JP2012214979A - Extraction method for steel underground wall - Google Patents

Extraction method for steel underground wall Download PDF

Info

Publication number
JP2012214979A
JP2012214979A JP2011079240A JP2011079240A JP2012214979A JP 2012214979 A JP2012214979 A JP 2012214979A JP 2011079240 A JP2011079240 A JP 2011079240A JP 2011079240 A JP2011079240 A JP 2011079240A JP 2012214979 A JP2012214979 A JP 2012214979A
Authority
JP
Japan
Prior art keywords
retaining wall
wall
ground
underground wall
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011079240A
Other languages
Japanese (ja)
Inventor
Makoto Kanai
誠 金井
Shin Matsumoto
伸 松本
Toru Sasaki
徹 佐々木
Jun Mitsumoto
純 光本
Toru Nakano
徹 中野
Toshihiko Miura
俊彦 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2011079240A priority Critical patent/JP2012214979A/en
Publication of JP2012214979A publication Critical patent/JP2012214979A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for effectively reducing the frictional resistance force of a ground against a steel underground wall to be extracted.SOLUTION: In the extraction method for a steel underground wall 1 embedded in a ground 3, a pair of steel members 11, 12 are embedded in the ground 3 so that one of the pair of steel members faces one wall face of the underground wall 1 and the other of the pair of steel members faces the other wall face of the underground wall 1, a positive electrode of a DC power supply 14 is connected to the pair of steel members 11, 12 and a negative electrode of the DC power supply 14 is connected to the underground wall 1, DC voltage is applied to the pair of steel members 11, 12 and the underground wall 1 by the DC power supply 14, and then the underground wall 1 is extracted from the ground 3.

Description

本発明は、鋼製の地中壁の引抜き方法、該方法を用いる地下水流路の形成方法、及びシールド機の進路の開放方法に関する。   The present invention relates to a steel underground wall drawing method, a groundwater flow path forming method using the method, and a shield machine path opening method.

地中に埋設されている複数の鋼材を引抜く方法として、引抜き対象の鋼材に直流電源の負極を、他の鋼材に直流電源の正極を接続してこれらに直流電圧を印加してから、引抜き対象の鋼材を引抜く方法が知られている(例えば、特許文献1参照)。この鋼材の引抜き方法では、直流電圧を印加された一対の鋼材の間に電気浸透流が生じ、引抜き対象の鋼材の周囲に水分が集まることにより、鋼材の引抜きに対する地盤の摩擦抵抗力が低下し、鋼材の引抜きが容易になる。   As a method of extracting multiple steel materials buried in the ground, connect the negative electrode of the DC power supply to the steel material to be extracted, connect the positive electrode of the DC power supply to the other steel material, apply a DC voltage to them, and then extract A method of drawing out a target steel material is known (for example, see Patent Document 1). In this steel material drawing method, an electroosmotic flow is generated between a pair of steel materials to which a DC voltage is applied, and moisture collects around the steel material to be drawn, thereby reducing the frictional resistance of the ground against the steel material drawing. This makes it easy to pull out the steel material.

特許第3198598号公報Japanese Patent No. 3198598

ところで、地中壁を構成する鋼矢板を、上記方法を用いて引抜く場合には、鋼矢板から離れた位置に鋼材を打設してこの鋼材に直流電源の正極を接続し、鋼矢板に直流電源の負極を接続して、これらに直流電圧を印加することになる。この場合、地中壁は横方向に広がっており、負極の反対側の面まで電気浸透流が生じ難くなるため、正極から負極への水分の移動が、地中壁の片側の面のみで生じることになり、鋼矢板の引抜きに対する地盤の摩擦抵抗力を効果的に低減させることができない。   By the way, when pulling out the steel sheet pile constituting the underground wall using the above method, the steel material is placed at a position away from the steel sheet pile, the positive electrode of the DC power source is connected to this steel material, and the steel sheet pile is connected to the steel sheet pile. A negative electrode of a direct current power source is connected and a direct current voltage is applied to them. In this case, since the underground wall spreads in the horizontal direction and electroosmotic flow hardly occurs up to the surface on the opposite side of the negative electrode, the movement of moisture from the positive electrode to the negative electrode occurs only on one surface of the underground wall. That is, the frictional resistance of the ground against the drawing of the steel sheet pile cannot be effectively reduced.

本発明は、上記事情に鑑みてなされたものであり、鋼製の地中壁の引抜きに対する地盤の摩擦抵抗力を効果的に低減させることができる方法を提供するものである。   The present invention has been made in view of the above circumstances, and provides a method capable of effectively reducing the frictional resistance of the ground against drawing of a steel underground wall.

上記課題を解決するために、地中壁の引抜き方法は、地盤に埋設された鋼製の地中壁を引抜く方法であって、第1の電極を前記地中壁の一方の壁面に面し、第2の電極を前記地中壁の他方の壁面に面するように、地盤に埋設し、直流電源の正極を前記第1及び第2の電極に、前記直流電源の負極を前記地中壁に接続し、前記直流電源により前記第1及び第2の電極と前記地中壁との間に直流電圧を印加してから、前記地中壁を地盤より引抜くことを特徴とする。   In order to solve the above-mentioned problem, a method for extracting an underground wall is a method for extracting a steel underground wall embedded in the ground, wherein the first electrode faces one wall surface of the underground wall. Then, the second electrode is embedded in the ground so as to face the other wall surface of the underground wall, the positive electrode of the DC power supply is used as the first and second electrodes, and the negative electrode of the DC power supply is used as the underground It is connected to a wall, and after applying a DC voltage between the first and second electrodes and the underground wall by the DC power source, the underground wall is extracted from the ground.

なお、地中壁を地盤より引抜くのは、直流電源により第1及び第2の電極と地中壁との間に直流電圧を印加した後でもよく、印加しながらでもよい。   The underground wall may be pulled out of the ground after the DC voltage is applied between the first and second electrodes and the underground wall with a DC power source or may be applied.

また、地下水流路の形成方法は、前記の地中壁の引抜き方法を用いて、前記地中壁の一部を地盤から引抜くことにより、前記地中壁に地下水流路を形成することを特徴とする。   Further, the method for forming the groundwater flow path is to form the groundwater flow path in the underground wall by drawing a part of the underground wall from the ground using the method for extracting the underground wall. Features.

また、シールド機の進路の開放方法は、前記の地中壁の引抜き方法を用いて、シールドトンネルの発進立坑の壁面を構成する前記地中壁の一部を、シールド機の前記発進立坑からの進路から引き上げることにより、前記進路を開放することを特徴とする。   In addition, the method of opening the path of the shield machine uses the above-described method of pulling out the underground wall, and a part of the underground wall constituting the wall of the start tunnel of the shield tunnel is removed from the start shaft of the shield machine. The path is opened by pulling up from the path.

本発明によれば、鋼製の地中壁の引抜きに対する地盤の摩擦抵抗力を効果的に低減させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the frictional resistance force of the ground with respect to drawing of steel underground walls can be reduced effectively.

一実施形態に係る鋼製の地中壁の引抜き方法を用いて地盤から引抜く土留め壁を示す立面図である。It is an elevation view which shows the earth retaining wall pulled out from the ground using the drawing method of the steel underground wall which concerns on one Embodiment. 土留め壁を示す平面図である。It is a top view which shows a retaining wall. 土留め壁の引抜き対象部分を引抜いている状態を示す立面図である。It is an elevation view which shows the state which is extracting the extraction object part of a retaining wall. 他の実施形態に係る鋼製の地中壁の引抜き方法を用いて地盤から引抜く土留め壁を示す立面図である。It is an elevation view which shows the earth retaining wall pulled out from the ground using the drawing method of the steel underground wall which concerns on other embodiment. 土留め壁の引抜き対象部分をシールド機の進路から引上げている状態を示す立面図である。It is an elevation view which shows the state which has pulled up the extraction | drawer object part of a retaining wall from the course of a shield machine.

以下、本発明の一実施形態を、図面を参照しながら説明する。図1は、一実施形態に係る鋼製の地中壁の引抜き方法を用いて地盤3から引抜く土留め壁1を示す立面図であり、図2は、当該土留め壁1を示す平面図である。これらの図に示すように、土留め壁1は、地盤3に打設された多数の鋼矢板(シートパイル)2により構成された鋼製の矢板壁である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an elevation view showing a retaining wall 1 that is pulled out from the ground 3 using a steel underground wall pulling method according to an embodiment, and FIG. 2 is a plan view showing the retaining wall 1. FIG. As shown in these drawings, the earth retaining wall 1 is a steel sheet pile wall constituted by a number of steel sheet piles (sheet piles) 2 placed on the ground 3.

鋼矢板2は、U型(ハット型)鋼矢板であり、両端にフック部が形成されており、隣設された鋼矢板2は、互にフック部を係合させることにより横方向に連結されている。また、鋼矢板2は、サイレントマスター(サイレントパイル)工法等の打込み工法等により、地盤3の粘土層4まで打設されており、鋼矢板2が横方向に連なってなる土留め壁1と粘土層4とにより地下水の流れが塞き止められる。   The steel sheet pile 2 is a U-shaped (hat type) steel sheet pile, and hook portions are formed at both ends, and the adjacent steel sheet piles 2 are connected in the lateral direction by engaging the hook portions with each other. ing. Further, the steel sheet pile 2 is driven up to the clay layer 4 of the ground 3 by a driving method such as a silent master (silent pile) method, and the retaining wall 1 and the clay in which the steel sheet pile 2 is connected in the horizontal direction. Layer 4 blocks the flow of groundwater.

ここで、土留め壁1よりも地下水流の下流側における地下水位が、土留め壁1よりも地下水流の上流側における地下水位よりも低くなるところ、該下流側に井戸が存在するような場合には、該下流側における地下水位を一定以上に保つ必要がある。このため、例えば、地下鉄線路等に沿って土留め壁1を構築する場合等、土留め壁1を長距離に亘って構築するような場合には、地下鉄線路等の工事終了後に、土留め壁1の一部の鋼矢板2を地盤3から引抜くことにより、土留め壁1の一部に地下水流路を形成する。そこで、以下に説明する方法を用いて土留め壁1の一部を構成する鋼矢板2を地盤3から引抜く。   Here, when the groundwater level at the downstream side of the groundwater flow from the retaining wall 1 is lower than the groundwater level at the upstream side of the groundwater flow from the retaining wall 1, there is a well on the downstream side. Therefore, it is necessary to keep the groundwater level on the downstream side above a certain level. For this reason, for example, when the earth retaining wall 1 is constructed over a long distance, such as when the earth retaining wall 1 is constructed along a subway line or the like, the earth retaining wall is provided after the construction of the metro line or the like is completed. By extracting a part of the steel sheet pile 2 from the ground 3, a groundwater flow path is formed in a part of the retaining wall 1. Then, the steel sheet pile 2 which comprises some retaining walls 1 is pulled out from the ground 3 using the method demonstrated below.

まず、土留め壁1の一方の壁面に面して鋼製の長尺部材である鋼材11を打設し、土留め壁1の他方の壁面に面して鋼製の長尺部材である鋼材12を打設する。また、鋼材11、12を、土留め壁1の引抜き対象部分5から所定間隔の位置に、土留め壁1の下端が位置する深さまで延びるように打設する。また、鋼材11、12を、土留め壁1の引抜き対象部分5の幅方向(横方向)中央部を挟んで対向するように打設する。   First, a steel material 11 which is a long steel member is placed facing one wall surface of the retaining wall 1, and a steel material which is a long steel member facing the other wall surface of the retaining wall 1. 12 is placed. Further, the steel materials 11 and 12 are placed at predetermined positions from the drawing target portion 5 of the retaining wall 1 so as to extend to a depth at which the lower end of the retaining wall 1 is located. In addition, the steel materials 11 and 12 are placed so as to face each other across the center portion in the width direction (lateral direction) of the drawing target portion 5 of the retaining wall 1.

また、鋼材11、12には、直流電源14の正極を接続し、土留め壁1の引抜き対象部分5には、直流電源14の負極を接続する。そして、直流電源14により、鋼材11と土留め壁1の引抜き対象部分5との間、及び、鋼材12と土留め壁1の引抜き対象部分5との間に、直流電圧を印加する。   Further, the steel materials 11 and 12 are connected to the positive electrode of the DC power source 14, and the pull-out target portion 5 of the retaining wall 1 is connected to the negative electrode of the DC power source 14. Then, a DC voltage is applied between the steel material 11 and the extraction target portion 5 of the retaining wall 1 and between the steel material 12 and the extraction target portion 5 of the retaining wall 1 by the DC power source 14.

ここで、通常の地盤は、相当量の水分と相当量の電解質とを含んでいる。このため、正極に接続された鋼材11、12と負極に接続された土留め壁1の引抜き対象部分5との間に直流電圧を印加すると、鋼材11、12から土留め壁1の引抜き対象部分5への電気浸透流が生じ、鋼材11、12と土留め壁1の引抜き対象部分5との間の水分が、土留め壁1の引抜き対象部分5に集まる。   Here, the normal ground contains a considerable amount of moisture and a considerable amount of electrolyte. For this reason, when a DC voltage is applied between the steel materials 11 and 12 connected to the positive electrode and the extraction target portion 5 of the retaining wall 1 connected to the negative electrode, the extraction target portion of the retaining wall 1 from the steel materials 11 and 12. The electroosmotic flow to 5 occurs, and moisture between the steel materials 11, 12 and the extraction target portion 5 of the retaining wall 1 collects in the extraction target portion 5 of the retaining wall 1.

これにより、土留め壁1の引抜き対象部分5と地盤3との境界部に、周辺と比して格段に水分量が多い軟弱土層が形成される。即ち、土留め壁1の引抜き対象部分5が地盤3から縁切りされた状態となる。従って、土留め壁1の引抜き対象部分5と地盤3との付着力が低下され、土留め壁1の引抜き対象部分5の引抜きに対する地盤3の摩擦抵抗力が低下される。なお、電圧値、電圧印加時間や鋼材11と土留め壁1との間隔等は、土留め壁1の打設深さや引抜き対象部分5の幅や地盤3の水分量や地盤3の電解質の含有量等を考慮して設定する。   As a result, a soft soil layer having a much larger amount of water than the surroundings is formed at the boundary between the drawing target portion 5 of the earth retaining wall 1 and the ground 3. That is, the drawing target portion 5 of the retaining wall 1 is cut from the ground 3. Accordingly, the adhesion force between the extraction target portion 5 of the retaining wall 1 and the ground 3 is reduced, and the frictional resistance force of the ground 3 against the extraction of the extraction target portion 5 of the retaining wall 1 is decreased. The voltage value, the voltage application time, the distance between the steel material 11 and the retaining wall 1, the placement depth of the retaining wall 1, the width of the drawing target portion 5, the moisture content of the ground 3, and the electrolyte content of the ground 3 Set in consideration of the amount.

図3は、土留め壁1の引抜き対象部分5を引抜いている状態を示す立面図である。この図に示すように、鋼材11、12と土留め壁1との間に直流電圧を印加した後、引抜き対象部分5に含まれる鋼矢板2を1本ずつ引抜く。これにより、土留め壁1に地下水流路が形成される。この際、鋼矢板2は、油圧式圧入機(サイレントパイラー)やクレーン等を用いて引抜く。なお、クレーンを用いて鋼矢板2を引抜く場合には、鋼矢板2の頭部にクレーンのフックを引掛けるための孔を空けておく必要がある。   FIG. 3 is an elevational view showing a state in which the extraction target portion 5 of the retaining wall 1 is being extracted. As shown in this figure, after applying a DC voltage between the steel materials 11 and 12 and the retaining wall 1, the steel sheet piles 2 included in the drawing target portion 5 are pulled out one by one. Thereby, a groundwater flow path is formed in the earth retaining wall 1. At this time, the steel sheet pile 2 is pulled out using a hydraulic press-fitting machine (silent pillar) or a crane. In addition, when pulling out the steel sheet pile 2 using a crane, it is necessary to make a hole for hooking the hook of the crane on the head of the steel sheet pile 2.

ここで、土留め壁1は横方向に広がっていることから、土留め壁1の片面側でのみ正極となる鋼材から土留め壁1への電気浸透流を生じさせる場合には、土留め壁1の反対側の面にまで電気浸透流を生じさせることは難しく、土留め壁1の片面側にのみ水が集まることになる。そこで、本実施形態では、土留め壁1の片面側の地盤3に正極となる鋼材11を打設するのみならず、その裏面側の地盤3にも正極となる鋼材12を打設して、土留め壁1の片面側でのみならず、土留め壁1の両面側で、鋼材11、12から土留め壁1への電気浸透流を生じさせた。これにより、土留め壁1の片面のみならず、両面が地盤3から縁切りされた状態となる。よって、土留め壁1の片面側にのみ正極となる鋼材を打設して、土留め壁1の片面側でのみ鋼材から土留め壁1への電気浸透流を生じさせる場合と比して、土留め壁1と地盤3との付着力を低下でき、土留め壁1の引抜きに対する地盤3の摩擦抵抗力を低下できる。   Here, since the earth retaining wall 1 spreads in the lateral direction, when an electroosmotic flow from the steel material serving as the positive electrode to the earth retaining wall 1 is generated only on one side of the earth retaining wall 1, the earth retaining wall is used. It is difficult to generate an electroosmotic flow up to the opposite surface of 1, and water collects only on one side of the earth retaining wall 1. Therefore, in this embodiment, not only the steel material 11 serving as the positive electrode is placed on the ground 3 on one side of the retaining wall 1, but also the steel material 12 serving as the positive electrode is disposed on the ground 3 on the back surface side. The electroosmotic flow from the steel materials 11 and 12 to the retaining wall 1 was generated not only on one side of the retaining wall 1 but also on both sides of the retaining wall 1. Thereby, it will be in the state where not only the single side | surface of the earth retaining wall 1 but both surfaces were edge-cut from the ground 3. FIG. Therefore, compared with the case where a steel material serving as a positive electrode is placed only on one side of the retaining wall 1, and an electroosmotic flow from the steel material to the retaining wall 1 is generated only on one side of the retaining wall 1, The adhesion between the retaining wall 1 and the ground 3 can be reduced, and the frictional resistance of the ground 3 against the withdrawal of the retaining wall 1 can be reduced.

従って、土留め壁1の引抜き対象部分5に含まれる鋼矢板2を地盤3から引抜く作業を容易化できる。また、引き抜かれる鋼矢板2への土、特に粘性土の付着を抑制でき、ひいては、鋼矢板2の引抜き後の地盤3に残る空洞を最小限に抑制することができ、以って、地盤3に残った空洞による地盤沈下の発生を抑制したり、この空洞を埋める作業を不要にしたりすることができる。   Therefore, the operation | work which extracts the steel sheet pile 2 contained in the extraction object part 5 of the earth retaining wall 1 from the ground 3 can be facilitated. Moreover, the adhesion of soil, particularly viscous soil, to the steel sheet pile 2 to be pulled out can be suppressed, and as a result, the cavity remaining in the ground 3 after the steel sheet pile 2 is pulled out can be suppressed to a minimum. It is possible to suppress the occurrence of land subsidence due to the remaining cavity, or to eliminate the work of filling this cavity.

図4は、他の実施形態に係る鋼製の地中壁の引抜き方法を用いて地盤3から引抜く土留め壁101を示す立面図である。この図に示すように、土留め壁101は、多数の鋼矢板2により構成された鋼製の矢板壁であり、シールドトンネルの工事で構築されるシールド機(不図示)の発進立坑6の壁面を構成する。ここで、土留め壁101の一部は、シールド機の進路7を塞いでおり、本実施形態では、土留め壁101の一部をシールド機の進路7から引き上げることによりシールド機の進路7を開放する。   FIG. 4 is an elevational view showing a retaining wall 101 that is pulled out from the ground 3 using a steel underground wall pulling method according to another embodiment. As shown in this figure, the retaining wall 101 is a steel sheet pile wall constituted by a number of steel sheet piles 2 and is a wall surface of a start shaft 6 of a shield machine (not shown) constructed by a shield tunnel construction. Configure. Here, a part of the earth retaining wall 101 blocks the course 7 of the shield machine, and in this embodiment, a part of the earth retaining wall 101 is lifted from the course 7 of the shield machine so that the path 7 of the shield machine is improved. Open.

まず、発進立坑6の底側の地盤に鋼製の長尺部材である鋼材111を打設し、土留め壁101の外周側の壁面に面して鋼製の長尺部材である鋼材112を打設する。また、鋼材111、112を、土留め壁101の引抜き対象部分から所定間隔の位置に、土留め壁101の下端が位置する深さまで延びるように打設する。また、鋼材111、112を、土留め壁101の引抜き対象部分の幅方向(横方向)中央部を挟んで対向するように打設する。   First, a steel material 111, which is a steel long member, is placed on the ground on the bottom side of the start shaft 6, and a steel material 112, which is a steel long member, faces the outer peripheral wall surface of the retaining wall 101. To cast. Further, the steel members 111 and 112 are placed at predetermined intervals from the drawing target portion of the retaining wall 101 so as to extend to a depth at which the lower end of the retaining wall 101 is located. In addition, the steel materials 111 and 112 are placed so as to face each other across the central portion in the width direction (lateral direction) of the drawing target portion of the retaining wall 101.

また、鋼材111、112には、直流電源14の正極を接続し、土留め壁101の引抜き対象部分には、直流電源14の負極を接続する。そして、直流電源14により、鋼材111と土留め壁101の引抜き対象部分との間、及び、鋼材112と土留め壁101の引抜き対象部分との間に、直流電圧を印加することによって、鋼材111、112から土留め壁101の引抜き対象部分への電気浸透流を生じさせる。   Further, the steel materials 111 and 112 are connected to the positive electrode of the DC power supply 14, and the negative electrode of the DC power supply 14 is connected to the drawing target portion of the retaining wall 101. Then, by applying a DC voltage between the steel material 111 and the portion to be pulled out of the retaining wall 101 and between the steel material 112 and the portion to be pulled out of the retaining wall 101 by the DC power source 14, the steel material 111. , 112 is caused to generate an electroosmotic flow from the retaining wall 101 to the drawing target portion.

これにより、土留め壁101の引抜き対象部分が地盤から縁切りされた状態となる。従って、土留め壁101の引抜き対象部分と地盤との付着力が低下され、土留め壁101の引抜き対象部分の引抜きに対する地盤の摩擦抵抗力が低下される。   Thereby, it becomes the state by which the extraction object part of the earth retaining wall 101 was edge-cut from the ground. Therefore, the adhesion force between the extraction target portion of the retaining wall 101 and the ground is reduced, and the frictional resistance force of the ground against the extraction of the extraction target portion of the retaining wall 101 is reduced.

図5は、土留め壁101の引抜き対象部分をシールド機の進路7から引上げている状態を示す立面図である。この図に示すように、鋼材111、112と土留め壁101との間に直流電圧を印加した後、土留め壁101の引抜き対象部分に含まれる鋼矢板2を1本ずつシールド機の進路7から引上げる。この際、鋼矢板2は、油圧式圧入機(サイレントパイラー)やクレーン等を用いて引上げる。これにより、シールド機の進路7が開放される。   FIG. 5 is an elevational view showing a state in which the part to be pulled out of the retaining wall 101 is pulled up from the path 7 of the shield machine. As shown in this figure, after applying a DC voltage between the steel materials 111, 112 and the retaining wall 101, the steel sheet piles 2 included in the portion to be pulled out of the retaining wall 101 are moved one by one to the path 7 of the shield machine. Pull up from. At this time, the steel sheet pile 2 is pulled up using a hydraulic press machine (silent pillar), a crane, or the like. Thereby, the course 7 of the shield machine is opened.

ここで、本実施形態では、発進立坑6の外周側の地盤に正極となる鋼材112を打設するのみならず、発進立坑6の底側の地盤にも正極となる鋼材111を打設して、土留め壁101の片面側でのみならず、土留め壁101の両面側で、鋼材111、112から土留め壁101への電気浸透流を生じさせた。これにより、土留め壁101の片面のみならず、両面が地盤から縁切りされた状態となる。よって、土留め壁101の片面側にのみ正極となる鋼材を打設して、土留め壁101の片面側でのみ鋼材から土留め壁101への電気浸透流を生じさせる場合と比して、土留め壁101と地盤との付着力を低下でき、土留め壁101の引抜きに対する地盤の摩擦抵抗力を低下できる。   Here, in the present embodiment, not only the steel material 112 serving as the positive electrode is placed on the ground on the outer peripheral side of the start shaft 6, but also the steel material 111 serving as the positive electrode is disposed on the ground on the bottom side of the start shaft 6. The electroosmotic flow from the steel materials 111 and 112 to the retaining wall 101 was generated not only on one side of the retaining wall 101 but also on both sides of the retaining wall 101. As a result, not only one side of the earth retaining wall 101 but also both sides are cut from the ground. Therefore, as compared with the case where a steel material serving as a positive electrode is placed only on one side of the retaining wall 101 and an electroosmotic flow from the steel material to the retaining wall 101 is generated only on one side of the retaining wall 101, The adhesion force between the earth retaining wall 101 and the ground can be reduced, and the frictional resistance of the ground against the withdrawal of the earth retaining wall 101 can be reduced.

従って、土留め壁101の引抜き対象部分に含まれる鋼矢板2をシールド機の進路7から引上げる作業を容易化できる。また、引上げられる鋼矢板2への土、特に粘性土の付着を抑制でき、ひいては、鋼矢板2の引抜き後の地盤に残る空洞を最小限に抑制することができ、以って、地盤に残った空洞による地盤沈下の発生を抑制したり、この空洞を埋める作業を不要にしたりすることができる。   Therefore, the operation | work which pulls up the steel sheet pile 2 contained in the extraction object part of the earth retaining wall 101 from the course 7 of a shield machine can be facilitated. Further, it is possible to suppress the adhesion of soil, particularly viscous soil, to the steel sheet pile 2 to be pulled up, and as a result, it is possible to minimize the cavities remaining in the ground after the steel sheet pile 2 is pulled out, so that it remains on the ground. It is possible to suppress the occurrence of land subsidence due to the cavities, and to eliminate the need to fill the cavities.

なお、上述の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。例えば、上述の実施形態では、鋼矢板2により構成される構成の土留め壁1、101を例に挙げて本発明を説明したが、例えば、鋼管矢板により構成される地下連続壁の引抜きにも本発明を適用できる。   In addition, the above-mentioned embodiment is for making an understanding of this invention easy, and does not limit this invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof. For example, in the above-described embodiment, the present invention has been described by taking the earth retaining walls 1 and 101 configured by the steel sheet pile 2 as an example. The present invention can be applied.

また、上述の実施形態では、電極として鋼材を用いたが、他の金属や炭素等の材料で形成された部材を電極として用いてもよい。また、上述の実施形態では、一対の鋼材と土留め壁との間に直流電圧を印加した後、土留め壁の鋼矢板を引抜いたが、一対の鋼材と土留め壁との間に直流電圧を印加しながら、土留め壁の鋼矢板を引抜いてもよい。さらに、上述の実施形態では、一対の鋼材を地中壁の打設深さまで打設したが、一対の鋼材の打設深さは、地中壁の打設深さより浅くてもよい。   Moreover, in the above-mentioned embodiment, although steel materials were used as an electrode, you may use the member formed with materials, such as another metal and carbon, as an electrode. Moreover, in the above-mentioned embodiment, after applying a DC voltage between the pair of steel materials and the retaining wall, the steel sheet pile of the retaining wall was pulled out, but the DC voltage between the pair of steel materials and the retaining wall. The steel sheet pile of the retaining wall may be pulled out while applying. Furthermore, in the above-described embodiment, the pair of steel materials are cast to the depth of the underground wall, but the depth of the pair of steel materials may be shallower than the depth of the underground wall.

1 土留め壁(地中壁)、2 鋼矢板、3 地盤、4 粘土層、5 引抜き対象部分、6 発進立坑、7 進路、11 鋼材(第1の電極)、12 鋼材(第2の電極)、14 直流電源、101 土留め壁(地中壁)、111 鋼材(第1の電極)、112 鋼材(第2の電極) DESCRIPTION OF SYMBOLS 1 Earth retaining wall (underground wall), 2 Steel sheet pile, 3 Ground, 4 Clay layer, 5 Drawing object part, 6 Starting shaft, 7 way, 11 Steel materials (1st electrode), 12 Steel materials (2nd electrode) , 14 DC power supply, 101 earth retaining wall (underground wall), 111 steel material (first electrode), 112 steel material (second electrode)

Claims (3)

地盤に埋設された鋼製の地中壁を引抜く方法であって、
第1の電極を前記地中壁の一方の壁面に面し、第2の電極を前記地中壁の他方の壁面に面するように、地盤に埋設し、
直流電源の正極を前記第1及び第2の電極に、前記直流電源の負極を前記地中壁に接続し、
前記直流電源により前記第1及び第2の電極と前記地中壁との間に直流電圧を印加してから、
前記地中壁を地盤より引抜くことを特徴とする地中壁の引抜き方法。
A method of pulling out a steel underground wall buried in the ground,
The first electrode faces one wall surface of the underground wall, and the second electrode is embedded in the ground so as to face the other wall surface of the underground wall,
Connecting a positive electrode of a direct current power source to the first and second electrodes, and a negative electrode of the direct current power source to the underground wall;
After applying a DC voltage between the first and second electrodes and the underground wall by the DC power source,
A method of extracting the underground wall, wherein the underground wall is extracted from the ground.
請求項1に記載の地中壁の引抜き方法を用いて、前記地中壁の一部を地盤から引抜くことにより、前記地中壁に地下水流路を形成することを特徴とする地下水流路の形成方法。   A groundwater flow path, wherein a groundwater flow path is formed in the underground wall by extracting a part of the underground wall from the ground using the underground wall drawing method according to claim 1. Forming method. 請求項1に記載の地中壁の引抜き方法を用いて、シールドトンネルの発進立坑の壁面を構成する前記地中壁の一部を、シールド機の前記発進立坑からの進路から引き上げることにより、前記進路を開放することを特徴とするシールド機の進路の開放方法。   By pulling up a part of the underground wall constituting the wall of the start tunnel of the shield tunnel from the course from the start shaft of the shield machine by using the underground wall drawing method according to claim 1, A method for opening a route of a shield machine, characterized by opening the route.
JP2011079240A 2011-03-31 2011-03-31 Extraction method for steel underground wall Pending JP2012214979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011079240A JP2012214979A (en) 2011-03-31 2011-03-31 Extraction method for steel underground wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011079240A JP2012214979A (en) 2011-03-31 2011-03-31 Extraction method for steel underground wall

Publications (1)

Publication Number Publication Date
JP2012214979A true JP2012214979A (en) 2012-11-08

Family

ID=47267970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011079240A Pending JP2012214979A (en) 2011-03-31 2011-03-31 Extraction method for steel underground wall

Country Status (1)

Country Link
JP (1) JP2012214979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045646A (en) * 2018-09-18 2020-03-26 前田建設工業株式会社 Construction method of friction cutting in ground, and construction device for friction cutting in ground
JPWO2022097194A1 (en) * 2020-11-04 2022-05-12

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192129A (en) * 1983-04-13 1984-10-31 Zenitakagumi:Kk Sheathing work
JPS6340012A (en) * 1986-08-06 1988-02-20 Toa Gurauto Kogyo Kk Construction of structure removable structural part
JPH10121496A (en) * 1996-10-17 1998-05-12 Okumura Corp Formation of water passing part on continuous underground wall
JP3198598B2 (en) * 1992-04-07 2001-08-13 株式会社大林組 How to pull out steel members buried underground
JP2003214086A (en) * 2002-01-21 2003-07-30 Zenitaka Corp Sheathing construction method for shield excavation of sheet pile shaft and steel sheet pile for shield excavation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192129A (en) * 1983-04-13 1984-10-31 Zenitakagumi:Kk Sheathing work
JPS6340012A (en) * 1986-08-06 1988-02-20 Toa Gurauto Kogyo Kk Construction of structure removable structural part
JP3198598B2 (en) * 1992-04-07 2001-08-13 株式会社大林組 How to pull out steel members buried underground
JPH10121496A (en) * 1996-10-17 1998-05-12 Okumura Corp Formation of water passing part on continuous underground wall
JP2003214086A (en) * 2002-01-21 2003-07-30 Zenitaka Corp Sheathing construction method for shield excavation of sheet pile shaft and steel sheet pile for shield excavation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045646A (en) * 2018-09-18 2020-03-26 前田建設工業株式会社 Construction method of friction cutting in ground, and construction device for friction cutting in ground
JP7241495B2 (en) 2018-09-18 2023-03-17 前田建設工業株式会社 Underground friction cut construction method, underground friction cut construction device
JPWO2022097194A1 (en) * 2020-11-04 2022-05-12
WO2022097194A1 (en) * 2020-11-04 2022-05-12 日本電信電話株式会社 Structure management system

Similar Documents

Publication Publication Date Title
CN102425173B (en) Deep foundation pit earthwork digging method
CN103410174A (en) GXJ underground continuous wall rubber waterproof connector tool and construction method thereof
CN103742157A (en) Method of newly building underground space under ground by pipe jacking method
JP2012214979A (en) Extraction method for steel underground wall
CN105484751A (en) Method for preventing large-section rectangular pipe-jacking tunnel from generating soil loading phenomenon
JP5790091B2 (en) Construction method of underground wall and method for extracting core material of underground wall
CN104452785B (en) Larsen steel sheet pile cofferdam folding construction method
CN106088591A (en) With protruding concrete works movement joint vertical sealing swaging die
CN203977409U (en) A kind of prefabricated assembled concrete pile foundation
JP2018138738A (en) Invert construction method
CN204266165U (en) The vertical water-stopping structure of a kind of concrete work deformation joint
JP2010242374A (en) Open shield machine and open shield method using the same
CN204185880U (en) A kind of joint case preventing continuous wall concrete from refluxing
JP6301769B2 (en) Deep foundation method
CN202175961U (en) Swallow-tailed seal head structure of diaphragm wall steel reinforcement cage
JP2011032690A (en) Composite bank and construction method of the same
CN204040022U (en) Castinplace pile avulsion structure
JP5344419B2 (en) Retaining wall back block, retaining wall construction method and retaining wall
CN210262912U (en) Assembled river course ecological frame type retaining wall
CN104846851B (en) The construction method of side of the base plate non-frost heave layer
CN204898673U (en) Make things convenient for drilling equipment in advance of engineering construction
CN208346826U (en) A kind of asymmetric foundation pit supporting construction
JP2015031020A (en) Earth-retaining wall and construction method of its lower part
CN105484201A (en) Manufacturing method for cavity die framework of concrete engineering
CN204570783U (en) The replaceable bucket digging tooth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303