を行い、該立方晶窒化硼素焼結体中の前記結合材を実質的に除去した酸処理後立方晶窒化硼素焼結体の硬度Haとが、Ha/Hb≧0.40を満たす。
 本実施形態の立方晶窒化硼素焼結体は、工具材料として用いた場合に、工具の長寿命化を可能とする。この理由は、以下(i)及び(ii)の通りと推察される。
 (i)本実施形態の立方晶窒化硼素焼結体は、優れた強度及び靱性を有する立方晶窒化硼素粒子を80体積%以上96体積%以下含む。このため、立方晶窒化硼素焼結体も優れた強度及び靱性を有することができる。従って、該立方晶窒化硼素焼結体は、優れた耐摩耗性及び耐欠損性を有し、該立方晶窒化硼素焼結体を用いた工具は、長い工具寿命を有することができる。
 (ii)本実施形態の立方晶窒化硼素焼結体において、結合材は、炭化タングステン、コバルト及びアルミニウム化合物を含む。このような結合材は、立方晶窒化硼素粒子に対する結合材の結合力が特に高い。従って、該立方晶窒化硼素焼結体は、優れた耐摩耗性及び耐欠損性を有し、該立方晶窒化硼素焼結体を用いた工具は、長い工具寿命を有することができる。
 (iii)本実施形態の立方晶窒化硼素焼結体は、立方晶窒化硼素焼結体の硬度Hbと、該立方晶窒化硼素焼結体に酸処理を行い、該立方晶窒化硼素焼結体中の結合材を実質的に除去した酸処理後立方晶窒化硼素焼結体の硬度Haとが、Ha/Hb≧0.40を満たす。このような立方晶窒化硼素焼結体は、立方晶窒化硼素粒子同士の結合力が高い。従って、該立方晶窒化硼素焼結体は、工具の使用中に立方晶窒化硼素粒子の脱落が生じ難く、優れた耐摩耗性及び耐欠損性を有し、該立方晶窒化硼素焼結体を用いた工具は、長い工具寿命を有することができる。
 (組成)
 本実施形態に係る立方晶窒化硼素焼結体は、80体積%以上96体積%以下の立方晶窒化硼素粒子と、結合材と、を備える。すなわち本実施形態に係る立方晶窒化硼素焼結体は、いわゆるHigh-cBN焼結体である。なお立方晶窒化硼素焼結体は、使用する原材料、製造条件等に起因する不可避不純物を含み得る。立方晶窒化硼素焼結体中の不可避不純物の含有割合(質量%)は、1質量%以下とすることができる。本実施形態に係る立方晶窒化硼素焼結体は、立方晶窒化硼素粒子と、結合材と、不可避不純物からなることができる。
 立方晶窒化硼素焼結体中の立方晶窒化硼素粒子の含有割合(体積%)の下限は、80体積%以上であり、81体積%以上、82体積%以上とすることができる。立方晶窒化硼素焼結体中の立方晶窒化硼素粒子の含有割合(体積%)の上限は、96体積%以下であり、95体積%以下、94体積%以下とすることができる。立方晶窒化硼素焼結体中の立方晶窒化硼素粒子の含有割合(体積%)は、81体積%以上95体積%以下、82体積%以上94体積%以下とすることができる。
 立方晶窒化硼素焼結体中の結合材の含有割合(体積%)の下限は、4体積%以上、5体積%以上、6体積%以上とすることができる。立方晶窒化硼素焼結体中の結合材の含有割合(体積%)の上限は、20体積%以下、19体積%以下、18体積%以下とすることができる。立方晶窒化硼素焼結体中の結合材の含有割合(体積%)は、4体積%以上20体積%以下、5体積%以上19体積%以下、6体積%以上18体積%以下とすることができる。
 立方晶窒化硼素焼結体における立方晶窒化硼素の含有割合(体積%)は、誘導結合高周波プラズマ分光分析(ICP)による定量分析、走査電子顕微鏡(SEM)付帯のエネルギー分散型X線分析装置(EDX)または透過型電子顕微鏡(TEM)付帯のEDXを用いて、立方晶窒化硼素焼結体に対し、組織観察、元素分析等を実施することによって確認することができる。本実施形態では、特に理由が無い限り、後述するSEMを用いる方法で、立方晶窒化硼素焼結体における立方晶窒化硼素粒子の含有割合を求めるものとする。
 SEMを用いた場合、次のようにして立方晶窒化硼素粒子の含有割合(体積%)を求めることができる。まず、立方晶窒化硼素焼結体の任意の位置を切断し、立方晶窒化硼素焼結体の断面を含む試料を作製する。断面の作製には、集束イオンビーム装置、クロスセクションポリッシャ装置等を用いることができる。次に、上記断面をSEMにて2000倍で観察して、反射電子像を得る。反射電子像においては、立方晶窒化硼素粒子が存在する領域が黒色領域となり、結合材が存在する領域が灰色領域または白色領域となる。観察する倍率は粒度によって適宜調整し、5視野以上観察及び分析した平均値を含有割合とした。
 次に、上記反射電子像に対して画像解析ソフト(たとえば、三谷商事(株)の「WinROOF」)を用いて二値化処理を行い、二値化処理後の画像から黒色領域(立方晶窒化硼素粒子が存在する領域)及び白色領域(結合相が存在する領域)の各面積比率を算出する。算出された面積比率を体積%とみなすことにより、立方晶窒化硼素粒子の含有割合(体積%)を求めることができる。なお、これにより結合材の体積%を同時に求めることができる。
 (立方晶窒化硼素粒子)
 立方晶窒化硼素粒子は、硬度、強度、靱性が高く、立方晶窒化硼素焼結体中の骨格としての役割を果たす。立方晶窒化硼素粒子のD50(平均粒子径)は、工具寿命向上の観点から、0.4μm以上5μm以下が好ましく、0.5μm以上3.5μm以下が更に好ましい。
 立方晶窒化硼素粒子のD50は次のようにして求められる。まず上記の立方晶窒化硼素粒子の含有量の求め方に準じて、立方晶窒化硼素焼結体の断面を含む試料を作製し、反射電子像を得る。次いで、画像解析ソフトを用いて反射電子像中の各黒色領域の円相当径(等面積円の直径)を算出する。5視野以上を観察することによって100個以上の立方晶窒化硼素粒子の円相当径を算出することが好ましい。
 次いで、各円相当径を最小値から最大値まで昇順に並べて累積分布を求める。累積分布において累積面積50%となる粒径がD50となる。なお円相当径とは、計測された立方晶窒化硼素粒子の面積と同じ面積を有する円の直径を意味する。
 (結合材)
 結合材は、難焼結性材料である立方晶窒化硼素粒子を工業レベルの圧力温度で焼結可能とする役割を果たす。
 本実施形態の立方晶窒化硼素焼結体において、結合材は、WC、CoおよびAl化合物を含む。ここで、「Al化合物」とは、Alを構成元素として含む化合物を意味する。Al化合物としては、CoAl、Al、AlN、およびAlB、ならびにこれらの複合化合物等が挙げられる。次の理由から、WC、CoおよびAl化合物を含む当該結合材は、本実施形態に係る立方晶窒化硼素焼結体の長寿命化に特に有効と考えられる。
 第1に、CoおよびAlは触媒機能を有するため、立方晶窒化硼素焼結体の製造時の焼結工程において、立方晶窒化硼素粒子同士のネックグロスを促進することができる。第2に、WCは、結合材の熱膨張係数を立方晶窒化硼素粒子の熱膨張係数に近づけるために有効と推察される。なお、上記の触媒機能とは、立方晶窒化硼素粒子を構成するB(硼素)および/またはN(窒素)が、CoまたはAlを介して拡散したり、析出したりすることを意味する。第3に、Coなどの金属成分は靭性向上の役割を果たし、適正量の結合材は耐欠損性を向上させる。
 立方晶窒化硼素焼結体に含まれる結合材の組成は、XRD(X線回折測定)およびICPを組み合わせることによって特定することができる。具体的には、まず、立方晶窒化硼素焼結体から、厚み0.45~0.50mm程度の試験片を切り出し、該試験片に対してXRD分析を実施し、X線回折ピークから決定される化合物、金属等を決定する。次に、試験片を密閉容器内で弗硝酸(濃硝酸(60%):蒸留水:濃弗酸(47%)=2:2:1の体積比混合の混合酸)に浸漬し、結合材が溶解された酸処理液を得る。該酸処理液に対してICP分析を実施し、各金属元素の定量分析を行う。そして、XRDの結果およびICP分析の結果を解析することにより、結合材の組成を決定する。
 本実施形態における結合材は、WC、CoおよびAl化合物の他に、他の結合材を含んでいてもよい。他の結合材を構成する元素として好適なものは、Ni、Fe、Cr、Mn、Ti、V、Zr、Nb、Mo、Hf、Ta、Re等である。
 (硬度)
 本実施形態の立方晶窒化硼素焼結体は、酸処理前の立方晶窒化硼素焼結体の硬度Hbと、立方晶窒化硼素焼結体に酸処理を行い、該立方晶窒化硼素焼結体中の結合材を実質的に除去した酸処理後立方晶窒化硼素焼結体の硬度Haとが、Ha/Hb≧0.40を満たす。ここで、酸処理前の立方晶窒化硼素焼結体の硬度Hb(GPa)は、以下の手順で測定される。立方晶窒化硼素焼結体を厚み0.5mmまで加工して測定試料Aを準備する。FUTURE-TECH製ロードセル微小ビッカース硬さ試験機を用いて、荷重5kgの条件で、測定試料A(酸処理前の立方晶窒化硼素焼結体)の硬度を測定する。硬度の測定は6箇所で行い、該6箇所の硬度の平均値を、酸処理前の立方晶窒化硼素焼結体の硬度Hbとする。
 酸処理後立方晶窒化硼素焼結体の硬度Haの測定は、以下の手順で行う。塩酸(95%):硝酸(95%):弗酸(95%):水=2:1:1:2の体積比で配合した酸溶液を準備する。上記測定試料Aを、140℃に加熱した酸溶液に投入し、密閉容器中で48時間酸処理を行う。酸処理後の測定試料B(立方晶窒化硼素焼結体)を酸溶液から取り出す。測定試料Bについて、上記の酸処理前の立方晶窒化硼素焼結体の硬度Hbと同様の方法で、硬度の測定を6箇所で行う。該6箇所の硬度の平均値を、酸処理後立方晶窒化硼素焼結体の硬度Haとする。
 なお、出願人が測定した限りでは、同一の試料において測定する限りにおいては、上記硬度Ha及び硬度Hbの測定を、測定個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定か所を設定しても恣意的にはならないことが確認された。
 上記の酸処理により、立方晶窒化硼素焼結体の結合材を実質的に除去できるものの、酸処理後も結合材成分が残存しうる。この理由は、下記の通りと推察される。酸処理は上記酸溶液にcBN焼結体を投入する手法である。よって、cBN焼結体内部に、酸性溶液が浸透できないような領域を複数のcBN粒子が形成している場合(3重点ともいう)は、酸処理後に結合材成分が残存すると考えられる。もしくはcBN焼結体中に酸化アルミニウムなどの酸溶液に不溶の特性を持つ物質が存在した場合も、酸処理後に結合材成分が残存すると考えられる。よって、CBN粒子同士の結合力を評価するのに十分な量の結合材を除去できれば、立方晶窒化硼素焼結体の結合材を実質的に除去したと評価できる。
 上記の酸処理により、立方晶窒化硼素焼結体の結合材が実質的に除去されていることの確認は、下記の手順で行うことができる。上記の測定試料A(酸処理前のcBN焼結体)をSEM(装置:日本電子製「JSM-7800F」(商標))で観察できるように、表面を研磨加工(#2000)する。測定表面の中心を含めるように、上記SEMでラインスキャンを実施する。ラインの幅は100μm以上とする。ライン幅が100μm以上であると、測定領域におけるcBN粒子及び結合材の偏りを低減することができる。
 本実施形態の立方晶窒化硼素焼結体の酸処理前後のSEM-EDS分析結果の一例を、図1(酸処理前)及び図2(酸処理後)に示す。図1及び図2において、横軸は試料中の測定位置(μm)を示し、縦軸は元素の存在割合(wt%)を示す。図1及び図2に示されるように、該立方晶窒化硼素焼結体では、Al(アルミニウム)、W(タングステン)、Cr(クロム)、Co(コバルト)、B(硼素)、N(窒素)の存在が確認される。これらの元素のうち、炭素及び窒素は立方晶窒化硼素粒子に由来し、これら以外のタングステン、アルミニウム、クロム、コバルトは結合相に由来する。
  図2に示されるように、酸処理後は立方晶窒化硼素焼結体中のN(窒素)及びB(硼素)以外の元素(図2では、W(タングステン)、Al(アルミニウム)、Cr(クロム)、Co(コバルト))は、いずれも存在割合が低下する。これは、酸処理を行うと、立方晶窒化硼素焼結体の結合材成分が酸処理液中に溶出するためである。
 上記ラインスキャンにおいて、立方晶窒化硼素焼結体のコバルト(Cо)の存在割合(質量%)を算出する。具体的には、立方晶窒化硼素焼結体を分析している領域におけるコバルト(Co)の存在割合(質量%)の平均値X1(質量%)を測定する。立方晶窒化硼素焼結体を分析している領域は、立方晶窒化ホウ素の構成元素である硼素と窒素の存在割合(at%)の合計が他の結合材成分よりも多い事により特定される。
 次に、上記の測定試料B(酸処理後のcBN焼結体)に対して、上記測定試料Aと同様の方法で上記SEMでラインスキャンを実施する。該ラインスキャンにおいて、立方晶窒化硼素焼結体のコバルト(Cо)の存在割合(質量%)を算出する。具体的には、立方晶窒化硼素焼結体を分析している領域におけるコバルト(Co)の存在割合の平均値X2(質量%)を測定する。立方晶窒化硼素焼結体を分析している領域は、立方晶窒化ホウ素の構成元素である硼素と窒素の存在割合(at%)の合計が他の結合材成分よりも多い事により特定される。
 X2/X1が0.20以下の場合、上記酸処理により、立方晶窒化硼素焼結体の結合材が実質的に除去されていることが確認される。よって、X2/X1が0.20以下である酸処理後のcBN焼結体の硬度の測定は、cBN粒子間の結合力を測定していることに相当する。
 なお、X2/X1が0.20超の場合は、酸処理の時間を48時間超に適宜調整することにより、X2/X1を0.20以下とすることができる。
 Ha/Hb≧0.40を満たす立方晶窒化硼素焼結体は、酸処理後も硬度低下率が小さい。酸処理を行うと、立方晶窒化硼素焼結体の結合材成分が酸処理液中に溶出する。よって、酸処理後立方晶窒化硼素焼結体の硬度低下率が小さいことは、立方晶窒化硼素粒子同士の結合力が強固であることを示す。従って、該立方晶窒化硼素焼結体は、工具の使用中に立方晶窒化硼素粒子の脱落が生じ難く、優れた耐摩耗性及び耐欠損性を有し、該立方晶窒化硼素焼結体を用いた工具は、長い工具寿命を有することができる。
 従来の立方晶窒化硼素焼結体を用いて、例えば焼結合金を加工した場合、加工中に立方晶窒化硼素粒子の脱落が生じやすく、刃先形状が鈍化し、加工部品にバリや、白濁が発生する傾向があった。本実施形態の立方晶窒化硼素焼結体では、上記の通り立方晶窒化硼素粒子同士の結合力が強く、脱落が発生しにくいので、加工後の被削材の面品位を良好にすることができる。
 Ha/Hbは、Ha/Hb≧0.40を満たし、Ha/Hb≧0.53が好ましく、Ha/Hb≧0.55が更に好ましい。Ha/Hbの上限は、例えば、1以下とすることができる。Ha/Hbは、1≧Ha/Hb≧0.40、1≧Ha/Hb≧0.53、1≧Ha/Hb≧0.55とすることができる。
 Haは、例えば、14GPa以上24GPa以下、15GPa以上23GPa以下、16GPa以上24GPa以下とすることができる。
 Hbは、例えば、34GPa以上45GPa以下、35GPa以上44GPa以下、37GPa以上43GPa以下とすることができる。
 (熱拡散率)
 本実施形態の立方晶窒化硼素焼結体は、酸処理前の立方晶窒化硼素焼結体の熱拡散率Kbと、立方晶窒化硼素焼結体に酸処理を行い、該立方晶窒化硼素中の結合材を実質的に除去した酸処理後立方晶窒化硼素焼結体の熱拡散率Kaとが、Ka/Kb≧0.60を満たすことが好ましい。ここで、酸処理前の立方晶窒化硼素焼結体の熱拡散率Kb(mm/s)は、立方晶窒化硼素焼結体を底辺3.9mm、頂角80°、厚さ0.5mmの2等辺三角形に切り出して測定試料Cを準備し、該測定試料Cについて、NETZSCH社製キセノンフレッシュアナライザー(LFA467 HyperFlashu商標名)を用いて測定する。
 酸処理後立方晶窒化硼素焼結体の熱拡散率Ka(mm/s)の測定は、以下の手順で行う。上記測定試料Cに酸処理を行い、酸処理後の測定試料D(立方晶窒化硼素焼結体)を作製し、その熱拡散率Ka(mm/s)を上記測定試料Cの測定で用いた装置にて測定する。酸処理の具体的な方法は、上記の硬度の測定における方法と同一であるため、その説明は繰り返さない。
 Ka/Kb≧0.60を満たす立方晶窒化硼素焼結体は、酸処理後も熱拡散率低下率が小さい。これは、立方晶窒化硼素粒子間の熱伝導性が優れていることを示す。該立方晶窒化硼素焼結体を用いた工具は、特に鋳鉄加工に用いた場合、熱亀裂による損傷が低減され、長い工具寿命を有することができる。
 Ka/Kbは、Ka/Kb≧0.60が好ましく、Ka/Kb≧0.90がより好ましく、Ka/Kb≧0.95が更に好ましい。Ka/Kbの上限は、例えば、1以下とすることができる。Ka/Kbは、1≧Ka/Kb≧0.60、1≧Ka/Kb≧0.90、1≧Ka/Kb≧0.95とすることができる。
 Kaは、例えば、20mm/s以上62mm/s以下、30mm/s以上60mm/s以下、40mm/s以上58mm/s以下とすることができる。
 Kbは、例えば、39mm/s以上65mm/s以下、42mm/s以上62mm/s以下、50mm/s以上60mm/s以下とすることができる。
 (曲げ試験強度)
 本実施形態の立方晶窒化硼素焼結体は、酸処理前の立方晶窒化硼素焼結体の曲げ試験強度Tbと、立方晶窒化硼素焼結体に酸処理を行い、該立方晶窒化硼素中の結合材を実質的に除去した酸処理後立方晶窒化硼素焼結体の曲げ試験強度Taとが、Ta/Tb≧0.30を満たすことが好ましい。ここで、酸処理前の立方晶窒化硼素焼結体の曲げ試験強度b(GPa)は、立方晶窒化硼素焼結体を0.5mm×2mm×5.8mmの板状に切り出して測定試料Eを準備し、該測定試料Eについて、3点曲げ試験機を用いて、4mmスパン、ストローク速度0.5mm/minで曲げ試験強度(GPa)を測定する。10個の測定試料Eの曲げ試験強度の平均値を立方晶窒化硼素焼結体の曲げ試験強度Tb(GPa)とする。
 酸処理後立方晶窒化硼素焼結体の曲げ試験強度Ta(GPa)の測定は、以下の手順で行う。上記測定試料Eに酸処理を行い、酸処理後の測定試料F(立方晶窒化硼素焼結体)を作製し、その曲げ試験強度を3点曲げ試験機を用いて、4mmスパン、ストローク速度0.5mm/minの条件で測定する。10個の測定試料Fの曲げ試験強度の平均値を酸処理後立方晶窒化硼素焼結体の曲げ試験強度Ta(GPa)とする。酸処理の具体的な方法は、上記の硬度の測定における方法と同一であるため、その説明は繰り返さない。
 Ta/Tb≧0.30を満たす立方晶窒化硼素焼結体は、酸処理後も曲げ強度の低下率が小さい。これは、立方晶窒化硼素粒子同士の結合力が強固であることを示す。従って、該立方晶窒化硼素焼結体は、特に、高強度焼結合金の加工においても、優れた耐欠損性を示す。
 Ta/Tbは、Ta/Tb≧0.30が好ましく、Ta/Tb≧0.35がより好ましく、Ta/Tb≧0.40が更に好ましい。Ta/Tbの上限は、例えば、1以下とすることができる。Ta/Tbは、1≧Ta/Tb≧0.30、1≧Ta/Tb≧0.35、1≧Ta/Tb≧0.40とすることができる。
 Taは、例えば、0.35GPa以上1.2GPa以下、0.5GPa以上1.1GPa以下、0.65GPa以上1.0GPa以下とすることができる。
 Tbは、例えば、1.2GPa以上3.0GPa以下、1.5GPa以上2.7GPa以下、1.7GPa以上2.5GPa以下とすることができる。
 <実施形態2:立方晶窒化硼素焼結体の製造方法>
 上記実施形態1の立方晶窒化硼素焼結体の製造方法について説明する。ただし、該立方晶窒化硼素焼結体の製造方法は、以下の方法に限定されない。実施形態2の立方晶窒化硼素焼結体の製造方法は、例えば、粗粒立方晶窒化硼素粒子(以下、「粗粒cBN粒子」とも記す。)に微粒立方晶窒化硼素粒子(以下、「微粒cBN粒子」とも記す。)を付着させて立方晶窒化硼素原料粉末(以下、「cBN原料粉末」とも記す。)を得る「立方晶窒化硼素粉末処理工程」と、立方晶窒化硼素原料粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合して混合粉末を調製する「混合粉末作製工程」と、混合粉末を焼結して立方晶窒化硼素焼結体を得る「焼結工程」と、を含むことができる。
 (立方晶窒化硼素粉末処理工程)
 粗粒立方晶窒化硼素粉末(平均粒子径0.2~8μm、以下「粗粒cBN粉末」とも記す。)と、微粒cBN粉末(平均粒子径0.05~0.1μm、以下「微粒cBN粉末」)とを準備する。微粒cBN粉末と粗粒cBN粉末との体積比は、20:80~1:99とすることができる。
 (静電吸着)
 微粒cBN粉末に試薬PSS(poly(diallyldimethylammonium chloride)、ポリジアリルジメチルアンモニウムクロライド)を添加して30分放置する。粗粒cBN粉末に試薬PDDA(poly(sodium 4-styrenesulfonate)、ポリスチレンスルホン酸ナトリウム)を添加して30分間放置する。その後、微粒cBN粉末及び粗粒cBN粉末を洗浄後、これらを遊星ミルで10分間混合して混合スラリーを得る。混合スラリーを24時間放置して乾燥させて、cBN原料粉末を得る。
 得られたcBN原料粉末では、粗粒cBN粒子の表面に微粒cBN粒子が静電吸着により付着している。粗粒cBN粒子間に、焼結性に優れる微粒cBN粒子が存在することにより、該cBN原料粉末を焼結した場合に、粗粒cBN粒子間の結合力が強化される。よって、得られたcBN焼結体は、酸処理後においても高い硬度を有することができる。
 (イオン注入)
 上記の静電吸着により得られたcBN原料粉末に対して、イオン注入を行うことができる。イオン注入では、例えば、イオン注入装置(住友重機械工業製「SHX-II」(商標))にて、0.2~60KeVのエネルギーでイオン照射する。イオンとしては、コバルトイオン、カルシウムイオン、ニッケルイオン、鉄イオン、アルミニウムイオン等を用いることができる。
 イオン照射を行いcBN粒子表面に元素を添加することで、cBN粒子表面に存在する微量の酸化層や、cBN粒子表面の硼素と窒素との結合(B-N結合)が不安定となる。これにより、後述の焼結工程におけるコバルト等により生じる溶解再析出が促進され、粗粒cBN粒子間の結合力が更に強化される。よって、得られたcBN焼結体は、酸処理後においても高い硬度を有することができる。
 (アンモニア処理)
 上記の静電吸着により得られたcBN原料粉末に対して、アンモニア処理を行うことができる。アンモニア処理では、例えば、cBN原料粉末を100~1400℃に加熱したアンモニア雰囲気中に投入し、30~540分放置する。
 アンモニア処理を長時間行うことにより、cBN粒子表面の酸素が分解され、さらに窒素(N)及び水素(H)がcBN粒子表面に原子レベルで修飾されると予想でき、後述の焼結工程において、cBN粒子間の結合が更に促進される。よって、得られたcBN焼結体は、酸処理後においても、高い硬度とともに、高い曲げ試験強度を有することができる。
 (混合粉末作製工程)
 上記で得られたcBN原料粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合粉末を作製する。結合材原料粉末は、立方晶窒化硼素焼結体の結合材の原料である。
 結合材原料粉末は、次のようにして調製することができる。まず、WC粉末、Co粉末およびAl粉末を準備する。次に、各粉末を所定の比率となるように混合し、これを真空下で熱処理(たとえば1200℃)して金属間化合物を作製する。当該金属間化合物を湿式のボールミル、湿式のビーズミル等で粉砕することにより、WC、CoおよびAlを含む結合材原料粉末が調製される。なお、各粉末の混合方法は特に制限されないが、効率よく均質に混合する観点から、ボールミル混合、ビーズミル混合、遊星ミル混合、およびジェットミル混合などが好ましい。各混合方法は、湿式でもよく乾式でもよい。
 cBN原料粉末と、結合材原料粉末とは、エタノール、アセトン等を溶媒に用いた湿式ボールミル混合により混合されることが好ましい。また、混合後は自然乾燥により溶媒が除去される。その後、熱処理(たとえば、真空下で850℃以上)により、表面に吸着された水分等の不純物を除去することが好ましい。
 上記結合材原料粉末は、WC、CoおよびAlの他に、他の元素を含んでいてもよい。他の元素として好適なものは、Ni、Fe、Cr、Mn、Ti、V、Zr、Nb、Mo、Hf、Ta、Re等である。
 (焼結工程)
 上記で得られた混合粉末を容器に充填して真空シールする。真空シールの温度は850℃以上が好ましい。これは、シール材の融点を超える温度である。
 次に、超高温高圧装置を用いて、真空シールされた混合粉末を焼結処理して立方晶窒化硼素焼結体を得る。焼結条件は特に制限されない。例えば、圧力4.5~10GPa、温度1200℃以上1900℃以下の条件で、15分間焼結処理することができる。
 焼結時に、混合粉末に高圧高温をかけた後、低圧から高圧への圧力変化を繰り返すと、cBN粒子の表面が欠け、活性が高い新生面が現れ、cBN粒子間の結合力が強化される。この効果は、特に、静電吸着で粗粒cBN粒子に微粒cBN粒子を付着させていた場合に顕著である。よって、得られたcBN焼結体は、酸処理後においても、高い硬度とともに、高い熱拡散率を有することができる。
 本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
 [実施例1]
 <試料1-1>
 (混合粉末作製工程)
 結合材原料粉末を準備する。WC粉末、Co粉末、およびAl粉末を準備し、これらを重量%でWC:Co:Al=43:40:17の比率で配合した。なお、各粉末の平均粒子径は2μmであった。これを、熱処理(真空下、950℃、30分間)して均一化し、その後、超硬ボールミルで微粉砕した。これにより、平均粒子径1μmの結合材原料粉末を得た。
 cBN原料粉末(平均粒子径1μm)と結合材原料粉末とを、体積%でcBN原料粉末:結合材原料粉末=95:5の比率で配合し、エタノールを用いた湿式ボールミル法により均一に混合した。その後、表面の水分等の不純物除去のために、真空下にて900℃で混合した粉末に脱ガス熱処理を実施した。以上により、混合粉末が作製された。
 (焼結工程)
 次に、得られた混合粉末を焼結することにより、立方晶窒化硼素焼結体を作製した。具体的には、混合粉末を、WC-6%Coの超硬合金製円盤に接した状態で、Ta製の容器に充填して真空シールした。これを、ベルト型超高圧高温発生装置を用いて、7.0GPa、1700℃で15分間焼結した。これにより、立方晶窒化硼素焼結体が作製された。
 <試料1-2>
 (cBN粉末処理工程)
 まず、cBN原料粉末を作製した。粗粒cBN粉末(平均粒子径1μm)と、微粒cBN粉末(平均粒子径0.1μm)とを、体積比で粗粒cBN粉末:微粒cBN粉末=8:1となるように準備した。
 微粒cBN粉末に試薬PSSを添加して30分放置した。粗粒cBN粉末に試薬PDDAを添加して30分間放置した。その後、微粒cBN粉末及び粗粒cBN粉末を洗浄後、これらを遊星ミルで10分間混合して混合スラリーを得た。混合スラリーを24時間放置して乾燥させて、cBN原料粉末を得た。
 得られたcBN原料粉末をSEMで観察したところ、粗粒cBN粒子の表面に微粒cBN粒子が付着(静電吸着)していることが確認された。
 (混合粉末作製工程)
 次に、結合材原料粉末を準備する。WC粉末、Co粉末、およびAl粉末を準備し、これらを重量%でWC:Co:Al=43:40:17の比率で配合した。なお、各粉末の平均粒子径は2μmであった。これを、熱処理(真空下、950℃、30分間)して均一化し、その後、超硬ボールミルで微粉砕した。これにより、平均粒子径1μmの結合材原料粉末を得た。
 cBN原料粉末と結合材原料粉末とを、体積%でcBN原料粉末:結合材原料粉末=95:5の比率で配合し、エタノールを用いた湿式ボールミル法により均一に混合した。その後、表面の水分等の不純物除去のために、真空下にて900℃で混合した粉末に脱ガス熱処理を実施した。熱処理後のcBN原料粉末をSEMで観察したところ、粗粒cBN粒子の表面に微粒cBN粒子が付着していることが確認された。以上により、混合粉末が作製された。
 (焼結工程)
 次に、得られた混合粉末を焼結することにより、立方晶窒化硼素焼結体を作製した。具体的には、混合粉末を、WC-6%Coの超硬合金製円盤に接した状態で、Ta製の容器に充填して真空シールした。これを、ベルト型超高圧高温発生装置を用いて、7.0GPa、1700℃で15分間焼結した。これにより、立方晶窒化硼素焼結体が作製された。
 <試料1-3>
 試料1-3は、下記の点以外は試料1-2と同様の方法で立方晶窒化硼素焼結体を作製した。
 「cBN粉末処理工程」での粗粒cBN粉末と微粒cBN粉末との体積比を、表1の「cBN粉末処理」の「静電吸着」の「粗粒:微粒(体積比)」欄に記載の通りとした。
 cBN原料粉末と結合材原料粉末とを、体積%でcBN原料粉末:結合材原料粉末=80:20の比率で配合した。
 <試料1-11>
 cBN原料粉末と結合材原料粉末とを、体積%でcBN原料粉末:結合材原料粉末=97:3の比率で配合したこと以外試料1-3と同様の方法で立方晶窒化硼素焼結体を作製した。
 <試料1-12>
 cBN原料粉末と結合材原料粉末とを、体積%でcBN原料粉末:結合材原料粉末=65:35の比率で配合したこと以外、試料1-3と同様の方法で立方晶窒化硼素焼結体を作製した。
 <試料1-4、試料1-5、試料1-13~試料1-19>
 試料1-4、試料1-5、試料1-13~試料1-19では、下記の点以外は試料1-2と同様の方法で立方晶窒化硼素焼結体を作製した。
 「cBN粉末処理工程」での粗粒cBN粉末と微粒cBN粉末との体積比を、表1の「cBN粉末処理」の「静電吸着」の「粗粒:微粒(体積比)」欄に記載の通りとした。
 「焼結工程」での圧力を、表1の「焼結工程」の「圧力(GPa)」欄に記載の通りとした。
 粗粒cBN粉末の平均粒子径を、表1の「原料」の「粗粒cBN粒子径(μm)」欄に記載の通りとした。
 <試料1-6~試料1-10>
 下記の点以外は試料1-2と同様の方法で、試料1-6~試料1-10の立方晶窒化硼素焼結体を作製した。
 「cBN粉末処理工程」を以下の手順で行った。粗粒cBN粉末(平均粒子径1μm)と、微粒cBN粉末(平均粒子径0.1μm)とを、体積比で粗粒cBN粉末:微粒cBN粉末=8:1となるように準備した。
 微粒cBN粉末に試薬PSSを添加して30分放置した。粗粒cBN粉末に試薬PDDAを添加して30分間放置した。その後、微粒cBN粉末及び粗粒cBN粉末を洗浄後、これらを遊星ミルで10分間混合して混合スラリーを得た。混合スラリーを24時間放置して乾燥させて、cBN原料粉末を得た。
 得られたcBN原料粉末に、イオン注入装置にて、100KeVのエネルギーで表1の「cBN粉末処理」の「イオン注入」の「注入元素」欄に記載の元素を照射した。例えば、試料1-6では、コバルト(Co)を照射した。
 照射後のcBN原料粉末をTEM-EELSで観察したところ、粗粒cBN粒子の表面に微粒cBN粒子が付着(静電吸着)し、さらに表面付近にCoが存在していることが確認された。
 <試料1-20>
 下記の点以外は試料1-4と同様の方法で、試料1-20の立方晶窒化硼素焼結体を作製した。
 「混合粉末作製工程」において、cBN原料粉末:結合材原料粉末=60:40の比率で配合した。
 <試料1-21>
 下記の点以外は試料1-4と同様の方法で、試料1-20の立方晶窒化硼素焼結体を作製した。
 「混合粉末作製工程」において、cBN原料粉末:結合材原料粉末=97:3の比率で配合した。
 「焼結工程」において、超硬合金製円盤を用いずに焼結した。
 <評価>
 (立方晶窒化硼素の含有率)
 各立方晶窒化硼素焼結体中の立方晶窒化硼素の含有率をSEMを用いて測定した。具体的な測定方法は、実施形態1に記載されているためその説明は繰り返さない。結果を表1の「cBN焼結体」の「cBN含有率(体積%)」欄に示す。
 試料1-1~試料1-19では、混合粉末中のcBN原料粉末の割合よりも、立方晶窒化硼素焼結体中の立方晶窒化硼素の割合の方が小さい。これらの試料では、焼結工程において、混合粉末を超硬合金製円盤に接した状態で焼結する。このため、焼結中に混合粉末中に超硬合金成分が流入し、混合粉末中のcBN原料粉末中の混合比率が変化して、表1に記載の通りの割合になったと推察される。
 <結合材の組成>
 各立方晶窒化硼素焼結体から、長さ6mm、幅3mm、厚み0.45~0.50mmの試験片を切り出し、該試験片に対してXRD分析を実施した。次に、密閉容器内において、各試験片を140℃の弗硝酸(濃硝酸(60%):蒸留水:濃弗酸(47%)=2:2:1の体積比混合の混合酸)に48時間浸漬し、結合材が溶解された酸処理液を得た。当該酸処理液に対してICP分析を実施した。そして、XRD分析の結果およびICP分析の結果から、結合材の組成を特定した。
 全ての試料において、少なくともWC、Co、およびAl化合物が存在することが確認された。なおAl化合物に関し、XRDにおいて明瞭なピークが検出されなかった。これはXRD装置にCu線源を用いているためCoによるバックグラウンドノイズが大きいため、少量のAl化合物が検出できなかったと推察された。
 <硬度>
 各立方晶窒化硼素焼結体の酸処理前の硬度Hb(GPa)を測定した。各立方晶窒化硼素焼結体の酸処理後の硬度Ha(GPa)を測定した。具体的な測定方法は、実施形態1に記載されているためその説明は繰り返さない。上記Ha及びHbに基づき、各試料のHa/Hbを算出した。結果を表1の「cBN焼結体」の「Ha/Hb」欄に示す。
 なお、各酸処理後の測定試料(立方晶窒化硼素焼結体)において、上記X2/X1を測定したところ、全ての測定試料において、X2/X1は0.09以下であり、立方晶窒化硼素中の結合材が実質的に除去されていることが確認された。上記X2/X1の測定方法の詳細は、実施形態1に記載されているため、その説明は繰り返さない。
 <切削試験:焼結合金切削>
 作製された各立方晶窒化硼素焼結体を用いて切削工具(基材形状:TNGA160404、刃先処理T01225)を作製した。これを用いて、以下の切削条件下で切削試験を実施した。
 切削速度:180m/min.
 送り速度:0.1mm/rev.
 切込み:0.2mm
 クーラント:DRY
 切削方法:端面連続切削
 旋盤:LB4000(オークマ株式会社製)
 被削材:円筒状焼結部品(住友電工焼結合金社製の焼結合金D-40の端面切削:HRB75)
 評価方法:切削距離0.1km毎に刃先を観察し、逃げ面摩耗量を測定した。最大逃げ面摩耗量が200μm以上となる時点の切削距離を測定した。切削距離は横軸切削距離km、縦軸最大逃げ面摩耗量を各々の試料についてプロットし、プロット間を直線で補間しグラフを得たうえで、グラフの値が200μmとなる切削距離を読み取った。切削距離が長いほど、工具寿命が長いことを示す。結果を表1の「切削試験」の「切削距離(km)」欄に示す。
Figure JPOXMLDOC01-appb-T000001
 <考察>
 試料1-1、試料1-20、試料1-21は比較例に該当する。試料1-2~試料1-19は実施例に該当する。試料1-2~試料1-19(実施例)は、試料1-1、試料1-20、試料1-21(比較例)に比べて、工具寿命が長いことが確認された。
 [実施例2]
 <試料2-1>
 試料2-1では、試料1-4と同様の方法で立方晶窒化硼素焼結体を作製した。
 <試料2-2~試料2-5>
 試料2-2~試料2-5では、下記の点以外は試料2-1と同様の方法で立方晶窒化硼素焼結体を作製した。
 「焼結工程」において、7GPaまで加圧した後、1700℃まで加熱した。その後、焼結時間15分の間で、表2の「焼結工程」の「加圧プロファイル(GPa)」に記載の通り、圧力を変化させた。例えば、試料2-2では、焼結時間15分の間で圧力を7GPa→6GPa→7GPaと変化させた。
 <試料2-6>
 cBN原料粉末と結合材原料粉末とを、体積%でcBN原料粉末:結合材原料粉末=80:20の比率で配合したこと以外、試料2-5と同様の方法で立方晶窒化硼素焼結体を作製した。
 <試料2-7>
 cBN原料粉末と結合材原料粉末とを、体積%でcBN原料粉末:結合材原料粉末=65:35の比率で配合したこと以外、試料2-5と同様の方法で立方晶窒化硼素焼結体を作製した。
 <試料2-8>
 cBN原料粉末と結合材原料粉末とを、体積%でcBN原料粉末:結合材原料粉末=97:3の比率で配合したこと以外、試料2-5と同様の方法で立方晶窒化硼素焼結体を作製した。
 <評価>
 各立方晶窒化硼素焼結体について、立方晶窒化硼素の含有率、結合材の組成、硬度を測定した。それぞれの測定方法は、実施例1と同様であるため、その説明は繰り返さない。
 各試料の立方晶窒化硼素の含有率を表2の「cBN焼結体」の「cBN含有率(体積%)」欄に示す。
 結合材の組成は、全ての試料において、少なくともWC、Co、およびAl化合物が存在することが確認された。なおAl化合物に関し、XRDにおいて明瞭なピークが検出されなかったことから、Al化合物は、複数のAl化合物からなる複合化合物であると推察された。
 各試料のHa/Hbを表2の「cBN焼結体」の「Ha/Hb」欄に示す。
 <熱拡散率>
 各立方晶窒化硼素焼結体の酸処理前の熱拡散率Kb(mm/s)を測定した。各立方晶窒化硼素焼結体の酸処理後の熱拡散率Ka(mm/s)を測定した。具体的な測定方法は、実施形態1に記載されているためその説明は繰り返さない。上記Ka及びKbに基づき、各試料のKa/Kbを算出した。結果を表2の「cBN焼結体」の「Ka/Kb」欄に示す。
 なお、各酸処理後の測定試料(立方晶窒化硼素焼結体)において、上記X2/X1を測定したところ、全ての測定試料において、X2/X1は0.09以下であり、立方晶窒化硼素中の結合材が実質的に除去されていることが確認された。上記X2/X1の測定方法の詳細は、実施形態1に記載されているため、その説明は繰り返さない。
 <切削試験:鋳鉄ミリング評価(残WET)>
 作製された各立方晶窒化硼素焼結体を用いて切削工具(基材形状:SNGN090308LE、ホルダ:RM3080R、SNGN090308、刃先処理T01225)を作製した。これを用いて、以下の切削条件下で切削試験を実施した。
 切削速度:1000m/min.
 送り速度:0.15mm/rev.
 切込み:0.4mm
 クーラント:エマルション96 水で20倍に希釈
 設備:NEXUS 530C-II HS(ヤマザキマザック株式会社製)
 被削材:FC250パーライト板2枚を同時加工
 評価方法:20パスごとに刃先を確認し、100μm以上のチッピング又は欠損が出た場合を工具寿命とした。1パス当たりの除去体積は切込み量(0.4mm=0.0004cm)×被削材の切削面の面積(cm)×2(枚)にて計算した。除去体積が長いほど、工具寿命が長いことを示す。結果を表2の「切削試験」の「除去体積(cm)」欄に示す。
Figure JPOXMLDOC01-appb-T000002
 <考察>
 試料2-1~試料2-8は実施例に該当し、いずれも工具寿命が長いことが確認された。
 これらのうち、試料2-2~試料2-8はKa/Kb≧0.60を満たし、工具寿命が特に長いことが確認された。これらの試料では、焼結工程において、圧力を高圧→低圧と繰り返し変化させたため、粗粒cBN粒子に静電吸着で付着した微粒cBN粒子が、粗粒cBN粒子同士の結合を促進させたためと推察される。
 [実施例3]
 <試料3-1>
 試料3-1では、試料1-4と同様の方法で立方晶窒化硼素焼結体を作製した。
 <試料3-2~試料3-6>
 試料3-2~試料3-6では、下記の点以外は試料3-1と同様の方法で立方晶窒化硼素焼結体を作製した。
 「cBN粉末処理工程」において、静電吸着により得られたcBN原料粉末に対してアンモニア処理を行った。アンモニア処理の温度及び時間を表3の「アンモニア処理」の「温度、時間」欄に示す。
 「焼結工程」での圧力を、表3の「焼結工程」の「圧力(GPa)」欄に記載の通りとした。
 <試料3-7>
 cBN原料粉末と結合材原料粉末とを、体積%でcBN原料粉末:結合材原料粉末=80:20の比率で配合したこと以外、試料3-6と同様の方法で立方晶窒化硼素焼結体を作製した。
 <試料3-8>
 cBN原料粉末と結合材原料粉末とを、体積%でcBN原料粉末:結合材原料粉末=65:35の比率で配合したこと以外、試料3-6と同様の方法で立方晶窒化硼素焼結体を作製した。
 <試料3-9>
 cBN原料粉末と結合材原料粉末とを、体積%でcBN原料粉末:結合材原料粉末=97:3の比率で配合したこと以外、試料3-6と同様の方法で立方晶窒化硼素焼結体を作製した。
 <評価>
 各立方晶窒化硼素焼結体について、立方晶窒化硼素の含有率、結合材の組成、硬度を測定した。それぞれの測定方法は、実施例1と同様であるため、その説明は繰り返さない。
 各試料の立方晶窒化硼素の含有率を表3の「cBN焼結体」の「cBN含有率(体積%)」欄に示す。
 結合材の組成は、全ての試料において、少なくともWC、Co、およびAl化合物が存在することが確認された。なおAl化合物に関し、XRDにおいて明瞭なピークが検出されなかったことから、Al化合物は、複数のAl化合物からなる複合化合物であると推察された。
 各試料のHa/Hbを表3の「cBN焼結体」の「Ha/Hb」欄に示す。
 <曲げ試験強度>
 各立方晶窒化硼素焼結体の酸処理前の曲げ試験強度Tb(GPa)を測定した。各立方晶窒化硼素焼結体の酸処理後の曲げ試験強度Ta(GPa)とした。具体的な測定方法は、実施形態1に記載されているためその説明は繰り返さない。上記Ta及びTbに基づき、各試料のTa/Tbを算出した。結果を表3の「cBN焼結体」の「Ta/Tb」欄に示す。
 なお、各酸処理後の測定試料(立方晶窒化硼素焼結体)において、上記X2/X1を測定したところ、全ての測定試料において、X2/X1は0.09以下であり、立方晶窒化硼素中の結合材が実質的に除去されていることが確認された。上記X2/X1の測定方法の詳細は、実施形態1に記載されているため、その説明は繰り返さない。
 <切削試験:高強度焼結合金切削>
 作製された各cBN焼結体を用いて切削工具(基材形状:CNGA120408、刃先処理T01225)を作製した。これを用いて、以下の切削条件下で切削試験を実施した。
 切削速度:170m/min.
 送り速度:0.1mm/rev.
 切込み:0.13mm
 クーラント:DRY
 切削方法:端面断続切削
 旋盤:LB4000(オークマ株式会社製)
 被削材:スプロケット(住友電工焼結合金社製の焼結合金DM-50(焼入)の端面切削:HV440)
 評価方法:0.5km毎に刃先を観察し、逃げ面摩耗量を測定した。逃げ面の欠損幅が100μm以上となる時点の切削距離を測定した。切削距離が長いほど、工具寿命が長いことを示す。結果を表3の「切削試験」の「切削距離(km)」欄に示す。
Figure JPOXMLDOC01-appb-T000003
 <考察>
 試料3-1~試料3-9は実施例に該当し、いずれも工具寿命が長いことが確認された。
 これらのうち、試料3-4~試料3-9はTa/Tb≧0.35を満たし、工具寿命が特に長いことが確認された。この理由は、アンモニア処理時間が長いため、CBN表面の酸素がより低減されたことで、CBN同士の結合力が向上したためと推察される。
 以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (11)

  1.  80体積%以上96体積%以下の立方晶窒化硼素粒子と、結合材と、を備える立方晶窒化硼素焼結体であって、
     前記結合材は、炭化タングステン、コバルト及びアルミニウム化合物を含み、
     前記立方晶窒化硼素焼結体の硬度Hbと、前記立方晶窒化硼素焼結体に酸処理を行い、前記立方晶窒化硼素焼結体中の前記結合材を実質的に除去した酸処理後立方晶窒化硼素焼結体の硬度Haとが、Ha/Hb≧0.40を満たす、立方晶窒化硼素焼結体。
  2.  前記Haと前記Hbとが、Ha/Hb≧0.53を満たす、請求項1に記載の立方晶窒化硼素焼結体。
  3.  前記Haと前記Hbとが、Ha/Hb≧0.55を満たす、請求項2に記載の立方晶窒化硼素焼結体。
  4.  酸処理前の前記立方晶窒化硼素焼結体の熱拡散率Kbと、前記酸処理後立方晶窒化硼素焼結体の熱拡散率Kaとが、Ka/Kb≧0.60を満たす、請求項1から請求項3のいずれか1項に記載の立方晶窒化硼素焼結体。
  5.  前記Kaと前記Kbとが、Ka/Kb≧0.90を満たす、請求項4に記載の立方晶窒化硼素焼結体。
  6.  前記Kaと前記Kbとが、Ka/Kb≧0.95を満たす、請求項5に記載の立方晶窒化硼素焼結体。
  7.  酸処理前の前記立方晶窒化硼素焼結体の曲げ試験強度Tbと、前記酸処理後立方晶窒化硼素焼結体の曲げ試験強度Taとが、Ta/Tb≧0.30を満たす、請求項1から請求項6のいずれか1項に記載の立方晶窒化硼素焼結体。
  8.  前記Taと前記Tbとが、Ta/Tb≧0.35を満たす、請求項7に記載の立方晶窒化硼素焼結体。
  9.  前記Taと前記Tbとが、Ta/Tb≧0.40を満たす、請求項8に記載の立方晶窒化硼素焼結体。
  10.  前記立方晶窒化硼素粒子の平均粒子径は、0.4μm以上5μm以下である、請求項1から請求項9のいずれか1項に記載の立方晶窒化硼素焼結体。
  11.  前記立方晶窒化硼素粒子の平均粒子径は、0.5μm以上3.5μm以下である、請求項10に記載の立方晶窒化硼素焼結体。
PCT/JP2020/041222 2020-11-04 2020-11-04 立方晶窒化硼素焼結体 WO2022097206A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2021568124A JP7064658B1 (ja) 2020-11-04 2020-11-04 立方晶窒化硼素焼結体
PCT/JP2020/041222 WO2022097206A1 (ja) 2020-11-04 2020-11-04 立方晶窒化硼素焼結体
CN202080106661.6A CN116348625A (zh) 2020-11-04 2020-11-04 立方晶氮化硼烧结体
US17/611,143 US20220153651A1 (en) 2020-11-04 2020-11-04 Cubic boron nitride sintered material
KR1020237014507A KR20230073334A (ko) 2020-11-04 2020-11-04 입방정 질화붕소 소결체
EP20960760.5A EP4242334A4 (en) 2020-11-04 2020-11-04 CUBIC BORON NITRIDE SINTERED BODY
US17/947,627 US11795113B2 (en) 2020-11-04 2022-09-19 Cubic boron nitride sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041222 WO2022097206A1 (ja) 2020-11-04 2020-11-04 立方晶窒化硼素焼結体

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/611,143 A-371-Of-International US20220153651A1 (en) 2020-11-04 2020-11-04 Cubic boron nitride sintered material
US17/947,627 Continuation US11795113B2 (en) 2020-11-04 2022-09-19 Cubic boron nitride sintered material

Publications (1)

Publication Number Publication Date
WO2022097206A1 true WO2022097206A1 (ja) 2022-05-12

Family

ID=81457631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041222 WO2022097206A1 (ja) 2020-11-04 2020-11-04 立方晶窒化硼素焼結体

Country Status (6)

Country Link
US (2) US20220153651A1 (ja)
EP (1) EP4242334A4 (ja)
JP (1) JP7064658B1 (ja)
KR (1) KR20230073334A (ja)
CN (1) CN116348625A (ja)
WO (1) WO2022097206A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531517A (en) * 1978-08-21 1980-03-05 Mitsubishi Metal Corp Sintered material with tenacity and wear resistance for cutting tool
WO2005066381A1 (ja) 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. 立方晶型窒化硼素焼結体
JP6744520B1 (ja) * 2018-09-19 2020-08-19 住友電気工業株式会社 立方晶窒化硼素焼結体、およびそれを含む切削工具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066381A (ja) 2003-08-22 2005-03-17 Kobelco Eco-Solutions Co Ltd 有機性廃水の処理方法とその処理装置
JP2006347850A (ja) * 2005-06-20 2006-12-28 Sumitomo Electric Ind Ltd 立方晶窒化硼素焼結体およびその製造方法
JP5298372B2 (ja) * 2006-06-12 2013-09-25 住友電工ハードメタル株式会社 複合焼結体
EP2168702B1 (en) * 2008-03-26 2014-09-03 Kyocera Corporation Cutting tool
JP5266587B2 (ja) * 2009-03-30 2013-08-21 住友電工ハードメタル株式会社 粗粒cBN粒子を含有する切削工具用cBN焼結体
JPWO2011129422A1 (ja) * 2010-04-16 2013-07-18 株式会社タンガロイ 被覆cBN焼結体
WO2012053507A1 (ja) * 2010-10-18 2012-04-26 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体、及び立方晶窒化硼素焼結体工具
KR20170112716A (ko) * 2016-04-01 2017-10-12 일진다이아몬드(주) 다결정 입방정 질화붕소
US11396482B2 (en) 2018-09-19 2022-07-26 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material, cutting tool including cubic boron nitride sintered material, and method of producing cubic boron nitride sintered material
CN114845972A (zh) 2019-12-16 2022-08-02 住友电气工业株式会社 立方晶氮化硼烧结体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531517A (en) * 1978-08-21 1980-03-05 Mitsubishi Metal Corp Sintered material with tenacity and wear resistance for cutting tool
WO2005066381A1 (ja) 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. 立方晶型窒化硼素焼結体
JP6744520B1 (ja) * 2018-09-19 2020-08-19 住友電気工業株式会社 立方晶窒化硼素焼結体、およびそれを含む切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4242334A4

Also Published As

Publication number Publication date
CN116348625A (zh) 2023-06-27
JPWO2022097206A1 (ja) 2022-05-12
US20230027098A1 (en) 2023-01-26
US11795113B2 (en) 2023-10-24
KR20230073334A (ko) 2023-05-25
JP7064658B1 (ja) 2022-05-10
EP4242334A4 (en) 2024-01-03
US20220153651A1 (en) 2022-05-19
EP4242334A1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
KR101811510B1 (ko) 입방정 질화 붕소 소결체의 제조 방법 및 입방정 질화 붕소 소결체
JP6744519B1 (ja) 立方晶窒化硼素焼結体、それを含む切削工具、および立方晶窒化硼素焼結体の製造方法
JP6744520B1 (ja) 立方晶窒化硼素焼結体、およびそれを含む切削工具
JP6703214B1 (ja) 立方晶窒化硼素焼結体、およびそれを含む切削工具
KR20180090858A (ko) 소결체 및 이를 포함하는 절삭 공구
JP7064658B1 (ja) 立方晶窒化硼素焼結体
US11339096B1 (en) Tungsten carbide powder
EP4234135A1 (en) Diamond sintered body, and tool comprising diamond sintered body
JP7252415B2 (ja) ダイヤモンド焼結体、及びダイヤモンド焼結体を備える工具
JP2002029845A (ja) 超硬質焼結体
CN114144393B (zh) 立方晶氮化硼烧结体
KR20230043854A (ko) 입방정 질화붕소 소결체 및 그것을 포함하는 절삭 공구

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568124

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237014507

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020960760

Country of ref document: EP

Effective date: 20230605