WO2022095616A1 - 一种变电站在线智能巡视系统及方法 - Google Patents

一种变电站在线智能巡视系统及方法 Download PDF

Info

Publication number
WO2022095616A1
WO2022095616A1 PCT/CN2021/119754 CN2021119754W WO2022095616A1 WO 2022095616 A1 WO2022095616 A1 WO 2022095616A1 CN 2021119754 W CN2021119754 W CN 2021119754W WO 2022095616 A1 WO2022095616 A1 WO 2022095616A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
equipment
data
robot
linkage
Prior art date
Application number
PCT/CN2021/119754
Other languages
English (en)
French (fr)
Inventor
杨森
孙志周
田克超
裴淼
贾同辉
刘强
赵学强
李北斗
孙凯
魏德凯
刘加科
杨国庆
陈姣
袁立国
Original Assignee
国网智能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网智能科技股份有限公司 filed Critical 国网智能科技股份有限公司
Publication of WO2022095616A1 publication Critical patent/WO2022095616A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/003Navigation within 3D models or images
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment

Definitions

  • the invention belongs to the technical field of intelligent inspection of power systems, and in particular relates to an online intelligent inspection system and method of a substation.
  • the detection method of the inspection robot is only the detection of equipment parameters through sensors, and there is no analysis of other dimensions of detection reference;
  • the present invention proposes an online intelligent inspection system and method for substations.
  • the present invention can realize automatic full coverage online inspection of substations, automatic review and disposal of abnormal faults, and remote operation and maintenance management of operation and maintenance personnel, which solves the problem of robot inspection.
  • the inspection has problems such as inspection blind spots, small coverage of a single video, and untimely emergency response to faults.
  • the present invention adopts the following technical solutions:
  • An online intelligent inspection method for a substation comprising the following steps:
  • Obtain the linkage signal of the main device and the auxiliary device obtain the associated device point list according to the linkage signal, construct an inspection task according to the device point and the pre-configured linkage strategy, or receive an inspection task;
  • the data collected by each inspection execution system concurrently executing the corresponding sub-tasks constitutes multi-dimensional inspection data
  • the cloud-edge collaboration method to determine the intelligent analysis algorithm used for the collected data, and use the intelligent analysis algorithm to analyze the multi-dimensional inspection data to identify equipment status, and obtain identification results; the equipment status identification includes status identification and faults Diagnostic analysis.
  • receiving an inspection task refers to being able to receive an inspection task scheme formed according to user needs and customization.
  • the present invention can obtain the linkage signal of the monitoring system of the main equipment and the auxiliary equipment, and can integrate multi-dimensional information; meanwhile, the corresponding sub-tasks are executed concurrently by using different execution systems to ensure the inspection efficiency;
  • the data integrates multi-dimensional detection data, and conducts automatic intelligent identification and analysis to form a linkage review.
  • the specific process of obtaining the linkage signal between the main device and the auxiliary device, and obtaining the associated device point list according to the linkage signal includes:
  • Linkage strategy list is empty. If the linkage strategy list is not empty, construct a joint inspection task for substation equipment based on the equipment point list and the linkage strategy list; if the linkage strategy list is empty, the linkage ends.
  • the inspection execution system includes, but is not limited to, an optical inspection system, a robot inspection system, an environment monitoring system, and a sensor parameter collection system.
  • the specific method for the optical patrol system to perform the corresponding sub-task includes: parsing the content of the corresponding sub-task, extracting the target device to be detected, and calling the optical device within a certain range from the target device to be detected to be detected.
  • Target device for video, image or/and spectral acquisition.
  • the specific method for the environmental monitoring system to perform the corresponding subtasks includes: the environmental monitoring system analyzes the corresponding subtasks, and controls and adjusts the illumination and/or temperature in the substation according to the content of the subtasks.
  • the specific method for the robot inspection system to perform the corresponding sub-task includes: analyzing the content of the corresponding sub-task, extracting the target device to be detected and the inspection point, and controlling the distance to the target device according to the linkage strategy associated with the device points.
  • the robot within a certain range moves to the corresponding inspection point to perform linkage action, and associates the target device with the inspection data and inspection results.
  • the sensing parameter collection system includes, but is not limited to, several kinds of voiceprint detection equipment, visible light collection equipment, infrared collection equipment, ultraviolet collection equipment, and sound collection equipment.
  • the robot execution process includes: judging whether the robot switches between indoor and outdoor environments, if so, opening the automatic door of the protection room, and closing the automatic door of the protection room after the robot enters or leaves the protection room;
  • the current device point is an outdoor device, determine whether there is rain or snow at present, and if so, determine whether the current rainfall and snowfall exceed the threshold of the robot according to the amount of rainfall and snowfall;
  • the route of the robot returning to the charging room is calculated, and the robot is controlled to move according to the route.
  • the inspection points are pre-configured, and the configuration method includes: acquiring a three-dimensional model of the inspection site, and preprocessing the three-dimensional model;
  • Configure the reference coordinate system for the preprocessed model identify the target object in the inspection site, obtain the pose and size information of the target object, and extract the passable path in the inspection site;
  • the corresponding three-dimensional posture of the robot is calculated, and the inspection point information list of the robot is obtained.
  • the specific process of using cloud-edge collaboration to determine the intelligent analysis algorithm includes:
  • the algorithm data will be subcontracted and the data will be encrypted at the same time
  • Decrypt the algorithm data packets After all the algorithm data packets are received, verify the availability of the algorithm. According to the type of the algorithm application object, take out the old algorithm in the intelligent analysis algorithm warehouse for compression backup, and add the algorithm to be updated to the intelligent analysis algorithm warehouse.
  • the specific process of using the intelligent analysis algorithm to analyze the multi-dimensional inspection data for equipment fault diagnosis and analysis is as follows: the intelligent analysis algorithm is based on the multi-dimensional inspection data to comprehensively run the operation of each device. The state is identified; when the device has at least one information analysis result of failure, it is determined that the device is in failure.
  • the intelligent analysis algorithm may be a deep learning model or an artificial intelligence algorithm.
  • the multi-dimensional inspection data includes, but is not limited to, video information, spectral information, target device appearance data, and target device sound information.
  • the specific process of identifying the equipment state according to the sound information of the target equipment includes: acquiring the sound information of the target equipment of the substation, and preprocessing the sound information;
  • voiceprint features For the preprocessed voice information, extract voiceprint features; wherein, the voiceprint features at least include FBank features, decibels, fundamental frequency, short-term energy, short-term zero-crossing rate and correlation coefficient;
  • the operating state of the target device is determined based on the recognition result.
  • An online intelligent inspection system for a substation comprising an inspection processing system, an optical inspection system, a robot inspection system, an environmental monitoring system and a sensing parameter acquisition system connected to it;
  • the patrol processing system interacts with the main equipment and the auxiliary equipment monitoring system in linkage and interaction, and is configured to obtain the linkage signal of the main equipment and the auxiliary equipment, obtain the associated equipment point list according to the linkage signal, and obtain the related equipment point list according to the linkage signal. Build inspection tasks, or create inspection tasks as needed;
  • the inspection processing system divides the inspection task into a plurality of sub-tasks according to the inspection task, and the corresponding sub-tasks are concurrently executed by the optical inspection system, the robot inspection system, the environmental monitoring system and the sensing parameter acquisition system;
  • the inspection processing system is configured to use the cloud-edge collaboration method to determine the intelligent analysis algorithm to be adopted according to the video data, equipment inspection data, environmental parameter data and sensing parameter data collected by each system concurrently executing corresponding sub-tasks.
  • the intelligent analysis algorithm analyzes the above data, identifies the equipment status, and performs alarm or/and equipment operation and maintenance according to the identification result;
  • the patrol processing system is further configured to provide video analysis services, spectral analysis services, voiceprint analysis services and pattern recognition services.
  • the tour processing system can be extended to cloud deployment.
  • the optical patrol system includes a plurality of optical devices arranged in the station, and the optical devices include fixedly installed visible light guns, visible light ball cameras, infrared thermal imagers, and dual-spectrum ball cameras. and several of the dual-spectral PTZs, the optical devices are all connected with the data collection and exchange device.
  • the robot inspection system includes several indoor and outdoor robots, and the indoor robots and the outdoor robots are connected to the data collection and exchange device in a wireless or wired manner.
  • the robot can choose wheeled robots, orbital robots, crawler robots, etc. according to specific usage scenarios.
  • the environment monitoring system includes a lighting controller, a curtain controller, a temperature controller and a plurality of temperature sensors and humidity sensors
  • the lighting controller is used to turn on or off lighting equipment
  • the curtain control uses For opening or closing the curtain
  • the temperature sensor and the humidity sensor are used to obtain the temperature and humidity in the station
  • the temperature controller is used to control the temperature adjustment mechanism.
  • Temperature adjustment mechanisms include but are not limited to air conditioners and heaters.
  • a plurality of voiceprint collection devices are also arranged in the station, and the voiceprint collection devices are arranged on the robot or beside the electric equipment.
  • a computer-readable storage medium stores a plurality of instructions, wherein the instructions are adapted to be loaded by a processor of a terminal device and execute the steps of the above-mentioned method for on-line intelligent inspection of a substation.
  • a terminal device includes a processor and a computer-readable storage medium, where the processor is used to implement various instructions; the computer-readable storage medium is used to store a plurality of instructions, the instructions are suitable for being loaded by the processor and executing the above-mentioned substation online The steps of the smart tour method.
  • the invention innovatively proposes an online intelligent inspection method for substations.
  • each inspection execution system executes sub-tasks concurrently, so as to realize automatic inspection, real-time monitoring, intelligent linkage and remote control, and expand online intelligent inspection of substations. It can improve the informatization and automation level of substation inspection process and inspection result processing, enhance the ability of substation inspection and remote processing of equipment defects, reduce labor costs, and promote the unattended process of substations.
  • the invention innovatively proposes a multi-dimensional linkage review method for inspection data, which uses robots, optical equipment, voiceprint devices and other inspection execution systems to jointly inspect, automatically and intelligently collect, identify, analyze, and respond to substation equipment alarm information.
  • Multi-dimensional linkage review It improves the comprehensiveness and intelligence of the inspection, and ensures the accuracy of the alarm.
  • the invention innovatively proposes a cloud-side collaboration method, which effectively saves the hardware cost of the side-end and reduces the delay of the side-end data through the standardized access, automatic download and update, and scene iteration of intelligent analysis algorithms such as deep learning models and artificial intelligence algorithms. , Automatically improve the effect of side-end applications, improve the effectiveness of cloud data and resource utilization.
  • the invention innovatively proposes a linkage control method of a robot system, an optical monitoring system and an environmental monitoring system, which effectively controls external environmental parameters such as illumination and airflow, reduces the interference of the environment on the robot inspection, and improves the performance of different inspection scenarios.
  • the adaptability of robot inspections expands the scope of robot inspections, improves the reliability of robot inspections and the accuracy of inspection data.
  • the invention innovatively proposes a three-dimensional inspection method of substation three-dimensional model and video fusion, adopts three-dimensional panoramic preview of substation and immersive roaming mode, realizes scene positioning, information viewing inspection resource coverage analysis, and provides new video for uncovered inspection points.
  • Layout strategy change the single problem of traditional inspection perspective, conduct all-round three-dimensional inspection of equipment, better grasp the health status of equipment, more accurately determine the location of faults and related conditions, and have a positive effect on rationally formulating maintenance plans.
  • the invention innovatively proposes a voiceprint monitoring method for substation equipment.
  • the voiceprint recognition technology of voiceprint feature extraction, voiceprint recognition and model classification is adopted in a sound acquisition system to analyze equipment sound to realize abnormal sound recognition of equipment and improve sound acquisition.
  • Accuracy and recognition accuracy provide technical support for intelligent audio recognition of the operating status of electrical equipment. It solves the problems of poor positioning accuracy and large frequency domain span of sound acquisition in substations, realizes the acquisition of multi-directional sound signals, and avoids the interference of outdoor environmental noise and man-made noise.
  • the sound signal collected by a single microphone is a superposition of multi-directional sound signals. It can realize noise suppression and sound source localization, and improve the accuracy of sound collection and recognition.
  • Figure 1 is a schematic diagram of the structure of the online intelligent inspection system of the substation
  • Fig. 2 is the schematic diagram of the patrol system
  • Fig. 3 is the structural schematic diagram of the robot system
  • FIG. 4 is a schematic structural diagram of an environmental monitoring system
  • FIG. 5 is a schematic flowchart of an online intelligent inspection method for a substation
  • FIG. 6 is a schematic diagram of the online intelligent inspection task flow of the substation
  • FIG. 7 is a schematic flowchart of the cloud-side collaboration method for online intelligent inspection of substations
  • Figure 8 is a schematic diagram of the linkage between the main equipment and the auxiliary equipment
  • Figure 10 is a schematic diagram of the automatic configuration process of inspection points in the inspection task
  • Figure 11 is a schematic diagram of equipment operation and maintenance
  • FIG. 12 is a schematic diagram of a flow chart of device state recognition based on voiceprint detection.
  • Embodiment 1 As shown in FIG. 1, this embodiment provides an online intelligent patrol system for substations, including a patrol processing system, an optical patrol system, a robot patrol system, an environmental monitoring system and a sensing parameter acquisition system.
  • the optical inspection system, the environmental monitoring system of the robot inspection system and the sensing parameter acquisition system are connected, and are connected with the main equipment and auxiliary equipment monitoring systems through data collection and exchange equipment;
  • the patrol processing system interacts with the main equipment and the auxiliary equipment monitoring system in linkage and interaction, and is configured to obtain the linkage signal of the main equipment and the auxiliary equipment, obtain the associated equipment point list according to the linkage signal, and obtain the related equipment point list according to the linkage signal. Build inspection tasks, or receive input inspection tasks customized according to user needs;
  • the inspection processing system divides the inspection task into a plurality of sub-tasks according to the inspection task, and the corresponding sub-tasks are concurrently executed by the optical inspection system, the robot inspection system, the environmental monitoring system and the sensing parameter acquisition system;
  • the inspection processing system is configured to use the cloud-edge collaboration method to determine the intelligent analysis algorithm to be adopted according to the video data, equipment inspection data, environmental parameter data and voiceprint data collected by each system concurrently executing corresponding sub-tasks.
  • the intelligent analysis algorithm analyzes the above data, identifies the equipment status, and issues alarms or/and equipment operation and maintenance according to the identification results.
  • the access layer provides wireless security and wired security access.
  • the access layer may include secure access means.
  • the access layer can be connected to other devices, such as acquisition modules of other parameters, which are not exhaustive here.
  • the patrol processing system is connected with the data collection and exchange equipment.
  • the data collection switching device connects the network devices between the systems.
  • the main equipment and auxiliary equipment linkage signals are sent to the data collection and switching equipment through the network security protection equipment, and the linkage result and the reverse linkage signal are sent back to the main equipment and auxiliary equipment monitoring systems through the network security protection equipment.
  • the network security protection device may select a forward isolation device, a reverse isolation device, or other devices according to the situation.
  • the video storage device can choose the network hard disk video recorder.
  • the environmental monitoring system is connected with the data collection and exchange equipment.
  • the environmental monitoring system includes an environmental parameter detection module, such as a temperature detection module, a humidity detection module, etc., which will not be repeated here. It also includes or is connected with an environmental parameter control actuator, as shown in Figure 4, which can include an environmental monitoring management machine, a protocol conversion device, a temperature and humidity sensor, a wind speed sensor, a rain and snow sensor, a gas sensor, an automatic door controller, and a lighting controller. , curtain controller and air conditioner controller. (It will be explained in detail in the specific environment linkage control section).
  • optical devices include fixedly installed visible light bolts (bullet network cameras referred to as bolts), visible light domes (spherical network cameras referred to as domes), infrared thermal imagers, dual-spectrum (both visible light and infrared thermal imaging known as Dual spectrum) ball machine, dual spectrum PTZ.
  • Several optical devices communicate with the image storage device through the video aggregation and storage and forwarding device, and are connected to the data aggregation and switching device, and the image storage device is also connected to the data aggregation and switching device.
  • a switch may be selected as the video aggregation and storage and forwarding device, and a router may be selected as the data aggregation and switching device, which is responsible for protocol conversion and data exchange.
  • the protocol conversion device can use the serial port server.
  • the outdoor robot is connected to the data collection and exchange device through the wireless network.
  • the outdoor robot is first connected to the security access module, and the security access module is connected to the wireless bridge Station, which is connected to the wireless network through the wireless network.
  • the wireless bridge AP Connect to the wireless bridge AP, the wireless bridge AP is connected to the secure access platform, and the secure access platform is then connected to the data collection and exchange device.
  • the secure access platform is paired with the secure access module to ensure the security of the wireless network through physical isolation, data encryption, and identity authentication functions.
  • the indoor robot can also be connected to the data aggregation exchange equipment through the wired network.
  • the robot can choose wheeled robots, orbital robots, crawler robots, etc. according to specific usage scenarios. It is not repeated here.
  • the patrol processing system provides: online intelligent patrol service, user interface, configuration tool, video execution unit, pattern recognition service, deep learning service, video analysis service, voiceprint analysis service; respectively include the above functional modules .
  • the patrol processing system can also be connected or communicated with the upper cloud server or the centralized control server. Or deployed in the cloud.
  • the patrol processing system may include a patrol host and software configured thereon.
  • Online intelligent inspection service is the core business service of inspection processing system.
  • Online intelligent inspection service includes message distribution, model management, task management, intelligent linkage, communication interface, real-time monitoring, data analysis, 3D application, cloud-side collaboration, alarm analysis, configuration Manage 11 functional modules.
  • the message distribution module is responsible for the message flow between the functional modules of the online intelligent patrol service. Other functional modules can subscribe and publish messages to realize the transfer of communication messages between functional modules.
  • the model management module is responsible for managing substation equipment models, substation equipment point models, robot models, optical equipment models, online monitoring models, online synchronization of substation equipment and equipment points, and binding with the substation equipment point models configured by the robot.
  • Task management is responsible for task model management, task customization process, task timing process, task control, task status monitoring, access and storage of inspection results, task report generation and push.
  • the intelligent linkage module is responsible for linkage policy configuration, linkage signal monitoring, linkage determination, linkage action execution, and linkage execution information push.
  • the communication interface module is responsible for communicating with the user interface, configuration tools, and video execution unit.
  • the real-time monitoring module is responsible for robot real-time data access, optical device real-time data access, online monitoring real-time data access, robot peripheral data access, historical data cleaning, and real-time data push.
  • the data analysis module is responsible for communicating with pattern recognition services, deep learning services, video analysis services, and voiceprint analysis services, and completes the analysis of inspection data to form inspection results.
  • the 3D application module is responsible for providing 3D panoramic browsing and immersive roaming display, alarm positioning, video push, space ranging, resource coverage analysis and other functions.
  • the cloud-edge collaboration module is responsible for the synchronous update of the analysis algorithms and applications of the advanced analysis service by the intelligent analysis cloud platform.
  • the alarm analysis module is responsible for alarm threshold setting, alarm analysis, alarm review, alarm information push, alarm review, and defect management.
  • the configuration management module is responsible for providing users with functions such as alarm threshold setting, alarm message subscription setting, authority management, and standard point database maintenance.
  • the user interface is implemented through the Web system, which is used to provide users with real-time video and status display of robots and optical equipment, control of robots and equipment, customization and control of inspection tasks, progress and status of inspection tasks, reports of inspection tasks, and inspection of inspection tasks.
  • Real-time display of results push of alarm information, query and review of inspection results, query and review of alarms, map, and 3D information display.
  • the configuration tool is responsible for completing the system configuration, model configuration, database configuration, file service configuration, and loading module configuration of the online intelligent patrol service.
  • the video execution unit is responsible for the task execution process, inspection data collection, and video monitoring of the optical equipment.
  • the video task execution unit communicates with the pattern recognition service to complete the data recognition and analysis of visible light pictures and infrared heat maps.
  • the pattern recognition service module is responsible for the knife switch opening and closing status, switch status, meter reading, infrared temperature, lighting, pressure plate, QR code, and foreign object image recognition functions.
  • the deep learning service module is responsible for identifying the appearance defects of substation equipment, identifying the state defects of substation equipment, and judging abnormal changes of substation equipment.
  • the video analysis service module is responsible for real-time identification of security risk defects, including: cross-line/break-in, not wearing a helmet, not wearing a tooling, smoking, fireworks identification, small animal identification, and water monitoring.
  • the voiceprint analysis service module is responsible for extracting feature quantities from the audio signals generated by the vibration of substation equipment, and identifying the operating status of the equipment.
  • the patrol processing system may be a smart device such as a tablet, a desktop computer, or a server
  • the smart device includes a processor, wherein the processor is configured to execute the above-mentioned program modules stored in the memory, including: online smart patrol service, User interface, configuration tool, video execution unit, pattern recognition service, deep learning service, video analysis service, voiceprint analysis service and other functional modules, as well as message distribution, model management, task management, intelligent linkage, communication interface, real-time monitoring, data analysis , 3D application, cloud-edge collaboration, alarm analysis and configuration management and other functional modules.
  • the robot system includes a robot execution unit, a motion control unit, a positioning and navigation service unit, a pattern recognition service unit, a path planning service unit, and a multi-robot communication unit.
  • the robot execution unit is responsible for the robot's task execution process, inspection data collection, video surveillance, robot body alarm, autonomous navigation, and external communication.
  • the motion control unit is responsible for the robot's PTZ control, power control, drive control, automatic door control, elevator control, and control status upload.
  • the positioning and navigation service is responsible for providing laser positioning and navigation functions, indoor track positioning and navigation functions, and GPS positioning and navigation functions.
  • the pattern recognition service unit has the same function as the pattern recognition service in the patrol processing system.
  • the path planning service unit is responsible for loading substation map model data, loading path planning algorithms, and providing path planning services.
  • the multi-robot communication unit is responsible for completing the communication function between multiple robots, and completes the sharing of position information, environmental information, power information, task status information, and motion status information among multiple robots through message publishing and subscription.
  • the robot system can be a smart device such as a tablet, a desktop computer, or a server
  • the smart device includes a processor, wherein the processor is used to execute the above program units stored in the memory, including: robot execution unit, motion control unit, positioning and navigation service unit, pattern recognition service unit, path planning service unit and multi-robot communication unit.
  • Embodiment 2 Provide an online intelligent inspection method for a substation, including the following steps:
  • the linkage signal of the main device and the auxiliary device obtain the associated device point list according to the linkage signal, and construct or receive an inspection task according to the device point and the pre-configured linkage strategy (of course, the inspection task can be based on customized);
  • Steps of generating inspection tasks acquiring linkage signals of the main equipment and auxiliary equipment, obtaining a list of associated equipment points according to the linkage signals, and constructing inspection tasks according to the equipment points and pre-configured linkage strategies;
  • the inspection task is not only triggered by the linkage signal, and the inspection plan can also be created by customizing the task.
  • the inspection and scheduling subsystem is linked with the main equipment and auxiliary equipment monitoring system according to the user's authorization and task sequence.
  • the task control system of the substation online intelligent inspection system divides the inspection task into multiple sub-tasks, which are respectively composed of the optical inspection system, the robot inspection system, the environmental monitoring system and the sensing parameter collection system. (including various sensors or other acquisition modules deployed in the station, such as visible light, infrared light, ultraviolet, sound, voiceprint and other parameter acquisition equipment) concurrently execute corresponding subtasks;
  • the video data, equipment inspection data including but not limited to appearance images, equipment temperature data
  • environmental parameter data including but not limited to temperature, humidity and light
  • voiceprint data collected by each system concurrently executing the corresponding sub-tasks
  • the data is stored in the real-time database, and the cloud-side collaboration method is used to determine the intelligent analysis algorithm at the station. Based on the collected data, the intelligent analysis algorithm is used to identify the equipment status, which can also be called equipment fault diagnosis. Alarms or/and equipment operation and maintenance are performed based on the diagnosis results.
  • the remote robot receives the task sequence issued by the inspection and scheduling subsystem of the online intelligent inspection system of the substation, starts the task inspection function, and sequentially collects the corresponding temperature data, audio data, and appearance data (including instrumentation) of the equipment in the station. readings, points and status, breakage, oil leaks, abnormal appearance, etc.).
  • Task end process The condition for the end of the task is that the current task sequence is executed, or terminated abnormally, or the user stops. Enter the event system and report on the end of the task; enter the inspection report, and do related report processing for this inspection operation. If there is a suspected faulty device in this operation, first enter the suspected fault diagnosis system for further analysis, according to the analysis results. Generate reports. And keep records of suspected faulty equipment, and push it to the user for the corresponding suspected faulty equipment review task. So far the task is over.
  • Step 1 Perform task customization.
  • Step 2 Select the equipment points that need to be inspected for the inspection task.
  • Step 3 Set the execution type of inspection tasks, including comprehensive inspection, routine inspection, lights-out inspection, special inspection, and special inspection.
  • Step 4 Set the task execution period, and the inspection task periodically executes the inspection task according to the task period.
  • Step 5 Determine whether the task period expires, and if it expires, go to Step 6.
  • Step 6 Generate video inspection subtasks and robot inspection subtasks through task scheduling.
  • Step 7 Multi-optical equipment and multi-robots start concurrent inspections.
  • Step 8 Send the collected inspection data files to the pattern recognition service for data identification and obtain inspection results.
  • Step 9 Send the inspection results to the user interface for real-time display.
  • Step 10 Perform an alarm analysis on the inspection result according to the device alarm threshold setting.
  • Step 11 Display the alarm result through the user interface.
  • Step 12 The video inspection subtask ends, and the robot inspection subtask ends.
  • Step 13 Generate an inspection task report.
  • the process of determining the intelligent analysis algorithm at the station includes:
  • Step a Load the intelligent analysis algorithm to be updated and the list of online intelligent patrol systems to be updated.
  • Step b Build and send an authentication request.
  • Step c Parse the identity authentication request and perform identity authentication.
  • Step d If the authentication is passed, construct an update command of the intelligent analysis algorithm (the command contains the legal identification of the authentication).
  • Step e Sub-package the algorithm data and encrypt the sub-package data (the encryption algorithm supports algorithms such as RSA, DES, 3DES, IDEA and MD5, and the algorithm type selection supports configuration), and add the total number of sub-packages and The number, command type, and authentication legal identification are formed into a command package, and according to the online intelligent patrol system list in the update command, they are respectively sent to the authentication server of the corresponding online intelligent patrol system. Before sending, it is necessary to judge whether the online intelligent patrol system is online, if it is online, send the command packet directly, otherwise enable the disconnection retransmission mechanism.
  • the encryption algorithm supports algorithms such as RSA, DES, 3DES, IDEA and MD5, and the algorithm type selection supports configuration
  • the authentication server of the online intelligent patrol system parses the update command, judges whether the command type and the authentication legal identification are valid, and if valid, forwards it to the intelligent algorithm analysis unit. Otherwise, the process ends.
  • Step f After receiving the update command, the intelligent algorithm analysis unit parses the command content and decrypts the algorithm data packet. After all algorithm data packets are received, verify whether the algorithm is available. If it is available, take out the old algorithm in the intelligent analysis algorithm warehouse for compression backup according to the type of the algorithm application object. Add the algorithm to be updated to the intelligent analysis algorithm warehouse.
  • the linkage mentioned above specifically includes the linkage of the main equipment and auxiliary equipment at the station, and the linkage of the environmental system of the station. Each of them will be described in detail below.
  • the specific scheme of the linkage between the main equipment and the auxiliary equipment at the station includes:
  • Step 1 The main equipment and the auxiliary equipment monitoring system send the main equipment and the auxiliary equipment linkage signal to the patrol processing system through the network security protection equipment.
  • Step II The online intelligent patrol service in the patrol processing system finds the device point list according to the master device code of the linkage signal.
  • Step III the online intelligent patrol service obtains the associated linkage strategy list from the linkage strategy configuration according to the device point list;
  • Step IV The online intelligent patrol service determines whether the linkage policy list is empty. If the linkage strategy list is not empty, go to step V; if the linkage strategy list is empty, go to step XIII.
  • Step V Trigger linkage.
  • Step VI The online intelligent inspection service constructs a substation equipment inspection task according to the equipment point list and the linkage strategy list.
  • Step VII Start the substation equipment inspection task.
  • Step VIII Multi-optical equipment and multi-robots start concurrent inspections.
  • the multi-optical equipment concurrent inspection operation is controlled by the video execution unit of the inspection processing system;
  • the multi-robot concurrent inspection is completed by multiple robots alone, and the inspection process of each robot is controlled by the robot execution unit of the robot body system. Finish.
  • Step VIII Execute the linkage action according to the linkage policy associated with the device point.
  • the linkage strategy refers to the combined configuration of multiple linkage actions and the parameter configuration of the linkage actions.
  • the linkage action includes: (1) Watching, that is, after the optical device or robot calls the preset position corresponding to the device point, and then watch, the user can watch the device through the real-time video of the user interface of the patrol processing system, and the viewing time exceeds the linkage strategy (2) Collection, that is, the optical device or robot collects data according to the collection data type configured by the linkage strategy.
  • the collection data types include: visible light picture, infrared picture, visible light video, infrared video, audio, partial discharge Detection data; (3) Collection and identification, that is, after data collection is performed, data identification is performed on the collected data; (4) Viewing and collection, that is, the device performs two linkage actions of viewing and collecting at the same time; (5) Viewing , collection, identification, that is, the device performs three linkage actions of viewing, collection, and identification at the same time.
  • Step X Display of equipment point inspection data and inspection results.
  • the inspection data and inspection results of the optical equipment are sent to the online intelligent inspection service by the video execution unit of the inspection processing system, and the inspection data and inspection results of the robot are sent to the online intelligent inspection by the robot execution unit of the robot body system.
  • the service is saved, and then the online intelligent inspection service sends the inspection results and inspection data to the user interface for display.
  • Step XI Judging whether there are still equipment points to be inspected, that is, the optical equipment is judged by the video execution unit of the patrol processing system, and the robot is judged by the robot execution unit of the robot body system.
  • the optical equipment and the robot have no equipment points to be detected After that, go to step XII; if there is still a device to be detected, go to step VIII.
  • Step XII The online intelligent patrol service generates a task report and sends it to the user interface of the patrol processing system for display.
  • Step XIII The linkage ends.
  • the linkage process of the environment system at the station includes the following steps:
  • Step a The user starts the inspection task of the substation equipment through the user interface control of the inspection processing system or the online intelligent inspection service timing control.
  • the inspection task includes the inspection task code, the inspection task name, and the list of substation equipment points that need to be inspected. , Inspection task priority, inspection task timing period, inspection task creator, inspection task creation time.
  • Step b The online intelligent inspection service judges whether the equipment point list of the inspection task includes protected indoor equipment, and if so, executes step c; if not, executes step f.
  • Step c The online intelligent patrol service sends a control command to the environmental monitoring system, and the environmental monitoring system controls the lighting controller to turn on the lights, and controls the curtain controller to close the curtains.
  • the lighting controller controls the lighting controller to turn on the lights
  • the curtain controller controls the curtains.
  • turning on the lights is to prevent the insufficient light in the protection room from affecting the visible light detection
  • closing the curtains is to prevent the sunlight from entering the protection room and affecting the visible light detection and infrared detection.
  • Step d The online intelligent patrol service uses the temperature of the protection room obtained by the environmental monitoring system to determine whether the temperature of the protection room exceeds the threshold. If so, perform step e; if not, perform step f.
  • Step e The online intelligent patrol service sends a control command to the environmental monitoring system, and the environmental monitoring system controls the air conditioner controller to turn on the air conditioner, and adjusts the temperature of the protection room to a normal range to prevent infrared detection from being affected.
  • Step f The online intelligent inspection service performs task scheduling, and generates video inspection subtasks and robot inspection subtasks.
  • Step g-A the video execution unit of the inspection processing system executes the video inspection subtask.
  • Step h-A the video execution unit controls the optical equipment to inspect the equipment points.
  • Step i-A If the current device point is an outdoor device, it means that the current optical device is deployed outdoors, and the video execution unit of the patrol processing system judges whether there is currently rain or snow through the rain and snow sensor of the environmental monitoring system, and if so, execute step j-A; If not, go to step k-A.
  • Step j-A the video execution unit controls the optical device to execute the wiper operation.
  • Step k-A The video execution unit controls the optical equipment to collect the inspection data of the equipment points, sends the inspection data to the pattern recognition service of the inspection processing system to complete the data identification, obtains the inspection results, and then sends the inspection data and inspection results.
  • the online intelligent inspection service completes the alarm analysis, and the online intelligent inspection service sends the inspection results and alarms to the user interface of the inspection processing system to display the inspection results and alarms.
  • Step 1-A The video execution unit judges whether there is still a device point to be checked, and if so, executes step h-A; if not, executes step u.
  • Step g-B the robot execution unit of the robot body system executes the robot inspection subtask.
  • Step h-B The robot execution unit controls the robot to inspect the equipment points.
  • Step i-B The robot execution unit judges whether the robot switches between indoor and outdoor environments, and if so, executes step j-B; if not, executes step k-B.
  • Step j-B The robot execution unit sends a control command to the environmental monitoring system, and the environmental monitoring system controls the automatic door controller to open the automatic door of the protection room, and closes the automatic door of the protection room after the robot enters or leaves the protection room.
  • Step k-B If the current equipment point is an outdoor equipment, it means that the current robot is running outdoors, and the robot execution unit judges whether there is rain or snow currently through the rain and snow sensor of the environmental monitoring system. If so, execute step 1-B; if not, execute Steps p-B.
  • Step 1-B The robot execution unit obtains the rainfall and snowfall through the rain and snow sensor of the environmental monitoring system, and judges whether the current rainfall and snowfall exceed the threshold that the robot can bear. If so, execute steps n-B and q-B; if not, Then go to step m-B.
  • Step m-B The robot execution unit controls the robot to perform a wiper operation, and then executes step p-B.
  • Step n-B The online intelligent patrol service judges whether the current device point has an associated optical device, and if so, executes step o-B.
  • Step o-B The online intelligent inspection service sends a control command to the video execution unit, and the video execution unit controls the optical device to perform wiper operation, and controls the optical device to inspect the current device point, and then executes step p-B.
  • Step p-B The robot execution unit controls the robot to collect the inspection data of the equipment points, sends the inspection data to the pattern recognition service of the robot body system to complete the data identification, obtains the inspection results, and then sends the inspection data and inspection results to the robot.
  • Online intelligent inspection service the online intelligent inspection service completes the alarm analysis, and the online intelligent inspection service sends inspection results and alarms to the user interface of the inspection processing system for inspection results and alarm display. Then perform step t-B.
  • Step q-B The robot execution unit sends the current position of the robot and the position of the charging point to the path planning service of the robot body system, and the path planning service sends the calculated route of the robot back to the charging room to the robot execution unit, and the robot execution unit controls the robot according to the route. Return to the charging room.
  • Step r-B The robot execution unit controls the robot to enter the charging state and wait.
  • Step s-B The robot execution unit obtains the rainfall and snowfall through the rain and snow sensor of the environmental monitoring system, and judges whether the current rainfall and snowfall are lower than the threshold value of the robot. If so, execute step t-B; if not, execute Steps r-B.
  • Step t-B The robot execution unit judges whether there are still equipment points to be inspected, and if so, executes step h-B; if not, executes step u.
  • Step u the inspection task ends.
  • Step v The online intelligent inspection service generates an inspection task report, and sends it to the user interface of the inspection processing system for display.
  • the inspection task includes each inspection point that the robot needs to inspect.
  • the configuration process of the inspection point includes:
  • Configure the reference coordinate system for the preprocessed model identify the target object in the inspection site, obtain the pose and size information of the target object, and extract the passable path in the inspection site;
  • the corresponding three-dimensional attitude of the inspection agency is calculated, and the inspection point information list of the inspection agency is obtained.
  • the specific process of preprocessing the three-dimensional model includes: performing noise removal and feature fitting on the three-dimensional model.
  • the specific process of identifying the target object in the inspection site includes: loading the preset training model library, using the method of feature matching to identify the target object in the whole station, and for each target object identified, the target object will be calculated. Pose, orientation normal and size information in the 3D model.
  • the distance range between the inspection point and the target object refers to the maximum distance and the minimum safe distance between the target object and the target object when the inspection agency performs inspection in theory, based on the target object to be detected, based on the maximum distance and/or The minimum safe distance determines the distance range of the preset inspection points.
  • a sphere equation can be established according to the theoretical maximum distance between the preset inspection point and the target object, and the intersection line between the sphere and the plane where the passable path is located can be solved, and the intersection line is the outside of the legal configuration area.
  • Circle boundary According to the maximum angle constraint between the center line of the camera's field of view and the normal line of the target object, establish the cone equation, and solve the intersection line between the cone and the plane where the passable path is located, and the intersection line is the inner circle boundary of the legal configuration area. , the two intersecting lines intersect in an arc. In the intersecting area, the boundary of the passable path that falls into the intersection area is calculated. All passable path areas that satisfy the boundary interval are the legal configuration areas corresponding to a single target object. .
  • a weighted cost optimization function for the distances and deviation angles of multiple target objects is established.
  • the angle cost, distance cost and angle cost of the plane method between the line and multiple target objects are weighted, and an optimization method is used to solve the optimal solution of the cost function, that is, multiple target objects reuse the preset inspection points in the intersection area.
  • a weighted cost optimization function for the distance and deviation angle of a single target object is established.
  • the three-dimensional attitude of the gimbal is calculated through the trigonometric function relationship.
  • the cloud is solved.
  • a trigonometric function relationship is established to solve the three-dimensional attitude of the gimbal.
  • the operating status of the device is comprehensively identified.
  • the process of state recognition based on voiceprint information includes:
  • voiceprint features For the preprocessed voice information, extract voiceprint features; wherein, the voiceprint features at least include FBank features, decibels, fundamental frequency, short-term energy, short-term zero-crossing rate and correlation coefficient;
  • the operating state of the target device is determined based on the recognition result.
  • the process of extracting FBank features includes:
  • the natural logarithm of the filtered sound spectrum is obtained to obtain the FBank feature.
  • Step 1-A A routine operation and maintenance plan is formulated by the user through the user interface.
  • the routine operation and maintenance plan includes the substation name, the name of the routine operation and maintenance plan, the plan start time, the plan end time, and the plan execution period.
  • Step 1-B The user checks the routine operation and maintenance items on time, and finds and records the inspection equipment problems
  • Step 2-A Perform routine inspection tasks normally.
  • Step 2-B During the patrol process, the patrol device (smart robot or optical device) generates an abnormal alarm.
  • Step 3 Determine whether the inspection equipment problems found in the routine operation and maintenance item inspection or the inspection equipment abnormal alarms generated during the normal inspection process can be solved by the user.
  • Step 3-A If it can be solved by the user, the next routine operation and maintenance of the user or the routine inspection task can be performed normally.
  • Step 3-B If the user cannot solve the problem by himself, report the problem to the equipment manufacturer for professional maintenance; the manufacturer personnel will actually solve the problem of the inspection equipment on site and troubleshoot; record the professional operation and maintenance situation for subsequent filing and retrieval.
  • Embodiment 3 A computer-readable storage medium, in which a plurality of instructions are stored, and the instructions are suitable for being loaded by a processor of a terminal device and executing the steps of the online intelligent inspection method for a substation mentioned in Embodiment 2.
  • Embodiment 4 A terminal device includes a processor and a computer-readable storage medium, where the processor is used to implement various instructions; the computer-readable storage medium is used to store a plurality of instructions, and the instructions are suitable for being loaded and executed by the processor. The steps of a substation online intelligent inspection method mentioned in Example 2.
  • embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Abstract

本发明提供了一种变电站在线智能巡视系统及方法,获取主设备和辅设备监控系统的联动信号,能够做到融合多维信息;同时,利用不同执行系统并发执行相应子任务,保证了巡检效率;基于各个执行系统所采集数据,融合了多维度检测数据,并进行全自动智能识别、分析,形成联动复核;本发明能够实现变电站的自动化全覆盖在线巡视,异常故障的自动复核处置,运维人员远程运维管理,解决了机器人巡检存在巡视盲区、单一视频覆盖范围小、故障应急处置不及时等问题,提高了变电站设备巡检的全面性、准确性、智能性,提升了变电站内系统联动能力。

Description

一种变电站在线智能巡视系统及方法 技术领域
本发明属于电力系统智能巡检技术领域,具体涉及一种变电站在线智能巡视系统及方法。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
目前,很多变电站已经逐渐用智能机器人和视频采集设备来代替人工巡检工作,为变电站智能巡检提供了很大的便捷性,也提高了巡检的效果与质量。
但是根据发明人了解,上述巡检方式还存在以下技术问题:
(1)巡检机器人的检测手段仅仅是通过传感器进行设备参数检测,并没有其他维度检测参考的分析;
(2)仅仅获取机器人和视频信息,采集信息源较为单一,无法和其他重要信息(例如主设备和辅设备监控系统的联动信号)进行关联,对于数据协同处理具有很大的缺陷,同时缺少对于采集信息的告警复核,准确性较差;
(3)单纯依靠巡检机器人在进行巡视时普遍存在巡视盲区,无法实现巡视的全覆盖。
发明内容
本发明为了解决上述问题,提出了一种变电站在线智能巡视系统及方法,本发明能够实现变电站的自动化全覆盖在线巡视,异常故障的自动复核处置,运维人员远程运维管理,解决了机器人巡检存在巡视盲区、单一视频覆盖范围小、故障应急处置不及时等问题,提高了变电站设备巡检的全面性、准确性、智能性,提升了变电站内系统联动能力。
根据一些实施例,本发明采用如下技术方案:
一种变电站在线智能巡视方法,包括以下步骤:
获取主设备和辅设备联动信号,根据联动信号获取相关联的设备点位列表,根据设备点位和预先配置的联动策略构建巡检任务,或接收巡检任务;
将获取的巡检任务拆分为多个子任务,分别由不同的巡检执行系统并发执行相应子任务;
将各巡检执行系统并发执行相应子任务所采集数据,构成多维度巡检数据;
利用云边协同方法,确定所采集数据采用的智能分析算法,利用所述智能分析算法分析所述多维度巡检数据以进行设备状态识别,得到识别结果;所述设备状态识别包括状态识别和故障诊断分析。
在本发明中,接收巡检任务,是指能够接收根据用户需求、定制化形成的巡检任务方案。
根据上述方案,本发明能够获取主设备和辅设备监控系统的联动信号,能够做到融合多维信息;同时,利用不同执行系统并发执行相应子任务,保证了巡检效率;基于各个执行系统所采集数据,融合了多维度检测数据,并进行全自动智能识别、分析,形成联动复核。
作为可选择的实施方式,获取主设备和辅设备联动信号,根据联动信号获取相关联的设备点位列表的具体过程包括:
根据主设备和辅设备监控系统联动信号的主设备编码找到关联的设备点位列表;
根据设备点位列表从联动策略配置中获取关联的联动策略列表;
判断联动策略列表是否为空,如果联动策略列表不为空,根据设备点位列表和联动策略列表构建变电站设备联合巡检任务;如果联动策略列表为空,联动结束。
作为可选择的实施方式,所述巡检执行系统包括但不限于光学巡视系统、机器人巡检系统、环境监控系统和传感参数采集系统。
作为可选择的实施方式,光学巡视系统执行相应子任务的具体方法包括:解析相应子任务的内容,提取待检测的目标设备,调用距离所述待检测目标设备一定范围内的光学设备对待检测的目标设备进行视频、图像或/和光谱采集。
作为可选择的实施方式,环境监控系统执行相应子任务的具体方法包括:环境监控系统对相应子任务进行解析,根据子任务内容控制并调整变电站内光照和/或温度。
作为可选择的实施方式,机器人巡检系统执行相应子任务的具体方法包括:解析相应子任务的内容,提取待检测目标设备和巡检点,根据设备点位关联的联动策略,控制距离目标设备一定范围内的机器人运动至对应的巡检点上执行联动动作,并将目标设备与巡检数据和巡检结果相关联。
作为可选择的实施方式,传感参数采集系统包括但不限于声纹检测设备、可见光采集设备、红外采集设备、紫外采集设备、声音采集设备中的若干种。
作为进一步的限定,机器人执行过程包括:判断机器人是否进行室内和室外环境切换,如果是,则打开保护室自动门,待机器人进入或离开保护室后,再关闭保护室自动门;
如果当前设备点位为室外设备,判断当前是否有雨雪,如果是,根据降雨量和降雪量,判断当前的降雨量和降雪量是否超过机器人承受的阈值;
如果降雨量和降雪量超过机器人承受的阈值,利用当前设备点位的关联的光学设备进行巡检,控制光学设备采集设备点位的巡检数据,进行数据识别,获取巡检结果,根据巡检数据和巡检结果进行分析;
根据机器人当前位置和充电点位置,计算出机器人返回充电室的路线,控制机器人根据路线运动。
作为进一步的限定,如果降雨量和降雪量不超过机器人承受的阈值,控制机器人执行雨刷操作;
控制机器人采集设备点位的巡检数据,进行数据识别,获取巡检结果,根据巡检数据和巡检结果,完成预警分析。
作为进一步的限定,所述巡检点为预先配置得到,且其配置方法包括:获取巡检场所的三维模型,对三维模型进行预处理;
对预处理后的模型进行基准坐标系的配置,进行巡检场所内目标对象的识别,并获取目标对象的位姿、大小信息,提取巡检场所内的可通行路径;
配置巡检点与目标对象之间距离范围、与目标对象的平面法线偏差角度范围的约束条件;
遍历目标对象,根据单一目标对象的位姿、大小及可通行路径信息计算合法配置区域;
对单一目标对象合法配置区域进行全局优化,针对公共交叉区域和不交叉区域,在约束条件下,求解最优巡检点的坐标,得到巡检点信息;
根据每一个目标对象及对应的最优巡检点三维坐标,计算机器人对应三维姿态,得到机器人的巡检点信息列表。
作为可选择的实施方式,利用云边协同确定智能分析算法的具体过程包括:
加载待更新智能分析算法,构建并进行身份认证;
若认证信息合法,则将算法数据分包同时进行数据加密;
解密算法数据包,待所有算法数据包接收完毕后,验证算法的可用性,根据算法应用对象类型,取出智能分析算法仓中旧算法进行压缩备份,将待更新算法添加到智能分析算法仓中。
作为可选择的实施方式,利用所述智能分析算法分析所述多维度巡检数据以进行设备故障诊断分析的具体过程是:所述智能分析算法基于多维度巡检数据,综合对每一设备运行状态进行识别;当所述设备具有至少一种信息分析结果为发生故障时,认定为所述设备发生故障。
在本发明中,智能分析算法可以是深度学习模型或人工智能算法。
作为可选择的实施方式,所述多维度巡检数据包括但不限于视频信息、光谱信息、目标设备外观数据和目标设备声音信息。
作为进一步的限定,根据目标设备声音信息进行设备状态识别的具体过程包括:获取变电站目标设备的声音信息,并对所述声音信息进行预处理;
对于预处理后的声音信息,进行声纹特征提取;其中,所述声纹特征至少包括FBank特征、分贝、基频、短时能量、短时过零率和相关性系数;
将提取的声纹特征输入到训练好的声纹识别模型,输出识别结果;
基于识别结果判断目标设备的运行状态。
一种变电站在线智能巡视系统,包括巡视处理系统,以及与其连接的光学巡视系统、机器人巡检系统、环境监控系统和传感参数采集系统;
所述巡视处理系统与主设备和辅设备监控系统联动交互,被配置为获取主设备和辅设备联动信号,根据联动信号获取相关联的设备点位列表,根据设备点位和预先配置的联动策略构建巡检任务,或根据需求创建巡检任务;
所述巡视处理系统根据巡检任务,将巡检任务拆分为多个子任务,分别由光学巡视系统、机器人巡检系统、环境监控系统和传感参数采集系统并发执行相应子任务;
所述巡视处理系统被配置为根据各系统并发执行相应子任务所采集的视频数据、设备巡检数据、环境参数数据和传感参数数据,利用云边协同方法,确定采用的智能分析算法,利用所述智能分析算法对上述数据进行分析,识别设备状态,根据识别结果进行告警或/和设备运维;
所述巡视处理系统还配置为提供视频分析服务、光谱分析服务、声纹分析服务和模式识别服务。
作为可选择的实施方式,所述巡视处理系统能够扩展至云端部署。
作为可选择的实施方式,所述光学巡视系统包括布设于站端内的多个光学设备,所述光学设备包括固定式安装的可见光枪机、可见光球机、红外热像仪、双光谱球机和双光谱云台中的若干种,所述光学设备均与所述数据汇集交换设备连接。
作为可选择的实施方式,所述机器人巡检系统包括若干室内和室外机器人,所述室内机器人和室外机器人通过无线或有线方式连接到所述数据汇集交换设备。
当然,机器人可以根据具体使用场景选用轮式机器人、轨道机器人、履带式机器人等。
作为可选择的实施方式,所述环境监控系统包括光照控制器、窗帘控制器、温度控制器和多个温度传感器、湿度传感器,所述光照控制器用于打开或关闭照明设备,所述窗帘控制用于打开或关闭窗帘,所述温度传感器、湿度传感器用于获取站内温度、湿度,所述温度控制器用于控制温度调节机构。
温度调节机构包括但不限于空调、加热器。
作为可选择的实施方式,所述站端内还设置有若干声纹采集装置,声纹采集装置设置于机器人上,或设置于电力设备旁。
一种计算机可读存储介质,其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行上述一种变电站在线智能巡视方法的步骤。
一种终端设备,包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行上述一种变电站在线智能巡视方法的步骤。
与现有技术相比,本发明的有益效果为:
本发明创新性提出了一种变电站在线智能巡视方法,通过对巡检任务进行解析,各个巡检执行系统并发执行子任务,实现自动巡视、实时监控、智能联动及远程遥控,扩展变电站在线智能巡视的应用范围,提高变电站巡视过程及巡检结果处理的信息化和自动化水平,增强变电站巡检和设备缺陷远程处理能力、降低人力成本,推进变电站无人值守进程。
本发明创新性提出了一种巡视数据多维联动复核方法,利用机器人、光学设备、声纹装置等巡视执行系统联合巡检,全自动智能采集、识别、分析,响应变电站设备告警信息多维联动复核,提高了巡视的全面性、智能性,保障了告警准确性。
本发明创新性提出了一种云边协同方法,通过深度学习模型、人工智能算法等智能分析算法的标准化接入、自动下载更新和场景迭代,有效节省边端硬件成本、降低边端数据的延迟、自动提升边端应用效果,提升云端数据有效性及资源利用率。
本发明创新性提出了一种机器人系统、光学监控系统与环境监控系统联动控制方法,有效控制了光照、气流等外部环境参数,降低了环境对机器人巡检的干扰,提高了不同巡检场景的机器人巡检适应性,扩大了机器人巡检范围,提升了机器人巡检的可靠性和巡检数据准确性。
本发明创新性提出了一种变电站三维模型与视频融合的立体巡视方法,采用变电站三维全景预览及沉浸式漫游方式,实现场景定位、信息查看巡视资源覆盖分析、未覆盖巡视点位提供新增视频布点策略;改变传统巡视视角单一问题,对设备进行全方位立体化巡视,更好的掌握设备健康状况,更精准的确定故障位置和相关情况,对合理制定检修计划有积极作用。
本发明创新性提出了一种变电站设备声纹监测方法,采用声音采集系统利用声纹特征提取、声纹识别及模型分类的声纹识别技术分析设备声音实现了设备声音异常识别,提高了声音采集精度和识别正确率,为有电力设备运行状态的智能化音频识别提供了技术支持。解决了变电站声音采集定位精度差和频域跨度大的问题,实现了多元定向声音信号的采集,避免了室外环境噪声和人为噪声的干扰,单个麦克风采集的声音信号是多方位声音信号的叠加,能够实现噪声抑制和声源定位,提高了声音采集和识别的准确率。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为变电站在线智能巡视系统结构示意图;
图2为巡视系统的示意图;
图3为机器人系统的结构示意图;
图4为环境监控系统的结构示意图;
图5为变电站在线智能巡视方法流程示意图;
图6为变电站在线智能巡视任务流程示意图;
图7为变电站在线智能巡视云边协同方法流程示意图;
图8为主设备和辅设备联动示意图;
图9为环境系统联动示意图;
图10为巡检任务中巡检点自动配置流程示意图;
图11为设备运维示意图;
图12为基于声纹检测的设备状态识别流程示意图。
具体实施方式:
下面结合附图与实施例对本发明作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例一:如图1所示,本实施例提供一种变电站在线智能巡视系统,包括巡视处理系统、光学巡视系统、机器人巡检系统、环境监控系统和传感参数采集系统,巡视处理系统与光学巡视系统、机器人巡检系统环境监控系统和传感参数采集系统连接,且与主设备和辅设备监控系统通过数据汇集交换设备连接;
所述巡视处理系统与主设备和辅设备监控系统联动交互,被配置为获取主设备和辅设备联动信号,根据联动信号获取相关联的设备点位列表,根据设备点位和预先配置的联动策略构建巡检任务,或接收输入的根据用户需求定制的巡检任务;
所述巡视处理系统根据巡检任务,将巡检任务拆分为多个子任务,分别由光学巡视系统、机器人巡检系统、环境监控系统和传感参数采集系统并发执行相应子任务;
所述巡视处理系统被配置为根据各系统并发执行相应子任务所采集的视频数据、设备巡检数据、环境参数数据和声纹数据,利用云边协同方法,确定采用的智能分析算法,利用所述智能分析算法对上述数据进行分析,识别设备状态,根据识别结果进行告警或/和设备运维。
还包括影像存储设备、网络设备、若干机器人、若干光学设备和若干声纹装置等。上述设备都可以通过接入层接入。接入层提供无线安全、有线安全接入两种方式。接入层可以包括安全接入装置。当然,接入层可以连接其他设备,如其他参数的采集模块,在此不进行穷举。
下面分别进行详细介绍:
巡视处理系统与数据汇集交换设备连接。数据汇集交换设备作为网络连接的枢纽,连接系统间的网络设备。主设备和辅设备联动信号通过网络安全防护设备发送到数据汇集交换设备,联动的结果及反向联动信号通过网络安全防护设备发回主设备和辅设备监控系统。
在本实施例中,网络安全防护设备可以根据情况选用正向隔离设备、反向隔离设备,或其他设备。
影像存储设备可以选用网络硬盘录像机。
环境监控系统与数据汇集交换设备连接。环境监控系统包括环境参数检测模块,如温度检测模块、湿度检测模块等,在此不再赘述。还包括或连接有环境参数控制执行机构,如图4所示,可以包括环境监控管理机、协议转换设备、温湿度传感器、风速传感器、雨雪传感器、气体传感器、自动门控制器、照明控制器、窗帘控制器和空调控制器。(在具体环境联动控制部分会详细进行说明)。
若干光学设备包括固定式安装的可见光枪机(枪式网络摄像机简称枪机)、可见光球机(球形网络摄像机简称球机)、红外热像仪、双光谱(同时具备可见光和红外热成像称为双光谱)球机、双光谱云台。若干光学设备通过视频汇集与存储转发设备汇集后与影像存储设备通信,并连接到数据汇集交换设备上,影像存储设备也与数据汇集交换设备连接。
在本实施例中,视频汇集与存储转发设备可以选用交换机,数据汇集交换设备可以选用路由器,负责协议转换与数据交换。协议转换设备可以采用串口服务器。
若干机器人,组成机器人系统,包括若干室外机器人和若干室内机器人。室外机器人通过无线网络连接到数据汇集交换设备,为了保证无线网络接入的安全性,室外机器人首先连接到安全接入模块,安全接入模块连接到无线网桥Station,无线网桥Station通过无线网络连接到无线网桥AP,无线网桥AP连接到安全接入平台,安全接入平台再连接到数据汇集交换设备。安全接入平台与安全接入模块配对使用,通过物理隔离、数据加密、身份认证功能保证无线网络的安全性。室内机器人也可以通过有线网络连接到数据汇集交换设备。
当然,机器人可以根据具体使用场景选用轮式机器人、轨道机器人、履带式机器人等。在此不再赘述。
如图2所示,巡视处理系统提供包括:在线智能巡视服务、用户界面、配置工具、视频执行单元、模式识别服务、深度学习服务、视频分析服务、声纹分析服务;分别包括有上述功能模块。
巡视处理系统也可以与上层云端服务器或集中控制服务器连接或通信。或者部署在云端。在本实施例中,巡视处理系统可以包括巡视主机以及其上配置的软件。
在线智能巡视服务是巡视处理系统的核心业务服务,在线智能巡视服务包括消息分发、模型管理、任务管理、智能联动、通信接口、实时监控、数据分析、三维应用、云边协同、告警分析、配置管理11个功能模块。
消息分发模块负责在线智能巡视服务各功能模块间的消息流转,其他功能模块可以通过消息的订阅和发布,实现通 信消息在功能模块间的传递。
模型管理模块负责管理变电站设备模型、变电站设备点位模型、机器人模型、光学设备模型、在线监测模型,在线同步变电站设备及设备点位,负责与机器人配置的变电站设备点位模型进行绑定。
任务管理负责任务模型管理、任务定制流程、任务定时流程、任务控制、任务状态监控、巡检结果接入及存储、任务报表生成及推送。
智能联动模块负责联动策略配置、联动信号监听、联动判定、联动动作执行、联动执行信息推送。
通信接口模块负责与用户界面、配置工具、视频执行单元通信。
实时监控模块负责机器人实时数据接入、光学设备实时数据接入、在线监测实时数据接入、机器人外设数据接入、历史数据清理、实时数据推送。
数据分析模块负责与模式识别服务、深度学习服务、视频分析服务、声纹分析服务通信,并完成巡检数据的分析,形成巡检结果。
三维应用模块负责提供三维全景浏览和沉浸式漫游展示,告警定位、视频推送、空间测距、资源覆盖分析等功能。
云边协同模块负责智能分析云平台对高级分析服务的分析算法与应用的同步更新。
告警分析模块负责告警阈值设定、告警分析、告警复核、告警信息推送、告警审核、缺陷管理。
配置管理模块负责为用户提供告警阈值设置、告警消息订阅设置、权限管理、标准点位库维护等功能。
用户界面通过Web系统实现,用于给用户提供机器人和光学设备的实时视频及状态显示、机器人和设备设备控制、巡检任务定制和控制、巡检任务进度及状态、巡检任务报表、巡检结果实时显示、告警信息推送、巡检结果查询及审核、告警查询及审核、地图、三维信息显示。
配置工具负责完成在线智能巡视服务的系统配置、模型配置、数据库配置、文件服务配置、加载模块配置。
视频执行单元负责光学设备的任务执行流程、巡检数据采集、视频监控,视频任务执行单元通过与模式识别服务通信,完成可见光图片和红外热图的数据识别分析。
模式识别服务模块负责刀闸分合状态、开关状态、仪表读数、红外温度、灯光、压板、二维码、异物图片识别功能。
深度学习服务模块负责识别变电站设备外观类缺陷、识别变电站设备状态类缺陷,判别变电站设备的异常变化。
视频分析服务模块负责实时识别安全风险类缺陷,包括:越线/闯入、未戴安全帽、未穿工装、吸烟、烟火识别、小动物识别、积水监测。
声纹分析服务模块负责从变电站设备振动产生的音频信号中提取特征量,并对设备的运行状态进行识别。
在另一个实施示例中,巡视处理系统可为平板、台式电脑或服务器等智能设备,该智能设备包括处理器,其中所述处理器用于执行存在存储器的上述程序模块,包括:在线智能巡视服务、用户界面、配置工具、视频执行单元、模式识别服务、深度学习服务、视频分析服务和声纹分析服务等功能模块以及消息分发、模型管理、任务管理、智能联动、通信接口、实时监控、数据分析、三维应用、云边协同、告警分析和配置管理等功能模块。
如图3所示,机器人系统包括机器人执行单元、运动控制单元、定位导航服务单元、模式识别服务单元、路径规划服务单元、多机器人通信单元。机器人执行单元负责机器人的任务执行流程、巡检数据采集、视频监控、机器人本体报警、自主导航、对外通信。
运动控制单元负责机器人的云台控制、电源控制、驱动控制、自动门控制、电梯控制、控制状态上送。定位导航服务负责提供激光定位导航功能、室内轨道定位导航功能、GPS定位导航功能。
模式识别服务单元与巡视处理系统中的模式识别服务功能相同。
路径规划服务单元负责加载变电站地图模型数据,加载路径规划算法,提供路径规划服务。
多机器人通信单元负责完成多台机器人之间的通信功能,通过消息的发布和订阅,完成多台机器人之间位置信息、环境信息、电量信息、任务状态信息、运动状态信息的共享。
在另一个实施示例中,机器人系统可为平板、台式电脑或服务器等智能设备,该智能设备包括处理器,其中所述处理器用于执行存在存储器的上述程序单元,包括:机器人执行单元、运动控制单元、定位导航服务单元、模式识别服务单元、路径规划服务单元和多机器人通信单元。
实施例二:提供一种变电站在线智能巡视方法,包括以下步骤:
获取主设备和辅设备联动信号,根据联动信号获取相关联的设备点位列表,根据设备点位和预先配置的联动策略构建巡检任务或接收巡检任务(当然,该巡检任务可以是根据需求定制的);
获取巡检任务,将巡检任务拆分为多个子任务,分别由光学巡视系统、机器人巡检系统和环境监控系统并发执行相应子任务;
将各系统并发执行相应子任务所采集的视频数据、设备巡检数据、环境参数数据和声纹数据;
利用云边协同方法,确定所采集数据采用的智能分析算法,基于采集数据,利用所述智能分析算法进行设备状态进 行识别,得到识别结果。
具体的,如图5所示,包括以下步骤:
巡检任务生成步骤:获取主设备和辅设备联动信号,根据联动信号获取相关联的设备点位列表,根据设备点位和预先配置的联动策略构建巡检任务;
当然,在本实施例中,巡检任务不是只能由联动信号触发的,也可以定制任务创建巡视方案。
在构建巡检任务前,先进行系统使用权限的管理,确定是否为具有权限的操作人员,如果权限管理通过,再进行巡检调度。
巡检调度子系统根据用户的授权、任务序列与主设备和辅设备监控系统的联动。
数据采集步骤:根据巡检任务,变电站在线智能巡视系统的任务控制系统,将巡检任务拆分为多个子任务,分别由光学巡视系统、机器人巡检系统、环境监控系统和传感参数采集系统(包括布设于站内的各个传感器或其他采集模块,例如可见光、红外光、紫外、声音、声纹等参数采集设备)并发执行相应子任务;
站端将各系统并发执行相应子任务所采集的视频数据、设备巡检数据(包括但不限于外观图像、设备温度数据)、环境参数数据(包括但不限于温度、湿度和光照)和声纹数据交由实时数据库进行存储,并利用云边协同方法,确定站端的智能分析算法,基于采集数据,利用所述智能分析算法进行设备状态识别,也可以称其为设备故障诊断,根据识别结果或诊断结果进行告警或/和设备运维。
具体的,在本实施例中,远方机器人接收变电站在线智能巡视系统巡检调度子系统下达的任务序列,启动任务巡检功能,依次采集站内设备相应的温度数据、音频数据、外观数据(包括仪表读数、分和状态、破损、漏油、外观异常等)。
获取数据后,分别进行实时数据处理、设备故障诊断分析、若有疑似故障设备,则进入智能诊断专家云系统进一步分析处理,之后进入事项系统,将当前的数据采集与分析进行事项统一汇总处理,以相应方式推送至UI客户端。
任务结束过程:任务结束的条件是当前任务序列执行完毕,或异常终止,或用户停止。进入事项系统,做任务结束的事项汇报;进入巡检报告,对本次巡检作业做相关的报告处理,如果本次作业有疑似故障设备,先进入疑似故障诊断系统,进一步分析,根据分析结果生成报告。并将疑似故障设备,留存记录,推送给用户相应的疑似故障设备复查任务。至此任务结束。
在上述过程中,巡检任务生成、执行以及后续分析的处理流程,如图6所示,包括以下步骤:
步骤1:执行任务定制。
步骤2:选择巡检任务需要进行巡检的设备点位。
步骤3:设置巡检任务执行类型,包括全面巡检、例行巡检、熄灯巡检、特殊巡检、专项巡检。
步骤4:设置任务执行周期,巡检任务根据任务周期定时执行巡检任务。
步骤5:判断任务周期是否到期,如果到期,则执行步骤6。
步骤6:通过任务调度生成视频巡检子任务和机器人巡检子任务。
步骤7:多光学设备和多机器人开始并发巡检。
步骤8:将采集的巡检数据文件发给模式识别服务进行数据识别,获取巡检结果。
步骤9:把巡检结果发送给用户界面进行实时展示。
步骤10:根据设备告警阈值设置,对巡检结果进行告警分析。
步骤11:通过用户界面对告警结果进行展示。
步骤12:视频巡检子任务结束,机器人巡检子任务结束。
步骤13:生成巡检任务报告。
利用云边协同方法,确定站端的智能分析算法的过程,如图7所示,具体包括:
步骤a:加载待更新智能分析算法及待更新的在线智能巡视系统列表。
步骤b:构建并发送身份认证请求。
步骤c:解析身份认证请求,进行身份认证。
步骤d;如果认证通过,构建智能分析算法更新命令(命令中包含认证合法标识)。
步骤e:将算法数据进行分包同时对分包数据进行加密(加密算法支持RSA、DES、3DES、IDEA和MD5等算法,算法种类选择支持配置),将每个数据包添加分包总数、包号、命令类型、认证合法标识组建为命令包,根据更新命令中的在线智能巡视系统列表,分别发送给相应的在线智能巡视系统的认证服务器。发送之前需判断在线智能巡视系统是否在线,如果在线直接发送命令包,否则启用断线重发机制。
在线智能巡视系统的认证服务器解析更新命令,判断命令类型及认证合法标识是否有效,如果有效,转发给智能算法分析单元。否则,处理结束。
步骤f:智能算法分析单元收到更新命令后,解析命令内容,解密算法数据包。待所有算法数据包接收完毕后,验证算法是否可用,如果可用,根据算法应用对象类型,取出智能分析算法仓中旧算法进行压缩备份。将待更新算法添加到智能分析算法仓中。
上文中所指的联动,具体包括站端主设备和辅设备联动、站端环境系统联动。下面进行分别详细叙述。
其中,站端主设备和辅设备联动的具体方案,如图8或9所示,包括:
步骤I:主设备和辅设备监控系统通过网络安全防护设备发送主设备和辅设备联动信号到巡视处理系统。
步骤II:巡视处理系统中的在线智能巡视服务根据联动信号的主设备编码找到设备点位列表。
步骤III:在线智能巡视服务根据设备点位列表从联动策略配置中获取关联的联动策略列表;
步骤IV:在线智能巡视服务判断联动策略列表是否为空。如果联动策略列表不为空,则执行步骤V;如果联动策略列表为空,则执行步骤XIII。
步骤V:触发联动。
步骤VI:在线智能巡视服务根据设备点位列表、联动策略列表构建变电站设备巡视任务。
步骤VII:启动变电站设备巡视任务。
步骤VIII:多光学设备和多机器人开始并发巡检。其中,多光学设备并发巡检操作由巡视处理系统的视频执行单元负责控制完成;多机器人并发巡检由多台机器人独自完成,每台机器人的巡检流程由机器人本体系统的机器人执行单元负责控制完成。
步骤VIIII:根据设备点位关联的联动策略执行联动动作。
其中联动策略是指多种联动动作的组合配置及联动动作的参数配置。
联动动作包括:(1)观看,即光学设备或机器人调用到设备点位对应的预置位后,进行观看,用户可以通过巡视处理系统的用户界面的实时视频观看到设备,观看时间超过联动策略配置的观看时长后结束;(2)采集,即光学设备或机器人根据联动策略配置的采集数据类型进行数据采集,采集数据类型包括:可见光图片、红外图片、可见光视频、红外视频、音频、局放检测数据;(3)采集和识别,即执行数据采集后,对采集的数据进行数据识别;(4)观看和采集,即该设备点位同时执行观看和采集两个联动动作;(5)观看、采集、识别,即该设备点位同时执行观看、采集、识别三个联动动作。
步骤X:设备点位巡检数据和巡检结果展示。其中,光学设备的巡检数据和巡检结果由巡视处理系统的视频执行单元发送给在线智能巡视服务保存,机器人的巡检数据和巡检结果由机器人本体系统的机器人执行单元发送给在线智能巡视服务保存,然后在线智能巡视服务把巡检结果和巡检数据发送给用户界面进行展示。
步骤XI:判断是否还有待检设备点位,即光学设备通过巡视处理系统的视频执行单元进行判断,机器人通过机器人本体系统的机器人执行单元进行判断,当光学设备和机器人都没有待检测的设备点位后,则执行步骤XII;如果还有待检测的设备点位,则执行步骤VIII。
步骤XII:在线智能巡视服务生成任务报告,并发送给巡视处理系统的用户界面进行展示。
步骤XIII:联动结束。
站端的环境系统联动过程,如图9所示,包括以下步骤:
步骤a:由用户通过巡视处理系统的用户界面控制或者在线智能巡视服务定时控制启动变电站设备巡检任务,巡检任务包含巡检任务编码、巡检任务名称、需要巡检的变电站设备点位列表、巡检任务优先级、巡检任务的定时周期、巡检任务创建者、巡检任务创建时间。
步骤b:在线智能巡视服务判断巡检任务的设备点位列表是否包含保护室内设备,如果是,则执行步骤c;如果不是,则执行步骤f。
步骤c:在线智能巡视服务发送控制命令到环境监控系统,由环境监控系统控制照明控制器打开照明灯,控制窗帘控制器关闭窗帘。其中,打开照明灯是防止保护室内光线不足影响可见光检测,关闭窗帘是防止太阳光照进保护室内影响可见光检测和红外检测。
步骤d:在线智能巡视服务通过环境监控系统获取到的保护室温度,判断保护室温度是否超过阈值,如果是,则执行步骤e;如果不是,则执行步骤f。
步骤e:在线智能巡视服务发送控制命令到环境监控系统,由环境监控系统控制空调控制器打开空调,调节保护室温度至正常范围内,防止影响红外检测。
步骤f:在线智能巡视服务进行任务调度,生成视频巡检子任务和机器人巡检子任务。
步骤g-A:巡视处理系统的视频执行单元执行视频巡检子任务。
步骤h-A:视频执行单元控制光学设备巡检设备点位。
步骤i-A:如果当前设备点位为室外设备,说明当前光学设备部署在室外,巡视处理系统的视频执行单元通过环境监 控系统的雨雪传感器判断当前是否有雨雪,如果是,则执行步骤j-A;如果不是,则执行步骤k-A。
步骤j-A:视频执行单元控制光学设备执行雨刷操作。
步骤k-A:视频执行单元控制光学设备采集设备点位的巡检数据,将巡检数据发送给巡视处理系统的模式识别服务完成数据识别,获取巡检结果,然后将巡检数据和巡检结果发送给在线智能巡视服务,由在线智能巡视服务完成告警分析,在线智能巡视服务将巡检结果和告警发送给巡视处理系统的用户界面进行巡检结果和告警展示。
步骤l-A:视频执行单元判断是否还有待检设备点位,如果是,则执行步骤h-A;如果不是,则执行步骤u。
步骤g-B:机器人本体系统的机器人执行单元执行机器人巡检子任务。
步骤h-B:机器人执行单元控制机器人巡检设备点位。
步骤i-B:机器人执行单元判断机器人是否进行室内和室外环境切换,如果是,则执行步骤j-B;如果不是,则执行步骤k-B。
步骤j-B:机器人执行单元发送控制命令给环境监控系统,由环境监控系统控制自动门控制器打开保护室自动门,待机器人进入或离开保护室后,再关闭保护室自动门。
步骤k-B:如果当前设备点位为室外设备,说明当前机器人运行在室外,机器人执行单元通过环境监控系统的雨雪传感器判断当前是否有雨雪,如果是,则执行步骤l-B;如果不是,则执行步骤p-B。
步骤l-B:机器人执行单元通过环境监控系统的雨雪传感器获取降雨量和降雪量,判断当前的降雨量和降雪量是否超过机器人承受的阈值,如果是,则执行步骤n-B和步骤q-B;如果不是,则执行步骤m-B。
步骤m-B:机器人执行单元控制机器人执行雨刷操作,然后执行步骤p-B。
步骤n-B:在线智能巡视服务判断当前设备点位是否有关联的光学设备,如果是,则执行步骤o-B。
步骤o-B:在线智能巡视服务给视频执行单元发送控制命令,由视频执行单元控制光学设备执行雨刷操作,并控制光学设备巡检当前设备点位,然后执行步骤p-B。
步骤p-B:机器人执行单元控制机器人采集设备点位的巡检数据,将巡检数据发送给机器人本体系统的模式识别服务完成数据识别,获取巡检结果,然后将巡检数据和巡检结果发送给在线智能巡视服务,由在线智能巡视服务完成告警分析,在线智能巡视服务将巡检结果和告警发送给巡视处理系统的用户界面进行巡检结果和告警展示。然后执行步骤t-B。
步骤q-B:机器人执行单元将机器人当前位置和充电点位置发送给机器人本体系统的路径规划服务,路径规划服务将计算出机器人返回充电室的路线发送给机器人执行单元,由机器人执行单元根据路线控制机器人返回充电室。
步骤r-B:机器人执行单元控制机器人进入充电状态并等待。
步骤s-B:机器人执行单元通过环境监控系统的雨雪传感器获取降雨量和降雪量,判断当前的降雨量和降雪量是否低于机器人承受的阈值,如果是,则执行步骤t-B;如果不是,则执行步骤r-B。
步骤t-B:机器人执行单元判断是否还有待检设备点位,如果是,则执行步骤h-B;如果不是,则执行步骤u。
步骤u:巡检任务结束。
步骤v:在线智能巡视服务生成巡检任务报告,并发送给巡视处理系统的用户界面进行展示。
巡检任务中包含了机器人需要巡检的各巡检点,在本实施例中,巡检点的配置流程,如图10所示,包括:
获取巡检场所的三维模型,对三维模型进行预处理;
对预处理后的模型进行基准坐标系的配置,进行巡检场所内目标对象的识别,并获取目标对象的位姿、大小信息,提取巡检场所内的可通行路径;
配置巡检点与目标对象之间距离范围、与目标对象的平面法线偏差角度范围的约束条件;
遍历目标对象,根据单一目标对象的位姿、大小及可通行路径信息计算合法配置区域;
对单一目标对象合法配置区域进行全局优化,针对公共交叉区域和不交叉区域,在约束条件下,求解最优巡检点的坐标,得到巡检点信息;
根据每一个目标对象及对应的最优巡检点三维坐标,计算巡检机构对应三维姿态,得到巡检机构的巡检点信息列表。
具体的,对三维模型进行预处理的具体过程包括:对三维模型进行噪点去除和特征拟合。
进行巡检场所内目标对象的识别的具体过程包括:加载预设的训练模型库,采用特征匹配的方法进行全站目标对象的识别,对于识别到的每一个目标对象,将计算出该目标对象在三维模型中的位姿、朝向法向量和大小信息。
巡检点与目标对象之间距离范围是指根据待检测的目标对象,确定理论上巡检机构执行巡检时,与目标对象之间的最大距离,以及最小安全距离,基于最大距离和/或最小安全距离,确定预设巡检点的距离范围。
在本实施例中,可以根据预设巡检点与目标对象之间理论上的最大距离,建立球体方程,求解球体与可通行路径所在平面的交叉线,该交叉线即为合法配置区域的外圈边界;根据相机视场中心线与目标对象平面法线最大夹角约束,建立椎体方程,求解椎体与可通行路径所在平面的交叉线,该交叉线即为合法配置区域的内圈边界,两个交叉线成弧线交 叉,在该交叉区域内,计算落入到该交叉区域内的可通行路径的边界,所有满足边界区间的可通行路径区域即为单一目标对象对应的合法配置区域。
在公共交叉区域中,建立多个目标对象的距离、偏差角的加权代价优化函数,该代价函数根据包含多个目标对象与预设巡检点的距离代价、预设巡检点相机视场中心线与多个目标对象平面法的夹角代价,距离代价和夹角代价进行加权,采用优化方法求解该代价函数的最优解,即为多个目标对象复用交叉区域预设巡检点。
对于合法配置区域不存在交叉的目标对象,建立单一目标对象的距离、偏差角的加权代价优化函数,该代价函数包含单一目标对象与预设巡检点的距离代价、预设巡检点相机视场中心线与单一目标对象平面法线的夹角代价:距离代价与夹角代价进行加权,采用优化方法求解该代价函数的最优解,即为单个目标对象专用预设巡检点。
在进行转换时,根据每一个目标对象及对应的预设巡检点三维坐标,通过三角函数关系计算云台的三维姿态,首先根据机器人本体模型,在预设巡检点坐标处,求解出云台旋转中心点的坐标,然后再根据目标对象坐标及云台旋转中心点坐标建立三角函数关系,求解云台的三维姿态。
经过巡检过程,基于视频信息、目标设备外观数据和目标设备声音信息,综合对设备运行状态进行识别,至少一种信息分析结果为发生故障时,认定为发生故障。
其中,基于声纹信息进行状态识别的过程,如图12所示,包括:
获取变电站目标设备的声音信息,并对所述声音信息进行预处理;
对于预处理后的声音信息,进行声纹特征提取;其中,所述声纹特征至少包括FBank特征、分贝、基频、短时能量、短时过零率和相关性系数;
将提取的声纹特征输入到训练好的声纹识别模型,输出识别结果;
基于识别结果判断目标设备的运行状态。
提取FBank特征的过程包括:
通过傅里叶变换得到声音信号的语谱图,计算能量谱;
通过Mel滤波器组进行滤波,得到符合人耳听觉习惯的声谱;
对滤波后得到的声谱求取其自然对数,得到FBank特征。
根据巡检结果,可以进行设备运维,具体过程如图11所示,包括以下步骤:
步骤1-A:由用户通过用户界面制定例行运维计划,例行运维计划包含变电站名称、例行运维计划名称、计划开始时间、计划结束时间、计划执行周期。
步骤1-B:用户按时进行例行运维项目检查,发现并记录巡视设备问题;
步骤2-A:正常执行例行巡视任务。
步骤2-B:巡视过程中,巡视设备(智能机器人或光学设备)产生异常告警。
步骤3:判断例行运维项目检查所发现的巡视设备问题或正常巡视过程中产生的巡视设备异常告警用户是否可以自行解决。
步骤3-A:若可以用户自行解决则正常进行下一次用户例行运维或正常执行例行巡视任务。
步骤3-B:若用户无法自行解决问题,则反馈问题给设备厂家,进行专业维护;厂家人员现场实际解决巡视设备问题,排除故障;记录专业运维情况,以备后续归档及检索。
实施例三:一种计算机可读存储介质,其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行实施例二提到的一种变电站在线智能巡视方法的步骤。
实施例四:一种终端设备,包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行实施例二提到的一种变电站在线智能巡视方法的步骤。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (22)

  1. 一种变电站在线智能巡视方法,其特征是:包括以下步骤:
    获取主设备和辅设备联动信号,根据联动信号获取相关联的设备点位列表,根据设备点位和预先配置的联动策略构建巡检任务,或接收巡检任务;
    将获取的巡检任务拆分为多个子任务,分别由不同的巡检执行系统并发执行相应子任务;
    将各巡检执行系统并发执行相应子任务所采集数据,构成多维度巡检数据;
    利用云边协同方法,确定所采集数据采用的智能分析算法,利用所述智能分析算法分析所述多维度巡检数据以进行设备状态识别,得到识别结果;所述设备状态识别包括状态识别和故障诊断分析。
  2. 如权利要求1所述的一种变电站在线智能巡视方法,其特征是:获取主设备和辅设备联动信号,根据联动信号获取相关联的设备点位列表的具体过程包括:
    根据主设备和辅设备监控系统联动信号的主设备编码找到关联的设备点位列表;
    根据设备点位列表从联动策略配置中获取关联的联动策略列表;
    判断联动策略列表是否为空,如果联动策略列表不为空,根据设备点位列表和联动策略列表构建变电站设备联合巡检任务;如果联动策略列表为空,联动结束。
  3. 如权利要求1所述的一种变电站在线智能巡视方法,其特征是:所述巡检执行系统包括光学巡视系统、机器人巡检系统、环境监控系统和传感参数采集系统。
  4. 如权利要求3所述的一种变电站在线智能巡视方法,其特征是:光学巡视系统执行相应子任务的具体方法包括:解析相应子任务的内容,提取待检测的目标设备,调用距离所述待检测目标设备一定范围内的光学设备对待检测的目标设备进行视频、图像或/和光谱采集。
  5. 如权利要求3所述的一种变电站在线智能巡视方法,其特征是:环境监控系统执行相应子任务的具体方法包括:环境监控系统对相应子任务进行解析,根据子任务内容控制并调整变电站内光照和/或温度。
  6. 如权利要求3所述的一种变电站在线智能巡视方法,其特征是:机器人巡检系统执行相应子任务的具体方法包括:解析相应子任务的内容,提取待检测目标设备和巡检点,根据设备点位关联的联动策略,控制距离目标设备一定范围内的机器人运动至对应的巡检点上执行联动动作,并将目标设备与巡检数据和巡检结果相关联。
  7. 如权利要求3所述的一种变电站在线智能巡视方法,其特征是:传感参数采集系统包括声纹检测设备、可见光采集设备、红外采集设备、紫外采集设备和声音采集设备。
  8. 如权利要求6所述的一种变电站在线智能巡视方法,其特征是:机器人执行过程包括:判断机器人是否进行室内和室外环境切换,如果是,则打开保护室自动门,待机器人进入或离开保护室后,再关闭保护室自动门;
    如果当前设备点位为室外设备,判断当前是否有雨雪,如果是,根据降雨量和降雪量,判断当前的降雨量和降雪量是否超过机器人承受的阈值;
    如果降雨量和降雪量超过机器人承受的阈值,利用当前设备点位的关联的光学设备进行巡检,控制光学设备采集设备点位的巡检数据,进行数据识别,获取巡检结果,根据巡检数据和巡检结果进行分析;
    根据机器人当前位置和充电点位置,计算出机器人返回充电室的路线,控制机器人根据路线运动。
  9. 如权利要求8所述的一种变电站在线智能巡视方法,其特征是:如果降雨量和降雪量不超过机器人承受的阈值,控制机器人执行雨刷操作;
    控制机器人采集设备点位的巡检数据,进行数据识别,获取巡检结果,根据巡检数据和巡检结果,完成预警分析。
  10. 如权利要求6所述的一种变电站在线智能巡视方法,其特征是:所述巡检点为预先配置得到,且其配置方法包括:获取巡检场所的三维模型,对三维模型进行预处理;
    对预处理后的模型进行基准坐标系的配置,进行巡检场所内目标对象的识别,并获取目标对象的位姿、大小信息,提取巡检场所内的可通行路径;
    配置巡检点与目标对象之间距离范围、与目标对象的平面法线偏差角度范围的约束条件;
    遍历目标对象,根据单一目标对象的位姿、大小及可通行路径信息计算合法配置区域;
    对单一目标对象合法配置区域进行全局优化,针对公共交叉区域和不交叉区域,在约束条件下,求解最优巡检点的坐标,得到巡检点信息;
    根据每一个目标对象及对应的最优巡检点三维坐标,计算机器人对应三维姿态,得到机器人的巡检点信息列表。
  11. 如权利要求1所述的一种变电站在线智能巡视方法,其特征是:利用云边协同确定智能分析算法的具体过程包括:
    加载待更新智能分析算法,构建并进行身份认证;
    若认证信息合法,则将算法数据分包同时进行数据加密;
    解密算法数据包,待所有算法数据包接收完毕后,验证算法的可用性,根据算法应用对象类型,取出智能分析算法仓中旧算法进行压缩备份,将待更新算法添加到智能分析算法仓中。
  12. 如权利要求1所述的一种变电站在线智能巡视方法,其特征是:利用所述智能分析算法分析所述多维度巡检数据以进行设备故障诊断分析的具体过程是:所述智能分析算法基于多维度巡检数据,综合对每一设备运行状态进行识别;当所述设备具有至少一种信息分析结果为发生故障时,认定为所述设备发生故障。
  13. 如权利要求12所述的一种变电站在线智能巡视方法,其特征是:所述多维度巡检数据包括视频信息、光谱信息、目标设备外观数据和目标设备声音信息。
  14. 如权利要求13所述的一种变电站在线智能巡视方法,其特征是:根据目标设备声音信息进行设备状态识别的具体过程包括:获取变电站目标设备的声音信息,并对所述声音信息进行预处理;
    对于预处理后的声音信息,进行声纹特征提取;其中,所述声纹特征包括FBank特征、分贝、基频、短时能量、短时过零率和相关性系数;
    将提取的声纹特征输入到训练好的声纹识别模型,输出识别结果;
    基于识别结果判断目标设备的运行状态。
  15. 一种变电站在线智能巡视系统,其特征是:包括巡视处理系统,以及与其连接的光学巡视系统、机器人巡检系统、环境监控系统和传感参数采集系统;
    所述巡视处理系统与主设备和辅设备监控系统联动交互,被配置为获取主设备和辅设备联动信号,根据联动信号获取相关联的设备点位列表,根据设备点位和预先配置的联动策略构建巡检任务,或根据需求创建巡检任务;
    所述巡视处理系统根据巡检任务,将巡检任务拆分为多个子任务,分别由光学巡视系统、机器人巡检系统、环境监控系统和传感参数采集系统并发执行相应子任务;
    所述巡视处理系统被配置为根据各系统并发执行相应子任务所采集的视频数据、光谱数据、设备巡检数据、环境参数数据和传感参数数据,利用云边协同方法,确定采用的智能分析算法,利用所述智能分析算法进行数据分析,识别设备状态,根据识别结果进行告警或/和设备运维;
    所述巡视处理系统还配置为提供视频分析服务、光谱分析服务、声纹分析服务和模式识别服务。
  16. 如权利要求15所述的一种变电站在线智能巡视系统,其特征是:所述巡视处理系统能够扩展至云端部署。
  17. 如权利要求15所述的一种变电站在线智能巡视系统,其特征是:所述光学巡视系统包括布设于站端内的多个光学设备,所述光学设备包括固定式安装的可见光枪机、可见光球机、红外热像仪、双光谱球机和双光谱云台中的若干种,所述光学设备均与所述数据汇集交换设备连接。
  18. 如权利要求15所述的一种变电站在线智能巡视系统,其特征是:所述机器人巡检系统包括若干室外机器人和若干室内机器人,所述室外机器人和室内机器人通过有线或无线方式连接到所述数据汇集交换设备。
  19. 如权利要求15所述的一种变电站在线智能巡视系统,其特征是:所述环境监控系统包括光照控制器、窗帘控制器、温度控制器和多个温度传感器、湿度传感器,所述光照控制器用于打开或关闭照明设备,所述窗帘控制用于打开或关闭窗帘,所述温度传感器、湿度传感器用于获取站内温度、湿度,所述温度控制器用于控制温度调节机构。
  20. 如权利要求15所述的一种变电站在线智能巡视系统,其特征是:站内还设置有若干声纹采集装置,声纹采集装置设置于机器人上,或设置于电力设备旁。
  21. 一种计算机可读存储介质,其特征是:其中存储有多条指令,所述指令适于由终端设备的处理器加载并执行权利要求1-14中任一项一种变电站在线智能巡视方法的步骤。
  22. 一种终端设备,其特征是:包括处理器和计算机可读存储介质,处理器用于实现各指令;计算机可读存储介质用于存储多条指令,所述指令适于由处理器加载并执行权利要求1-14中任一项所述的一种变电站在线智能巡视方法的步骤。
PCT/CN2021/119754 2020-11-03 2021-09-23 一种变电站在线智能巡视系统及方法 WO2022095616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011212251.8 2020-11-03
CN202011212251.8A CN112350441B (zh) 2020-11-03 2020-11-03 一种变电站在线智能巡视系统及方法

Publications (1)

Publication Number Publication Date
WO2022095616A1 true WO2022095616A1 (zh) 2022-05-12

Family

ID=74355483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119754 WO2022095616A1 (zh) 2020-11-03 2021-09-23 一种变电站在线智能巡视系统及方法

Country Status (2)

Country Link
CN (1) CN112350441B (zh)
WO (1) WO2022095616A1 (zh)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114722388A (zh) * 2022-06-09 2022-07-08 深圳市爱莲说文化传播有限公司 一种数据库数据信息安全监视方法
CN114792319A (zh) * 2022-06-23 2022-07-26 国网浙江省电力有限公司电力科学研究院 一种基于变电图像的变电站巡检方法及系统
CN114875999A (zh) * 2022-05-27 2022-08-09 上海威派格智慧水务股份有限公司 一种用于二次供水系统的泵房运维管理系统
CN114928164A (zh) * 2022-05-19 2022-08-19 国网湖南省电力有限公司 一种主子站协同互动的变电站运维系统
CN114977511A (zh) * 2022-06-21 2022-08-30 众芯汉创(北京)科技有限公司 一种基于区块链的风电场变电站监控系统
CN115065702A (zh) * 2022-06-17 2022-09-16 国电南瑞科技股份有限公司 一种适用于新一代调度主站的新能源数据接入系统及方法
CN115174436A (zh) * 2022-09-07 2022-10-11 浙江省邮电工程建设有限公司 一种通信机房自动巡检机器人控制方法与系统
CN115225322A (zh) * 2022-06-14 2022-10-21 西安电子科技大学 基于环境侧信道信息验证的无人智能设备安全约束方法
CN115273267A (zh) * 2022-07-21 2022-11-01 西安理工大学 电力设备巡检控制方法、控制装置和电力设备巡检系统
CN115499727A (zh) * 2022-10-14 2022-12-20 南京国电南思科技发展股份有限公司 一种压板在线监测的无线通信方法及计算机设备
CN115512098A (zh) * 2022-09-26 2022-12-23 重庆大学 一种桥梁电子化巡检系统及巡检方法
CN115793673A (zh) * 2023-01-10 2023-03-14 北京飞渡科技股份有限公司 一种基于vr技术的天然气场站机器人巡检方法和装置
CN115816450A (zh) * 2022-11-29 2023-03-21 国电商都县光伏发电有限公司 一种机器人巡检控制方法
CN115937601A (zh) * 2022-12-27 2023-04-07 四川数聚智造科技有限公司 一种基于正常样本建模的变电站异常检测方法
CN115936680A (zh) * 2023-02-06 2023-04-07 北京安录国际技术有限公司 一种设备运维的智能派单方法及系统
CN115994046A (zh) * 2023-03-22 2023-04-21 远洋亿家物业服务股份有限公司 一种用于设备巡检的高精度识别方法及系统
CN116008685A (zh) * 2022-12-20 2023-04-25 大唐七台河发电有限责任公司 一种电力设备的自动检修方法及系统
CN116029323A (zh) * 2023-03-24 2023-04-28 亿云智慧(北京)信息技术发展有限公司 一种基于标识码扫描的设备巡检管理方法及系统
CN116091952A (zh) * 2023-04-10 2023-05-09 江苏智绘空天技术研究院有限公司 一种基于大数据的地空一体智能云控管理系统及方法
CN116095704A (zh) * 2023-04-07 2023-05-09 杭州纵横通信股份有限公司 一种5g基站智能巡检方法与系统
CN116129374A (zh) * 2023-04-12 2023-05-16 中铁第四勘察设计院集团有限公司 轨旁多功能探伤集群及其控制方法
CN116147632A (zh) * 2023-02-28 2023-05-23 上海莫克电子技术有限公司 新增电力设备动态巡检路径规划方法及其系统
CN116207865A (zh) * 2023-05-05 2023-06-02 上海华建电力设备股份有限公司 一体化变电站在线监测系统及方法
CN116232731A (zh) * 2023-03-07 2023-06-06 国网浙江省电力有限公司杭州供电公司 基于智能变电站边缘网络的近端安全防护方法及系统
CN116316233A (zh) * 2023-05-17 2023-06-23 广东电网有限责任公司江门供电局 一种变电站智能巡检系统、方法、设备及存储介质
CN116384951A (zh) * 2023-06-06 2023-07-04 杭州新视窗信息技术有限公司 物业巡检防作弊方法、装置及电子设备
CN116436164A (zh) * 2023-04-25 2023-07-14 贵州电网有限责任公司 一种电网远动信息仿生化分析系统
CN116436098A (zh) * 2023-06-12 2023-07-14 日照市银海电器有限公司 一种电力设备的多设备联运控制方法及系统
CN116442190A (zh) * 2023-06-20 2023-07-18 中数智科(杭州)科技有限公司 机器人列车巡检系统
CN116485367A (zh) * 2023-04-12 2023-07-25 江苏鑫昇腾科技发展股份有限公司 基于物联网的建筑安全用巡检系统及其方法
CN116483665A (zh) * 2023-06-21 2023-07-25 天云融创数据科技(北京)有限公司 一种基于人工智能的设备运维方法及系统
CN116527402A (zh) * 2023-06-30 2023-08-01 北京华信航电科技有限公司 对仪表着陆系统巡检的方法及装置
CN116563967A (zh) * 2023-04-13 2023-08-08 中冶南方(武汉)自动化有限公司 一种基于ar的地下综合管廊智能辅助巡检方法及系统
CN116559604A (zh) * 2023-05-06 2023-08-08 上海莫克电子技术有限公司 一种智能化移动式巡检装置、巡检系统及控制方法
CN116723211A (zh) * 2023-05-26 2023-09-08 国网山东省电力公司高唐县供电公司 大空间环境电力设备远程巡检装置
CN116757447A (zh) * 2023-08-15 2023-09-15 国网江苏省电力有限公司电力科学研究院 一种智能快检装置的测试任务分配方法及系统
CN116821403A (zh) * 2023-08-31 2023-09-29 超网实业(成都)股份有限公司 一种厂区设备的智能运维方法及系统
CN116842000A (zh) * 2023-07-19 2023-10-03 北京亿宇嘉隆科技有限公司 一种数据库的运维管理方法及系统
CN116912749A (zh) * 2023-09-13 2023-10-20 杭州义益钛迪信息技术有限公司 告警事件处理方法、装置、设备及存储介质
CN116953660A (zh) * 2023-09-18 2023-10-27 中国科学院精密测量科学与技术创新研究院 一种全高层大气风温密探测激光雷达云边协同方法
CN116993327A (zh) * 2023-09-26 2023-11-03 国网安徽省电力有限公司经济技术研究院 用于变电站的缺陷定位系统及其方法
CN117010601A (zh) * 2023-09-28 2023-11-07 武汉吧哒科技股份有限公司 数据处理方法、装置、计算机设备及计算机可读存储介质
CN117013698A (zh) * 2023-08-03 2023-11-07 山东莱荣高速铁路有限公司 一种配电所自动巡检管控系统
CN117154890A (zh) * 2023-09-08 2023-12-01 南通国轩新能源科技有限公司 一种多数据联动的充电监测方法及系统
CN117239938A (zh) * 2023-11-13 2023-12-15 国网浙江省电力有限公司杭州供电公司 一种配电站的巡检控制方法、装置、系统、设备及介质
CN117239930A (zh) * 2023-09-21 2023-12-15 国网智能科技股份有限公司 一种配电网智能巡检系统及方法
CN117254593A (zh) * 2023-09-25 2023-12-19 安徽南瑞继远电网技术有限公司 基于云边协同的电网巡视作业智慧管控平台及其方法
CN117314896A (zh) * 2023-11-28 2023-12-29 国网湖北省电力有限公司 一种基于深度学习的电力系统异常检测方法及系统
CN117312929A (zh) * 2023-11-29 2023-12-29 国网浙江省电力有限公司杭州供电公司 站房改造类型的辨识方法、装置、终端设备及存储介质
CN117330137A (zh) * 2023-12-01 2024-01-02 国网吉林省电力有限公司辽源供电公司 一种变压器巡检图像智能识别和故障检测方法及系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350441B (zh) * 2020-11-03 2022-10-14 国网智能科技股份有限公司 一种变电站在线智能巡视系统及方法
CN112946442B (zh) * 2021-04-12 2022-06-28 厦门理工学院 一种开关柜局部放电检测方法、终端设备及存储介质
CN113189630B (zh) * 2021-04-29 2024-02-13 中核国电漳州能源有限公司 用于塔吊安装监控的大范围工地人员识别及定位方法
CN113282368B (zh) * 2021-05-25 2023-03-28 国网湖北省电力有限公司检修公司 一种用于变电站巡视的边缘计算资源调度方法
CN113747117A (zh) * 2021-07-22 2021-12-03 南方电网深圳数字电网研究院有限公司 视频终端巡检方法及设备、计算机可读存储介质
CN113780337A (zh) * 2021-07-29 2021-12-10 湖南五凌电力科技有限公司 发电机巡检方法、装置、电子设备及存储介质
CN113554781A (zh) * 2021-08-02 2021-10-26 广东电网有限责任公司佛山供电局 架空输电线路远程巡检方法、装置和计算机设备
CN113671955B (zh) * 2021-08-03 2023-10-20 国网浙江省电力有限公司嘉兴供电公司 一种基于变电站智能机器人的巡检顺序控制方法
CN113671954B (zh) * 2021-08-03 2022-06-17 国网浙江省电力有限公司嘉兴供电公司 一种变电站智能机器人的巡检方法
CN113743758A (zh) * 2021-08-25 2021-12-03 许昌许继软件技术有限公司 一种变电站设备的联动系统及其联动方法
CN114069838B (zh) * 2021-10-05 2023-09-22 国网辽宁省电力有限公司电力科学研究院 智能传感器主动协同的变电站机器人智能巡检系统及方法
CN114189506B (zh) * 2021-12-09 2024-04-16 新奥数能科技有限公司 一种设备巡检方法、装置及系统
CN116388034B (zh) * 2023-03-30 2024-03-08 江苏泽宇智能电力股份有限公司 一种随检显像的变电站远程巡检系统
CN116385208B (zh) * 2023-06-05 2023-10-03 吉林大学 储能电站数据的处理方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888914A (zh) * 2019-01-08 2019-06-14 许昌许继软件技术有限公司 一种变电站主辅联动方法及装置
CN110417120A (zh) * 2019-06-26 2019-11-05 广东康云科技有限公司 一种变电站实景三维智能巡检系统及方法
CN110707823A (zh) * 2019-11-08 2020-01-17 国网上海市电力公司 一种变电站多维智能远程巡检系统
CN110752673A (zh) * 2019-11-04 2020-02-04 国网浙江省电力有限公司嘉兴供电公司 基于事件链实现变电站主辅控智能联动处理的系统及其方法
CN111784026A (zh) * 2020-05-28 2020-10-16 国网信通亿力科技有限责任公司 基于云边端协同感知的变电站电气设备全方位体检系统
CN112311097A (zh) * 2020-11-03 2021-02-02 国网智能科技股份有限公司 变电站在线智能巡视集中监控系统及方法
CN112350441A (zh) * 2020-11-03 2021-02-09 国网智能科技股份有限公司 一种变电站在线智能巡视系统及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106056833A (zh) * 2016-06-23 2016-10-26 乐视控股(北京)有限公司 安全监测方法、装置、系统及监控系统
CN109227607A (zh) * 2018-11-14 2019-01-18 贵州电网有限责任公司 一种变电站智能巡检机器人雨刷控制系统及其控制方法
CN110996318B (zh) * 2019-12-23 2021-07-23 广西电网有限责任公司电力科学研究院 一种变电站智能巡检机器人安全通信接入系统
CN111597231B (zh) * 2020-05-15 2022-08-05 云南电网有限责任公司昆明供电局 一种基于多源异构系统数据挖掘的变电站智能巡检系统
CN111679291B (zh) * 2020-06-17 2022-12-06 四川智动木牛智能科技有限公司 基于三维激光雷达的巡检机器人目标定位配置方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888914A (zh) * 2019-01-08 2019-06-14 许昌许继软件技术有限公司 一种变电站主辅联动方法及装置
CN110417120A (zh) * 2019-06-26 2019-11-05 广东康云科技有限公司 一种变电站实景三维智能巡检系统及方法
CN110752673A (zh) * 2019-11-04 2020-02-04 国网浙江省电力有限公司嘉兴供电公司 基于事件链实现变电站主辅控智能联动处理的系统及其方法
CN110707823A (zh) * 2019-11-08 2020-01-17 国网上海市电力公司 一种变电站多维智能远程巡检系统
CN111784026A (zh) * 2020-05-28 2020-10-16 国网信通亿力科技有限责任公司 基于云边端协同感知的变电站电气设备全方位体检系统
CN112311097A (zh) * 2020-11-03 2021-02-02 国网智能科技股份有限公司 变电站在线智能巡视集中监控系统及方法
CN112350441A (zh) * 2020-11-03 2021-02-09 国网智能科技股份有限公司 一种变电站在线智能巡视系统及方法

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114928164A (zh) * 2022-05-19 2022-08-19 国网湖南省电力有限公司 一种主子站协同互动的变电站运维系统
CN114875999A (zh) * 2022-05-27 2022-08-09 上海威派格智慧水务股份有限公司 一种用于二次供水系统的泵房运维管理系统
CN114875999B (zh) * 2022-05-27 2023-11-21 上海威派格智慧水务股份有限公司 一种用于二次供水系统的泵房运维管理系统
CN114722388A (zh) * 2022-06-09 2022-07-08 深圳市爱莲说文化传播有限公司 一种数据库数据信息安全监视方法
CN114722388B (zh) * 2022-06-09 2022-09-13 深圳市爱莲说文化传播有限公司 一种数据库数据信息安全监视方法
CN115225322A (zh) * 2022-06-14 2022-10-21 西安电子科技大学 基于环境侧信道信息验证的无人智能设备安全约束方法
CN115225322B (zh) * 2022-06-14 2024-02-02 西安电子科技大学 基于环境侧信道信息验证的无人智能设备安全约束方法
CN115065702A (zh) * 2022-06-17 2022-09-16 国电南瑞科技股份有限公司 一种适用于新一代调度主站的新能源数据接入系统及方法
CN115065702B (zh) * 2022-06-17 2024-03-26 国电南瑞科技股份有限公司 一种适用于新一代调度主站的新能源数据接入系统及方法
CN114977511A (zh) * 2022-06-21 2022-08-30 众芯汉创(北京)科技有限公司 一种基于区块链的风电场变电站监控系统
CN114792319A (zh) * 2022-06-23 2022-07-26 国网浙江省电力有限公司电力科学研究院 一种基于变电图像的变电站巡检方法及系统
CN115273267A (zh) * 2022-07-21 2022-11-01 西安理工大学 电力设备巡检控制方法、控制装置和电力设备巡检系统
CN115174436A (zh) * 2022-09-07 2022-10-11 浙江省邮电工程建设有限公司 一种通信机房自动巡检机器人控制方法与系统
CN115512098A (zh) * 2022-09-26 2022-12-23 重庆大学 一种桥梁电子化巡检系统及巡检方法
CN115512098B (zh) * 2022-09-26 2023-09-01 重庆大学 一种桥梁电子化巡检系统及巡检方法
CN115499727B (zh) * 2022-10-14 2024-02-20 南京国电南思科技发展股份有限公司 一种压板在线监测的无线通信方法及计算机设备
CN115499727A (zh) * 2022-10-14 2022-12-20 南京国电南思科技发展股份有限公司 一种压板在线监测的无线通信方法及计算机设备
CN115816450A (zh) * 2022-11-29 2023-03-21 国电商都县光伏发电有限公司 一种机器人巡检控制方法
CN116008685A (zh) * 2022-12-20 2023-04-25 大唐七台河发电有限责任公司 一种电力设备的自动检修方法及系统
CN116008685B (zh) * 2022-12-20 2023-10-03 大唐七台河发电有限责任公司 一种电力设备的自动检修方法及系统
CN115937601B (zh) * 2022-12-27 2023-08-08 四川数聚智造科技有限公司 一种基于正常样本建模的变电站异常检测方法
CN115937601A (zh) * 2022-12-27 2023-04-07 四川数聚智造科技有限公司 一种基于正常样本建模的变电站异常检测方法
CN115793673A (zh) * 2023-01-10 2023-03-14 北京飞渡科技股份有限公司 一种基于vr技术的天然气场站机器人巡检方法和装置
CN115936680A (zh) * 2023-02-06 2023-04-07 北京安录国际技术有限公司 一种设备运维的智能派单方法及系统
CN116147632A (zh) * 2023-02-28 2023-05-23 上海莫克电子技术有限公司 新增电力设备动态巡检路径规划方法及其系统
CN116147632B (zh) * 2023-02-28 2024-01-30 上海莫克电子技术有限公司 新增电力设备动态巡检路径规划方法及其系统
CN116232731A (zh) * 2023-03-07 2023-06-06 国网浙江省电力有限公司杭州供电公司 基于智能变电站边缘网络的近端安全防护方法及系统
CN116232731B (zh) * 2023-03-07 2023-09-29 国网浙江省电力有限公司杭州供电公司 基于智能变电站边缘网络的近端安全防护方法及系统
CN115994046A (zh) * 2023-03-22 2023-04-21 远洋亿家物业服务股份有限公司 一种用于设备巡检的高精度识别方法及系统
CN116029323A (zh) * 2023-03-24 2023-04-28 亿云智慧(北京)信息技术发展有限公司 一种基于标识码扫描的设备巡检管理方法及系统
CN116095704A (zh) * 2023-04-07 2023-05-09 杭州纵横通信股份有限公司 一种5g基站智能巡检方法与系统
CN116095704B (zh) * 2023-04-07 2023-08-01 杭州纵横通信股份有限公司 一种5g基站智能巡检方法与系统
CN116091952A (zh) * 2023-04-10 2023-05-09 江苏智绘空天技术研究院有限公司 一种基于大数据的地空一体智能云控管理系统及方法
CN116485367A (zh) * 2023-04-12 2023-07-25 江苏鑫昇腾科技发展股份有限公司 基于物联网的建筑安全用巡检系统及其方法
CN116129374A (zh) * 2023-04-12 2023-05-16 中铁第四勘察设计院集团有限公司 轨旁多功能探伤集群及其控制方法
CN116563967A (zh) * 2023-04-13 2023-08-08 中冶南方(武汉)自动化有限公司 一种基于ar的地下综合管廊智能辅助巡检方法及系统
CN116436164B (zh) * 2023-04-25 2024-03-19 贵州电网有限责任公司 一种电网远动信息仿生化分析系统
CN116436164A (zh) * 2023-04-25 2023-07-14 贵州电网有限责任公司 一种电网远动信息仿生化分析系统
CN116207865A (zh) * 2023-05-05 2023-06-02 上海华建电力设备股份有限公司 一体化变电站在线监测系统及方法
CN116559604A (zh) * 2023-05-06 2023-08-08 上海莫克电子技术有限公司 一种智能化移动式巡检装置、巡检系统及控制方法
CN116316233A (zh) * 2023-05-17 2023-06-23 广东电网有限责任公司江门供电局 一种变电站智能巡检系统、方法、设备及存储介质
CN116723211B (zh) * 2023-05-26 2024-04-12 国网山东省电力公司高唐县供电公司 大空间环境电力设备远程巡检装置
CN116723211A (zh) * 2023-05-26 2023-09-08 国网山东省电力公司高唐县供电公司 大空间环境电力设备远程巡检装置
CN116384951A (zh) * 2023-06-06 2023-07-04 杭州新视窗信息技术有限公司 物业巡检防作弊方法、装置及电子设备
CN116436098B (zh) * 2023-06-12 2023-09-08 日照市银海电器有限公司 一种电力设备的多设备联运控制方法及系统
CN116436098A (zh) * 2023-06-12 2023-07-14 日照市银海电器有限公司 一种电力设备的多设备联运控制方法及系统
CN116442190A (zh) * 2023-06-20 2023-07-18 中数智科(杭州)科技有限公司 机器人列车巡检系统
CN116442190B (zh) * 2023-06-20 2023-09-05 中数智科(杭州)科技有限公司 机器人列车巡检系统
CN116483665A (zh) * 2023-06-21 2023-07-25 天云融创数据科技(北京)有限公司 一种基于人工智能的设备运维方法及系统
CN116527402B (zh) * 2023-06-30 2023-09-19 北京华信航电科技有限公司 对仪表着陆系统巡检的方法及装置
CN116527402A (zh) * 2023-06-30 2023-08-01 北京华信航电科技有限公司 对仪表着陆系统巡检的方法及装置
CN116842000A (zh) * 2023-07-19 2023-10-03 北京亿宇嘉隆科技有限公司 一种数据库的运维管理方法及系统
CN116842000B (zh) * 2023-07-19 2024-01-02 北京亿宇嘉隆科技有限公司 一种数据库的运维管理方法及系统
CN117013698B (zh) * 2023-08-03 2024-02-02 山东莱荣高速铁路有限公司 一种配电所自动巡检管控系统
CN117013698A (zh) * 2023-08-03 2023-11-07 山东莱荣高速铁路有限公司 一种配电所自动巡检管控系统
CN116757447B (zh) * 2023-08-15 2023-10-20 国网江苏省电力有限公司电力科学研究院 一种智能快检装置的测试任务分配方法及系统
CN116757447A (zh) * 2023-08-15 2023-09-15 国网江苏省电力有限公司电力科学研究院 一种智能快检装置的测试任务分配方法及系统
CN116821403B (zh) * 2023-08-31 2023-12-05 超网实业(成都)股份有限公司 一种厂区设备的智能运维方法及系统
CN116821403A (zh) * 2023-08-31 2023-09-29 超网实业(成都)股份有限公司 一种厂区设备的智能运维方法及系统
CN117154890B (zh) * 2023-09-08 2024-02-20 南通国轩新能源科技有限公司 一种多数据联动的充电监测方法及系统
CN117154890A (zh) * 2023-09-08 2023-12-01 南通国轩新能源科技有限公司 一种多数据联动的充电监测方法及系统
CN116912749A (zh) * 2023-09-13 2023-10-20 杭州义益钛迪信息技术有限公司 告警事件处理方法、装置、设备及存储介质
CN116912749B (zh) * 2023-09-13 2024-01-05 杭州义益钛迪信息技术有限公司 告警事件处理方法、装置、设备及存储介质
CN116953660B (zh) * 2023-09-18 2024-01-05 中国科学院精密测量科学与技术创新研究院 一种全高层大气风温密探测激光雷达云边协同方法
CN116953660A (zh) * 2023-09-18 2023-10-27 中国科学院精密测量科学与技术创新研究院 一种全高层大气风温密探测激光雷达云边协同方法
CN117239930A (zh) * 2023-09-21 2023-12-15 国网智能科技股份有限公司 一种配电网智能巡检系统及方法
CN117254593A (zh) * 2023-09-25 2023-12-19 安徽南瑞继远电网技术有限公司 基于云边协同的电网巡视作业智慧管控平台及其方法
CN116993327B (zh) * 2023-09-26 2023-12-15 国网安徽省电力有限公司经济技术研究院 用于变电站的缺陷定位系统及其方法
CN116993327A (zh) * 2023-09-26 2023-11-03 国网安徽省电力有限公司经济技术研究院 用于变电站的缺陷定位系统及其方法
CN117010601B (zh) * 2023-09-28 2024-01-19 武汉吧哒科技股份有限公司 数据处理方法、装置、计算机设备及计算机可读存储介质
CN117010601A (zh) * 2023-09-28 2023-11-07 武汉吧哒科技股份有限公司 数据处理方法、装置、计算机设备及计算机可读存储介质
CN117239938B (zh) * 2023-11-13 2024-02-23 国网浙江省电力有限公司杭州供电公司 一种配电站的巡检控制方法、装置、系统、设备及介质
CN117239938A (zh) * 2023-11-13 2023-12-15 国网浙江省电力有限公司杭州供电公司 一种配电站的巡检控制方法、装置、系统、设备及介质
CN117314896B (zh) * 2023-11-28 2024-02-06 国网湖北省电力有限公司 一种基于深度学习的电力系统异常检测方法及系统
CN117314896A (zh) * 2023-11-28 2023-12-29 国网湖北省电力有限公司 一种基于深度学习的电力系统异常检测方法及系统
CN117312929B (zh) * 2023-11-29 2024-02-13 国网浙江省电力有限公司杭州供电公司 站房改造类型的辨识方法、装置、终端设备及存储介质
CN117312929A (zh) * 2023-11-29 2023-12-29 国网浙江省电力有限公司杭州供电公司 站房改造类型的辨识方法、装置、终端设备及存储介质
CN117330137A (zh) * 2023-12-01 2024-01-02 国网吉林省电力有限公司辽源供电公司 一种变压器巡检图像智能识别和故障检测方法及系统
CN117330137B (zh) * 2023-12-01 2024-03-08 国网吉林省电力有限公司辽源供电公司 一种变压器巡检图像智能识别和故障检测方法及系统

Also Published As

Publication number Publication date
CN112350441B (zh) 2022-10-14
CN112350441A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2022095616A1 (zh) 一种变电站在线智能巡视系统及方法
CN112311097B (zh) 变电站在线智能巡视集中监控系统及方法
CN109447048B (zh) 一种人工智能预警系统
CN104333736B (zh) 无人变电站智能识别监控系统及方法
CN106584450B (zh) 一种变电站巡检机器人集中监控系统及方法
CN202026140U (zh) 一种分布式配电室环境与配电综合监控系统
CN110989478A (zh) 一种基于物联网技术的配电房智能辅助监控方法
CN105763851A (zh) 基于电子政务网络平台的森林防火视频监控预警系统
CN114662720A (zh) 一种变电站的物联边缘管理平台
CN108039015A (zh) 一种核电厂火警联动视频监控系统
CN106208395A (zh) 无人值班变电站应急监控系统
CN105871071A (zh) 一种应用于变电站的开放式数字化综合自动化系统
CN102281431A (zh) 交互式智能视频分析与应急指挥调度系统
CN113225212A (zh) 数据中心监控系统、方法及服务器
CN104092976A (zh) 实现环境设备监控系统报警与视频监控系统联动的方法
CN211015113U (zh) 一种地下综合管廊智慧型管控系统
CN116136613A (zh) 一种数据中心自动巡检方法、装置、设备及介质
CN112435361B (zh) 变电站联合巡检方法及系统
CN106131497A (zh) 铁路沿线动环视频融合监控系统
CN110266111A (zh) 一种变电站人工智能巡检系统
CN208673492U (zh) 一种核电厂火警联动视频监控系统
CN114092279A (zh) 全业务泛在可视化智慧电力运维系统
CN113791571A (zh) 一种智能建筑楼宇设备自控报警装置
CN116703352B (zh) 一种基于数字孪生的洁净室智能运维系统及方法
CN112769913A (zh) 微环境就地监控系统及电气箱柜微环境监控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888315

Country of ref document: EP

Kind code of ref document: A1