WO2022097194A1 - Structure management system - Google Patents

Structure management system Download PDF

Info

Publication number
WO2022097194A1
WO2022097194A1 PCT/JP2020/041170 JP2020041170W WO2022097194A1 WO 2022097194 A1 WO2022097194 A1 WO 2022097194A1 JP 2020041170 W JP2020041170 W JP 2020041170W WO 2022097194 A1 WO2022097194 A1 WO 2022097194A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
wiring
management system
soil
metal
Prior art date
Application number
PCT/JP2020/041170
Other languages
French (fr)
Japanese (ja)
Inventor
真悟 峯田
翔太 大木
守 水沼
宗一 岡
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/246,995 priority Critical patent/US20230399807A1/en
Priority to PCT/JP2020/041170 priority patent/WO2022097194A1/en
Priority to JP2022560535A priority patent/JPWO2022097194A1/ja
Publication of WO2022097194A1 publication Critical patent/WO2022097194A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D9/00Removing sheet piles bulkheads, piles, mould-pipes or other moulds or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation

Definitions

  • the present invention relates to a structure management system that manages metal structures buried in the ground.
  • Non-patent document 2, non-patent document 3 Non-patent document 3
  • the normal soil corrosion rate is the period from when the target metal structure is no longer needed until it returns to the soil due to corrosion.
  • the present invention has been made to solve the above problems, and an object thereof is to enable a metal structure buried in the ground to be returned to the soil more quickly.
  • the structure management system is a structure composed of metal and buried in the ground, a first wiring connected to the structure, and a structure composed of metal and buried in the ground. It is equipped with an electrode embedded in, a second wire connected to the electrode, and a switch that turns on and off the conduction state between the first wire and the second wire. With the switch turned on, the electrode is more precious than the structure.
  • the distance between the structure and the electrode is within the range in which the electrons generated when the metal constituting the structure is ionized can reach the electrode.
  • the electrodes are embedded around the metal structure buried in the ground to make the electrodes more noble than the structure, so that the metal structure buried in the ground is used. Things can be returned to the soil more quickly.
  • FIG. 1 is a configuration diagram showing a configuration of a structure management system according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a configuration of a structure management system according to a second embodiment of the present invention.
  • This structure management system includes a structure 101, a first wiring 102, an electrode 103, a second wiring 104, and a switch 105.
  • the structure 101 is made of metal such as steel and is buried underground.
  • the structure 101 is, for example, a steel pipe, which is made of, for example, steel or brass, has high strength required for a structure 101 used in a building, and is inexpensive, and is generally oxidized. It will corrode and eventually return to the so-called soil.
  • the first wiring 102 is connected to the structure 101.
  • the first wiring 102 can be a covered conductor.
  • the electrode 103 is made of metal and is buried in the ground where the structure 101 is buried.
  • the second wiring 104 is connected to the electrode 103.
  • the second wiring 104 can be a covered conductor.
  • the switch 105 turns on / off the conduction state between the first wiring 102 and the second wiring 104.
  • the structure 101 and the electrode 103 are buried in the soil 110.
  • the electrode 103 is in a more noble state than the structure 101.
  • the electrode 103 is made of a metal having a lower ionization tendency than the metal constituting the structure 101.
  • the electrode 103 can be made of nickel, copper, tin, silver, gold, platinum, or an alloy containing these. Further, a metal structurally provided with these metals can be used as the metal used for the electrode 103. With this configuration, when the switch 105 is turned on, the electrode 103 becomes more noble than the structure 101. Further, the distance between the structure 101 and the electrode 103 is within a range in which the electrons generated when the metal constituting the structure 101 is ionized can reach the electrode 103.
  • one end of the first wiring 102 is electrically connected to the structure 101 and buried in the soil 110.
  • the other end of the first wiring 102 is in a state of being above the ground 111.
  • one end of the second wiring 104 is electrically connected to the electrode 103 and buried in the soil 110.
  • the other end of the second wiring 104 is in a state of being above the ground 111.
  • the other end of the first wiring 102 protruding from the ground 111 and the other end of the second wiring 104 are connected to the switch 105.
  • the distance between the structure 101 and the electrode 103 is within the reachable range of the electrons generated when the metal constituting the structure 101 is ionized.
  • the switch 105 is turned off while the structure 101 is in use. In this state, the structure 101 deteriorates at a normal soil corrosion rate. After the structure 101 has been used for a predetermined period of time, the switch 105 is turned on at the stage of renewing the structure 101.
  • the structure 101 and the electrode 103 are electrically connected via the first wiring 102 and the second wiring 104, the structure 101 becomes a negative electrode, the electrode 103 becomes a positive electrode, and the structure 101 and the electrode 103
  • the soil 110 between them becomes a state in which a chemical battery that functions as an electrolyte and a separator is formed. Therefore, the structure 101 undergoes corrosion (oxidation) faster than the normal corrosion (oxidation) rate in the soil 110.
  • the switch 105 by turning on the switch 105, even if the structure 101 to be renewed is left buried in the soil 110, it is corroded in a short period of time. Can reduce environmental and safety issues and costs.
  • the shape of the structure 101 is not particularly limited.
  • the shape of the electrode 103 is not particularly limited.
  • the electrode 103 has a shape that can be easily driven into the soil 110 by, for example, having a net shape, a pile shape, or a plate shape, so that the electrode 103 can be easily embedded in the soil 110. Further, by adopting these shapes, the electrode 103 can be easily recovered. Further, a plurality of electrodes 103 can be embedded so as to surround the periphery of the structure 101. This configuration is preferable because the progress of corrosion described above is stabilized.
  • This structure management system includes a structure 101, a first wiring 102, an electrode 103a, a second wiring 104, a switch 105, and a DC power supply 106.
  • the DC power supply 106 With the switch 105 turned on, the side of the electrode 103a is connected to the negative electrode, and the side of the structure 101 is connected to the positive electrode.
  • the switch 105 when the switch 105 is turned on by the DC power supply 106, the structure 101 is polarized to a potential lower than that of the electrode 103a.
  • the output voltage of the DC power supply 106 is adjusted so that a current flows from the structure 101 toward the electrode 103a through the soil 110.
  • the electrode 103a can be made of a metal having the same ionization tendency as the metal constituting the structure 101.
  • the DC power supply 106 can be a chemical battery or a solar cell. Further, the DC power source 106 can use renewable energy such as solar power generation and wind power generation. If the renewable energy is alternating current, it is converted to direct current using a rectifier. In addition, renewable energy can be stored in a storage battery and used. Other configurations are the same as those in the first embodiment described above.
  • one end of the first wiring 102 is electrically connected to the structure 101 and buried in the soil 110.
  • the other end of the first wiring 102 is in a state of being above the ground 111.
  • one end of the second wiring 104 is electrically connected to the electrode 103a and buried in the soil 110.
  • the other end of the second wiring 104 is in a state of being above the ground 111.
  • the other end of the first wiring 102 protruding from the ground 111 and the other end of the second wiring 104 are connected to the switch 105 and the DC power supply 106.
  • the distance between the structure 101 and the electrode 103a is within the reachable range of the electrons generated when the metal constituting the structure 101 is ionized.
  • the switch 105 is turned off while the structure 101 is in use. In this state, the structure 101 deteriorates at a normal soil corrosion rate. After the structure 101 has been used for a predetermined period of time, the switch 105 is turned on at the stage of renewing the structure 101.
  • the structure 101 and the electrode 103a are connected to the DC power supply 106 via the first wiring 102 and the second wiring 104, and a current flows from the structure 101 toward the electrode 103a through the soil 110. Therefore, the structure 101 undergoes corrosion (oxidation) faster than the normal corrosion (oxidation) rate in the soil 110.
  • the structure management system according to the second embodiment can include any of a voltmeter, an ammeter, and a coulomb meter connected to the first wiring 102 or the second wiring 104. With this configuration, it is possible to estimate the corrosion state, speed, end period, etc. of the structure 101 in the corrosion period after the structure 101 is no longer needed.
  • the electrode 103a can be composed of a new structure for refurbishing the structure 101.
  • the new structure is the same as the structure 101.
  • the structure 101 to be renewed and the newly laid structure are connected with the new structure as the electrode 103a as described with reference to FIG. 2, and the switch 105 is turned on.
  • the corrosion rate of the structure 101 to be renewed is increased, and the corrosion period is shortened.
  • the newly laid structure can be protected by the anticorrosion current flowing from the structure 101.
  • an electrode is embedded around a metal structure buried in the ground to make the electrode more noble than the structure, so that the metal buried in the ground is used. Structures can be returned to the soil more quickly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

A structure (101) is constituted of metal such as steel, and is buried in the ground. A first wiring (102) is connected to the structure (101). A second wiring (104) is connected to an electrode (103). A switch (105) turns on/off a conduction state between the first wiring (102) and the second wiring (104). In a state where the switch (105) has been turned on, the electrode (103) enters a state nobler than that of the structure (101). The electrode (103) can be constituted of a metal that has an ionization tendency lower than that of the metal constituting the structure (101).

Description

構造物管理システムStructure management system
 本発明は、地中に埋設された金属構造物を管理する構造物管理システムに関する。 The present invention relates to a structure management system that manages metal structures buried in the ground.
 我々の生活を支えるインフラ設備は種類も多く、数も膨大である。また、インフラ設備は、市街地だけでなく、山岳地や海岸付近、温泉地や寒冷地、さらに海中や地中に至るまで多様な環境に晒されており、劣化の形態や進行速度も様々である。例えば、鋼管柱、支持アンカ、鋼配管などに代表される金属製の地中設備は、土壌に接するために腐食し、外部環境に応じて異なる速さで劣化が進行する(非特許文献1,非特許文献2,非特許文献3) 。従って、これら金属製の地中設備は構造もしくは機能面での安全性を担保するために、様々な防食方法によって劣化速度を低減しつつ、ある期間使用した後は、一般に、更改する。 There are many types of infrastructure equipment that support our lives, and the number is enormous. In addition, infrastructure equipment is exposed to various environments not only in urban areas but also in mountainous areas and coastal areas, hot spring areas and cold areas, and even in the sea and underground, and the form and speed of deterioration vary. .. For example, metal underground equipment represented by steel pipe columns, support anchors, steel pipes, etc. corrodes due to contact with soil and deteriorates at a different rate depending on the external environment (Non-Patent Documents 1 and 1). Non-patent document 2, non-patent document 3). Therefore, in order to ensure the safety in terms of structure or function, these metal underground equipments are generally renewed after being used for a certain period of time while reducing the deterioration rate by various anticorrosion methods.
 地中埋設された金属構造物を更改する場合、第1に、更改対象の金属構造物を地中から除去し、同じ場所に新しい構造物を埋設する方法がある。また、第2に、更改対象物をそのまま地中に残置したうえで、別の場所に新しい構造物を埋設する方法が考えられる。後者は、更改対象物を地中から取り除くことが、環境もしくは技術面で困難とされる場合に採用されることがあり、作業全体で考えたときに低コストに抑えられる場合も多い。 When renewing a metal structure buried underground, first, there is a method of removing the metal structure to be renewed from the ground and burying a new structure in the same place. Secondly, it is conceivable to leave the object to be renewed in the ground as it is and then bury a new structure in another place. The latter may be adopted when it is environmentally or technically difficult to remove the object to be renewed from the ground, and it is often possible to keep the cost low when considering the entire work.
 更改対象物を地中に埋設したまま新しい構造物を埋設する場合、更改対象物が経時的に腐食劣化し、いわゆる土に還るといわれる状態となることを待つことになる。もちろん、更改対象物が土に還る状態が、地中環境を汚染しないことが大切であるが、懸念点として土に還るまでの期間の長さがある。 When a new structure is buried while the object to be renewed is buried in the ground, it is necessary to wait for the object to be renewed to corrode and deteriorate over time and return to the so-called soil. Of course, it is important that the state in which the object to be renewed returns to the soil does not pollute the underground environment, but the concern is the length of time until it returns to the soil.
 一般的な土中での腐食速度は小さいことが多く、更改対象物が土に還る前に、新しく埋設した構造物の機能的な寿命がきてしまう状況も想像に難くない。この場合、土中に残置される構造物が増えてしまい、新設するエリアが縮小することや、安全上の問題が生じる可能性が高い。従って、地中に埋設されている金属構造物が、不要になってから土に還るまでの期間を短縮する必要があるが、前述の土中腐食速度の小ささから、これを実現することは困難である。 The corrosion rate in general soil is often low, and it is not difficult to imagine the situation where the functional life of the newly buried structure will expire before the renewal target returns to the soil. In this case, there is a high possibility that the number of structures left in the soil will increase, the area to be newly constructed will shrink, and safety problems will occur. Therefore, it is necessary to shorten the period from when the metal structure buried in the ground is no longer needed until it returns to the soil, but due to the low rate of corrosion in the soil mentioned above, this cannot be achieved. Have difficulty.
 前述の通り、更改対象物を地中に埋設したまま新しい構造物を埋設する場合、対象の金属構造物が不要になってから、腐食によって土に還るまでの期間が、通常の土中腐食速度に従う方法では長期化してしまうという課題があった。 As mentioned above, when a new structure is buried while the object to be renewed is buried in the ground, the normal soil corrosion rate is the period from when the target metal structure is no longer needed until it returns to the soil due to corrosion. There was a problem that the method according to the above would take a long time.
 本発明は、以上のような問題点を解消するためになされたものであり、地中埋設された金属構造物を、より迅速に土に還せるようにすることを目的とする。 The present invention has been made to solve the above problems, and an object thereof is to enable a metal structure buried in the ground to be returned to the soil more quickly.
 本発明に係る構造物管理システムは、金属から構成されて地中に埋設された構造物と、構造物に接続された第1配線と、金属から構成されて構造物が埋設されている地中に埋設された電極と、電極に接続された第2配線と、第1配線と第2配線との導通状態をオンオフするスイッチとを備え、スイッチをオンとした状態で、電極は構造物より貴な状態とされ、構造物と電極との距離は、構造物を構成する金属がイオン化したときに生成される電子が、電極に到達可能な範囲とされている。 The structure management system according to the present invention is a structure composed of metal and buried in the ground, a first wiring connected to the structure, and a structure composed of metal and buried in the ground. It is equipped with an electrode embedded in, a second wire connected to the electrode, and a switch that turns on and off the conduction state between the first wire and the second wire. With the switch turned on, the electrode is more precious than the structure. The distance between the structure and the electrode is within the range in which the electrons generated when the metal constituting the structure is ionized can reach the electrode.
 以上説明したように、本発明によれば、地中に埋設された金属製の構造物の周囲に電極を埋設し、電極を構造物より貴な状態とするので、地中埋設された金属構造物が、より迅速に土に還せるようになる。 As described above, according to the present invention, the electrodes are embedded around the metal structure buried in the ground to make the electrodes more noble than the structure, so that the metal structure buried in the ground is used. Things can be returned to the soil more quickly.
図1は、本発明の実施の形態1に係る構造物管理システムの構成を示す構成図である。FIG. 1 is a configuration diagram showing a configuration of a structure management system according to a first embodiment of the present invention. 図2は、本発明の実施の形態2に係る構造物管理システムの構成を示す構成図である。FIG. 2 is a configuration diagram showing a configuration of a structure management system according to a second embodiment of the present invention.
 以下、本発明の実施の形態に係る構造物管理システムについて説明する。 Hereinafter, the structure management system according to the embodiment of the present invention will be described.
[実施の形態1]
 はじめに、本発明の実施の形態1に係る構造物管理システムについて図1を参照して説明する。この構造物管理システムは、構造物101、第1配線102、電極103、第2配線104、スイッチ105を備える。
[Embodiment 1]
First, the structure management system according to the first embodiment of the present invention will be described with reference to FIG. This structure management system includes a structure 101, a first wiring 102, an electrode 103, a second wiring 104, and a switch 105.
 構造物101は、鋼材などの金属から構成されて地中に埋設されている。構造物101は、例えば鋼管であり、例えば鉄鋼や真鍮から構成され、建造物などに用いられる構造物101として要求される高い強度を備え、また、コストのかからないものであり、一般には、酸化により腐食し、いずれは、いわゆる土に還るといわれる状態となる。 The structure 101 is made of metal such as steel and is buried underground. The structure 101 is, for example, a steel pipe, which is made of, for example, steel or brass, has high strength required for a structure 101 used in a building, and is inexpensive, and is generally oxidized. It will corrode and eventually return to the so-called soil.
 第1配線102は、構造物101に接続されている。第1配線102は、被覆導線とすることができる。電極103は、金属から構成されて構造物101が埋設されている地中に埋設されている。第2配線104は、電極103に接続されている。第2配線104は、被覆導線とすることができる。スイッチ105は、第1配線102と第2配線104との導通状態をオンオフする。この例において、構造物101、電極103は、土壌110の中に埋設されている。 The first wiring 102 is connected to the structure 101. The first wiring 102 can be a covered conductor. The electrode 103 is made of metal and is buried in the ground where the structure 101 is buried. The second wiring 104 is connected to the electrode 103. The second wiring 104 can be a covered conductor. The switch 105 turns on / off the conduction state between the first wiring 102 and the second wiring 104. In this example, the structure 101 and the electrode 103 are buried in the soil 110.
 また、スイッチ105をオンとした状態で、電極103は、構造物101より貴な状態となる。実施の形態1では、電極103は、構造物101を構成する金属よりイオン化傾向が小さい金属から構成する。例えば、構造物101が鋼材から構成されている場合、電極103は、ニッケルや銅、錫、銀、金、白金、もしくはこれらを含む合金から構成することができる。またこれら金属を構造的に備えたものを、電極103に用いる金属とすることができる。この構成とすることで、スイッチ105をオンとすると、電極103は構造物101より貴な状態となる。また、構造物101と電極103との距離は、構造物101を構成する金属がイオン化したときに生成される電子が、電極103に到達可能な範囲とされている。 Further, with the switch 105 turned on, the electrode 103 is in a more noble state than the structure 101. In the first embodiment, the electrode 103 is made of a metal having a lower ionization tendency than the metal constituting the structure 101. For example, when the structure 101 is made of steel, the electrode 103 can be made of nickel, copper, tin, silver, gold, platinum, or an alloy containing these. Further, a metal structurally provided with these metals can be used as the metal used for the electrode 103. With this configuration, when the switch 105 is turned on, the electrode 103 becomes more noble than the structure 101. Further, the distance between the structure 101 and the electrode 103 is within a range in which the electrons generated when the metal constituting the structure 101 is ionized can reach the electrode 103.
 次に、実施の形態1に係る構造物管理システムを用いた、構造物の管理方法について説明する。まず、構造物101に第1配線102の一端を電気的に接続して土壌110に埋設する。第1配線102の他端は、地面111より上に出した状態とする。また、電極103に第2配線104の一端を電気的に接続して土壌110に埋設する。第2配線104の他端は、地面111より上に出した状態とする。地面111より出されている第1配線102の他端と、第2配線104の他端とを、スイッチ105に接続する。土壌110の中において、構造物101と電極103との間隔は、構造物101を構成する金属がイオン化したときに生成される電子が到達可能な範囲とする。 Next, a structure management method using the structure management system according to the first embodiment will be described. First, one end of the first wiring 102 is electrically connected to the structure 101 and buried in the soil 110. The other end of the first wiring 102 is in a state of being above the ground 111. Further, one end of the second wiring 104 is electrically connected to the electrode 103 and buried in the soil 110. The other end of the second wiring 104 is in a state of being above the ground 111. The other end of the first wiring 102 protruding from the ground 111 and the other end of the second wiring 104 are connected to the switch 105. In the soil 110, the distance between the structure 101 and the electrode 103 is within the reachable range of the electrons generated when the metal constituting the structure 101 is ionized.
 構造物101が使用されている期間は、スイッチ105をオフ状態とする。この状態では、構造物101は、通常の土壌腐食速度で劣化する。構造物101を所定の期間使用した後、構造物101を更改する段階において、スイッチ105をオン状態とする。 The switch 105 is turned off while the structure 101 is in use. In this state, the structure 101 deteriorates at a normal soil corrosion rate. After the structure 101 has been used for a predetermined period of time, the switch 105 is turned on at the stage of renewing the structure 101.
 この状態では、第1配線102および第2配線104を介し、構造物101と電極103とが電気的に接続し、構造物101が負極となり、電極103が正極となり、構造物101と電極103との間の土壌110が、電解質およびセパレータとして機能する化学電池が構成される状態となる。このため、構造物101は、土壌110中の通常の腐食(酸化)速度よりも早く腐食(酸化)が進行する。 In this state, the structure 101 and the electrode 103 are electrically connected via the first wiring 102 and the second wiring 104, the structure 101 becomes a negative electrode, the electrode 103 becomes a positive electrode, and the structure 101 and the electrode 103 The soil 110 between them becomes a state in which a chemical battery that functions as an electrolyte and a separator is formed. Therefore, the structure 101 undergoes corrosion (oxidation) faster than the normal corrosion (oxidation) rate in the soil 110.
 上述したように、実施の形態1によれば、スイッチ105をオン状態とすることで、更改対象の構造物101を土壌110の中に埋めたままにしておいても、短期間で腐食させることができ、環境や安全上の問題およびコストが低減できる。 As described above, according to the first embodiment, by turning on the switch 105, even if the structure 101 to be renewed is left buried in the soil 110, it is corroded in a short period of time. Can reduce environmental and safety issues and costs.
 なお、構造物101の形状には、特に制限はない。同様に、電極103の形状に特に制限はない。また、電極103は、例えば、網状や杭状または板状とすることで、土壌110に打ち込みやすい形状とすることで、土壌110に埋設しやすいものとなる。また、これら形状とすることで、電極103を、容易に回収できるようになる。また、電極103は、複数個を構造物101の周辺を囲うように埋め込むことができる。この構成とすることで、上述した腐食の進行が安定化するため好ましい。 The shape of the structure 101 is not particularly limited. Similarly, the shape of the electrode 103 is not particularly limited. Further, the electrode 103 has a shape that can be easily driven into the soil 110 by, for example, having a net shape, a pile shape, or a plate shape, so that the electrode 103 can be easily embedded in the soil 110. Further, by adopting these shapes, the electrode 103 can be easily recovered. Further, a plurality of electrodes 103 can be embedded so as to surround the periphery of the structure 101. This configuration is preferable because the progress of corrosion described above is stabilized.
[実施の形態2]
 次に、本発明の実施の形態2に係る構造物管理システムについて図2を参照して説明する。この構造物管理システムは、構造物101、第1配線102、電極103a、第2配線104、スイッチ105、および直流電源106を備える。直流電源106は、スイッチ105をオンとした状態で、電極103aの側が負極に接続し、構造物101の側が正極に接続する。
[Embodiment 2]
Next, the structure management system according to the second embodiment of the present invention will be described with reference to FIG. This structure management system includes a structure 101, a first wiring 102, an electrode 103a, a second wiring 104, a switch 105, and a DC power supply 106. In the DC power supply 106, with the switch 105 turned on, the side of the electrode 103a is connected to the negative electrode, and the side of the structure 101 is connected to the positive electrode.
 実施の形態2において、直流電源106により、スイッチ105をオンとすると、構造物101は、電極103aより卑な電位に分極される。スイッチ105をオン状態としたときに、構造物101から電極103aに向けて土壌110を介して電流が流れるように、直流電源106の出力電圧が調整される。また、実施の形態2において、電極103aは、構造物101を構成する金属と同じイオン化傾向の金属から構成することができる。 In the second embodiment, when the switch 105 is turned on by the DC power supply 106, the structure 101 is polarized to a potential lower than that of the electrode 103a. When the switch 105 is turned on, the output voltage of the DC power supply 106 is adjusted so that a current flows from the structure 101 toward the electrode 103a through the soil 110. Further, in the second embodiment, the electrode 103a can be made of a metal having the same ionization tendency as the metal constituting the structure 101.
 直流電源106は、化学電池や太陽電池とすることができる。また、直流電源106は、例えば、太陽光発電や風力発電などの再生可能エネルギーが利用できる。また、再生可能エネルギーが交流の場合、整流器を用いて直流とする。また、再生可能エネルギーを蓄電池に蓄電して利用することができる。他の構成は、前述した実施の形態1と同様である。 The DC power supply 106 can be a chemical battery or a solar cell. Further, the DC power source 106 can use renewable energy such as solar power generation and wind power generation. If the renewable energy is alternating current, it is converted to direct current using a rectifier. In addition, renewable energy can be stored in a storage battery and used. Other configurations are the same as those in the first embodiment described above.
 実施の形態2においても、まず、構造物101に第1配線102の一端を電気的に接続して土壌110に埋設する。第1配線102の他端は、地面111より上に出した状態とする。また、電極103aに第2配線104の一端を電気的に接続して土壌110に埋設する。第2配線104の他端は、地面111より上に出した状態とする。地面111より出されている第1配線102の他端と、第2配線104の他端とを、スイッチ105および直流電源106に接続する。土壌110の中において、構造物101と電極103aとの間隔は、構造物101を構成する金属がイオン化したときに生成される電子が到達可能な範囲とする。 Also in the second embodiment, first, one end of the first wiring 102 is electrically connected to the structure 101 and buried in the soil 110. The other end of the first wiring 102 is in a state of being above the ground 111. Further, one end of the second wiring 104 is electrically connected to the electrode 103a and buried in the soil 110. The other end of the second wiring 104 is in a state of being above the ground 111. The other end of the first wiring 102 protruding from the ground 111 and the other end of the second wiring 104 are connected to the switch 105 and the DC power supply 106. In the soil 110, the distance between the structure 101 and the electrode 103a is within the reachable range of the electrons generated when the metal constituting the structure 101 is ionized.
 構造物101が使用されている期間は、スイッチ105をオフ状態とする。この状態では、構造物101は、通常の土壌腐食速度で劣化する。構造物101を所定の期間使用した後、構造物101を更改する段階において、スイッチ105をオン状態とする。 The switch 105 is turned off while the structure 101 is in use. In this state, the structure 101 deteriorates at a normal soil corrosion rate. After the structure 101 has been used for a predetermined period of time, the switch 105 is turned on at the stage of renewing the structure 101.
 この状態では、第1配線102および第2配線104を介し、構造物101および電極103aが、直流電源106に接続し、構造物101から電極103aに向けて土壌110を介して電流が流れる。このため、構造物101は、土壌110中の通常の腐食(酸化)速度よりも早く腐食(酸化)が進行する。 In this state, the structure 101 and the electrode 103a are connected to the DC power supply 106 via the first wiring 102 and the second wiring 104, and a current flows from the structure 101 toward the electrode 103a through the soil 110. Therefore, the structure 101 undergoes corrosion (oxidation) faster than the normal corrosion (oxidation) rate in the soil 110.
 上述したように、実施の形態2においても、スイッチ105をオン状態とすることで、更改対象の構造物101を土壌110の中に埋めたままにしておいても、短期間で腐食させることができ、環境や安全上の問題およびコストが低減できる。 As described above, also in the second embodiment, by turning on the switch 105, even if the structure 101 to be renewed is left buried in the soil 110, it can be corroded in a short period of time. It can reduce environmental and safety issues and costs.
 また、実施の形態2に係る構造物管理システムは、第1配線102または第2配線104に接続された、電圧計、電流計、およびクーロンメータのいずれかを備えることができる。この構成とすることで、構造物101が不要になってからの腐食期間において、構造物101の腐食状態や速度、終了期間などを見積もることができる。 Further, the structure management system according to the second embodiment can include any of a voltmeter, an ammeter, and a coulomb meter connected to the first wiring 102 or the second wiring 104. With this configuration, it is possible to estimate the corrosion state, speed, end period, etc. of the structure 101 in the corrosion period after the structure 101 is no longer needed.
 また、実施の形態2において、電極103aは、構造物101の更改するための新たな構造物から構成することができる。新たな構造物は、構造物101と同じものである。この構成とすることで、構造物101を一定期間使用し、更改する時期になったとき、構造物101とは別の場所の土壌110の中に、新しい構造物を埋設する。次いで、更改対象の構造物101と新しく敷設した構造物とを、新しい構造物を電極103aとした状態で、図2を用いて説明したように接続し、スイッチ105をオン状態とする。 Further, in the second embodiment, the electrode 103a can be composed of a new structure for refurbishing the structure 101. The new structure is the same as the structure 101. With this configuration, when the structure 101 is used for a certain period of time and it is time to renew it, a new structure is buried in the soil 110 at a place different from the structure 101. Next, the structure 101 to be renewed and the newly laid structure are connected with the new structure as the electrode 103a as described with reference to FIG. 2, and the switch 105 is turned on.
 この結果、更改対象の構造物101の腐食速度が増し、腐食期間が短縮される。
また、同時に、新しく敷設した構造物は、構造物101から流れる防食電流によって防食することが可能となる。
As a result, the corrosion rate of the structure 101 to be renewed is increased, and the corrosion period is shortened.
At the same time, the newly laid structure can be protected by the anticorrosion current flowing from the structure 101.
 以上に説明したように、本発明によれば、地中に埋設された金属製の構造物の周囲に電極を埋設し、電極を構造物より貴な状態とするので、地中埋設された金属構造物が、より迅速に土に還せるようになる。 As described above, according to the present invention, an electrode is embedded around a metal structure buried in the ground to make the electrode more noble than the structure, so that the metal buried in the ground is used. Structures can be returned to the soil more quickly.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be carried out by a person having ordinary knowledge in the art within the technical idea of the present invention. That is clear.
 101…構造物、102…第1配線、103…電極、104…第2配線、105…スイッチ、110…土壌、111…地面。 101 ... structure, 102 ... first wiring, 103 ... electrode, 104 ... second wiring, 105 ... switch, 110 ... soil, 111 ... ground.

Claims (4)

  1.  金属から構成されて地中に埋設された構造物と、
     前記構造物に接続された第1配線と、
     金属から構成されて前記構造物が埋設されている地中に埋設された電極と、
     前記電極に接続された第2配線と、
     前記第1配線と前記第2配線との導通状態をオンオフするスイッチと
     を備え、
     前記スイッチをオンとした状態で、前記電極は前記構造物より貴な状態とされ、
     前記構造物と前記電極との距離は、前記構造物を構成する金属がイオン化したときに生成される電子が、前記電極に到達可能な範囲とされている
     ことを特徴とする構造物管理システム。
    Structures made of metal and buried in the ground,
    The first wiring connected to the structure and
    Electrodes buried in the ground composed of metal and in which the structure is buried,
    The second wiring connected to the electrode and
    A switch for turning on / off the conduction state between the first wiring and the second wiring is provided.
    With the switch turned on, the electrodes are in a more noble state than the structure.
    A structure management system characterized in that the distance between the structure and the electrode is within a range in which electrons generated when the metal constituting the structure is ionized can reach the electrode.
  2.  請求項1記載の構造物管理システムにおいて、
     前記電極は、前記構造物を構成する金属よりイオン化傾向が小さい金属から構成されていることを特徴とする構造物管理システム。
    In the structure management system according to claim 1,
    A structure management system characterized in that the electrode is made of a metal having a lower ionization tendency than the metal constituting the structure.
  3.  請求項1記載の構造物管理システムにおいて、
     前記スイッチをオンとした状態で、前記電極の側が負極に接続し、前記構造物の側が正極に接続する直流電源をさらに備え、
     前記スイッチをオンとすると、前記構造物から前記電極に向けた電流が土壌を介して流れることを特徴とする構造物管理システム。
    In the structure management system according to claim 1,
    With the switch turned on, a DC power supply is further provided in which the side of the electrode is connected to the negative electrode and the side of the structure is connected to the positive electrode.
    A structure management system characterized in that when the switch is turned on, an electric current directed from the structure to the electrodes flows through the soil.
  4.  請求項1~3のいずれか1項に記載の構造物管理システムにおいて、
     前記第1配線または前記第2配線に接続された、電圧計、電流計、およびクーロンメータのいずれかを備えることを特徴とする構造物管理システム。
    In the structure management system according to any one of claims 1 to 3,
    A structure management system comprising any of a voltmeter, an ammeter, and a coulomb meter connected to the first wiring or the second wiring.
PCT/JP2020/041170 2020-11-04 2020-11-04 Structure management system WO2022097194A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/246,995 US20230399807A1 (en) 2020-11-04 2020-11-04 Structure management system
PCT/JP2020/041170 WO2022097194A1 (en) 2020-11-04 2020-11-04 Structure management system
JP2022560535A JPWO2022097194A1 (en) 2020-11-04 2020-11-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041170 WO2022097194A1 (en) 2020-11-04 2020-11-04 Structure management system

Publications (1)

Publication Number Publication Date
WO2022097194A1 true WO2022097194A1 (en) 2022-05-12

Family

ID=81457642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041170 WO2022097194A1 (en) 2020-11-04 2020-11-04 Structure management system

Country Status (3)

Country Link
US (1) US20230399807A1 (en)
JP (1) JPWO2022097194A1 (en)
WO (1) WO2022097194A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182863A (en) * 1999-12-24 2001-07-06 Tokyo Gas Co Ltd Disposal method of buried pipe
JP3198598B2 (en) * 1992-04-07 2001-08-13 株式会社大林組 How to pull out steel members buried underground
JP2001271965A (en) * 2000-03-24 2001-10-05 Osaka Gas Co Ltd Method for disposing of unnecessary existing pipe
JP2001280069A (en) * 2000-03-31 2001-10-10 Tobishima Corp Pile core material for electrolytic corrosion
JP2004176479A (en) * 2002-11-28 2004-06-24 Tobishima Corp Portable steel pipe electrolytic corrosion device and electrolytic corrosion removing construction method for underground steel pipe using the device
JP2005180001A (en) * 2003-12-18 2005-07-07 Tobishima Corp Prestressing stranded wire removing method and device for removing the same
JP2006233592A (en) * 2005-02-25 2006-09-07 Tobishima Corp Method and device for removing prestressed concrete steel stranded wire
JP2007056474A (en) * 2005-08-22 2007-03-08 Tobishima Corp Steel pipe pile part removal method for earth retaining wall
JP2012214979A (en) * 2011-03-31 2012-11-08 Ohbayashi Corp Extraction method for steel underground wall

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3198598B2 (en) * 1992-04-07 2001-08-13 株式会社大林組 How to pull out steel members buried underground
JP2001182863A (en) * 1999-12-24 2001-07-06 Tokyo Gas Co Ltd Disposal method of buried pipe
JP2001271965A (en) * 2000-03-24 2001-10-05 Osaka Gas Co Ltd Method for disposing of unnecessary existing pipe
JP2001280069A (en) * 2000-03-31 2001-10-10 Tobishima Corp Pile core material for electrolytic corrosion
JP2004176479A (en) * 2002-11-28 2004-06-24 Tobishima Corp Portable steel pipe electrolytic corrosion device and electrolytic corrosion removing construction method for underground steel pipe using the device
JP2005180001A (en) * 2003-12-18 2005-07-07 Tobishima Corp Prestressing stranded wire removing method and device for removing the same
JP2006233592A (en) * 2005-02-25 2006-09-07 Tobishima Corp Method and device for removing prestressed concrete steel stranded wire
JP2007056474A (en) * 2005-08-22 2007-03-08 Tobishima Corp Steel pipe pile part removal method for earth retaining wall
JP2012214979A (en) * 2011-03-31 2012-11-08 Ohbayashi Corp Extraction method for steel underground wall

Also Published As

Publication number Publication date
JPWO2022097194A1 (en) 2022-05-12
US20230399807A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
Byrne et al. State-of-the-art review of cathodic protection for reinforced concrete structures
JP6272858B2 (en) Galvanic anode and anticorrosion method
US20150198518A1 (en) Cathodic protection reference cell article and method
CN103726057A (en) Corrosion resistant system and method of offshore wind power generating set base
WO2022097194A1 (en) Structure management system
US20150284860A1 (en) Protection of steel reinforced concrete elements
Abdulbaqi Numerical study and design of an impressed current cathodic protection system for buried metallic pipes
JPS6324076B2 (en)
McIntosh Grounding where corrosion protection is required
CN209759593U (en) Metal material anti-corrosion device under seawater environment based on magnetic field assistance
JP2021011614A (en) Electromotive force aid system in electrolytic corrosion protection work of galvanic anode system
KR102556808B1 (en) Cathodic protection system and the method thereof
Sen et al. Corrosion and steel grounding
CN109371402A (en) A kind of adjustable cathodic protection by rectifier system
JPS6319322Y2 (en)
KR102023553B1 (en) Corrosion monitoring system
Yadav et al. Corrosion control using DC current Parallel wire system
RU2355074C1 (en) Telluric current source
WO2015108525A1 (en) Cathodic protection reference cell article and method
RU2388191C1 (en) Method for generation of permanent electric energy
Erdal et al. Evaluation of novel corrosion protected aluminium earth wire for use in underground cable networks
Rohmannuddin et al. Effects of backfill type variations on current protections in impressed current cathodic protection using battery current sources
CN202347099U (en) Corrosion preventing device for metal equipment cabinet
RU2075542C1 (en) Method of protection from corrosion
Akpan et al. Proactive Pipeline Corrosion Monitoring Using a Telemetry System in The Ukanafun-Calabar Pipeline Route, Nigeria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560535

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960748

Country of ref document: EP

Kind code of ref document: A1