JP2020045646A - Construction method of friction cutting in ground, and construction device for friction cutting in ground - Google Patents
Construction method of friction cutting in ground, and construction device for friction cutting in ground Download PDFInfo
- Publication number
- JP2020045646A JP2020045646A JP2018173171A JP2018173171A JP2020045646A JP 2020045646 A JP2020045646 A JP 2020045646A JP 2018173171 A JP2018173171 A JP 2018173171A JP 2018173171 A JP2018173171 A JP 2018173171A JP 2020045646 A JP2020045646 A JP 2020045646A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- ground
- target member
- underground
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
Abstract
Description
本開示は、地中(地盤。以下同様。)に埋設された鋼部材などを引き抜いたり、地中に鋼部材などを埋設する方法に関する。 The present disclosure relates to a method of pulling out a steel member or the like buried underground (the ground; the same applies hereinafter) or a method of burying a steel member or the like underground.
地盤に埋設された鋼部材(例えば、鋼製矢板壁の鋼製矢板、鋼管矢板、親杭横矢板壁のH鋼など)を、その鋼部材の長手方向などに引き抜くためには、地盤からの摩擦抵抗に勝る力が必要であるため、地盤との結合力が大きいほど容易ではない。このため、従来から、引き抜き対象の鋼部材が陰極、引き抜きの対象ではない他部材が陽極になるように直流電圧を印加することにより、鋼部材を引き抜く際に受ける地盤からの摩擦力を低下させた上で引き抜く方法が提案されている。この方法によれば、直流電圧を印加しない場合よりも小さな力で鋼部材を引き抜くことが可能となる。また、鋼部材の引き抜きに伴う周辺地盤の荒れも少なくなるとされる(例えば特許文献1〜2参照)。 In order to pull out a steel member buried in the ground (for example, a steel sheet pile of a steel sheet pile wall, a steel pipe sheet pile, an H steel of a parent pile horizontal sheet pile wall) in the longitudinal direction of the steel member, friction from the ground is required. Since a force that exceeds resistance is required, it is not easy as the bonding force with the ground is large. For this reason, conventionally, by applying a DC voltage so that the steel member to be extracted is a cathode and the other member not to be extracted is an anode, the frictional force from the ground received when the steel member is extracted is reduced. Then, a method of pulling out is proposed. According to this method, the steel member can be pulled out with a smaller force than when no DC voltage is applied. It is also assumed that the roughness of the surrounding ground due to pulling out of the steel member is reduced (for example, see Patent Documents 1 and 2).
この方法の原理について、特許文献1には、上記の直流電圧の印加によって、引き抜き対象となる鋼部材の表面から発生する水素ガスの体積膨張により鋼部材と地盤とが剥離し、鋼材と地盤との結合力を弱めることや、電気浸透現象によって引き抜き対象となる鋼部材に地中の水分が集まり地盤を柔らかくすることによって、引き抜きが容易になるとの説明がなされている。また、特許文献2にも、電気浸透現象により集まる地中の水分により、引き抜きが容易になるとの説明がなされている。 With respect to the principle of this method, Patent Document 1 discloses that the steel member and the ground are separated from each other due to the volume expansion of hydrogen gas generated from the surface of the steel member to be extracted by applying the DC voltage, and the steel material and the ground are separated. It is described that pulling out is facilitated by weakening the bonding force of the steel or by softening the ground by collecting moisture in the ground in the steel member to be drawn out by the electroosmosis phenomenon. In addition, Patent Document 2 also describes that pulling out is facilitated by moisture in the ground gathered by the electroosmosis phenomenon.
上述したように、特許文献1〜2では、電気分解によるガスの発生や、電気浸透によって生じる水の移動による摩擦低減効果を期待している。このため、例えば特許文献2に約100Vの直流電圧で約30分間待つとの記載があるように、電気浸透現象や電気分解によるガスの発生を待つ必要がある。この点、本発明者らは、鋭意研究により、上記の直流電圧の印加時に生じる、引き抜き対象の鋼部材と、地盤を構成する土粒子との間のクーロン斥力によって、引き抜き対象の鋼部材をより小さな力で引き抜くことが可能であることを見出した。この方法によれば、電気浸透現象や電気分解によるガスの発生を待つことなく、直流電圧の印加後、即座に、対象の鋼部材に対して施工(引き抜きや打ち込みなど)を行うことが可能となる。 As described above, Patent Literatures 1 and 2 expect a gas generation by electrolysis and a friction reduction effect by water movement caused by electroosmosis. For this reason, it is necessary to wait for the generation of gas due to the electroosmosis phenomenon or electrolysis, as described in, for example, Patent Document 2 that waits for about 30 minutes at a DC voltage of about 100 V. In this regard, the present inventors have conducted intensive studies and found that the steel member to be drawn out is more likely to be caused by the Coulomb repulsion between the steel member to be drawn out and the soil particles constituting the ground, which is generated when the DC voltage is applied. We found that it was possible to pull out with a small force. According to this method, it is possible to immediately perform the application (drawing, driving, etc.) to the target steel member after the application of the DC voltage without waiting for the generation of gas due to the electroosmosis phenomenon or the electrolysis. Become.
上述の事情に鑑みて、本発明の少なくとも一実施形態は、鋼部材の地中からの引き抜きや地中への埋設をより効率的に行うことが可能な地中フリクションカット施工方法を提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present invention provides an underground friction cut construction method capable of more efficiently pulling out and burying a steel member from underground. With the goal.
(1)本発明の少なくとも一実施形態に係る地中フリクションカット施工方法は、
地中からの引き抜き対象または前記地中への埋設対象となる対象部材と、前記対象部材の設置位置から離間した位置において少なくとも一部が前記地中に埋設された陽極部材との間に、前記対象部材が陰極、前記陽極部材が陽極となるように直流電圧を印加する電圧印加ステップと、
前記電圧印加ステップによる前記直流電圧の印加後の5分以内であって前記直流電圧が印加されている時に、前記対象部材の前記地中からの引き抜き、または、前記対象部材の前記地中への打ち込み、のいずれかの施工を開始する施工ステップと、を備える。
(1) The underground friction cut construction method according to at least one embodiment of the present invention includes:
A target member to be pulled out from the ground or a target to be buried in the ground, and an anode member at least partially buried in the ground at a position separated from the installation position of the target member, A voltage applying step of applying a DC voltage so that the target member is a cathode and the anode member is an anode,
When the DC voltage is applied within 5 minutes after the application of the DC voltage by the voltage applying step, the target member is pulled out of the ground, or the target member is drawn into the ground. And a construction step of starting any of the following constructions.
地中(地盤)を構成する土粒子の表面は電荷をもっており(マイナスに帯電)、本発明者らは、直流電圧の印加により生じる、対象部材と地中を構成する土砂の土粒子との間に生じるクーロン斥力により、鋼部材などとなる対象部材を地中から引き抜く際や、対象部材を地中に打ち込む際に地中を構成する土砂から受ける摩擦抵抗が低減されることを見出した。このクーロン斥力は、陽極と陰極との間の電荷(自由電子)の移動により生じるため、上記の直流電圧の印加直後など、非常に短時間で生じる(後述する図5参照)。 The surface of the soil particles constituting the underground (ground) has an electric charge (negatively charged), and the inventors of the present invention have determined that there is a gap between the target member and the soil particles of the earth and sand constituting the underground caused by the application of a DC voltage. It has been found that due to the Coulomb repulsion generated in the above, when a target member such as a steel member is pulled out from the ground or when the target member is driven into the ground, frictional resistance received from earth and sand constituting the ground is reduced. This Coulomb repulsion is generated in a very short time, such as immediately after the application of the DC voltage, because it is generated by the movement of charges (free electrons) between the anode and the cathode (see FIG. 5 described later).
上記(1)の構成によれば、例えば鋼矢板、鋼管杭、H鋼などの鋼部材などとなる対象部材と陽極部材とを地中で離間して土砂(土)を対向させるように設置し、対象部材が陰極、陽極部材が陽極となるように直流電圧を印加すると共に、上記のクーロン斥力が発生する直流電圧の印加の直後など、5分以内に、対象部材の地中からの引き抜きや、対象部材の地中への打ち込み(埋設)などの施工を開始する。上記の直流電圧の印加により、印加直後から極めて短時間で生じる、対象部材と地中を構成する土粒子との間のクーロン斥力により、対象部材が周囲の土砂から受ける摩擦抵抗を低減される。したがって、上記の直流電圧の印加後、迅速に、対象部材の施工を開始することができる。また、より小さな引き抜き荷重または押込み荷重により施工を行うことが可能となると共に、対象部材に対する施工の開始を早期化する分だけ短期間で施工を完了することが可能となるので、対象部材の施工をより効率的に行うことができる。 According to the configuration of the above (1), the target member such as a steel sheet pile, a steel pipe pile, a steel member such as H steel, and the anode member are separated from each other in the ground so that the earth and sand (soil) face each other. Applying a DC voltage so that the target member is a cathode and the anode member is an anode, and immediately after the application of the DC voltage at which the Coulomb repulsion occurs, within 5 minutes, pulling out the target member from the ground or Then, construction such as driving (burying) the target member into the ground is started. Due to the Coulomb repulsion generated between the target member and the soil particles forming the ground in a very short time immediately after the application of the DC voltage, the frictional resistance of the target member from the surrounding soil is reduced. Therefore, the application of the target member can be started immediately after the application of the DC voltage. In addition, construction can be performed with a smaller pulling load or indentation load, and construction can be completed in a short period of time as much as the start of construction for the target member is accelerated. Can be performed more efficiently.
(2)幾つかの実施形態では、上記(1)の構成において、
前記電圧印加ステップは、前記対象部材と前記陽極部材との間に前記直流電圧を印加することにより流れる電流の電流値を、前記対象部材における前記地中に埋設されている部分の表面積で除算した値である電流密度が、0よりも大きく、15以下の範囲内の設定値になるように前記直流電圧を印加する。
(2) In some embodiments, in the configuration of the above (1),
In the voltage applying step, a current value of a current flowing by applying the DC voltage between the target member and the anode member was divided by a surface area of a portion of the target member embedded in the ground. The DC voltage is applied so that the current density, which is a value, is greater than 0 and equal to or less than 15 within a set value.
本発明者らは、鋭意研究により、上記の直流電圧の印加時の引張荷重あるいは押込み荷と、印加していない時の引張荷重あるいは押込み荷重の比(例えば電圧印加時の荷重/電圧非印加時の荷重。以下、フリクションカット率と称す。)は、直流電圧の印加により流れる電流を、対象部材における地中に埋設されている部分の表面積で割った値(つまり電流密度)と相関関係を有していることを見出した。具体的には、フリクションカット率は、電流密度を大きくするのに従って下限値付近までは下がるが、下限値付近以降は電流密度を大きくしてもほとんど変化しないように推移する(後述する図7参照)。 The inventors of the present invention have conducted intensive studies and found that the ratio of the tensile load or indentation load when the DC voltage is applied to the tensile load or indentation load when no DC voltage is applied (for example, the load when applying a voltage / the voltage when applying no voltage / (Hereinafter referred to as a friction cut rate) has a correlation with a value (that is, current density) obtained by dividing a current flowing by applying a DC voltage by a surface area of a portion of the target member buried underground. I found that. More specifically, the friction cut rate decreases to near the lower limit as the current density increases, but after the lower limit, the friction cut rate changes so as to hardly change even when the current density is increased (see FIG. 7 described later). ).
上記(2)の構成によれば、対象部材および陽極部材への印加電圧を、直流電圧の印加時の電流密度が0よりも大きく、15以下の範囲の設定値にする。より具体的には、上記の設定値を、3以上10以下(例えば5)などにする。これによって、直流電圧の印加のための電力消費を抑制しつつ、クーロン斥力による比較的大きな摩擦低減効果を得ることができる。 According to the above configuration (2), the voltage applied to the target member and the anode member is set to a set value in which the current density when the DC voltage is applied is larger than 0 and 15 or less. More specifically, the above set value is set to 3 or more and 10 or less (for example, 5). Thereby, a relatively large friction reduction effect by Coulomb repulsion can be obtained while suppressing power consumption for applying a DC voltage.
(3)幾つかの実施形態では、上記(2)の構成において、
前記施工ステップの実行中に、前記電流密度が前記設定値になるように前記直流電圧を調節する電圧調節ステップを、さらに備える。
(3) In some embodiments, in the configuration of the above (2),
The method may further include a voltage adjusting step of adjusting the DC voltage so that the current density becomes the set value during the execution of the construction step.
地中に埋設されている対象部材の表面積は、対象部材の引き抜き量が大きくなるにしたがって小さくなり、対象部材の打ち込みが進み、埋設されている部分が多くなるにしたがって大きくなるなど、施工が進むにつれて変化する。 The surface area of the target member buried in the ground becomes smaller as the withdrawal amount of the target member increases, the driving of the target member progresses, and the construction increases as the buried portion increases, and the construction proceeds. Changes as
上記(3)の構成によれば、電圧調節ステップによって施工ステップの実行中に電流密度が設定値になるように印加電圧を調節する。これによって、直流電圧の印加電圧が不必要に高い状況や、印加電圧が小さく摩擦抵抗の低減効果が十分に得られないような状況を防止し、適切な直流電圧を印加することができる。 According to the configuration (3), the applied voltage is adjusted by the voltage adjusting step so that the current density becomes the set value during the execution of the construction step. Accordingly, it is possible to prevent a situation where the applied voltage of the DC voltage is unnecessarily high or a situation where the applied voltage is small and the effect of reducing the frictional resistance is not sufficiently obtained, and an appropriate DC voltage can be applied.
(4)幾つかの実施形態では、上記(1)〜(3)の構成において、
前記電圧印加ステップは、所定のタイミングに従って、前記施工ステップの実行中に印加する前記直流電圧をオン、オフする。
(4) In some embodiments, in the above configurations (1) to (3),
The voltage applying step turns on and off the DC voltage applied during execution of the construction step according to a predetermined timing.
上記(4)の構成によれば、例えば周期的などの所定のタイミングに従って印加する直流電圧をオン、オフすることによっても、上記のクーロン斥力によって、対象部材が周囲の土砂から受ける摩擦抵抗を低減させることができる。 According to the configuration (4), for example, by turning on / off a DC voltage applied in accordance with any predetermined timing, the frictional resistance of the target member from the surrounding soil is reduced by the Coulomb repulsion. Can be done.
(5)幾つかの実施形態では、上記(1)〜(4)の構成において、
前記地中を構成する土砂は、粒径が0.075mm未満の細粒分を40%以上有する土を含む。
(5) In some embodiments, in the above configurations (1) to (4),
The earth and sand forming the underground includes soil having a fine particle content of less than 0.075 mm by 40% or more.
本発明者らは、鋭意研究により、砂(細粒分が15%未満)は飽和砂であっても負に帯電しないことを見出した。
上記(5)の構成によれば、本発明の地中フリクションカット施工方法は、地中を構成する土砂の土粒子の粒径が0.075mm未満の細粒分を40%以上有する場合に適用される。これは、日本統一土質分類法における土の工学的分類方法の主にシルト、粘性土などに分類される土(細粒分が50%以上)や、砂質土(細粒分が5%以上50%未満)の一部であり、対象部材と陽極部材とに上述した直流電圧を印加することにより生じるクーロン斥力によって、対象部材が周囲の土砂から受ける摩擦抵抗を低減させることができる。
The present inventors have conducted intensive studies and found that sand (having a fine particle content of less than 15%) is not negatively charged even with saturated sand.
According to the configuration of the above (5), the underground friction cut construction method of the present invention is applied to a case in which the soil particles of the earth and sand constituting the ground have a fine particle fraction of less than 0.075 mm by 40% or more. Is done. This is mainly classified into silt, cohesive soil, etc. (fine grain content of 50% or more) and sandy soil (fine grain content of 5% or more) in the engineering classification method of soil in the Japan Unified Soil Classification Method. (Less than 50%), and the Coulomb repulsion generated by applying the above-described DC voltage to the target member and the anode member can reduce the frictional resistance that the target member receives from the surrounding earth and sand.
(6)幾つかの実施形態では、上記(1)〜(5)の構成において、
前記施工ステップでは、少なくとも一部が地下水位以下に埋設された前記対象部材の前記引き抜きを開始するか、あるいは、少なくとも一部を前記地下水位以下に埋設されるように前記打ち込みを開始する。
(6) In some embodiments, in the above configurations (1) to (5),
In the execution step, the extraction of the target member at least partially buried below the groundwater level is started, or the driving is started so that at least a part is buried below the groundwater level.
上記(6)の構成によれば、クーロン斥力が生じるためには土砂が飽和している、すなわち地下水位以下である必要があり、地下水位以下の地盤では土粒子間が水で充填されている(飽和土)ため、対象部材と陽極部材とに上述した直流電圧を印加することにより生じるクーロン斥力により、対象部材が周囲の土砂から受ける摩擦抵抗を低減することができる。 According to the above configuration (6), in order for Coulomb repulsion to occur, the soil must be saturated, that is, the groundwater level must be lower than the groundwater level. In the ground below the groundwater level, the space between the soil particles is filled with water. (Saturated soil) Therefore, due to the Coulomb repulsion generated by applying the above-described DC voltage to the target member and the anode member, the frictional resistance of the target member from the surrounding earth and sand can be reduced.
(7)本発明の少なくとも一実施形態に係る地中フリクションカット施工装置は、
地中からの引き抜き対象または前記地中への埋設対象となる対象部材の設置位置から離間した位置において少なくとも一部が前記地中に埋設される陽極部材と、
前記対象部材と前記陽極部材との間に、前記対象部材が陰極、前記陽極部材が陽極となるように直流電圧を印加する電圧印加装置と、
前記電圧印加装置が印加する前記直流電圧の指示値を算出する印加電圧決定装置と、を備え、
前記印加電圧決定装置は、前記対象部材と前記陽極部材との間に前記直流電圧を印加することにより流れる電流の電流値を、前記対象部材における前記地中に埋設されている部分の表面積で除算した値が、0よりも大きく、15以下となるように、前記直流電圧を印加する。
(7) The underground friction cut construction device according to at least one embodiment of the present invention includes:
An anode member that is at least partially buried in the ground at a position separated from the installation position of the target member to be pulled out from the ground or to be buried in the ground,
Between the target member and the anode member, the target member is a cathode, a voltage application device that applies a DC voltage so that the anode member becomes an anode,
An applied voltage determination device that calculates an instruction value of the DC voltage applied by the voltage application device,
The applied voltage determination device divides a current value of a current flowing by applying the DC voltage between the target member and the anode member by a surface area of a portion of the target member buried in the ground. The DC voltage is applied so that the calculated value is larger than 0 and equal to or smaller than 15.
上記(7)の構成によれば、上記(2)と同様の効果を奏する。 According to the configuration of the above (7), the same effect as the above (2) can be obtained.
本発明の少なくとも一実施形態によれば、鋼部材の地中からの引き抜きや地中への埋設をより効率的に行うことが可能な地中フリクションカット施工方法が提供される。 According to at least one embodiment of the present invention, there is provided an underground friction cut construction method capable of more efficiently extracting a steel member from the ground or burying the steel member in the ground.
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Absent.
For example, expressions representing relative or absolute arrangement such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly described. Not only does such an arrangement be shown, but also a state of being relatively displaced by an angle or distance that allows the same function to be obtained.
For example, expressions such as "identical", "equal", and "homogeneous", which indicate that things are in the same state, not only represent exactly the same state, but also have a tolerance or a difference to the extent that the same function is obtained. An existing state shall also be represented.
For example, the expression representing a shape such as a square shape or a cylindrical shape not only represents a shape such as a square shape or a cylindrical shape in a strictly geometrical sense, but also an uneven portion or a chamfer as long as the same effect can be obtained. A shape including a part and the like is also represented.
On the other hand, the expression “comprising”, “comprising”, “including”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.
図1は、本発明の一実施形態に係る地中フリクションカット施工方法を示す図である。図2は、本発明の一実施形態に係る地中フリクションカット施工装置1を概略的に示す図である。図3は、本発明の一実施形態に係るクーロン斥力によって得られる摩擦低減効果による対象部材2への土粒子gの付着力低下のイメージを示す図である。図4は、本発明の一実施形態に係る引き抜き抵抗力と引き抜き量との関係を示す図である。図5は、本発明の一実施形態に係る鋼部材の沈下実験により計測した荷重の時間推移を示す図である。また、図6は、本発明の一実施形態に係る鋼部材を模擬地盤Gmから引抜いた際の付着土砂の様子を示す図であり、(a)直流電圧の印加ありの場合、(b)直流電圧の印加なしの場合を示す。 FIG. 1 is a diagram showing an underground friction cut construction method according to an embodiment of the present invention. FIG. 2 is a diagram schematically illustrating an underground friction cut construction device 1 according to an embodiment of the present invention. FIG. 3 is a diagram illustrating an image of a decrease in the adhesion of the soil particles g to the target member 2 due to the friction reduction effect obtained by the Coulomb repulsion according to one embodiment of the present invention. FIG. 4 is a diagram illustrating the relationship between the pull-out resistance and the pull-out amount according to an embodiment of the present invention. FIG. 5 is a diagram showing a time transition of a load measured by a settlement test of a steel member according to an embodiment of the present invention. FIGS. 6A and 6B are diagrams showing the state of the attached sediment when the steel member according to one embodiment of the present invention is pulled out from the simulated ground Gm, and FIG. This shows a case where no voltage is applied.
本発明の地中フリクションカット施工方法(図1参照)は、例えば鋼矢板、鋼管杭、H鋼などの鋼部材などとなる対象部材2を地中G(地盤。以下同様。)から引き抜く際や、地中Gへ埋設する際に用いる方法である。具体的には、対象部材2となる鋼部材は、例えば、鋼製矢板壁の鋼製矢板、鋼管矢板、親杭横矢板壁のH鋼などとなる。矢板は、建築の基礎工事や土木工事において、土(土砂。以下同様。)や水が矢板を挟んだ反対側に入り込むのを防ぐための板状の部材である。そして、通常は、複数の矢板など、対象部材2となり得る複数の鋼部材などが建築物や構造物の基礎の周囲などに並べて地中Gに打ち込まれ、地中Gに埋設される。また、通常、地中Gに埋設された対象部材2は、必要がなくなると地中Gから引き抜かれる。 The underground friction cut construction method of the present invention (see FIG. 1) is used when, for example, a target member 2 such as a steel sheet pile, a steel pipe pile, or a steel member such as H steel is pulled out from an underground G (ground; the same applies hereinafter). This is a method used when buried underground G. Specifically, the steel member to be the target member 2 is, for example, a steel sheet pile of a steel sheet pile wall, a steel pipe sheet pile, an H steel of a parent pile horizontal sheet pile wall, or the like. The sheet pile is a plate-shaped member for preventing soil (earth and sand; the same applies hereinafter) or water from entering the opposite side of the sheet pile in the foundation work or the civil engineering work of the building. Then, usually, a plurality of steel members or the like that can be the target member 2 such as a plurality of sheet piles are driven into the underground G side by side around a foundation of a building or a structure, and buried in the underground G. In addition, the target member 2 buried in the underground G is usually pulled out of the underground G when it becomes unnecessary.
なお、通常、引き抜いた鋼部材(対象部材2)には、地中Gに埋設された状態の時にその鋼部材の周囲に存在していた土砂が付着するが、このような鋼部材へ土砂が付着したままで鋼部材を引く抜くと地中Gと鋼部材の間に空隙が生ずる(付着土砂の共上がり)。そして、この共上がりによる近接の埋設構造物や地表面の沈下等のトラブルの可能性が懸念される場合などには、やむなく鋼部材を地中Gに残置することもある。特に軟弱粘性土地盤では、矢板などに粘性土が付着した状態で大量の土が矢板と一緒に抜け上がり、かなりの空隙が地盤に発生する場合がある。また、引き抜かれた鋼部材は、再利用のためなどに洗浄されることにより、付着している土砂が取り除かれる。 Normally, the sediment existing around the steel member when it is buried in the underground G adheres to the drawn steel member (object member 2). If the steel member is pulled out while being adhered, a gap is formed between the underground G and the steel member (adhered soil and sand rise together). If there is a possibility of a trouble such as settlement of a nearby buried structure or ground surface due to the co-rise, the steel member may be forced to remain in the underground G. In particular, in the case of soft viscous ground, a large amount of soil may come off together with the sheet pile with the viscous soil adhered to the sheet pile or the like, and considerable voids may be generated in the ground. Further, the drawn steel member is washed for reuse or the like, so that the attached earth and sand is removed.
また、地中フリクションカット施工方法は、対象部材2を図2に示すような地中フリクションカット施工装置1に接続した状態で行われる。図2に示すように、地中フリクションカット施工装置1(以下、単に、施工装置1)は、対象部材2の設置位置から所定距離Lだけ離間した位置において少なくとも一部が地中Gに埋設された状態で設置される陽極部材3と、地中Gからの引き抜き対象または地中Gへの埋設対象となる対象部材2が陰極、陽極部材3が陽極となるように直流電圧を印加する電圧印加装置4と、を備える。そして、電圧印加装置4のプラス側(正極側)を陽極部材3に接続し、マイナス側(負極側)を陰極部材として機能させる対象部材2に接続した状態を構築することにより、施工装置1により上述したような直流電圧の印加が可能となる。 The underground friction cut execution method is performed in a state where the target member 2 is connected to the underground friction cut execution apparatus 1 as shown in FIG. As shown in FIG. 2, at least a part of the underground friction cut construction device 1 (hereinafter simply referred to as the construction device 1) is buried in the underground G at a position separated from the installation position of the target member 2 by a predetermined distance L. Voltage member that applies a DC voltage so that the anode member 3 is installed in a state where the object member 2 is to be pulled out from the underground G or the object member 2 to be buried in the underground G is a cathode, and the anode member 3 is an anode. Device 4. Then, by constructing a state in which the positive side (positive side) of the voltage applying device 4 is connected to the anode member 3 and the negative side (negative side) is connected to the target member 2 functioning as a cathode member, the construction apparatus 1 The above-described DC voltage can be applied.
より具体的には、上記の対象部材2の設置位置とは、対象部材2に対する施工内容が地中Gからの引き抜きの場合には、対象部材2が埋設されている位置となる。他方、対象部材2に対する施工内容が地中Gへの打ち込みの場合には、これから対象部材2を打ち込む予定位置となる。また、陽極部材3の一部が地中Gに埋設されることにより、陽極部材3の側面の一部が周囲の土砂に接触した状態となる。この陽極部材3は、鋼部材などの電極として用いることが可能な専用の部材を別途用意し、対象部材2への施工前に、対象部材2の設置位置から所定距離Lだけ離れた位置で地中Gに埋設しても良い。あるいは、対象部材2の候補ともなり得る、既に地中Gに埋設されている鋼部材などであって、対象部材2とは別の部材を陽極部材3として利用しても良い。例えば矢板の場合には、埋設されている複数の矢板のうちの1つを対象部材2とし、その対象部材2から所定距離Lだけ離れた位置の他の矢板を陽極部材3としても良く、この2つの矢板同士は、その他の矢板を介するなどして接触しないようにされる。 More specifically, the installation position of the target member 2 is a position where the target member 2 is buried when the content of the work performed on the target member 2 is the drawing from the underground G. On the other hand, in the case where the construction content for the target member 2 is to be driven into the underground G, the target member 2 is to be driven to be driven. Moreover, since a part of the anode member 3 is buried in the underground G, a part of the side surface of the anode member 3 comes into contact with the surrounding earth and sand. For the anode member 3, a dedicated member such as a steel member or the like that can be used as an electrode is separately prepared, and before being applied to the target member 2, the ground member is placed at a position separated from the installation position of the target member 2 by a predetermined distance L. It may be embedded in the middle G. Alternatively, a steel member or the like already buried in the underground G, which may be a candidate for the target member 2, and a member different from the target member 2 may be used as the anode member 3. For example, in the case of a sheet pile, one of the plurality of buried sheet piles may be the target member 2 and another sheet pile at a position separated from the target member 2 by a predetermined distance L may be the anode member 3. The two sheet piles are prevented from coming into contact with each other through another sheet pile.
そして、図1に示すように、地中フリクションカット施工方法は、電圧印加ステップ(S1)と、施工ステップ(S2)と、を備える。
以下、地中フリクションカット施工方法が備える上記のステップについて、それぞれ説明する。
And as shown in FIG. 1, the underground friction cut construction method includes a voltage application step (S1) and a construction step (S2).
Hereinafter, the above-mentioned steps included in the underground friction cut construction method will be described respectively.
電圧印加ステップ(S1)は、上述した対象部材2と陽極部材3との間に、対象部材2が陰極、陽極部材3が陽極となるように直流電圧を印加するステップである。具体的には、既に説明したように、対象部材2(陰極部材)と、陽極部材3と、にそれぞれ接続された電圧印加装置4を操作し、直流電圧を印加する。 The voltage application step (S1) is a step of applying a DC voltage between the target member 2 and the anode member 3 so that the target member 2 functions as a cathode and the anode member 3 functions as an anode. Specifically, as described above, the DC voltage is applied by operating the voltage applying devices 4 connected to the target member 2 (cathode member) and the anode member 3, respectively.
施工ステップ(S2)は、電圧印加ステップ(S1)による直流電圧の印加後の5分以内であって直流電圧が印加されている時に、対象部材2の地中Gからの引き抜き、または、対象部材2の地中Gへの打ち込み、のいずれかの施工を開始するステップである。具体的には、対象部材2をその長手方向に沿って引っ張ることが可能なクレーン車や鋼管打設機などの重機9を操作し、施工を開始する。より具体的には、対象部材2に対する施工内容が地中Gからの引き抜きの場合には、重機9を操作するなどして、対象部材2に対して引張荷重を加える。他方、対象部材2に対する施工内容が地中Gへの打ち込みの場合には、重機9を操作するなどして、対象部材2に対して自重以外の押込み荷重を加える。 The construction step (S2) is to pull out the target member 2 from the underground G or to execute the target member within 5 minutes after the application of the DC voltage in the voltage application step (S1) and when the DC voltage is applied. 2 is a step of starting the construction of any one of driving into the underground G. Specifically, a heavy machine 9 such as a crane truck or a steel pipe driving machine capable of pulling the target member 2 along its longitudinal direction is operated to start construction. More specifically, when the construction of the target member 2 is a drawing from the underground G, a tensile load is applied to the target member 2 by operating the heavy equipment 9 or the like. On the other hand, when the construction of the target member 2 is driving into the underground G, a pushing load other than its own weight is applied to the target member 2 by operating the heavy equipment 9 or the like.
このように、電圧印加ステップ(S1)の実行後、即座に、施工ステップ(S2)を実行可能なのは、上記の電圧印加ステップ(S1)により直流電圧を印加することで即座に生じる土粒子gと、陰極となる対象部材2との間で生じるクーロン斥力により、対象部材2が土砂から受ける摩擦抵抗が低減されることによる。地中Gを構成する土粒子gは、地中の水分によってマイナス(負)に帯電した状態にあるが、図3(a)に示すように、対象部材2に直流電圧を印加していない場合(非通電時)には、対象部材2に強く付着した状態にある。しかし、図3(b)に示すように、直流電圧を印加することにより(通電時)、陽極部材3から電源を介して対象部材2(陰極)に電子が供給されると、瞬間的に、マイナスの電荷を帯びている土粒子gと対象部材2との間にクーロン斥力(反発力)が生じる。また、直流電圧が印加された状態では、クーロン斥力が維持される。 Thus, immediately after the execution of the voltage application step (S1), the execution step (S2) can be executed immediately because the soil particles g that are immediately generated by applying the DC voltage in the above-described voltage application step (S1). This is because the Coulomb repulsion generated between the target member 2 serving as the cathode and the target member 2 reduces the frictional resistance that the target member 2 receives from the earth and sand. The soil particles g constituting the underground G are in a state of being negatively (negatively) charged by moisture in the ground, but as shown in FIG. 3A, when no DC voltage is applied to the target member 2. (When not energized), it is in a state of being strongly attached to the target member 2. However, as shown in FIG. 3 (b), when electrons are supplied from the anode member 3 to the target member 2 (cathode) via a power supply by applying a DC voltage (during energization), instantaneously, A Coulomb repulsion (repulsion) is generated between the negatively charged soil particles g and the target member 2. In the state where the DC voltage is applied, Coulomb repulsion is maintained.
そして、このクーロン斥力により土粒子gの対象部材2への付着力が低下される。具体的には、図4に示すように、直流電圧の印加時(実線)の方が、直流電圧の印加がない時(破線)よりも、同じ量だけ引き抜く際の引き抜き抵抗力が小さくなっており、クーロン斥力によって、摩擦抵抗が低減されているのが分かる。なお、図4の縦軸が引き抜き抵抗力[N:ニュートン]、横軸が引き抜き量(mm)である。 Then, the adhesive force of the soil particles g to the target member 2 is reduced by the Coulomb repulsion. Specifically, as shown in FIG. 4, the pull-out resistance when the DC voltage is applied (solid line) is smaller by the same amount than when the DC voltage is not applied (dashed line). It can be seen that the friction resistance is reduced by the Coulomb repulsion. The vertical axis in FIG. 4 indicates the pullout resistance [N: Newton], and the horizontal axis indicates the pullout amount (mm).
また、図5に示すグラフは、土砂(トチクレイと珪砂7号とを混合した土(模擬地盤Gm))の上に鋼部材を設置し、その鋼部材と、予め土砂に埋設した陽極部材3との間に直流電圧を印加した際に、自重で沈下する際の重力方向に沿ってかかる沈下荷重(引張荷重)[N]を計測した計測結果(縦軸)を、時間推移(横軸)に対してプロットしたグラフである。縦軸には、印加した直流電圧の電圧値(以下、印加電圧V)と、印加時に流れる電流値も併記している。なお、沈下荷重は、模擬地盤Gmに鋼部材を圧入し、圧入抵抗(鋼部材上向き)を計測することより得られるが、荷重のゼロ点を取った後に通電すると、上向き抵抗が低下し、荷重計には下向きの荷重(沈下荷重)が発生する。図5を見ると、直流電圧の印加直後から沈下荷重が増加しており(自沈しており)、クーロン斥力による摩擦抵抗の低減が即座に生じていることが分かる。 Further, the graph shown in FIG. 5 shows that a steel member is installed on earth and sand (soil (simulated ground Gm) in which tochiclay and silica sand 7 are mixed), and the steel member and the anode member 3 previously embedded in the earth and sand are shown. The measurement result (vertical axis) obtained by measuring the sinking load (tensile load) [N] applied along the direction of gravity when a DC voltage is applied during the sinking by its own weight is applied to the time transition (horizontal axis). It is a graph plotted against this. The vertical axis also shows the voltage value of the applied DC voltage (hereinafter, applied voltage V) and the current value flowing at the time of application. The sinking load can be obtained by pressing a steel member into the simulated ground Gm and measuring the press-in resistance (upward of the steel member). A downward load (squatting load) is generated on the meter. Referring to FIG. 5, it can be seen that the sinking load increases immediately after the application of the DC voltage (self-destroying), and the Coulomb repulsion immediately reduces the frictional resistance.
すなわち、地中G(地盤)を構成する土粒子gの表面は電荷をもっており(マイナスに帯電)、本発明者らは、直流電圧の印加により生じる、対象部材2と地中Gを構成する土砂の土粒子gとの間に生じるクーロン斥力により、鋼部材などとなる対象部材2を地中Gから引き抜く際や、対象部材2を地中Gに打ち込む際に地中Gを構成する土砂から受ける摩擦抵抗が低減されることを見出した。このクーロン斥力は、陽極と陰極との間の電荷(自由電子)の移動により生じるため、上記の直流電圧の印加直後など、非常に短時間で生じる(図5参照)。したがって、従来のように、直流電圧の印加後、電気浸透現象や電気分解によるガスの発生を待つことなく、直流電圧の印加後のより短い時間の後に対象部材2に対して施工を行っても、より小さな力で対象部材2の引き抜きや打ち込みを行うことが可能となる。 In other words, the surface of the soil particles g constituting the underground G (ground) has an electric charge (negatively charged), and the present inventors have found that the target member 2 and the earth and sand constituting the underground G are generated by applying a DC voltage. When the target member 2 such as a steel member is pulled out from the underground G or when the target member 2 is driven into the underground G, it is received from the earth and sand constituting the underground G by the Coulomb repulsion generated between the underground G and the soil particles g. It has been found that frictional resistance is reduced. This Coulomb repulsion is generated in a very short time, such as immediately after the application of the DC voltage, because it is generated by the movement of charges (free electrons) between the anode and the cathode (see FIG. 5). Therefore, unlike the related art, after the application of the DC voltage, the application to the target member 2 may be performed after a shorter time after the application of the DC voltage without waiting for the generation of gas due to the electroosmosis phenomenon or the electrolysis. Thus, the target member 2 can be pulled out or driven with a smaller force.
図1に示す実施形態について説明すると、図1では、ステップS0において、対象部材2の施工(引き抜き/打ち込み)のためのセッティングを実行している。具体的には、対象部材2に対して上述した施工装置1の設置(セッティング)を行う。このステップS0において、対象部材2に対する重機9の接続も行っても良い。その後、図1では、ステップS1において、上述した電圧印加ステップを実行した後、ステップS2において、上述した施工ステップを実行している。 The embodiment shown in FIG. 1 will be described. In FIG. 1, in step S0, setting for construction (pulling / implantation) of the target member 2 is executed. Specifically, the installation (setting) of the construction apparatus 1 described above is performed on the target member 2. In this step S0, the connection of the heavy equipment 9 to the target member 2 may be performed. Then, in FIG. 1, after performing the above-mentioned voltage application step in step S1, the above-mentioned construction step is performed in step S2.
なお、図1に示す実施形態では、電圧印加ステップ(S1)は、施工ステップ(S2)の実行中に一定の直流電圧を印加しているが、他の幾つかの実施形態では、電圧印加ステップ(S1)は、図5に示すように周期的などの所定のタイミングに従って、施工ステップ(S1)の実行中に印加する直流電圧をオン、オフしても良い。図5に示す沈下実験の結果から、直流電圧のオンにより、重力方向に沿った荷重が増加し、オフにより荷重が一定あるいは減少することが分かる。 In the embodiment shown in FIG. 1, the voltage applying step (S1) applies a constant DC voltage during the execution of the construction step (S2). However, in some other embodiments, the voltage applying step (S1) is applied. In (S1), the DC voltage applied during the execution of the construction step (S1) may be turned on and off according to any predetermined timing that is periodic as shown in FIG. From the results of the subsidence experiment shown in FIG. 5, it can be seen that the load along the direction of gravity increases when the DC voltage is turned on, and the load becomes constant or decreases when the DC voltage is turned off.
また、図1に示す実施形態は、地中フリクションカット施工方法にステップS0が含まれている実施形態であるが、地中フリクションカット施工方法に上記のステップS0に相当する構成が含まれていなくても良い。つまり、この場合には、上記のステップS0に相当する作業が既に完了しているところから、地中フリクションカット施工方法を適用する実施形態となる。また、上記のステップS0で実行している対象部材2に対する重機9の接続は、ステップS1とステップS2との間で行っても良い。 The embodiment shown in FIG. 1 is an embodiment in which step S0 is included in the underground friction cut execution method, but the configuration corresponding to step S0 is not included in the underground friction cut execution method. May be. In other words, in this case, an embodiment in which the underground friction cut construction method is applied since the operation corresponding to step S0 has already been completed. Further, the connection of the heavy equipment 9 to the target member 2 executed in step S0 may be performed between step S1 and step S2.
上記の構成によれば、対象部材2が陰極と陽極部材3が陽極となるような直流電圧を印加すると共に、上記のクーロン斥力が発生する直流電圧の印加の直後など、5分以内に、対象部材の地中からの引き抜きや、対象部材の地中への打ち込み(埋設)などの施工を開始する。上記の直流電圧の印加により、印加直後から極めて短時間で生じる、対象部材2と地中Gを構成する土粒子gとの間のクーロン斥力により、対象部材2が周囲の土砂から受ける摩擦抵抗を低減される。したがって、上記の直流電圧の印加後、迅速に、対象部材2の施工を開始することができる。また、より小さな引き抜き荷重または押込み荷重により施工を行うことが可能となると共に、対象部材2に対する施工の開始を早期化する分だけ短期間で施工を完了することが可能となるので、対象部材2の施工をより効率的に行うことができる。 According to the above configuration, the DC voltage is applied so that the target member 2 becomes the cathode and the anode member 3 becomes the anode, and the target member 2 is applied within 5 minutes immediately after the application of the DC voltage at which the Coulomb repulsion occurs. Construction such as pulling out the member from the ground and driving (burial) the target member into the ground is started. Due to the Coulomb repulsion between the target member 2 and the soil particles g constituting the underground G, which is generated in a very short time immediately after the application of the DC voltage, the frictional resistance of the target member 2 from the surrounding soil is generated. Reduced. Therefore, the application of the target member 2 can be started immediately after the application of the DC voltage. In addition, the construction can be performed with a smaller pulling load or indentation load, and the construction can be completed in a short period of time by the time required to start the construction of the target member 2 earlier. Construction can be performed more efficiently.
さらに、上記のように対象部材2に対する摩擦抵抗が低減された状態で引き抜き施工を行うことによって、引き抜いた際に対象部材2に付着している土砂を少なくすることができる。例えば、図6に示す例示では、引き抜き対象の鋼部材が陰極、陽極部材3が陽極となるような直流電圧を印加した場合(図6(a)参照)に対象部材2に付着した土砂は約1.2gであった。直流電圧を印加しない場合(図6(b)参照)に対象部材2に付着した土砂は約81.3gであったので、上記の直流電圧の印加により、引き抜き対象の鋼部材への付着土砂は約1/70に低減されている。よって、引き抜かれた対象部材2と共に大量の土が一緒に抜け上がること(共上がり)で地中Gに生じる空隙を小さくすることができ、この空隙による地表面沈下などのトラブルが発生する可能性を小さくすることができる。また、対象部材2の再利用のためなどに行う清掃作業に要する負担やコストを小さくすることができる。 Further, by performing the drawing operation in a state where the frictional resistance to the target member 2 is reduced as described above, it is possible to reduce the amount of earth and sand attached to the target member 2 when the target member 2 is pulled out. For example, in the example illustrated in FIG. 6, when a DC voltage is applied such that the steel member to be drawn is a cathode and the anode member 3 is an anode (see FIG. 6A), the soil attached to the target member 2 is approximately 1.2 g. When no DC voltage was applied (see FIG. 6 (b)), the amount of sediment adhering to the target member 2 was about 81.3 g. It has been reduced to about 1/70. Therefore, a large amount of soil is pulled out together with the pulled-out target member 2 (coexistence), so that a gap generated in the underground G can be reduced, and a trouble such as ground surface settlement due to the gap may occur. Can be reduced. In addition, it is possible to reduce the burden and cost required for cleaning work performed for reuse of the target member 2 and the like.
よって、従来は、このような鋼部材の引き抜きに伴う沈下対策として、引き抜き速度を極端に遅くして空洞の発生を抑制しながら引き抜く方法や、引き抜き直後に地表部から砂やソイルセメント等を注入して空洞を埋める方法が取られていたが、その必要性を小さくできる。このため、沈下対策によって施工に必要な時間が多くなり非効率になることや、注入用の材料を用意するためのなどのコストの増加を回避することができる。 Therefore, conventionally, as a countermeasure against settlement due to the pulling out of such steel members, a method of pulling out while suppressing the generation of cavities by extremely slowing down the pulling speed, or injecting sand or soil cement etc. from the surface immediately after pulling out Although the method of filling the cavity has been adopted, the necessity can be reduced. For this reason, it is possible to avoid an increase in the time required for the construction and inefficiency due to the settlement measures, and an increase in cost such as preparing a material for injection.
次に、上述した電圧印加ステップ(S1)に関する幾つかの実施形態について説明する。
図7は、本発明の一実施形態に係るフリクションカット率と電流密度との関係を示す図である。
Next, some embodiments relating to the above-described voltage application step (S1) will be described.
FIG. 7 is a diagram illustrating a relationship between a friction cut rate and a current density according to an embodiment of the present invention.
幾つかの実施形態では、図7に示すように、電圧印加ステップ(S1)は、対象部材2と陽極部材3との間に直流電圧を印加することにより流れる電流の電流値を、対象部材2における地中Gに埋設されている部分の表面積で除算した値である電流密度が、0よりも大きく、15以下の範囲内の設定値αになるように、上述した直流電圧を印加する。つまり、電流密度が設定値αとなるように、印加する直流電圧の電圧値(印加電圧V)を決定し、その印加電圧Vを、上述した電圧印加装置4を用いるなどして実際に印加する。 In some embodiments, as shown in FIG. 7, the voltage application step (S1) is to reduce the current value of the current flowing by applying a DC voltage between the target member 2 and the anode member 3 to the target member 2. The above-mentioned DC voltage is applied so that the current density, which is a value obtained by dividing the surface area of the portion buried in the underground G, is larger than 0 and equal to or less than 15 within a range. That is, the voltage value (applied voltage V) of the applied DC voltage is determined so that the current density becomes the set value α, and the applied voltage V is actually applied by using the above-described voltage application device 4 or the like. .
本発明者らは、鋭意研究により、上記の直流電圧の印加時の引張荷重あるいは押込み荷と、印加していない時の引張荷重あるいは押込み荷重との比(例えば電圧印加時の荷重÷電圧非印加時の荷重。以下、フリクションカット率と称す。)は、直流電圧の印加により流れる電流を、対象部材2における地中に埋設されている部分の表面積で割った値(つまり電流密度)と相関関係を有していることを見出した。具体的には、図7に示すように、フリクションカット率は、電流密度を大きくするのに従って下限値(図7では0.3〜0.4の間の値)付近までは下がるが、その下限値付近以降は電流密度を大きくしてもほとんど変化しないように推移する。 The inventors of the present invention have conducted intensive studies to determine the ratio of the tensile load or indentation load when the DC voltage is applied to the tensile load or indentation load when no DC voltage is applied (for example, load when voltage is applied 電 圧 voltage when no voltage is applied). The load at the time (hereinafter, referred to as a friction cut rate) is correlated with a value (that is, current density) obtained by dividing a current flowing by applying a DC voltage by a surface area of a portion of the target member 2 buried underground. Was found. Specifically, as shown in FIG. 7, the friction cut rate decreases to near the lower limit (a value between 0.3 and 0.4 in FIG. 7) as the current density increases. After the vicinity of the value, even if the current density is increased, there is little change.
具体的には、本発明者らは、様々な形状(平型やH型など)や大きさを有する鋼部材であって、その長手方向が重力方向に沿うよう土砂に埋められた状態や、その短手方向が重力方向に沿うよう土砂に埋めた状態の鋼部材に対して、鋼部材が陰極、陽極部材3が陽極になるように印加する直流電圧の印加電圧Vの大きさを変えて、フリクションカット率を計測した。そして、本発明者らは、試行錯誤を通して、印加した直流電圧あるいは電流値とフリクションカット率との間の関係性ではなく、フリクションカット率の計測データと、鋼部材の土砂に埋設されている部分の表面積のデータと、直流電圧の印加時の電流値の計測データとに着目することにより、図7に示すような、フリクションカット率と、電流密度との相関関係を見出した。 Specifically, the present inventors have proposed a steel member having various shapes (such as a flat shape and an H shape) and a size, and a state in which the longitudinal direction is buried in earth and sand along the direction of gravity, By changing the magnitude of the applied voltage V of the DC voltage applied so that the steel member becomes a cathode and the anode member 3 becomes an anode with respect to the steel member in a state of being buried in earth and sand so that the short side direction is along the direction of gravity. And the friction cut rate was measured. Then, the present inventors, through trial and error, are not the relationship between the applied DC voltage or current value and the friction cut rate, but the measurement data of the friction cut rate and the portion of the steel member embedded in the soil. The correlation between the friction cut rate and the current density as shown in FIG. 7 was found by paying attention to the data of the surface area and the measurement data of the current value when the DC voltage was applied.
図7のグラフは、縦軸をフリクションカット率、横軸を電流密度[A/m2]としたグラフである。図7に示すように、フリクションカット率は、電流密度が所定値(図7の例では10付近)までは、電流密度が大きくなるに従って、フリクションカット率は2次関数(指数関数)的に減少していき(図7では0.3付近まで低下)、鋼部材に対する引張荷重などが、直流電圧の印加がない場合に比べて低減されていることが分かる。また、電流密度を所定値よりも大きくしても、フリクションカット率はほとんど変化しないようになり、一定に近づくように推移するのがわかる。 The graph in FIG. 7 is a graph in which the vertical axis represents the friction cut rate and the horizontal axis represents the current density [A / m 2 ]. As shown in FIG. 7, the friction cut rate decreases as a quadratic function (exponential function) as the current density increases until the current density reaches a predetermined value (near 10 in the example of FIG. 7). As shown in FIG. 7, the tensile load on the steel member is reduced as compared with the case where no DC voltage is applied. Further, even if the current density is larger than the predetermined value, the friction cut ratio hardly changes, and it can be seen that the friction cut ratio changes to approach a constant value.
そして、図7に示すように、直流電圧の印加時の電流密度の設定値αは3以上10以下であれば、フリクションカット率は下限値に近い0.3〜0.4の間にある。また、5付近であれば、電流密度の減少割合に対するフリクションカット率の減少割合の大きさが比較的大きい。よって、直流電圧の印加時の電流密度の設定値αを3以上10以下、あるいは、5付近とすることにより、直流電圧のための供給電力を最大限低くしつつ、摩擦抵抗の低減効果を最大化することが可能である。 Then, as shown in FIG. 7, if the set value α of the current density at the time of applying the DC voltage is 3 or more and 10 or less, the friction cut ratio is between 0.3 and 0.4 which is close to the lower limit. In the vicinity of 5, the reduction ratio of the friction cut ratio to the reduction ratio of the current density is relatively large. Therefore, by setting the set value α of the current density at the time of application of the DC voltage to 3 or more and 10 or less, or near 5, the power supply for the DC voltage is reduced as much as possible and the effect of reducing the frictional resistance is maximized. It is possible to
上記の構成によれば、対象部材2および陽極部材3への印加電圧Vを、直流電圧の印加時の電流密度が0よりも大きく、15以下の範囲の設定値αにする。より具体的には、上記の設定値αを、3以上10以下(例えば5)などにする。これによって、直流電圧の印加のための電力消費を抑制しつつ、クーロン斥力による比較的大きな摩擦低減効果を得ることができる。 According to the above configuration, the voltage V applied to the target member 2 and the anode member 3 is set to a set value α in a range where the current density when the DC voltage is applied is larger than 0 and 15 or less. More specifically, the setting value α is set to 3 or more and 10 or less (for example, 5). Thereby, a relatively large friction reduction effect by Coulomb repulsion can be obtained while suppressing power consumption for applying a DC voltage.
また、幾つかの実施形態では、図1に示すように、地中フリクションカット施工方法は、施工ステップ(S2)の実行中に、上述した電流密度が上記の設定値αになるように直流電圧を調節する電圧調節ステップ(S3)を、さらに備えても良い。地中Gに埋設されている対象部材2の表面積は、対象部材2の引き抜き量が大きくなるにしたがって小さくなり、対象部材2の打ち込みが進み、埋設されている部分が多くなるにしたがって大きくなるなど、施工が進むにつれて変化する。よって、対象部材2の施工中に電流密度が設定値αになるように調節する。 In some embodiments, as shown in FIG. 1, the underground friction cut construction method uses a DC voltage such that the above-mentioned current density becomes the above-mentioned set value α during the execution of the construction step (S2). May be further provided with a voltage adjusting step (S3) of adjusting the voltage. The surface area of the target member 2 buried in the underground G decreases as the withdrawal amount of the target member 2 increases, and increases as the driving of the target member 2 progresses and the buried portion increases. Changes as the construction proceeds. Therefore, during the construction of the target member 2, the current density is adjusted so as to reach the set value α.
具体的には、図2に示すように、施工装置1は、対象部材2と陽極部材3との間を流れる電流を計測するための電流計5を、さらに備えている。そして、この電流計5の計測値Iと、対象部材2の引き抜き量あるいは打ち込み量となる施工量hの計測値と、に基づいて電流密度を施工中に算出し、その算出値が設定値αになるように、電圧印加装置4を操作するなどして直流電圧の印加電圧Vを調節する。なお、地中Gに埋設されている部分の表面積は、施工量hに応じてどのように変化するかを予め表や算出式として用意しておき、施工量hの計測値から簡易に求まるようにされていると良い。 Specifically, as shown in FIG. 2, the construction apparatus 1 further includes an ammeter 5 for measuring a current flowing between the target member 2 and the anode member 3. Then, the current density is calculated during the construction based on the measurement value I of the ammeter 5 and the measurement value of the construction amount h, which is the amount of pulling out or driving of the target member 2, and the calculated value is the set value α. Thus, the applied voltage V of the DC voltage is adjusted by operating the voltage applying device 4 or the like. In addition, how the surface area of the portion buried in the underground G changes according to the construction amount h is prepared in advance as a table or a calculation formula, and is easily obtained from the measured value of the construction amount h. Good to have been.
より具体的には、図2に示すように、施工装置1が、電圧印加装置4が印加すべき直流電圧の指示値を算出する印加電圧決定装置6を備えることによって、ステップS3に相当する内容を実行しても良い。図2に示す実施形態では、印加電圧決定装置6には、電流計5の計測値Iと、施工量hの計測値とが入力されるようになっており、印加電圧決定装置6は、これらの入力値と、内部の記憶装置(不図示)に保持している、施工量hから地中Gに埋設されている部分の表面積を算出可能な上述した表や算出式などの算出関数と、に基づいて電流密度を算出する。そして、印加電圧決定装置6は、算出した電流密度が設定値αになるように、電圧印加装置4の電圧を自動で調整するようになっている。 More specifically, as shown in FIG. 2, the application apparatus 1 includes an applied voltage determination apparatus 6 that calculates an instruction value of a DC voltage to be applied by the voltage application apparatus 4, thereby providing contents corresponding to step S <b> 3. May be executed. In the embodiment shown in FIG. 2, the measured value I of the ammeter 5 and the measured value of the construction amount h are input to the applied voltage determining device 6, and the applied voltage determining device 6 And a calculation function such as the above-mentioned table or calculation formula capable of calculating the surface area of the portion buried in the underground G from the construction amount h held in an internal storage device (not shown), The current density is calculated based on. Then, the applied voltage determination device 6 automatically adjusts the voltage of the voltage application device 4 so that the calculated current density becomes the set value α.
ただし、本実施形態に本発明は限定されない。他の幾つかの実施形態では、印加電圧決定装置6は、電流密度の算出結果をディスプレイに表示するところまで実行し、電圧印加装置4が印加する印加電圧Vの調節は、ディスプレイに表示される電流密度の算出結果が設定値αになるように、人手で行っても良い。 However, the present invention is not limited to this embodiment. In some other embodiments, the applied voltage determination device 6 performs the calculation of the current density on the display, and the adjustment of the applied voltage V applied by the voltage application device 4 is displayed on the display. The calculation may be performed manually so that the calculation result of the current density becomes the set value α.
上記の構成によれば、電圧調節ステップ(S3)によって施工ステップ(S2)の実行中に電流密度が設定値αになるように印加電圧Vを調節する。これによって、直流電圧の印加電圧Vが不必要に高い状況や、印加電圧が小さく摩擦抵抗の低減効果が十分に得られないような状況を防止し、適切な直流電圧を印加することができる。 According to the above configuration, the applied voltage V is adjusted by the voltage adjusting step (S3) so that the current density becomes the set value α during the execution step (S2). This prevents a situation where the applied voltage V of the DC voltage is unnecessarily high or a situation where the applied voltage is small and the effect of reducing the frictional resistance cannot be sufficiently obtained, and an appropriate DC voltage can be applied.
ただし、本実施形態に本発明は限定されない。他の幾つかの実施形態では、施工前に、電流密度が設定値αとなるように印加電圧Vを決定し、施工中には、上述したような電圧調節ステップ(S3)による印加電圧Vの調整は行わなくても良い。また、対象部材2の地中Gに埋設されている部分の長さが不明な場合には、その部分の表面積の想定値や、全体の表面積を用いても良い。 However, the present invention is not limited to this embodiment. In some other embodiments, the applied voltage V is determined so that the current density becomes the set value α before the application, and during the application, the applied voltage V in the voltage adjustment step (S3) as described above is determined. The adjustment need not be performed. If the length of the portion of the target member 2 buried in the underground G is unknown, an assumed value of the surface area of the portion or the entire surface area may be used.
次に、上述した地中フリクションカット施工方法(施工装置1)を行うのに適した土砂について、説明する。
図8は、本発明の一実施形態に係る土砂の種類に応じた鋼部材の沈下実験の結果を示す図であり、フリクションカット率は、対象部材の50mm挿入時の比である。また、図9は、本発明の一実施形態に係る粘性土と砂との構成比に応じたフリクションカット率と印加電圧Vとの関係を示す図である。
Next, a description will be given of earth and sand suitable for performing the above-described underground friction cut construction method (construction apparatus 1).
FIG. 8 is a diagram showing the results of a settlement test of a steel member according to the type of earth and sand according to one embodiment of the present invention. The friction cut ratio is a ratio when the target member is inserted at 50 mm. FIG. 9 is a diagram showing a relationship between a friction cut rate and an applied voltage V according to a composition ratio of clayey soil and sand according to an embodiment of the present invention.
幾つかの実施形態では、上述した地中Gを構成する土砂は、粒径が0.075mm未満の細粒分を40%以上有する土を含む。より詳細には、地中Gを構成する土砂は、粒径が0.065mm以下の細粒分を40%以上有する土を含んでいても良い(図9参照)。これは、本発明者らが、鋭意研究により、砂(細粒分が15%未満)は飽和砂であっても負に帯電しないことを見出したことによる。 In some embodiments, the earth and sand constituting the underground G described above includes soil having a grain size of less than 0.075 mm and a grain size of 40% or more. More specifically, the earth and sand constituting the underground G may include soil having a fine particle size of 0.065 mm or less and 40% or more (see FIG. 9). This is because the inventors of the present invention have conducted intensive studies and found that sand (having a fine particle content of less than 15%) is not negatively charged even with saturated sand.
詳述すると、図8に示すグラフは、様々な種類の土砂の上にそれぞれ鋼部材を設置し、その鋼部材と、予め土砂に埋設した陽極部材3との間に直流電圧を印加した際に、自重で沈下する際の重力方向に沿ってかかる沈下荷重[N]を計測した計測結果(縦軸)を、時間軸(横軸)に対してプロットしたグラフである。図8には、日本統一土質分類法における土の工学的分類方法による砂(細粒分が15%未満の土)と、乾燥した粘性土(木節粘性土)と、飽和木節粘性土(塑性限界Wp=40%の木節粘性土)についての実験結果が示されている。そして、図8から、直流電圧を印加した場合、砂は、飽和砂であっても、自沈せず、沈下荷重が大きくなることはない。つまり、砂は負に帯電せず、クーロン斥力が発生しないことが分かる。 More specifically, the graph shown in FIG. 8 shows that when a steel member is installed on various types of earth and sand, and a DC voltage is applied between the steel member and the anode member 3 previously embedded in the earth and sand. 4 is a graph in which measurement results (vertical axis) obtained by measuring a sinking load [N] applied along the direction of gravity when sinking by its own weight are plotted against a time axis (horizontal axis). FIG. 8 shows sand (soil having a fine grain fraction of less than 15%), dry cohesive soil (Kibushi cohesive soil), and saturated kibushi cohesive soil ( Experimental results for the plastic limit Wp = 40% of knotty clay) are shown. As shown in FIG. 8, when a DC voltage is applied, even if the sand is saturated sand, it does not self-settle, and the settlement load does not increase. That is, it is understood that the sand is not negatively charged and no Coulomb repulsion is generated.
また、図9のグラフには、土砂を構成する粘土(粒径が0.065mm以下の土)と砂(細粒分が15%未満の土)との構成比が異なる複数種類の土砂に、それぞれ、鋼部材と陽極部材3とを設置して、鋼部材が陰極、陽極部材3が陽極になるように印加する直流電圧の印加電圧Vの大きさを変えたときの、フリクションカット率の変化が示されている。砂が60%以下では、砂の割合(砂分)が大きくなるほど、同一の印加電圧Vを印加した場合のクーロン斥力による摩擦低減効果は概ね、小さくなっている。逆に言うと、粘土が40%以上では、粘土の割合が大きくなるほど、同一の印加電圧Vを印加した場合のクーロン斥力による摩擦低減効果は概ね大きくなっている。つまり土砂中の粘土分が多いほど、打ち込み開始時の挿入抵抗力の大きな低減が得られるといえる。 Further, in the graph of FIG. 9, a plurality of types of soil having different composition ratios of clay (soil having a particle size of 0.065 mm or less) and sand (soil having a fine particle content of less than 15%) are shown. A change in the friction cut ratio when the magnitude of the applied voltage V of the DC voltage applied so that the steel member is the cathode and the anode member 3 is the anode by installing the steel member and the anode member 3, respectively. It is shown. When the sand content is 60% or less, the effect of reducing friction by Coulomb repulsion when the same applied voltage V is applied generally decreases as the proportion of sand (sand content) increases. Conversely, when the amount of clay is 40% or more, as the proportion of clay increases, the friction reducing effect due to Coulomb repulsion when the same applied voltage V is applied generally increases. In other words, it can be said that the greater the clay content in the earth and sand, the greater the reduction in insertion resistance at the start of driving.
したがって、本発明の地中フリクションカット施工方法は、地中を構成する土砂の土粒子gの粒径が0.075mm未満の細粒分を40%以上有する場合に適用される。これは、日本統一土質分類法における土の工学的分類方法の主にシルト、粘性土などに分類される土(細粒分が50%以上)や、砂質土(細粒分が5%以上50%未満)の一部であり、対象部材2と陽極部材3とに上述した直流電圧を印加することにより生じるクーロン斥力によって、対象部材2が周囲の土砂から受ける摩擦抵抗を低減させることができる。 Therefore, the underground friction cut construction method of the present invention is applied when the soil particles g of the earth and sand constituting the underground have a fine particle fraction of less than 0.075 mm by 40% or more. This is mainly classified into silt, cohesive soil, etc. (fine grain content of 50% or more) and sandy soil (fine grain content of 5% or more) in the engineering classification method of soil in the Japan Unified Soil Classification Method. (Less than 50%), and the Coulomb repulsion generated by applying the above-described DC voltage to the target member 2 and the anode member 3 can reduce the frictional resistance that the target member 2 receives from the surrounding earth and sand. .
また、図8から粘性土であっても乾燥した粘性土では、やはり、クーロン斥力は発生しないことが分かる。また、飽和粘性土であっても、細粒分が多く、塑性が高いほど電気的に高活性であり、クーロン斥力による効果を得やすいことが分かる。換言すれば、既往の粘性土の活性に関する研究により、土粒子gの帯電度合いは比表面積とζ電位に比例し、この比表面積とζ電位は粘土分含有率と塑性指数(Ip)に比例するので、塑性指数が高く、粘土分を多く含有する地盤ほどフリクションカット効果は大となる。
よって、幾つかの実施形態では、施工ステップ(S2)では、少なくとも一部が地下水位以下に埋設された対象部材2の引き抜きを開始するか、あるいは、少なくとも一部を地下水位以下に埋設されるように打ち込みを開始する。
In addition, it can be seen from FIG. 8 that the Coulomb repulsion does not occur even in the case of the dried clayey soil even if the clayey soil is dry. Further, it can be seen that even in the case of a saturated clay soil, the finer the grain, the higher the plasticity, the higher the electrical activity, and the more easily the Coulomb repulsion effect can be obtained. In other words, according to previous studies on the activity of clayey soil, the degree of charging of the soil particles g is proportional to the specific surface area and the ζ potential, and the specific surface area and ζ potential are proportional to the clay content and the plasticity index (Ip). Therefore, the higher the plasticity index, the greater the clay content, the greater the friction cut effect.
Therefore, in some embodiments, in the construction step (S2), the extraction of the target member 2 at least partially buried below the groundwater level is started, or at least a part is buried below the groundwater level. To start driving.
つまり、クーロン斥力が生じるためには土砂が飽和している必要があり、地下水位以下の地盤では土粒子g間が水で充填されている(飽和土)ため、対象部材2と陽極部材3とに上述した直流電圧を印加することにより生じるクーロン斥力により、対象部材2が周囲の土砂から受ける摩擦抵抗を低減することができる。なお、飽和状態は、土粒子gがイオン化(帯電)する状態であり、土粒子g間の間隙の全てに水が存在する。 That is, in order for the Coulomb repulsion to occur, the soil must be saturated, and in the ground below the groundwater level, the space between the soil particles g is filled with water (saturated soil). The frictional resistance of the target member 2 from the surrounding earth and sand can be reduced by the Coulomb repulsion generated by applying the DC voltage described above. The saturated state is a state in which the soil particles g are ionized (charged), and water is present in all gaps between the soil particles g.
要するに、土砂が飽和状態になければ土粒子gがイオン化せず、帯電しない(フリクションカット効果なし)。さらに、飽和状態であっても砂(鉱物)は帯電しないので、本工法の対象は地下水位以下の粘性土地盤とするのが適切と言える。なお、シルトや粘性土であっても塑性指数がゼロの非塑性シルト・粘土では帯電度合いは低いため、フリクションカット効果が低下することになる(Ip>15の地盤で優位)。 In short, unless the soil is saturated, the soil particles g are not ionized and are not charged (no friction cut effect). Furthermore, since sand (mineral) is not charged even in the saturated state, it can be said that the target of this method is appropriate for the viscous ground below the groundwater level. It should be noted that even in the case of silt or clayey soil, the non-plastic silt / clay having a plasticity index of zero has a low degree of electrification, so that the friction cut effect is reduced (advantageous in the ground where Ip> 15).
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present invention is not limited to the above-described embodiment, and includes a form in which the above-described embodiment is modified and a form in which these forms are appropriately combined.
1 地中フリクションカット施工装置
2 対象部材
3 陽極部材
4 電圧印加装置
5 電流計
6 印加電圧決定装置
9 重機
G 地中
Gm 模擬地盤
L 所定距離
h 施工量
g 土粒子
I 電流の計測値
V 印加電圧
Wp 塑性限界
Reference Signs List 1 underground friction cut construction device 2 target member 3 anode member 4 voltage application device 5 ammeter 6 applied voltage determination device 9 heavy equipment G underground Gm simulated ground L predetermined distance h construction amount g soil particle I current measured value V applied voltage Wp plastic limit
Claims (7)
前記電圧印加ステップによる前記直流電圧の印加後の5分以内であって前記直流電圧が印加されている時に、前記対象部材の前記地中からの引き抜き、または、前記対象部材の前記地中への打ち込み、のいずれかの施工を開始する施工ステップと、を備えることを特徴とする地中フリクションカット施工方法。 A target member to be pulled out from the ground or a target to be buried in the ground, and an anode member at least partially buried in the ground at a position separated from the installation position of the target member, A voltage applying step of applying a DC voltage so that the target member is a cathode and the anode member is an anode,
When the DC voltage is applied within 5 minutes after the application of the DC voltage by the voltage applying step, the target member is pulled out of the ground, or the target member is drawn into the ground. An underground friction cut construction method, comprising:
前記対象部材と前記陽極部材との間に、前記対象部材が陰極、前記陽極部材が陽極となるように直流電圧を印加する電圧印加装置と、
前記電圧印加装置が印加する前記直流電圧の指示値を算出する印加電圧決定装置と、を備え、
前記印加電圧決定装置は、前記対象部材と前記陽極部材との間に前記直流電圧を印加することにより流れる電流の電流値を、前記対象部材における前記地中に埋設されている部分の表面積で除算した値が、0よりも大きく、15以下となるように、前記直流電圧を印加することを特徴とする地中フリクションカット施工装置。 An anode member that is at least partially buried in the ground at a position separated from the installation position of the target member to be pulled out from the ground or to be buried in the ground,
Between the target member and the anode member, the target member is a cathode, a voltage application device that applies a DC voltage so that the anode member becomes an anode,
An applied voltage determination device that calculates an instruction value of the DC voltage applied by the voltage application device,
The applied voltage determination device divides a current value of a current flowing by applying the DC voltage between the target member and the anode member by a surface area of a portion of the target member buried in the ground. The underground friction cut construction device, wherein the DC voltage is applied so that the value obtained is larger than 0 and equal to or smaller than 15.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018173171A JP7241495B2 (en) | 2018-09-18 | 2018-09-18 | Underground friction cut construction method, underground friction cut construction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018173171A JP7241495B2 (en) | 2018-09-18 | 2018-09-18 | Underground friction cut construction method, underground friction cut construction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020045646A true JP2020045646A (en) | 2020-03-26 |
JP7241495B2 JP7241495B2 (en) | 2023-03-17 |
Family
ID=69900878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018173171A Active JP7241495B2 (en) | 2018-09-18 | 2018-09-18 | Underground friction cut construction method, underground friction cut construction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7241495B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5367903A (en) * | 1976-11-30 | 1978-06-16 | Ebine Gisuke | Method of reducing drawwout resistance of steel driven |
JPS5394404A (en) * | 1977-01-31 | 1978-08-18 | Sanwa Kigyo Kk | Device and method for driving pile |
JPS5431902A (en) * | 1977-08-16 | 1979-03-09 | Osaka Gas Co Ltd | Method of extracting matter temporarily buried in ground |
JPS59192129A (en) * | 1983-04-13 | 1984-10-31 | Zenitakagumi:Kk | Sheathing work |
JPH05287741A (en) * | 1992-04-07 | 1993-11-02 | Ohbayashi Corp | Pulling-off method for steel member buried in ground |
JP2012214979A (en) * | 2011-03-31 | 2012-11-08 | Ohbayashi Corp | Extraction method for steel underground wall |
-
2018
- 2018-09-18 JP JP2018173171A patent/JP7241495B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5367903A (en) * | 1976-11-30 | 1978-06-16 | Ebine Gisuke | Method of reducing drawwout resistance of steel driven |
JPS5394404A (en) * | 1977-01-31 | 1978-08-18 | Sanwa Kigyo Kk | Device and method for driving pile |
JPS5431902A (en) * | 1977-08-16 | 1979-03-09 | Osaka Gas Co Ltd | Method of extracting matter temporarily buried in ground |
JPS59192129A (en) * | 1983-04-13 | 1984-10-31 | Zenitakagumi:Kk | Sheathing work |
JPH05287741A (en) * | 1992-04-07 | 1993-11-02 | Ohbayashi Corp | Pulling-off method for steel member buried in ground |
JP2012214979A (en) * | 2011-03-31 | 2012-11-08 | Ohbayashi Corp | Extraction method for steel underground wall |
Also Published As
Publication number | Publication date |
---|---|
JP7241495B2 (en) | 2023-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200018034A1 (en) | Foundation for a structure | |
AU2018426054A1 (en) | Electro-osmosis treatment method for reducing moisture content of roadbed, and road structure | |
Ghareh | Parametric assessment of soil-nailing retaining structures in cohesive and cohesionless soils | |
CN108612096A (en) | A kind of cement mixing method reinforces the construction method of spiral-digging pore | |
JP2020045646A (en) | Construction method of friction cutting in ground, and construction device for friction cutting in ground | |
CN1837503B (en) | Shell-reclaimable rock-reinforcing construction method and shelling type reinforcement body and reclaiming apparatus used thereby | |
Singh et al. | Effect of soil–wall friction angle on behaviour of sheet pile wall under surcharge loading | |
JPH11107273A (en) | Construction method of cast-in-place pile | |
Yuan et al. | Mechanism of deformation compatibility and pile foundation optimum for long-span tower foundation in flood-plain deposit zone | |
CN101962950A (en) | Long-spiral spray stirring vibration pipe sinking CFG (Cement Flyash Gravel) pile construction method and CFG composite file therefrom | |
KR20120088947A (en) | The earth retaining wall construction method which uses H-Pile where attaches the parapin and H-Pile drawing method | |
CN204401556U (en) | A kind of high-piled slab & girder wharf rear connects the soil-baffling structure of bank | |
JP3198598B2 (en) | How to pull out steel members buried underground | |
Smethurst et al. | Effective-stress analysis of berm-supported retaining walls | |
Seitz | Topology optimization for the design of geotechnical structures | |
Noor et al. | Pull out and creep behaviour of soil nailing–a case study | |
Hassan et al. | Enhancing the Load-Bearing Capacity of H-Pile Foundation by Using Electrokinetic Treatment | |
JP2013253378A (en) | Auxiliary tool for forming pile head space, hollow precast pile having the same, pile head treatment method using the hollow precast pile, and method for forming pile head space | |
JP2007146468A (en) | Guy block mounting method and guy block | |
Merifield et al. | The ultimate uplift capacity of multi-plate anchors in undrained clay | |
KR101094964B1 (en) | Cement grout for pulse discharge | |
Liang et al. | Design method for drilled shaft stabilization of unstable slopes | |
JP6898125B2 (en) | How to build an underground wall | |
KR0172584B1 (en) | Consolidation apparatus for underground foundation and working method in situ. | |
KR20160085544A (en) | The construction method of pile using soil and grouting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210716 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220816 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20221129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230124 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20230124 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230202 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20230207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230307 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7241495 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |