WO2022095765A1 - 一种p55pik抑制剂在制备干眼治疗药物中的应用 - Google Patents

一种p55pik抑制剂在制备干眼治疗药物中的应用 Download PDF

Info

Publication number
WO2022095765A1
WO2022095765A1 PCT/CN2021/126635 CN2021126635W WO2022095765A1 WO 2022095765 A1 WO2022095765 A1 WO 2022095765A1 CN 2021126635 W CN2021126635 W CN 2021126635W WO 2022095765 A1 WO2022095765 A1 WO 2022095765A1
Authority
WO
WIPO (PCT)
Prior art keywords
p55pik
dry eye
inhibitor
group
treatment
Prior art date
Application number
PCT/CN2021/126635
Other languages
English (en)
French (fr)
Inventor
夏献民
李朝兴
Original Assignee
武汉益承生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉益承生物科技有限公司 filed Critical 武汉益承生物科技有限公司
Priority to JP2023550345A priority Critical patent/JP2023550661A/ja
Priority to EP21888462.5A priority patent/EP4241781A4/en
Publication of WO2022095765A1 publication Critical patent/WO2022095765A1/zh
Priority to US18/312,574 priority patent/US20230348538A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/66Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid the modifying agent being a pre-targeting system involving a peptide or protein for targeting specific cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents

Definitions

  • the invention belongs to the field of biopharmaceuticals, and more particularly relates to the application of a P55PIK inhibitor in the preparation of a drug for the treatment of dry eye.
  • Dry eye is characterized by tear film instability and/or ocular surface damage caused by abnormal tear quantity or quality or fluid dynamics, resulting in ocular discomfort and visual dysfunction.
  • Various names (such as dry eye syndrome, dry eye disease and dry eye syndrome, etc.) appearing in clinical practice in my country are collectively referred to as dry eye.
  • the main influencing factors are: aging, female, high altitude, diabetes, pterygium, air pollution, abuse of eye drops, use of video terminals, corneal refractive surgery, allergic eye diseases and some systemic diseases. It can cause symptoms such as dry eye, burning sensation, foreign body sensation, acupuncture sensation, eye itching, photophobia, eye redness, blurred vision, and vision fluctuation.
  • Aqueous deficient dry eye caused by insufficient production of aqueous tears and/or abnormal quality, such as Syndrome and dry eye caused by many systemic factors
  • evaporative dry eye caused by abnormal lipid layer quality or quantity, such as Meibomian gland dysfunction, blepharitis, video terminal syndrome
  • Mucin-deficiency dry eye caused by damage to the ocular surface epithelial cells, such as drug toxicity, chemical injury, thermal burn damage to the ocular surface, and corneal limbal dysfunction
  • Dry eye with abnormal tear dynamics caused by abnormal tear dynamics, such as abnormal blinking, delayed tear discharge, conjunctival relaxation, etc.
  • Mixed dry eye It is the most common type of dry eye in clinical practice. Dry eye caused by two or more of the
  • Dry eye is a multifactorial disease of the tear fluid and the eyeball surface, which can cause tear film instability, ocular discomfort, visual disturbances and other symptoms that damage the eyeball surface.
  • the etiology and pathological mechanism of dry eye are complex, the course of the disease is long, it is more lingering and difficult to heal, and it is easy to recur.
  • the present invention provides the application of a P55PIK inhibitor in the preparation of a drug for the treatment of dry eye, the purpose of which is to provide a drug for the treatment of dry eye that is easy to use and has a definite curative effect, thereby solving the problem of
  • the existing dry eye treatment drugs can only relieve or inhibit symptoms, or have the technical problems that the preparation is not easy.
  • an application of a P55PIK inhibitor is provided, which is used in the preparation of a drug for the treatment of dry eye.
  • the P55PIK inhibitor is a composition containing a P55PIK polypeptide inhibitor.
  • the composition containing the P55PIK polypeptide inhibitor comprises a transmembrane carrier or a transmembrane adjuvant.
  • the transmembrane carrier is a transmembrane peptide or a liposome.
  • the P55PIK polypeptide inhibitor comprises the following peptide segment:
  • the P55PIK polypeptide inhibitor comprises a penetrating peptide, and the penetrating peptide is linked to the peptide segment by a peptide bond.
  • the application of the P55PIK inhibitor is used in the preparation of medicines for anti-moderate-to-severe evaporative dry eye or dry eye with abnormal tear dynamics.
  • a dry eye treatment drug which is a composition containing a P55PIK inhibitor.
  • the content of the P55PIK inhibitor in the dry eye treatment drug is ⁇ 0.01%wt.
  • the dry eye treatment drug contains a transmembrane carrier or a transmembrane adjuvant.
  • a transmembrane carrier or a transmembrane adjuvant.
  • the medicine containing the P55PIK inhibitor polypeptide of the present invention has a good therapeutic effect on the dry eye model of animals, and has less toxic and side effects. Development prospects, and innovative drugs that are effective, safe, low toxicity and controllable in the treatment of dry eye.
  • Fig. 1 is the detection result of p55PIK protein expression in normal control group and model group of dry eye rats with low tear secretion in Example 1 of the present invention
  • Fig. 2 is a graph of p55PIK gene expression results in the normal control group and model group of dry eye rats with low tear secretion in Example 1;
  • Fig. 3 is the 0.1% TAT-N16 polypeptide of Example 1 in the treatment of rat corneal epithelial damage and dry eye corneal fluorescein sodium staining;
  • Fig. 4 is the conjunctival goblet cell density on the 7th day of the mouse treatment of Example 2;
  • Figure 5 is the New Zealand rabbit conjunctival goblet cell density on day 7 of Example 3;
  • FIG. 6 is a case photograph record of Example 4.
  • the dry eye treatment medicine provided by the present invention contains a P55PIK inhibitor, preferably the content is ⁇ 0.01% wt.
  • P55PIK inhibitors are polypeptide preparations, which are not easy to pass through biological membranes, such as N16 peptide, the sequence is as SEQ NO.1.
  • the dry eye treatment drug should have the ability to penetrate the membrane, so as to help the P55PIK inhibitor to penetrate the membrane, thereby improving the biological activity.
  • the transmembrane carrier or the peptide with P55PIK inhibitory effect can be artificially linked to the transmembrane peptide to make it have transmembrane ability, for example, the N16 peptide is connected to the TAT sequence to form the TAT-N16 peptide, the sequence is such as SEQ NO.2.
  • Penetrating peptides can be divided into three categories based on the sequence of the penetrating peptide and the binding properties of the penetrating peptide and lipids: (1) Amphiphilic, which usually contain more than 20 amino acids, hydrophobic and Hydrophilic amino acid residues are arranged consecutively along the main structure, such as transportan or TP10: (2) medium amphiphiles, which have fewer amino acids than amphiphiles, their amphipathic properties form ⁇ -helices when they interact with membranes Or ⁇ -sheet structure, such as penetratin, pVEC and M918; (3) non-amphiphilic, usually they are shorter and contain a high proportion of positively charged amino acids (such as arginine), such as R9 and TAT.
  • Amphiphilic which usually contain more than 20 amino acids, hydrophobic and Hydrophilic amino acid residues are arranged consecutively along the main structure, such as transportan or TP10:
  • medium amphiphiles which have fewer amino acids than amphi
  • Transmembrane carriers such as liposome-based encapsulation.
  • the experimenters first used the TAT-N16 polypeptide (see SEQ.NO.2) to apply it to the dry eye animal model, which showed that it can prolong the tear film breakup time and repair corneal damage, especially for moderate to severe evaporative dry eye. Symptoms and tear dynamics abnormal dry eye. Further experiments show that the transmembrane dosage forms containing P55PIK inhibition, including the transmembrane carrier and the transmembrane adjuvant composition, have similar inhibitory effects, and can be used in the preparation of dry eye treatment drugs.
  • p55PIK protein is abnormally increased in dry eye animal models. Since p55PIK protein is involved in many important signaling pathways, inhibiting the activity of p55PIK may relieve the symptoms of dry eye, and then through experimental verification, the experiment shows that P55PIK inhibitors can repair the cornea. damage and prolong tear film breakup time.
  • Example 1 The expression level of p55PIK in the ocular tissue of animals suffering from dry eye increases, and the rat experiment that TAT-N16 polypeptide can relieve dry eye symptoms
  • Rat corneal epithelial injury dry eye model The rat corneal epithelial injury dry eye model was prepared by the method of removing the lacrimal gland and adding benzalkonium bromide solution dropwise. 18 rats, half male and half male, were randomly selected, shaved and disinfected around the eyes, 0.4% obucaine was topical anesthesia, 0.5% lidocaine 1ml was post-balloon anesthesia, a small cut was made on the preauricular skin of the rats, and the skin was peeled off. The bilateral lacrimal glands were removed, and 1% benzalkonium bromide solution was instilled in both eyes. The cornea was observed on the second day.
  • Grouping and administration 18 rats with successful modeling were randomly divided into three groups, 6 rats in each group, half male and half male.
  • the first group was the blank control group, without treatment; the second group was the solvent control group, treated with solvent eye drops without TAT-N16 polypeptide; the third drug treatment group was treated with 0.1% TAT-N16 polypeptide eye drops treat.
  • Use of eye drops 4 times/(eye ⁇ day), 1 drop/time, medication for 7 days. The corneal epithelium damage was recorded on the 0th day of the medication and on the 4th and 7th days after the medication.
  • Detection method and scoring standard Fluorescein sodium corneal staining was used to drop 1 drop of fluorescein sodium into the conjunctival sac with a 5ml syringe and a 5-gauge needle. After 5 minutes, the corneal epithelium was observed under the blue light of a slit lamp microscope. (See Table 1 for the scoring criteria).
  • Rat model of hypolacrimal secretion According to the method of Burgalassi lacrimal gland injection of atropine, an animal model of hypolacrimal dry eye was established. 18 rats, half male and half male, were given 0.4% oxybucaine hydrochloride eye drops in both eyes, and 0.25ml/eye (0.5mg/ml) of atropine was injected into the lacrimal gland. The results of the tear secretion test in rats after daily injection of atropine for 0.5h, continued to the seventh day.
  • Grouping and administration 6 rats in the non-model group were half male and half male, which were the normal control group.
  • the 18 successfully modeled rats were randomly divided into three groups, 6 rats in each group, half male and half male.
  • the first model group was the blank control group, and no treatment was given;
  • the second group was the solvent control group, was treated with solvent eye drops without TAT-N16 peptide;
  • the third group was the drug treatment group, with 0.1% TAT-N16 peptide drops.
  • Eye drops treatment Use of eye drops: 4 times/(eye ⁇ day), 1 drop/time, medication for 7 days.
  • the tear secretion of each eye was recorded on the 0th day of treatment and on the 4th and 7th days after administration. After the detection, the eyeballs of the normal control group and the model group were taken to detect the p55PIK gene and protein levels.
  • the PVDF membrane after wet transfer was blocked with nonfat dry milk.
  • the primary antibody was incubated for 2 h at room temperature or overnight at 4°C. After the primary antibody hybridization, the membrane was washed, and the secondary antibody hybridization was incubated for 1 h at room temperature. Note that the fluorescent secondary antibody should be protected from light during the operation.
  • the secondary antibody washes the membrane.
  • the Odyssey dual-color infrared laser imager was pre-conditioned 20 minutes in advance, and the laser intensity was adjusted to scan the protein signal according to the secondary antibody species.
  • QPCR p55PIK primer sequence p55PIK-F: 5'-GCTTGGCACTTGATGTA-3' (SEQ NO.3), p55PIK-R: 5'-GCTGTATGAAGAAGAATATAC-3' (SEQ NO.4); primer sequences of internal reference gene GAPDH: GAPDH-F: 5'-GGACCAGGTTGTCTCCTGTG-3' (SEQ NO.5), GAPDH-R: 5'-TGTAGGCCATGAGGTCCAC-3' (SEQ NO. 6).
  • the blank control group did not do any treatment.
  • the data were compared by one-way analysis of variance, and compared with the blank control group, P ⁇ 0.01.
  • the normal control group is the non-model group, and the blank control group does not receive any treatment.
  • the data were compared by one-way analysis of variance, and compared with the blank control group, P ⁇ 0.05.
  • mice C57BL/6 mice rearing environment: temperature (25 ⁇ 1) °C, relative humidity (25 ⁇ 5)%, simulated light replacement day and night (9AM-9PM).
  • 40 mice 80 eyes were given eye drops with 0.2% benzalkonium chloride solution, 2 times/day (8:00 in the morning and 18:00 in the evening), 5 ⁇ l/time, for 14 days to induce dry eye model, and the remaining 10 mice (20 eyes) without any treatment, as the baseline control.
  • the dry eye model was screened according to tear break-up time (BUT), corneal fluorescein sodium staining and tear secretion test (Schirmer I).
  • Tear film break up time (BUT): We use tear film break up time, which is commonly used in clinical practice, to evaluate tear film stability. Drop 1 ⁇ l of 1% sodium fluorescein solution into the conjunctival sac of the mouse, ask the assistant to grab the mouse, artificially blink three times, then keep the upper and lower eyelids of the mouse separated, and observe immediately under the cobalt blue light of a slit lamp microscope. The tear breakup time is the length of time that the first tear breakup dark spot appears on the cornea. Each eye was measured three times, and the average value was recorded (seconds).
  • Corneal fluorescein sodium staining determines whether the epithelium is damaged. One drop of 1% sodium fluorescein solution was instilled into the conjunctival sac of mice, and after 1 min, the staining of corneal epithelium sodium fluorescein was observed under cobalt blue light under a slit lamp microscope.
  • Scoring criteria the cornea is divided into 4 quadrants, each quadrant is 0-4 points, the total score is 16 points. 0 points: no staining; 1 point: punctate staining, but less than 30; 2 points: more than 30 staining points, but not diffuse; 3 points: obvious diffuse staining but no plaque staining; 4 points: plaque-like staining.
  • Tear secretion test (Schirmer I): The Schirmer I tear secretion test was performed using phenol red cotton silk at the same time period (3PM) at each time point. After the mice were injected with pentobarbital (50mg/kg body weight) under general anesthesia, the lower part of the lower eyelid was gently opened, and the 1mm long part of the folded end of the phenol red cotton thread was placed on the palpebral conjunctiva of the lower eyelid close to the outer conjunctiva for 15 seconds. Measure and record the length of the reddened portion of the cotton thread. After the test is completed, the palpebral fissures are closed to avoid overexposure. Repeat 2 times for each eye, and take the average as the final result.
  • Conjunctival goblet cell count changes in the number of conjunctival goblet cells. PAS staining on the paraffin section of the conjunctival fornix showed that the conjunctival goblet cells in the blank group and the solvent group were significantly less than those in the normal conjunctiva.
  • the conjunctival cup was treated with TAT-N16 polypeptide eye drops The number of shape cells increased, and the difference was statistically significant.
  • 30 eligible dry eye model mice were selected and randomly divided into three groups, A, B and C, with half males and half males in each group.
  • group A was instilled with 0.1% TAT-N16 polypeptide instillation, 4 times/day
  • group B was instilled with instillation without TAT-N16 polypeptide (solvent group), 4 times/day
  • group C was not given any treatment (control group) Group).
  • Schirmer I and fluorescein sodium staining were performed on the 1st, 4th and 7th days after treatment, respectively.
  • the paraffin section of the conjunctival fornix was stained with PAS to count the number of positive goblet cells.
  • the TAT-N16 polypeptide drop group significantly increased, and the difference was statistically significant (P ⁇ 0.05) (Table 5).
  • the corneal fluorescein sodium staining score of TAT-N16 polypeptide drop group was significantly lower than that of blank control group, model control group and solvent group, and the difference was statistically significant (P ⁇ 0.05) (Table 6).
  • the density of conjunctival goblet cells in the TAT-N16 polypeptide drop group was significantly higher than that in the blank control group and the solvent control group, and the difference was statistically significant (P ⁇ 0.01) ( Figure 4).
  • the normal control group is the non-model group mice, and the blank control group does not receive any treatment.
  • the data were compared by one-way ANOVA, compared with the blank control group, *P ⁇ 0.05.
  • the experimental animals were 30 healthy New Zealand white rabbits, both male and female, weighing 2.1-2.5kg.
  • the feeding and environment of the animals follow the international standards for animal experiments in ophthalmology and visual science research.
  • the right eye of all animals was selected as the experimental eye drop with 0.1% benzalkonium chloride for 4 weeks, twice a day, to establish an animal model of dry eye.
  • the dry eye model rabbits were examined, and it was found that the cornea and conjunctiva appeared dry, the amount of tears was small, and the tear secretion test (Schirmer) test values were all ⁇ 10mm/5min (all in the control group>10mm); tear film breakup time (break up time) , BUT) were less than 10s; fluorescein staining showed corneal conjunctival point, flake coloring, that is, the model was successfully made.
  • TAT-N16 polypeptide drop which is a (liquid) preparation, including the following raw materials: polypeptide drug substance and physiological saline.
  • the specific preparation method is as follows: dissolving 0.1% by weight of the polypeptide bulk drug and physiological saline. Eye drops containing 0.1% TAT-N16 polypeptide, instill 2 drops 3 times a day for 7 days. The blank control group did not receive any treatment, and the solvent control group was administered with normal saline for 7 days, 3 times a day, 2 drops each time. The normal eyes were used as the normal control group.
  • Specimens were collected and the experimental animals were tested by the same person. Check the same time, place, lighting level and temperature. Before administration and on the 4th and 7th days after administration, the appearance, fluorescein staining and tear film break-up time of rabbit corneas and conjunctiva were observed under slit lamp respectively; tear secretion time test and conjunctival imprint cytology (CIC) were also performed.
  • CIC conjunctival imprint cytology
  • the tear secretion test (Schirmertest) model value of rabbit dry eye is less than 10mm.
  • the Schirmertest values of blank control group, solvent control group and drug treatment group were (8.41 ⁇ 0.69) mm, (8.50 ⁇ 0.23) mm and (8.38 ⁇ 0.57) mm, respectively, with no significant difference.
  • the Schirmer test value of the drug treatment group was (12.02 ⁇ 1.21) mm, which was significantly higher than that before treatment, and was also significantly higher than that of the blank control group and the solvent control group; after 7 days of treatment, the Schirmer test value of the drug treatment group was significantly higher. (16.31 ⁇ 1.45) mm, which was significantly longer than that before treatment, and was also significantly longer than that of the blank control group and the solvent control group, as shown in Table 7.
  • the tear film break-up time of BUT was less than 10s.
  • the BUT values of blank control group, solvent control group and drug treatment group were (8.55 ⁇ 1.06)s, (8.11 ⁇ 0.82)s, (8.24 ⁇ 1.13)s, respectively, with no significant difference.
  • the BUT value of the drug treatment group was (11.72 ⁇ 1.27)s, which was significantly longer than that before treatment, and was also significantly longer than that of the blank control group and the solvent control group; after 7 days of treatment, the BUT value of the drug treatment group was (15.31 ⁇ 1.85). )s, significantly longer than before treatment, and also significantly longer than blank control group and solvent control group, see Table 8.
  • Case 1 Wu Mou, female, 70 years old, had symptoms such as dry eyes, itchy eyes, foreign body sensation, photophobia and other symptoms for 3 years, and was diagnosed with dry eye syndrome. Artificial tears are commonly used, but they can only be relieved for a short time and have a short duration of action. Use 0.1% polypeptide eye drops, 3 times a day, 1 to 2 drops each time. On the first day, the symptoms of dry eyes were relieved, and it felt better than artificial tears. The next day, the eyes felt moist, the dry eyes were relieved, and the irritation symptoms such as photophobia and eye astringency were significantly relieved. On the third day, the symptoms of moist eyes, dry eyes, and foreign body sensation in the eyes were significantly relieved, and the effect of the drug was fast. The eyes were comfortable after 3 minutes of instillation, and the drug effect lasted for a long time. After a week of use, the symptoms of dry eye basically disappeared, and the photographic record is shown in Figure 6(1).
  • Case 2 Huang Mou, female, 63 years old, dry eyes, itchy eyes, tears in the wind for more than 1 year, slightly hyperemia of the conjunctiva, diagnosis of dry eye syndrome. Intermittent use of artificial tears, levofloxacin eye drops, poor efficacy, repeated symptoms. Use 0.1% polypeptide eye drops, 3 times a day, 1 to 2 drops each time. On the first day, the symptoms of dry eyes and itchy eyes were significantly relieved, and the eye comfort was enhanced. On the second day, the conjunctival congestion disappeared, and the eyes were moist. On the fourth day, the symptoms of wind and tears were significantly relieved, and the eyes were comfortable. After one week of continuous use, the symptoms of conjunctival hyperemia disappeared, and the symptoms of dry eye basically disappeared. The photographing record is shown in Figure 6(2).
  • Case 3 Xu, male, 35 years old, IT worker, with dry eyes for more than a year, was diagnosed with dry eye. Artificial tears have been used, which can be relieved for a short time, but dry eyes still appear repeatedly, and double conjunctiva hyperemia. Use 0.1% polypeptide eye drops, 3 times a day, 1 to 2 drops at a time, about 5 minutes after use, the eyes are comfortable and moist, and the drug effect lasts for a long time. After three days of use, the symptoms of dry eyes were significantly relieved, and after one week of continuous use, the symptoms of dry eyes basically disappeared, and no feedback of repeated dry eyes was received after the drug was discontinued. The main complaint is that the effect is obvious, and the drug effect lasts for a long time. The photographing record is shown in Figure 6(3).
  • Case 4 Qing Mou, female, 67 years old, dry eyes, foreign body sensation, photophobia, two years, slightly hyperemia of eyelid and conjunctiva, diagnosed with dry eye syndrome, used eye drops (unknown), the effect is not good, need to wear it when going out Glasses.
  • the conjunctival congestion was relieved, and it was possible to go out without wearing glasses for a period of time.
  • I basically don't wear glasses when I go out when the eyes are not in a special environment).
  • the photo records are shown in Figure 6(4).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种P55PIK抑制剂在制备干眼治疗药物中的应用。

Description

一种P55PIK抑制剂在制备干眼治疗药物中的应用 技术领域
本发明属于生物制药领域,更具体地,涉及一种P55PIK抑制剂在制备干眼治疗药物中的应用。
背景技术
干眼表现为泪液的量或质或流体动力学异常引起的泪膜不稳定和/或眼表损害,导致眼不适症状及视功能障碍的一类疾病。我国临床出现的各种名称(如干眼症、干眼病及干眼综合征等)均统一称为干眼。其影响因素主要有:老龄、女性、高海拔、糖尿病、翼状胬肉、空气污染、眼药水滥用、使用视屏终端、角膜屈光手术、过敏性眼病和部分全身性疾病等。引起眼部干涩感、烧灼感、异物感、针刺感、眼痒、畏光、眼红、视物模糊、视力波动等症状。
由于干眼发病机制的复杂性,国际上尚无统一的干眼分类标准,目前存在多种分类方法。我国对现有基于眼表面泪膜结构与功能对干眼分类如下:(1)水液缺乏型干眼:水液性泪液生成不足和/或质的异常而引起,如
Figure PCTCN2021126635-appb-000001
综合征和许多全身性因素引起的干眼;(2)蒸发过强型干眼:由于脂质层质或量的异常而引起,如睑板腺功能障碍、睑缘炎、视屏终端综合征、眼睑缺损或异常引起蒸发增加等;(3)黏蛋白缺乏型干眼:为眼表上皮细胞受损而引起,如药物毒性、化学伤、热烧伤对眼表的损害及角膜缘功能障碍等;(4)泪液动力学异常型干眼:由泪液的动力学异常引起,如瞬目异常、泪液排出延缓、结膜松弛等;(5)混合型干眼:是临床上最常见的干眼类型,为以上两种或两种以上原因所引起的干眼。
干眼症是泪液和眼球表面的多因素疾病,能引起泪膜不稳定、患眼不适、视觉障碍等症状损害眼球表面。同时干眼症病因、病理机制较复杂, 病程较长、多缠绵难愈,易反复发作,往往给患者日常生活和工作带来极大不便,严重危害视功能。
现有针对干眼治疗中常采用人工泪液、润滑膏剂、免疫抑制剂等,重症干眼会采用自体血清或手术治疗。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种P55PIK抑制剂在制备干眼治疗药物中的应用,其目的在于提供一种使用简单、疗效确切的干眼治疗药物,由此解决现有的干眼治疗药物只能缓解或抑制症状、或者制备不易的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种P55PIK抑制剂的应用,其应用于制备干眼治疗药物。
优选地,所述P55PIK抑制剂的应用,其所述P55PIK抑制剂为含P55PIK多肽抑制剂的组合物。
优选地,所述P55PIK抑制剂的应用,其所述含P55PIK多肽抑制剂的组合物包括穿膜载体或穿膜助剂。
优选地,所述P55PIK抑制剂的应用,其所述穿膜载体为:穿膜肽、或脂质体。
优选地,所述P55PIK抑制剂的应用,其所述P55PIK多肽抑制剂包含以下肽段:
甲硫氨酸-甲硫氨酸-脯氨酸-酪氨酸-丝氨酸-苏氨酸-谷氨酸-亮氨酸-异亮氨酸-苯丙氨酸-酪氨酸-异亮氨酸-谷氨酸-甲硫氨酸-天门冬氨酸-脯氨酸。
优选地,所述P55PIK抑制剂的应用,其所述P55PIK多肽抑制剂包含穿膜肽,所述穿膜肽与所述肽段肽键连接。
优选地,所述P55PIK抑制剂的应用,其其应用于制备抗中重度蒸发过强型干眼症或泪液动力学异常型干眼症药物。
按照本发明的另一个方面提供了一种干眼治疗药物,其为含有P55PIK 抑制剂的组合物。
优选地,所述干眼治疗药物,其P55PIK抑制剂的含量≥0.01%wt。
优选地,所述干眼治疗药物,其含有穿膜载体或穿膜助剂。总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
含本发明P55PIK抑制剂多肽的药物对动物的干眼模型治疗效果好、毒副作用小,同时,含有p55PIK抑制剂的药物对干眼症患者也有明显的治疗作用,表明p55PIK抑制剂是一个具有良好开发前景,且治疗干眼有效、安全低毒、质量可控的创新药物。
附图说明
图1是本发明实施例1泪液分泌低下干眼大鼠正常对照组和模型组p55PIK蛋白表达检测结果;
图2是实施例1泪液分泌低下干眼大鼠正常对照组和模型组p55PIK基因表达结果统计图;
图3是实施例1的大鼠0.1%TAT-N16多肽治疗大鼠角膜上皮损伤干眼症角膜荧光素钠染色;
图4是实施例2的小鼠治疗第7天结膜杯状细胞密度;
图5是实施例3的新西兰兔第7天结膜杯状细胞密度;
图6是实施例4的病例照片记录。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供的干眼治疗药物,其含有P55PIK抑制剂,优选含量≥ 0.01%wt。
常用的P55PIK抑制剂为多肽类制剂,不易穿过生物膜,如N16肽,序列如SEQ NO.1。为了适用于眼部外用剂型,如滴眼液,所述干眼治疗药物应具备穿膜能力,帮助P55PIK抑制剂实现穿膜,从而提高生物活性。
可采用穿膜载体或对具有P55PIK抑制作用的多肽人工连接穿膜肽,使其具有穿膜能力,例如N16肽连接TAT序列,形成TAT-N16肽,序列如SEQ NO.2。
穿膜肽类,基于穿膜肽的序列以及穿膜肽与脂质的结合特性可以将穿膜肽分为3类:(1)两亲类,它们通常含20个以上的氨基酸,疏水的和亲水的氨基酸残基沿主要结构连续排列,如transportan或TP10:(2)中等两亲类,它们的氨基酸数比两亲类少,它们的两亲特性在它们与膜作用时形成α-螺旋或β-折叠结构时显示,如penetratin、pVEC和M918;(3)非两亲类,通常它们较短含高比例的正电荷氨基酸(如精氨酸),如R9和TAT等。
穿膜载体,例如脂质体类包裹。
实验人员首先采用TAT-N16多肽(序列见SEQ.NO.2)应用于干眼动物模型,显示出能够延长泪膜破裂时间和修复角膜损伤的功效,尤其是对于中重度蒸发过强型干眼症和泪液动力学异常型干眼症。进一步的实验显示,采用含有P55PIK抑制的穿膜剂型,包括穿膜载体和穿膜助剂组合物,皆有类似抑制效果,能应用于制备干眼治疗药物。
研究发现在干眼动物模型中p55PIK蛋白表达量异常升高,由于p55PIK蛋白参与许多重要的信号通路,抑制p55PIK的活性可能缓解干眼的症状,进而通过实验验证,实验显示P55PIK抑制剂能修复角膜损伤,延长泪膜破裂时间。
以下为实施例:
实施例1患有干眼症的动物眼部组织中p55PIK的表达蛋白质水平增加, TAT-N16多肽能够缓解干眼症状的大鼠实验
1材料与方法
1.1动物、试剂及药品
选用SPF级健康SD大鼠42只,体重150~300g,雌雄各半,双眼滴0.25%氯霉素滴眼液0.05ml/(眼·次),5次/天。实验前所有动物经裂隙灯进行外眼检查,均无异常,可纳入研究。试剂:0.4%的盐酸奥布卡因滴眼液。0.5%盐酸利多卡因注射液。0.25%氯霉素滴眼液。1%苯扎溴铵溶液。0.5%羧甲基纤维素钠滴眼液。0.2%卡波姆滴眼液。0.9%NaCl注射液。0.5mg/ml阿托品注射液。2%荧光素钠溶液。Schirmer测定滤纸。
裂隙灯显微镜、5ml无菌注射器、5号针头、镊子、持针器、眼科剪、秒表、缝合针、1号黑丝线、抗体P55PIK(CST)、GAPDH(ABclonal)、TRizol试剂盒、实时定量PCR MIX等。
1.2造模及分组
1.2.1大鼠角膜上皮损伤干眼模型:用摘除泪腺后、滴加苯扎溴铵溶液的方法制备大鼠角膜上皮损伤干眼模型。随机选18只大鼠,雌雄各半,双眼周去毛、消毒,0.4%的奥布卡因表面麻醉,0.5%利多卡因1ml球后麻醉,在大鼠耳前皮肤上剪一小口,剥离并摘除双侧泪腺,双眼滴1%苯扎溴铵溶液,第2天观察角膜情况。
分组及给药:将造模成功的18只大鼠随机分为三组,每组6只,雌雄各半。第1组为空白对照组,不作处理;第2组为溶剂对照组,用不含TAT-N16多肽的溶剂滴眼治疗;第3组药物治疗组,用0.1%的TAT-N16多肽滴眼液治疗。滴眼液的使用:4次/(眼·天),1滴/次,用药7天。记录用药0天、用药后第4、7天角膜上皮损伤情况。
检测方法及评分标准:荧光素钠角膜染色采用5ml注射器、5号针头将荧光素钠1滴滴入结膜囊内,5min后在裂隙灯显微镜蓝光下观察角膜上皮的情况。(评分标准见表1)。
1.2.2泪液分泌低下大鼠模型:参照Burgalassi泪腺注射阿托品的方法进行泪液分泌低下干眼动物模型的造模。18只大鼠,雌雄各半,双眼滴0.4%盐酸奥布卡因滴眼液,在泪腺注射阿托品0.25ml/眼(0.5mg/ml),予每日双眼下泪腺注射阿托品4次,记录每日注射阿托品0.5h后大鼠泪液分泌试验的结果,持续注射至第7天。
分组及给药:非模型组6只大鼠雌雄各半,为正常对照组。造模成功的18只大鼠随机分为三组,每组6只,雌雄各半。第1组模型组为空白对照组,不作处理;第2组溶剂对照组,用不含TAT-N16多肽的溶剂滴眼治疗;第3组为药物治疗组,用0.1%的TAT-N16多肽滴眼液治疗。滴眼液的使用:4次/(眼·天),1滴/次,用药7天。记录治疗的第0天和用药后第4、7天每只眼的泪液分泌量。检测结束后,取正常对照组和模型组眼球检测p55PIK基因和蛋白水平。
1.2.2.1泪液分泌试验(SchirmerⅡ):考虑SD大鼠眼球较小,不适合用适用于人类大小的滤纸条测试,故采取将其剪成两半的方式进行检测,以5mm×35mm滤纸一条,剪成两个各2.5mm×35mm大小的滤纸,在首端处反折,轻巧地置于下睑中后部1/3交界处,5min后取出纸条,取出后2min测滤纸湿长,反复测3次,取平均值。记录用药前和第4、7天观察结果。
1.2.2.2 Western Blot检测
1.样品的制备
1)眼球处理好以后,用PBS清洗2-3遍后加入50~100ul含有蛋白酶抑制剂的变性裂解缓冲液。
2)对样品超声破碎收集蛋白,将EP管插入冰上放入超声破碎仪,程序设置超声5s暂停10,超声功率45%,5个循环。
3)4℃,12000rpm,离心10min,去除细胞碎片和杂质,收集上清。
4)取上清,用Nanodrop测定蛋白浓度并记录。
5)按比例加入25ul 5×蛋白上样缓冲液,混匀,金属浴10min使蛋白 变性制备样品。
5×蛋白上样缓冲液配制:
Figure PCTCN2021126635-appb-000002
2.SDS-PAGE凝胶电泳
制备SDS-PAGE凝胶。按照测定好的蛋白浓度,计算体积,每个上样孔加入10-20μg蛋白的比例。恒压电泳,先用80V电压,待样品进入分离胶后换120V电压电泳,至溴酚蓝从胶中溢出时停止电泳。
3.湿转PVDF膜
配制转膜液。待电泳结束后小心剥离凝胶,切去浓缩胶,放入转膜缓冲液中。根据正负极合上夹子,小心操作避免夹内各夹层之间移位导致转膜偏离。电转槽放入冰盒降温,200mA恒流转移1.5-2h。
4、免疫显色
湿转后的PVDF膜用脱脂奶粉封闭。一抗室温杂交孵育2h或者4℃杂交孵育过夜。一抗杂交后洗膜,二抗杂交孵育,室温摇床杂交孵育1h。注意荧光二抗操作过程中应注意避光。二抗洗膜。提前20min预Odyssey双色红外激光成像器,调整激光强度根据二抗种属扫描蛋白信号。
1.2.2.3实时荧光定量PCR检测基因表达
1.眼球总RNA的提取
按TRizol试剂盒说明书提取总RNA。提取的总RNA经紫外分光光度计测定,提取物浓度OD260/280比值在1.87-1.98,QPCR p55PIK引物序列:p55PIK-F:5’-GCTTGGCACTTGATGTA-3’(SEQ NO.3)、p55PIK-R:5’-GCTGTATGAAGAAGAATATAC-3’(SEQ NO.4);内参基因GAPDH的引物序列: GAPDH-F:5’-GGACCAGGTTGTCTCCTGTG-3’(SEQ NO.5),GAPDH-R:5'-TGTAGGCCATGAGGTCCAC-3’(SEQ NO.6)。
2.逆转录
利用北京全式金公司的
Figure PCTCN2021126635-appb-000003
One-step gDNA Removal and cDNA Synthesis SuperMix进行逆转录。步骤如下:
1)轻轻混匀后,置于CFX96qPCR仪按以下条件进行扩增反应:
Figure PCTCN2021126635-appb-000004
2)溶解曲线采用如下程序
Figure PCTCN2021126635-appb-000005
数据分析:采用Ct法
2结果
2.1大鼠角膜上皮损伤干眼模型
治疗前组间的角膜上皮损伤评分差异无统计学意义(P>0.05),治疗4天,药物治疗组与空白对照组、溶剂对照组相比,角膜上皮损伤评分差异均无统计学意义(P>0.05);治7天,药物治疗组的角膜损伤评分与空白对照组、溶剂对照组相比差异有统计学意义(P<0.05);其中药物治疗组的角膜损伤评分明显低空白对照组和溶剂对照组(P<0.05)(表2)。荧光素钠染色,角膜对照情况(图3)
2.2大鼠泪液分泌低下干眼模型
造模前,大鼠的泪液分泌量为(8.98±1.36)mm,造模后减少为 (3.21±1.24)mm(P<0.001),提示造模成功;造模前及造模后各组间泪液分泌量差异无统计学意义(P>0.05),说明各组的泪液分泌量具有可比性;在治疗第4、7天,药物治疗组泪液分泌量明显高于对照组(P<0.05)(表3)。
我们对泪液分泌低下干眼大鼠正常组和模型组眼球组织样本Western Blot检测P55PIK蛋白表达情况。发现模型组眼球中p55PIK蛋白表达明显高于正常对照组。(图1)
探究泪液分泌低下干眼大鼠眼球P55PIK基因的转录水平。提取RNA、反转录,做实时定量PCR检测mRNA水平。研究发现,发现模型组眼球中p55PIK基因转录水平明显高于正常对照组。(图2)
表1 角膜上皮损伤评分表
Figure PCTCN2021126635-appb-000006
表2 各组角膜上皮损伤干眼模型大鼠的角膜上皮损伤评分比较(
Figure PCTCN2021126635-appb-000007
n=6)
Figure PCTCN2021126635-appb-000008
注:空白对照组不做任何处理。数据比较采用单因素方差分析,与空白对照组比较,P<0.01。
表3 各组泪液分泌低下干眼模型大鼠的泪液分泌量(SchirmerⅡ试验)比较(
Figure PCTCN2021126635-appb-000009
mm,n=6)
Figure PCTCN2021126635-appb-000010
注:正常对照组为非模型组大鼠,空白对照组不做任何处理。数据比较采用单因素方差分析,与空白对照组相比,P<0.05。
实施例2 TAT-N16多肽缓解干眼症状的小鼠实验
1.材料与方法
1.1主要材料与试剂
健康雄性C57BL/6小鼠50只,体重18~20g,健康且眼表无异常。试剂:0.1%TAT-N16肽滴液,0.2%苯扎氯铵溶液,1%荧光素钠溶液,戊巴比妥,酚红棉丝,PAS染色剂。
2.实验过程
2.1小鼠干眼模型的构建
C57BL/6小鼠饲养环境:温度(25±1)℃,相对湿度(25±5)%,模拟灯光昼夜更替(9AM~9PM)。其中40只小鼠(80眼)予以0.2%苯扎氯铵溶液滴眼,2次/天(早8∶00,晚18∶00),5μl/次,持续14d诱导干眼模型,剩余10只(20眼)不作任何处理,作为基线对照。
2.2干眼模型的评价及筛选用药
造模第15天根据泪膜破裂时间(BUT)、角膜荧光素钠染色和泪液分泌试验(SchirmerⅠ)筛选干眼模型。
泪膜破裂时间(Tear film break up time,BUT):我们采取临床上较为常用的泪膜破裂时间来评估泪膜稳定性。在小鼠结膜囊内滴入1%的荧光素钠溶液1μl,请助手抓住小鼠,人为瞬目三次,随即将小鼠维持在上下眼睑分开状态,立即在裂隙灯显微镜钴蓝光下观察,该次的泪膜破裂时间是以角膜上出现第一个泪膜破裂黑斑的时间长度。每眼反复测量三次,取其平均值记录(秒)。
角膜荧光素钠染色:角膜荧光素钠染色判断上皮的有无破损。小鼠结膜囊内滴入1%的荧光素钠溶液1滴,1min后,裂隙灯显微镜钴蓝光下观察角膜上皮荧光素钠染色情况。
评分标准,角膜分为4个象限,每象限0~4分,总分为16分。0分:无着染;1分:点状着染,但少于30个;2分:着染点数多于30个,但不弥散;3分:明显弥散着染但无斑块状染色;4分:斑块状染色。
泪液分泌试验(SchirmerⅠ):在每个时间点的同一时段(3PM)使用酚红棉丝进行Schirmer I泪液分泌量测试。小鼠腹腔注射戊巴比妥(50mg/kg 体重)全身麻醉后,轻轻拉开下险,将酚红棉线折端长1mm的部分,放置在下睑接近外毗部的睑结膜面15秒,测量并记录棉线变红部分长度。测试完成后,闭合睑裂避免过度暴露。每眼重复做2次,取平均值作为最后结果。
结膜杯状细胞计数:结膜杯状细胞数量的变化结膜穹隆部石蜡切片行PAS染色显示,空白组及溶剂组结膜杯状细胞明显少于正常结膜,经TAT-N16多肽滴眼液治疗后结膜杯状细胞数量增加,差异有统计学意义。
2.3干眼模型的分组及处理
根据上述指标选出符合条件的干眼模型小鼠30只(60眼),随机分为A、B和C三组,每组雌雄各半。其中A组滴用0.1%TAT-N16多肽滴液,4次/天;B组滴用不含TAT-N16多肽的滴液(溶剂组),4次/天;C组不予任何处理(对照组)。治疗后第1、4及7天分别行BUT、Schirmer Ⅰ、荧光素钠染色。第7天结膜穹隆部石蜡切片进行PAS染色统计染色阳性杯状细胞数量。
3.结果:
我们在干眼症小鼠模型建立后,分别连续滴药7天,观察TAT-N16多肽滴液对干眼的疗效。治疗第4天时,泪膜破裂时间TAT-N16多肽滴液组较空白对照组、模型对照组及溶剂组有延长;泪液分泌量TAT-N16多肽滴液组较空白组及溶剂组明显增加;角膜荧光素钠染色评分TAT-N16多肽滴液组较空白对照组、模型对照组及溶剂组有降低。连续滴药7天,泪膜破裂时间TAT-N16多肽滴液组较空白对照组、模型对照组及溶剂组明显延长,其差异具有统计学意义(P=0.007)(表4);泪液分泌量TAT-N16多肽滴液组较空白组及溶剂组明显增加,其差异具有统计学意义(P<0.05)(表5)。角膜荧光素钠染色评分TAT-N16多肽滴液组较空白对照组、模型对照组及溶剂组明显降低,其差异具有统计学意义(P<0.05)(表6)。另外,TAT-N16多肽滴液组结膜杯状细胞密度明显多于空白对照组和溶剂对照组,其差异具有 统计学意义(P<0.01)(图4)。
表4 各组用药后泪膜破裂时间试验(BUT)值的变化
Figure PCTCN2021126635-appb-000011
(s)
Figure PCTCN2021126635-appb-000012
注:于同一时间空白对照组值BUT比较,*P<0.05,**P<0.01
表5 各组泪液分泌低下干眼模型小鼠的泪液分泌量(SchirmerⅠ试验)比较(
Figure PCTCN2021126635-appb-000013
mm)
Figure PCTCN2021126635-appb-000014
注:正常对照组为非模型组小鼠,空白对照组不做任何处理。数据比较采用单因素方差分析,与空白对照组相比,*P<0.05。
表6 各组用药后角膜荧光素钠染色评分的变化
Figure PCTCN2021126635-appb-000015
(s)
Figure PCTCN2021126635-appb-000016
注:于同一时间空白对照组评分比较,*P<0.05,**P<0.01
实施例3 TAT-N16肽缓解干眼症状的新西兰兔实验
1材料和方法
1.1材料
1.1.1实验动物选用健康新西兰大白兔30只,雌雄均有,体重2.1~2.5kg。动物的饲养及环境均遵循国际眼科与视觉科学研究中动物实验的标准。
1.1.2主要试剂0.1%TAT-N16多肽滴眼液,苯扎氯胺(benzalkonium chloride,BAC)(Sigma)去离子水配制成浓度0.1%溶液;泪液分泌试验(Schirmer)试验滤纸条;荧光素钠眼科检测试纸;硝酸纤维素膜(PALL);过碘酸-席夫(PAS)染色试剂盒。
1.2方法
1.2.1实验动物分组:30只新西兰大白兔按随机数字表法分为3组:空 白对照组、溶剂对照组,药物治疗组,每组10只。
1.2.2动物模型的制备
所有动物选取右眼为实验眼滴用0.1%苯扎氯胺4周,2次/天,建立干眼动物模型。4周后,检查干眼模型兔,见角结膜外观干燥,泪液量少,泪液分泌试验(Schirmer)试验值均<10mm/5min、(对照组均>10mm);泪膜破裂时间(break up time,BUT)均<10s;荧光素染色见角结膜点、片状着色,即为模型制作成功。
1.2.3药物配制和用法
0.1%TAT-N16多肽滴液,其为(液体)制剂,包括以下原料:多肽原料药和生理盐水。具体制备方法为:将多肽原料药按重量计0.1%的量和生理盐水溶解即可。含有0.1%TAT-N16多肽的滴眼液,滴眼7天,每天3次,每次2滴。空白对照组不做任何治疗,溶剂对照组用生理盐水滴眼7天,每天3次,每次2滴。其正常眼作为正常对照组。
1.3标本取材及检测实验动物均由同一人检查。检查时间、地点、照明亮度及温度相同。于给药前和给药后第4、7天,分别在裂隙灯下观察兔角结膜外观、荧光素染色、泪膜破裂时间;同时做泪液分泌时间试验,结膜印迹细胞学检查(CIC)。
1.3.1泪液分泌试验(Schirmer)盐酸奥布卡因表面麻醉后1min后,棉签蘸干眼睑周围液体,将试纸置于兔下方结膜囊的中、外三分之一交界处,其余部分悬垂于皮肤表面,闭眼,5min后取出滤纸条,测滤纸条的浸湿长度。
1.3.2泪膜破裂时间实验,将荧光素钠眼科检测试纸条放置在下睑结膜囊片刻,使荧光素钠均匀分布于眼表后维持眼睑张开,在裂隙灯显微镜下用钴蓝光观察,直至泪膜上出现第1个干燥斑,记录从眼睑张开到第1个干燥斑出现的时间,连续测量三次,取平均值并记录。
1.3.3结膜印迹细胞学检查(CIC)治疗后第1,4,7d各组分别行结膜 印记细胞学检查。将硝酸纤维素膜剪成3.5mm×3.5mm大小,以蒸馏水浸泡4h,烘干,备用。表面麻醉后分别将两片硝酸纤维素膜粗糙面向下置于鼻上和颞上象限球结膜,持续按压10秒印取表层上皮细胞。将滤膜置于95%乙醇中固定。过碘酸席夫试剂(PAS)染色。光学显微镜下计数杯状细胞,根据Nelson评分标准进行分级。
2结果
2.1泪液分泌试验(Schirmertest)兔干眼症模型值均<10mm。治疗前空白对照组、溶剂对照组和药物治疗组的Schirmertest值分别为(8.41±0.69)mm、(8.50±0.23)mm、(8.38±0.57)mm,无明显差异。治疗第4天,药物治疗组Schirmer test值为(12.02±1.21)mm,较用药前明显升高,较空白对照组和溶剂对照组亦明显升高;用药7天后,药物治疗组Schirmer test值为(16.31±1.45)mm,较治疗前明显延长,较空白对照组和溶剂对照组亦明显延长,见表7。
2.2 BUT泪膜破裂时间均<10s。治疗前空白对照组、溶剂对照组和药物治疗组的BUT值分别为(8.55±1.06)s、(8.11±0.82)s、(8.24±1.13)s无明显差异。治疗第4天,药物治疗组BUT值为(11.72±1.27)s,较治疗前明显延长,较空白对照组和溶剂对照组亦明显延长;用药7天后,药物治疗组BUT值为(15.31±1.85)s,较治疗前明显延长,较空白对照组和溶剂对照组亦明显延长,见表8。
2.3荧光素钠染色(FL)干眼模型制作完成后,肉眼可见兔角结膜外观干燥无光泽;荧光素染色见角结膜点、片状着色。药物治疗组用药4天后,兔角结膜外观干燥较用药有好转,泪液量增加,角结膜点、片状着色少;治疗7天后,角结膜外观湿润,泪液明显增加,角结膜未见着色。
2.4结膜印迹细胞学检查(CIC)干眼模型组与正常对照组之间杯状细胞密度的差异有统计学意义。给药后,药物治疗组杯状细胞密度逐渐增加,与给药前相比差异有统计学意义,结果如图5所示。
表7 各组用药后泪液分泌试验(Schirmer test)值的变化(mm)
Figure PCTCN2021126635-appb-000017
注:于同一时间空白对照组值Schirmer比较,*P<0.05,**P<0.01
表8 各组用药后泪膜破裂时间试验(BUT)值的变化(s)
Figure PCTCN2021126635-appb-000018
注:于同一时间空白对照组值BUT比较,*P<0.05,**P<0.01
实施例4 人群实验
目前已针对本发明提供的0.1%TAT-N16多肽滴眼液征集志愿者进行试用,为了进一步证明滴眼液的治疗效果。
病例1:吴某,女,70岁,有眼干、眼痒、眼涩有异物感、畏光等症状3年,诊断为干眼症。常用人工泪液,但只可短期缓解,作用时间短。用0.1%多肽滴眼液,每天3次,一次1~2滴。第一天,眼干症状缓解,感觉比人工泪液效果好。第二天,眼睛感觉湿润,眼干减轻,畏光,眼涩等刺激症状明显缓解。第三天,眼睛湿润,眼干,眼痒异物感的症状明显减轻,而且药效快,滴入3分钟眼睛即舒适,药效持续时间长。使用一周,干眼出现的症状基本消失,拍照记录如图6(1)所示。
病例2:黄某,女,63岁,眼干、眼痒、见风流泪1年多,结膜稍充血,诊断为干眼症。曾间断使用人工泪液,左氧氟沙星滴眼液,疗效欠佳,症状反复出现。使用0.1%多肽滴眼液,每天3次,每次1~2滴。第一天,眼干,眼痒症状明显得到缓解,眼睛舒适感增强。第二天结膜充血消失,眼睛湿润,第4天见风流泪症状明显减轻,眼部舒适。连续使用一周后,结膜充血症状消失,干眼症状基本消失,拍照记录如图6(2)所示。
病例3:徐某,男,35岁,IT工作者,眼干一年多,诊断为干眼症。曾用人工泪液,可短时间缓解,眼干仍反复出现,双结膜充血。用0.1%多肽滴眼液,每天3次,一次1~2滴,用后5分钟左右,眼部舒适,湿润,药效持续时间长。使用三天后,干眼症状明显缓解,连续使用一周,干眼症状基本消失,停药后未收到眼干反复出现的反馈。主诉效果明显,药效持续时间长,拍照记录如图6(3)所示。
病例4:卿某,女,67岁,眼干,异物感,畏光,两年,眼睑结膜稍充血,诊断为干眼症,曾用滴眼液(不明),效果欠佳,出门需戴眼镜。用0.1%多肽滴眼液每天3~5次,一次1~2滴。滴眼后5分钟后感到舒适,畏光刺激感减轻。1天后结膜充血减轻,出门可一段时间不戴眼镜。连续用药一周后,眼睑结膜充血消失,眼干,畏光症状基本消失,现外出已基本不戴眼镜(非特殊环境眼睛不适时),拍照记录如图6(4)所示。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种P55PIK抑制剂的应用,其特征在于,应用于制备干眼治疗药物。
  2. 如权利要求1所述的P55PIK抑制剂的应用,其特征在于,所述P55PIK抑制剂为含P55PIK多肽抑制剂的组合物。
  3. 如权利要求2所述的P55PIK抑制剂的应用,其特征在于,所述含P55PIK多肽抑制剂的组合物包括穿膜载体或穿膜助剂。
  4. 如权利要求3所述的P55PIK抑制剂的应用,其特征在于,所述穿膜载体为:穿膜肽、或脂质体。
  5. 如权利要求2所述的P55PIK抑制剂的应用,其特征在于,所述P55PIK多肽抑制剂包含以下肽段:
    甲硫氨酸-甲硫氨酸-脯氨酸-酪氨酸-丝氨酸-苏氨酸-谷氨酸-亮氨酸-异亮氨酸-苯丙氨酸-酪氨酸-异亮氨酸-谷氨酸-甲硫氨酸-天门冬氨酸-脯氨酸。
  6. 如权利要求5所述的P55PIK抑制剂的应用,其特征在于,所述P55PIK多肽抑制剂包含穿膜肽,所述穿膜肽与所述肽段肽键连接。
  7. 如权利要求1所述的P55PIK抑制剂的应用,其特征在于,其应用于制备抗中重度蒸发过强型干眼症或泪液动力学异常型干眼症药物。
  8. 一种干眼治疗药物,其特征在于,其为含有P55PIK抑制剂的组合物。
  9. 如权利要求8所述的干眼治疗药物,其特征在于,P55PIK抑制剂的含量≥0.01%wt。
  10. 如权利要求8所述的干眼治疗药物,其特征在于,含有穿膜载体或穿膜助剂。
PCT/CN2021/126635 2020-11-04 2021-10-27 一种p55pik抑制剂在制备干眼治疗药物中的应用 WO2022095765A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023550345A JP2023550661A (ja) 2020-11-04 2021-10-27 ドライアイ治療用薬の調製におけるp55pik阻害剤の応用
EP21888462.5A EP4241781A4 (en) 2020-11-04 2021-10-27 USE OF P55PIK INHIBITOR IN THE MANUFACTURING OF A MEDICINAL PRODUCT FOR THE TREATMENT OF DRY EYE
US18/312,574 US20230348538A1 (en) 2020-11-04 2023-05-04 Method for treatment of dry eye comprisng applying p55pik inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011215031.0A CN112263672A (zh) 2020-11-04 2020-11-04 一种p55pik抑制剂在制备干眼治疗药物中的应用
CN202011215031.0 2020-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/312,574 Continuation-In-Part US20230348538A1 (en) 2020-11-04 2023-05-04 Method for treatment of dry eye comprisng applying p55pik inhibitor

Publications (1)

Publication Number Publication Date
WO2022095765A1 true WO2022095765A1 (zh) 2022-05-12

Family

ID=74344306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126635 WO2022095765A1 (zh) 2020-11-04 2021-10-27 一种p55pik抑制剂在制备干眼治疗药物中的应用

Country Status (5)

Country Link
US (1) US20230348538A1 (zh)
EP (1) EP4241781A4 (zh)
JP (1) JP2023550661A (zh)
CN (1) CN112263672A (zh)
WO (1) WO2022095765A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112263672A (zh) * 2020-11-04 2021-01-26 武汉益承生物科技有限公司 一种p55pik抑制剂在制备干眼治疗药物中的应用
CN113354714B (zh) * 2021-07-28 2023-04-28 宋云强 一种广谱抗炎多肽化合物、其制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104043102A (zh) * 2014-03-28 2014-09-17 武汉益承生物科技股份有限公司 一种多肽在制备治疗核因子-κB异常活化疾病药物中的用途
CN110882228A (zh) * 2019-11-29 2020-03-17 南京禾瀚医药科技有限公司 一种伊匹乌肽肠溶制剂
CN111803619A (zh) * 2020-07-26 2020-10-23 武汉益承生物科技有限公司 多肽在制备创伤治疗药物中的用途
CN111956781A (zh) * 2019-05-20 2020-11-20 武汉益承生物科技有限公司 一种多肽在治疗眼部炎症药物中的应用
CN112263672A (zh) * 2020-11-04 2021-01-26 武汉益承生物科技有限公司 一种p55pik抑制剂在制备干眼治疗药物中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238052C (zh) * 2003-07-07 2006-01-25 夏献民 抑制细胞生长的多肽的获得及用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104043102A (zh) * 2014-03-28 2014-09-17 武汉益承生物科技股份有限公司 一种多肽在制备治疗核因子-κB异常活化疾病药物中的用途
CN111956781A (zh) * 2019-05-20 2020-11-20 武汉益承生物科技有限公司 一种多肽在治疗眼部炎症药物中的应用
CN110882228A (zh) * 2019-11-29 2020-03-17 南京禾瀚医药科技有限公司 一种伊匹乌肽肠溶制剂
CN111803619A (zh) * 2020-07-26 2020-10-23 武汉益承生物科技有限公司 多肽在制备创伤治疗药物中的用途
CN112263672A (zh) * 2020-11-04 2021-01-26 武汉益承生物科技有限公司 一种p55pik抑制剂在制备干眼治疗药物中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "A glimpse of the park", WUHAN YICHENG BIOTECHNOLOGY CO., LTD., 17 October 2019 (2019-10-17), XP055928012, Retrieved from the Internet <URL:www.ibiolake.com/bioWeb/corporateStyle/allowAccess/getCorporateStyleDetail?id=155> *
See also references of EP4241781A4 *
ZHU MEIJUAN; YANG HONGXIA; CHEN ZHEN; XIA XIANMIN; DENG QINQIN; SHEN YIN: "A cell-permeable peptide inhibitor of p55PIK signaling alleviates ocular inflammation in mouse models of uveitis", EXPERIMENTAL EYE RESEARCH, ACADEMIC PRESS LTD., LONDON., vol. 199, 8 August 2020 (2020-08-08), LONDON. , XP086286422, ISSN: 0014-4835, DOI: 10.1016/j.exer.2020.108180 *

Also Published As

Publication number Publication date
US20230348538A1 (en) 2023-11-02
CN112263672A (zh) 2021-01-26
EP4241781A4 (en) 2024-02-28
JP2023550661A (ja) 2023-12-04
EP4241781A1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
Bielory et al. ICON: diagnosis and management of allergic conjunctivitis
Dursun et al. A mouse model of keratoconjunctivitis sicca
Lemp et al. The dry eye: a comprehensive guide
US11938168B2 (en) Ophthalmic compositions and methods of use therefor
WO2022095765A1 (zh) 一种p55pik抑制剂在制备干眼治疗药物中的应用
Al-Saedi et al. Dry eye disease: present challenges in the management and future trends
TW201822785A (zh) 包含pedf-衍生之短肽之組合物及其用途
EP2994197B1 (en) Pharmaceutical combination of an nsaid and atropine
RU2581495C1 (ru) Способ лечения синдрома сухого глаза
DOHLMAN et al. Dry eye syndromes
WO1994004155A1 (en) Dehydroepiandrosterone therapy for the treatment of eye disorders
Sullivan et al. Evidence for a phenotypic switch in corneal afferents after lacrimal gland excision
Wang et al. αB-Crystallin alleviates endotoxin-induced retinal inflammation and inhibits microglial activation and autophagy
Tabuchi et al. Effect of retinol palmitate on corneal and conjunctival mucin gene expression in a rat dry eye model after injury
Russ et al. Conjunctival changes induced by prostaglandin analogues and timolol maleate: a histomorphometric study
Yin et al. Synergetic effects of ciliary neurotrophic factor and olfactory ensheathing cells on optic nerve reparation (complete translation)
Wang et al. Safety and efficacy of intense pulsed light in the treatment of severe chronic ocular graft-versus-host disease
TWI796875B (zh) 一種醫藥組合物用於製備眼表損傷之藥物的用途
JP2021523116A (ja) マイボーム腺再生を促進するためのpedf由来ペプチドおよびその使用
Altan-Yaycıoğlu et al. Age-Related Differences in the Clinical Patterns of Ocular Graft-Versus-Host Disease
Trief et al. Corneal Diseases in Children: Ocular Surface Diseases
Yang et al. Neuregulin-1 protects against acute optic nerve injury in rat model
Pflugfelder et al. Dry eye
CN115721656A (zh) 包含瑞巴派特或其盐的药物组合物及其制备方法和在制备眼用制剂中的用途
WO2023280319A1 (zh) 洛索洛芬钠在制备治疗干眼的药物中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888462

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550345

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021888462

Country of ref document: EP

Effective date: 20230605