WO2022095522A1 - 一种基于地形的车辆动态换挡控制方法和系统 - Google Patents

一种基于地形的车辆动态换挡控制方法和系统 Download PDF

Info

Publication number
WO2022095522A1
WO2022095522A1 PCT/CN2021/110045 CN2021110045W WO2022095522A1 WO 2022095522 A1 WO2022095522 A1 WO 2022095522A1 CN 2021110045 W CN2021110045 W CN 2021110045W WO 2022095522 A1 WO2022095522 A1 WO 2022095522A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
curve
strategy
current
gear
Prior art date
Application number
PCT/CN2021/110045
Other languages
English (en)
French (fr)
Inventor
涂岩恺
曲建云
罗腾元
季刚
Original Assignee
厦门雅迅网络股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门雅迅网络股份有限公司 filed Critical 厦门雅迅网络股份有限公司
Priority to EP21888221.5A priority Critical patent/EP4242494A1/en
Priority to US18/250,793 priority patent/US11982346B2/en
Publication of WO2022095522A1 publication Critical patent/WO2022095522A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • F16H2059/663Road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/0087Adaptive control, e.g. the control parameters adapted by learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/009Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method using formulas or mathematic relations for calculating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0223Generating of new shift maps, i.e. methods for determining shift points for a schedule by taking into account driveline and vehicle conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0459Smoothing ratio shift using map for shift parameters, e.g. shift time, slip or pressure gradient, for performing controlled shift transition and adapting shift parameters by learning

Definitions

  • the present invention relates to the field of vehicles, in particular to a terrain-based vehicle dynamic shift control method and system.
  • gear shift rules for vehicle automatic transmission.
  • most cars have ordinary shift rules (D gear) and power shift rules (S gear), and some cars also have economical shift rules (ECO gear).
  • the economical shift is suitable for use on downhill roads, and the power shift is suitable for use in conditions with high power demands such as uphill or heavy load.
  • the existing shifting rules are generally fixed and manually selected by the user. However, the slope of the road where the vehicle travels changes frequently, and the user generally does not frequently manually select the shift pattern, and the magnitude of the slope is different, and several fixed shift patterns cannot be adapted to all the slopes.
  • Chinese patent CN201710318736.7 proposes to formulate an automatic gear shifting control strategy under ramp conditions according to vehicle mass and ramp, and identify the vehicle mass, rolling resistance coefficient and air resistance coefficient on a flat road as the vehicle mass when driving on a ramp.
  • the slope gradient recognition provides calibration and known quantities, thereby improving the identification accuracy of vehicle quality and slope gradient; and according to the vehicle quality and slope, the slope shift correction control is performed to avoid frequent shifting on the slope, thereby improving the vehicle quality.
  • the smoothness and intelligence of automatic transmissions are not substantially changed, but the forced downshift or upshift method is adopted, and can only roughly correspond to a number of discrete shift strategies according to discrete gradients, such as gentle slopes and steep slopes.
  • the present invention provides a terrain-based vehicle dynamic shifting control method and system, which can generate a shifting strategy curve in real time according to external terrain information, so that the vehicle can better adapt to different terrains. Broad adaptability.
  • a terrain-based vehicle dynamic shifting control method which includes preset economical shifting strategies and dynamic shifting strategies, and further includes the following steps:
  • Step 1) When the vehicle is running, obtain the current terrain information of the vehicle through the electronic horizon system;
  • Step 2 The shift controller performs dynamic interpolation and fusion according to the current terrain information, the economical shift strategy and the dynamic shift strategy to generate a current shift strategy curve;
  • Step 3 The shift controller controls the gear shift of the gearbox according to the current shift strategy curve.
  • the step 2) specifically includes:
  • Step 2.1) Calculate the scale coefficient of the interpolation fusion according to the current terrain information
  • Step 2.2) Generate the current shift according to the proportional coefficient of the interpolation fusion, the shift curve of the corresponding gear in the economical shift strategy, and the shift curve of the corresponding gear in the dynamic shift strategy strategy curve.
  • the step 3) specifically includes the following:
  • Step 3.1) Obtain the current gear of the vehicle, and obtain the upshift curve and the downshift curve of the current gear according to the current shift strategy curve;
  • Step 3.2 According to the current accelerator depth of the vehicle, in combination with the expression (1) of the shift curve of the nth gear in the shift strategy curve, calculate the vehicle speed of the upshift curve and the downshift curve respectively;
  • Step 3.3) Compare the current speed of the vehicle with the calculated speed of the upshift curve and the downshift curve, and control whether the gearbox is shifted according to the comparison result.
  • step 3.3 first determine whether the current vehicle speed is greater than the vehicle speed of the upshift curve, if so, control the gearbox to upshift; if not, then determine whether it is smaller than the downshift curve The speed of the gear curve, if so, control the gearbox to downshift, if not, keep the current gear.
  • the shifting curve of each gear of the economical shifting strategy and the shifting curve of each gear of the dynamic shifting strategy are two-dimensional relationship curves of vehicle speed and accelerator depth, respectively.
  • the shifting curve of each gear of the economical shifting strategy and the shifting curve of each gear of the dynamic shifting strategy are three-dimensional relationship curves of vehicle speed, accelerator depth and acceleration, respectively.
  • a terrain-based vehicle dynamic shift control system includes a shift controller and a gearbox, the shift controller is preset with an economical shift strategy and a dynamic shift strategy, and also includes an electronic horizon module for When the vehicle is running, the current terrain information of the vehicle is obtained; the shift controller performs dynamic interpolation and fusion according to the current terrain information, the economical shifting strategy and the dynamic shifting strategy to generate the current shifting strategy curve, and control the transmission shift according to the current shift strategy curve.
  • the shift controller further includes a gear switch module and a shift strategy curve generation module; the shift strategy curve generation module is based on current terrain information, the economical shift strategy and all The dynamic interpolation and fusion of the power-type shifting strategy is performed to generate the current shifting strategy curve; the gear switching module controls the transmission shift according to the current shifting strategy curve.
  • the method and system of the present invention perform dynamic interpolation and fusion according to the current terrain information, economical shifting strategy and dynamic shifting strategy of the vehicle, to generate the current shifting strategy curve, so that the vehicle has the ability to adapt to different terrains. Wider adaptability and a better dynamic balance between economy and power.
  • the proportional coefficient of interpolation and fusion is calculated through the continuously changing geographic slope of the current terrain, and a shifting strategy curve is generated by further combining the economical shifting strategy and the dynamic shifting strategy, and a continuous shifting strategy can be obtained. curve to improve the smoothness of shifting.
  • the vehicle speeds of the upshift curve and the downshift curve are respectively calculated through the current gear position of the vehicle, the accelerator depth combined with the expression of the shift strategy curve, compared with the current vehicle speed, and control is performed according to the comparison result. Whether the gearbox is shifted or not can improve the driver's driving performance and improve the level of shifting intelligence of the vehicle's automatic shifting.
  • FIG. 1 is a flow chart of the method of the present invention.
  • FIG. 2 is a system diagram of the present invention.
  • FIG 3 is an upshift curve diagram of an economical shift strategy and a power shift strategy of the present invention.
  • an economical shift strategy and a dynamic shift strategy are preset in the shift controller, and the shift curves of each gear of the economical shift strategy and The shift curve of each gear in the power-type shift strategy is a two-dimensional relationship curve between vehicle speed and accelerator depth, and both include an upshift curve and a downshift curve.
  • the built-in economic strategy curve is more inclined to the vertical axis of the curve coordinate space.
  • the shift curve of each gear of the economical shift strategy and the dynamic shift strategy can also be a three-parameter relationship curve of vehicle speed, accelerator depth and acceleration.
  • the shift curves of the 2nd and 3rd gears include two upshift curves. Under the same accelerator depth or opening, The speed of the 2nd to 3rd gear of the economical shift strategy is lower than the speed of the 2nd to 3rd gear of the power shift strategy.
  • the method of the present invention comprises the following steps:
  • Step 1) When the vehicle is running, obtain the current terrain information of the vehicle.
  • the current terrain may be obtained through the electronic horizon, and the current terrain may include slope data, curve data, speed limit data, and the like.
  • the gradient data that is, the gradient M, is acquired.
  • the electronic horizon includes map data, GPS/Beidou positioning, forward search engine, etc., which is characterized in that the positioning latitude and longitude position of the vehicle and the forward direction information of the vehicle are analyzed according to the GPS/Beidou satellite positioning system. It searches for the geographic information in front of the vehicle, and transmits the geographic information ahead to the shift controller through the CAN bus or the Ethernet bus.
  • Step 2 The shift controller performs dynamic interpolation and fusion according to the current terrain information, the economical shift strategy and the dynamic shift strategy to generate the current shift strategy curve.
  • This step specifically includes:
  • Step 2.1) Calculate the scale coefficient of interpolation and fusion according to the current terrain information.
  • the maximum downhill value M1 may be The slope value M2 can be set to a positive 3-degree slope, then the economical shift strategy should be used when the maximum downhill value is -3, and the dynamic shift strategy should be used when the maximum uphill value is +3.
  • the calculation of the scale coefficient for interpolation and fusion is related to the acquired current terrain data, and is not limited to the slope value, but may also be other data.
  • Step 2.2) Generate the current shift strategy curve according to the proportional coefficient of interpolation and fusion, the shift curve of the corresponding gear in the economical shift strategy and the shift curve of the corresponding gear in the dynamic shift strategy.
  • the generated current shift strategy curve is also a two-dimensional relationship curve of vehicle speed and accelerator depth.
  • the generated shift strategy curve is also a three-parameter relationship curve of vehicle speed, accelerator depth and acceleration.
  • the shift strategy curve also includes an upshift curve and a downshift curve.
  • G -1 n(A) represents the inverse function of Gn(V)
  • the shift curve of the nth gear in the type shifting strategy F -1 n(A) represents the inverse function of Fn(V);
  • Step 3 The shift controller controls the gear shift of the gearbox according to the current shift strategy curve. This step specifically includes the following:
  • Step 3.1) Obtain the current gear of the vehicle, and obtain the upshift curve and the downshift curve of the current gear according to the current shift strategy curve.
  • Step 3.2) According to the current accelerator depth of the vehicle, combined with the expression (1) of the shift curve of the nth gear of the current shift strategy curve, calculate the vehicle speed of the upshift curve and the downshift curve respectively; Substitute the upshift curve of the bit into the above expression (1), and then the vehicle speed of the upshift curve can be obtained. Substitute the current accelerator and the downshift curve of the current gear into the above expression (1), and then the vehicle speed of the downshift curve can be obtained.
  • Step 3.3) Compare the current speed of the vehicle with the calculated speed of the upshift curve and the downshift curve, and control whether the gearbox is shifted according to the comparison result.
  • the invention also provides a terrain-based vehicle dynamic shift control system, which includes a shift controller and a gearbox.
  • An economical shift strategy and a dynamic shift strategy are preset in the shift controller. It also includes an electronic horizon module, which is used to obtain the current terrain information when the vehicle is driving; the shift controller performs dynamic interpolation and fusion according to the current terrain information, the economical shifting strategy and the dynamic shifting strategy to generate the current shifting. Shift strategy curve, and control the transmission shift according to the current shift strategy curve.
  • the shift controller is one or more microprocessors operating according to a preset program.
  • the shift controller can receive vehicle speed, accelerator depth from the accelerator pedal and current terrain information from the electronic horizon module via the CAN bus or Ethernet bus.
  • the gearbox is connected with the shift controller, the input torque of the gearbox comes from the torque output by the engine, and the vehicle is controlled to drive in the selected specific gear according to the command of the shift controller to output the driving torque to the driving wheels.
  • the shift controller of the present invention is provided with a shift position switching module and a shift strategy curve generation module, and the shift strategy curve generation module performs dynamic interpolation and fusion according to current terrain information, an economical shift strategy and a dynamic shift strategy. Generates the current shift strategy curve.
  • the gear switching module controls the gear shifting of the transmission according to the current shifting strategy curve.
  • the present invention adopts a pre-stored fixed shift strategy, performs intermediate interpolation and transformation, and generates a continuously changing shifting strategy curve corresponding to the external gradient in real time, so that the vehicle has a better understanding of different ground terrain. Wider adaptability, both dynamic and economical.
  • a terrain-based vehicle dynamic shifting control method and system of the present invention utilizes an electronic horizon system to obtain current terrain information of the vehicle, and combines the preset economical shifting strategies and Dynamic shift strategy, generate the current shift strategy curve, and control the transmission shift according to the current shift strategy curve, so that the vehicle has a wider adaptability to different ground terrain, and is more economical and dynamic. achieve a better dynamic balance between them.
  • the electronic horizon system is a database system that can provide the vehicle with accurate real-time information of the road, and the terrain information of the road can be accurately obtained by using the electronic horizon system;
  • the present invention is industrially easy to realize by means of the electronic horizon system and the vehicle-mounted device, and can replace Various components such as gear controller, CAN bus, Ethernet bus and gearbox are also industrially easy to process.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

一种基于地形的车辆动态换挡控制方法,包括预设有经济型换挡策略和动力型换挡策略,还包括如下步骤:步骤1)车辆行驶时,通过电子地平线系统获取当前的地形;步骤2)换挡控制器根据当前地形、经济型换挡策略和动力型换挡策略进行动态插值融合,生成当前的换挡策略曲线;步骤3)换挡控制器根据当前的换挡策略曲线控制变速箱换挡。还公开了一种基于地形的车辆动态换挡控制系统。此方法能使车辆对于不同的地形有更广泛的适应性,且在经济性与动力性之间取得更好的动态平衡。

Description

一种基于地形的车辆动态换挡控制方法和系统 技术领域
本发明涉及车辆领域,特别是指一种基于地形的车辆动态换挡控制方法和系统。
背景技术
车辆自动变速的换挡规律一般有多种,比如大多数车有普通换挡规律(D挡)和动力换挡规律(S挡),有的车还有经济换挡规律(ECO挡)。经济换挡适合下坡路面使用,动力换挡适合上坡或重载等动力需求大的工况使用。现有的换挡规律一般为固定规律由用户手动选择。但车辆行驶路面坡度的变化频繁,用户一般不会频繁手动选择换挡规律,并且坡度的大小不一,固定几种换挡规律不能适应于所有坡度。
中国专利CN201710318736.7提出根据车辆质量与坡道制定坡道工况自动变速换挡控制策略,通过车辆在平坦路面上的车辆质量、滚动阻力系数和空气阻力系数识别,为坡道行驶时车辆质量、坡道坡度识别提供校准量和已知量,从而提高车辆质量与坡道坡度的识别精度;并根据车辆质量与坡道进行坡道换挡修正控制,避免坡道频繁换挡,从而提高车辆自动变速的换挡平顺性和智能化水平。虽然考虑了外部环境,但没有实质改变内部换挡规律,而是采用强制降挡或升挡方法,而且只能按离散的坡度缓坡、陡坡等状态大致对应若干离散的换挡策略。
发明内容
为解决现有技术中存在的技术问题,本发明提供了一种基于地形的车辆动态换挡控制方法和系统,根据外部地形信息实时生成换挡策略曲线,使车辆对于不同的地伏地形有更广泛的适应性。
本发明解决其技术问题所采用的技术方案是:一种基于地形的车辆动态换挡控制方法,包括预设有经济型换挡策略和动力型换挡策略,还包括如下步骤:
步骤1)车辆行驶时,通过电子地平线系统获取所述车辆的当前的地形信息;
步骤2)换挡控制器根据所述当前地形信息、所述经济型换挡策略和所述动力型换挡策略进行动态插值融合,生成当前的换挡策略曲线;
步骤3)换挡控制器根据所述当前的换挡策略曲线控制变速箱换挡。
作为本发明的一优选方案,所述步骤2)具体包括:
步骤2.1)根据所述当前的地形信息计算所述插值融合的比例系数;
步骤2.2)根据所述插值融合的比例系数、所述经济型换挡策略中对应挡位的换挡曲线和所述动力型换挡策略中对应挡位的换挡曲线生成所述的当前换挡策略曲线。
作为本发明的一优选方案,预设经济型换挡策略曲线对应的最大下坡值M1和动力型换挡策略曲线对应的最大上坡值M2,所述插值融合的比例系数为K=|M-M1|/|M2-M1|,M为所述的当前的地形信息的坡度值。
作为本发明的一优选方案,设定A=Gn(V)表示所述经济型换挡策略中的第n个挡位的换挡曲线,A=Fn(V)表示动力型换挡策略中的第n个挡位的换挡曲线,A=D M_n(V)表示所述当前地形信息的坡度值M下生成的所述换挡策略曲线中的第n个挡的换挡曲线,表达式如下:
V=D -1 M_n(A)=(1-K)G -1n(A)+KF -1n(A)   (1)
F -1n(A)表示Fn(V)的反函数;G -1n(A)表示Gn(V)的反函数;D -1 M_n(A)表示D M_n(V)的反函数,其中n=1,2,...,N,N为变速箱的总挡位,A为油门深度,V为所述车辆的车速。
作为本发明的一优选方案,所述步骤3)具体包括如下:
步骤3.1)获取所述车辆的当前挡位,根据所述当前换挡策略曲线得到当前挡位的升挡曲线和降挡曲线;
步骤3.2)根据所述车辆的当前油门深度,结合所述换挡策略曲线中的第n个挡的换挡曲线的表达式(1)分别计算升挡曲线和降挡曲线的车速;
步骤3.3)将所述车辆的当前车速与计算得到的升挡曲线和降挡曲线的车速进行比较,根据比较结果控制变速箱是否换挡。
作为本发明的一优选方案,所述步骤3.3)中,先判断所述当前车速是否大于所述升挡曲线的车速,若是,则控制变速箱升挡;若否,再判断是否小于所述降挡曲线的车速,若是,则控制变速箱降挡,若否,则保持当前挡位。
作为本发明的一优选方案,所述经济型换挡策略各挡的换挡曲线和所述动力型换挡策略各挡的换挡曲线分别为车速和油门深度的二维关系曲线。
作为本发明的一优选方案,所述经济型换挡策略各挡的换挡曲线和所述动力型换挡策略各挡的换挡曲线分别为车速、油门深度和加速度的三维关系曲线。
一种基于地形的车辆动态换挡控制系统,包括换挡控制器和变速箱,该换挡控制器内预设有经济型换挡策略和动力型换挡策略,还包括电子地平线模块,用于在车辆行驶时,获取所述车辆的当前的地形信息;该换挡控制器根据所述当前的地形信息、经济性换挡策略和动力型换挡策略进行动态插值融合,生成当前的换挡策略曲线,并根据所述当前的换挡策略曲线控制变速箱换挡。
作为本发明的一优选方案,所述换挡控制器还包括挡位切换模块和换挡策略曲线生成模块;所述换挡策略曲线生成模块根据当前地形信息、所述经济型换挡策略和所述动力型换挡策略进行动态插值融合,生成当前的换挡策略曲线;该挡位切换模块根据当前的换挡策略曲线控制变速箱换挡。
采用上述技术方案,相对于现有技术,本发明取得的有益效果是:
1、本发明的方法和系统,根据车辆行驶的当前地形信息、经济型换挡策略和动力型换挡策略进行动态插值融合,生成当前的换挡策略曲线,使车辆对于不同的地伏地形有更广泛的适应性,且在经济性与动力性之间取得更好的动态平衡。
2、本发明的方法和系统,通过当前地形连续变化的地理坡度计算插值融合的比例系数,进一步结合经济型换挡策略和动力型换挡策略生成换挡策略曲线,可得到连续的换挡策略曲线,提高换挡的平顺性。
3、本发明的方法和系统,通过车辆当前的挡位、油门深度结合换挡策略曲线的表达式分别计算升挡曲线和降挡曲线的车速,将其与当前车速进行比较,根据比较结果控制变速箱是否换挡,可改善驾驶者的驾驶性能,提高了车辆自动变速的换挡智能化水平。
附图说明
图1为本发明的方法流程图。
图2为本发明的系统图。
图3为本发明的经济型换挡策略和动力型换挡策略的升挡曲线图。
具体实施方式
下面结合附图及实施例详细说明本发明所述的技术方案。
实施例
本发明的一种基于地形的车辆动态换挡控制方法,其在换挡控制器内预设有经济型换挡策略和动力型换挡策略,该经济型换挡策略各挡的换挡曲线和动力型换挡策略各挡的换挡曲线分别为车速和油门深度的二维关系曲线,均包括有升挡曲线和降挡曲线。内置的经济型策略曲线,更偏向曲线坐标空间的纵轴。实际应用中,经济型换挡策略和动力型换挡策略的各挡的换挡曲线也可为车速、油门深度和加速度的三参数关系曲线。
参见图3的经济型换挡策略和动力型换挡策略的升挡曲线图,假设为2挡与3挡的换挡曲线,包括两个升挡曲线,在相同的油门深度或开度下,经济型换挡策略的2挡升入3挡的车速要小于动力型换挡策略的2挡升入3挡的车速。
参见图1所示,本发明的方法包括如下步骤:
步骤1)车辆行驶时,获取车辆的当前的地形信息。具体的,可通过电子地平线获取当前地形,当前地形可包括有坡度数据、弯道数据、限速数据等。在本发明提供的实施例中,优选的,获取坡度数据,即坡度M。
本发明中,电子地平线包括地图数据、GPS/北斗定位和前向搜索引擎等,其特点是根据GPS/北斗卫星定位系统解析出车辆的定位经纬度位置,及车辆的前进方向信息,在电子地平线地图上进行车辆前方地理信息的搜索,将前方地理信息通过CAN总线或以太网总线传递给换挡控制器。
步骤2)换挡控制器根据当前地形信息、经济型换挡策略和动力型换挡策略进行动态插值融合,生成当前的换挡策略曲线。该步骤具体包括:
步骤2.1)根据当前地形信息计算插值融合的比例系数。具体的,预设经济型换挡策略曲线对应的最大下坡值M1和动力型换挡策略曲线对应的最大上坡值M2,例如,最大下坡值M1可设为-3度坡,最大上坡值M2,可设为正3度坡,则经济型换挡策略对应在该最大下坡值-3时使用,动力型换挡策略对应该在该最大上坡值+3时使用。插值融合的比例系数为K=|M-M1|/|M2-M1|,其中,M为当前地形信息的坡度值。
本发明中,插值融合的比例系数的计算与获取的当前地形数据相关,不限于坡度值,还可以是其它数据。
步骤2.2)根据插值融合的比例系数、经济型换挡策略中对应挡位的换挡曲线和动力型换挡策略中对应挡位的换挡曲线生成当前的换挡策略曲线。本发明中,若经济型换挡策略和动力型换挡策略为二维关系曲线,则生成的当前的换挡策略曲线也为车速、油门深度的二维关系曲线。若经济型换挡策略和动力型换挡策略为三参数关系曲线,则生成的换挡策略曲线也为车速、油门深度和加速度的三参数关系曲线。该换挡策略曲线也包括有升挡曲线和降挡曲线。
具体的,设定A=D M_n(V)表示当前地形M下生成的实时的换挡策略曲线中的第n个挡的换挡曲线,则可得到如下表达式:
V=D -1 M_n(A)=(1-K)G -1n(A)+KF -1n(A)    (1)
该表达式表示当油门为A时,换挡策略曲线的速度值为两个曲线(经济型换挡策略和动力型换挡策略)以k为比例的插值。
其中,A=Gn(V)表示经济型换挡策略中的第n个挡位的换挡曲线,G -1n(A)表示 Gn(V)的反函数;A=Fn(V)表示动力型换挡策略中的第n个挡位的换挡曲线,F -1n(A)表示Fn(V)的反函数;D -1 M_n(A)表示D M_n(V)的反函数,其中n=1,2,...,N,N为变速箱的总挡位,A为油门深度,V为车辆的车速。
步骤3)换挡控制器根据当前的换挡策略曲线控制变速箱换挡。该步骤具体包括如下:
步骤3.1)获取车辆当前的挡位,根据当前的换挡策略曲线得到当前挡位的升挡曲线和降挡曲线。
步骤3.2)根据车辆的当前油门深度,结合当前的换挡策略曲线的第n个挡的换挡曲线的表达式(1)分别计算升挡曲线和降挡曲线的车速;即将当前油门、当前挡位的升挡曲线代入上述的表达式(1)中,即可得到升挡曲线的车速。将当前油门、当前挡位的降挡曲线代入上述的表达式(1)中,即可得到降挡曲线的车速。
步骤3.3)将车辆的当前车速与计算得到的升挡曲线和降挡曲线的车速进行比较,根据比较结果控制变速箱是否换挡。
具体的,先判断当前车速是否大于升挡曲线的车速,若是,则控制变速箱升挡;若否,再判断是否小于降挡曲线的车速,若是,则控制变速箱降挡,若否,则保持当前挡位。
本发明还提出一种基于地形的车辆动态换挡控制系统,包括换挡控制器和变速箱。该换挡控制器内预设有经济型换挡策略和动力型换挡策略。还包括电子地平线模块,用于在车辆行驶时,获取当前的地形信息;该换挡控制器根据当前的地形信息、经济型换挡策略和动力型换挡策略进行动态插值融合,生成当前的换挡策略曲线,并根据当前的换挡策略曲线控制变速箱换挡。
本发明中,换挡控制器为依据预设程序运行的一个或多个微处理器。换挡控制器可通过CAN总线或以太网总线接收车速、来自油门踏板的油门深度以及来自电子地平线模块的当前的地形信息。变速箱与换挡控制器相连,变速箱输入转矩来自发动机输出的转矩,根据换挡控制器的命令控制车辆以选择的特定挡位行驶以向驱动轮输出驱动转矩。
本发明的换挡控制器设置有挡位切换模块和换挡策略曲线生成模块,该换挡策略曲线生成模块根据当前的地形信息、经济型换挡策略和动力型换挡策略进行动态插值融合,生成当前的换挡策略曲线。该挡位切换模块根据当前的换挡策略曲线控制变速箱换挡。
本发明针对普通路面连续变化的地理坡度,采用预存的固定升降挡策略,进行中间插值变换的方法,实时生成与外部坡度对应的连续变化的换挡策略曲线,使车辆对于不同的地伏地形有更广泛的适应性,兼具动力型和经济性。
上述只是本发明的较佳实施例,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。
工业实用性
本发明的一种基于地形的车辆动态换挡控制方法和系统,是利用电子地平线系统来获取车辆行驶的当前地形信息,根据电子地平线系统的当前地形信息并结合预设的 经济型换挡策略和动力型换挡策略,生成当前的换挡策略曲线,并根据当前的换挡策略曲线控制变速箱换挡,使车辆对于不同的地伏地形有更广泛的适应性,且在经济性与动力性之间取得更好的动态平衡。电子地平线系统是一种可以为车辆提供道路准确的实时信息的数据库系统,利用电子地平线系统能够准确获取道路的地形信息;本发明借助于电子地平线系统和车载装置,在工业上便于实现,而且换挡控制器、CAN总线、以太网总线和变速箱等各个部件在工业上也便于加工。

Claims (10)

  1. 一种基于地形的车辆动态换挡控制方法,包括预设有经济型换挡策略和动力型换挡策略,其特征在于,还包括如下步骤:
    步骤1)车辆行驶时,通过电子地平线系统获取所述车辆的当前的地形信息;
    步骤2)换挡控制器根据所述当前地形信息、所述经济型换挡策略和所述动力型换挡策略进行动态插值融合,生成当前的换挡策略曲线;
    步骤3)换挡控制器根据所述当前的换挡策略曲线控制变速箱换挡。
  2. 根据权利要求1所述的一种基于地形的车辆动态换挡控制方法,其特征在于:所述步骤2)具体包括:
    步骤2.1)根据所述当前的地形信息计算所述插值融合的比例系数;
    步骤2.2)根据所述插值融合的比例系数、所述经济型换挡策略中对应挡位的换挡曲线和所述动力型换挡策略中对应挡位的换挡曲线生成所述的当前换挡策略曲线。
  3. 根据权利要求2所述的一种基于地形的车辆动态换挡控制方法,其特征在于:预设经济型换挡策略曲线对应的最大下坡值M1和动力型换挡策略曲线对应的最大上坡值M2,所述插值融合的比例系数为K=|M-M1|/|M2-M1|,M为所述的当前的地形信息的坡度值。
  4. 根据权利要求3所述的一种基于地形的车辆动态换挡控制方法,其特征在于:设定A=Gn(V)表示所述经济型换挡策略中的第n个挡位的换挡曲线,A=Fn(V)表示动力型换挡策略中的第n个挡位的换挡曲线,A=D M_n(V)表示所述当前地形信息的坡度值M下生成的所述换挡策略曲线中的第n个挡的换挡曲线,表达式如下:
    V=D -1 M_n(A)=(1-K)G -1n(A)+KF -1n(A)  (1)
    F -1n(A)表示Fn(V)的反函数;G -1n(A)表示Gn(V)的反函数;D -1 M_n(A)表示D M_n(V)的反函数,其中n=1,2,...,N,N为变速箱的总挡位,A为油门深度,V为所述车辆的车速。
  5. 根据权利要求4所述的一种基于地形的车辆动态换挡控制方法,其特征在于:所述步骤3)具体包括如下:
    步骤3.1)获取所述车辆的当前挡位,根据所述当前换挡策略曲线得到当前挡位的升挡曲线和降挡曲线;
    步骤3.2)根据所述车辆的当前油门深度,结合所述换挡策略曲线中的第n个挡的换挡曲线的表达式(1)分别计算升挡曲线和降挡曲线的车速;
    步骤3.3)将所述车辆的当前车速与计算得到的升挡曲线和降挡曲线的车速进行比较,根据比较结果控制变速箱是否换挡。
  6. 根据权利要求5所述的一种基于地形的车辆动态换挡控制方法,其特征在于:所述步骤3.3)中,先判断所述当前车速是否大于所述升挡曲线的车速,若是,则控制变速箱升挡;若否,再判断是否小于所述降挡曲线的车速,若是,则控制变速箱降挡,若否,则保持当前挡位。
  7. 根据权利要求1所述的一种基于地形的车辆动态换挡控制方法,其特征在于:所述经济型换挡策略各挡的换挡曲线和所述动力型换挡策略各挡的换挡曲线分别为车速和油门深度的二维关系曲线。
  8. 根据权利要求1所述的一种基于地形的车辆动态换挡控制方法,其特征在于:所述经济型换挡策略各挡的换挡曲线和所述动力型换挡策略各挡的换挡曲线分别为 车速、油门深度和加速度的三维关系曲线。
  9. 一种基于地形的车辆动态换挡控制系统,包括换挡控制器和变速箱,该换挡控制器内预设有经济型换挡策略和动力型换挡策略,其特征在于:还包括电子地平线模块,用于在车辆行驶时,获取所述车辆的当前的地形信息;该换挡控制器根据所述当前的地形信息、经济性换挡策略和动力型换挡策略进行动态插值融合,生成当前的换挡策略曲线,并根据所述当前的换挡策略曲线控制变速箱换挡。
  10. 根据权利要求9所述的基于地形的车辆动态换挡控制系统,其特征在于:所述换挡控制器还包括挡位切换模块和换挡策略曲线生成模块;所述换挡策略曲线生成模块根据当前地形信息、所述经济型换挡策略和所述动力型换挡策略进行动态插值融合,生成当前的换挡策略曲线;该挡位切换模块根据当前的换挡策略曲线控制变速箱换挡。
PCT/CN2021/110045 2020-11-03 2021-08-02 一种基于地形的车辆动态换挡控制方法和系统 WO2022095522A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21888221.5A EP4242494A1 (en) 2020-11-03 2021-08-02 Method and system for dynamic gear-shifting control of vehicle on basis of terrain
US18/250,793 US11982346B2 (en) 2020-11-03 2021-08-02 Terrain based dynamic gear shift control method and system for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011210316.5A CN114439921A (zh) 2020-11-03 2020-11-03 一种基于地形的车辆动态换挡控制方法和系统
CN202011210316.5 2020-11-03

Publications (1)

Publication Number Publication Date
WO2022095522A1 true WO2022095522A1 (zh) 2022-05-12

Family

ID=81360881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110045 WO2022095522A1 (zh) 2020-11-03 2021-08-02 一种基于地形的车辆动态换挡控制方法和系统

Country Status (4)

Country Link
US (1) US11982346B2 (zh)
EP (1) EP4242494A1 (zh)
CN (1) CN114439921A (zh)
WO (1) WO2022095522A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102756A (zh) * 2011-03-21 2011-06-22 重庆长安汽车股份有限公司 一种at变速器差值换档规律控制方法
US20150345622A1 (en) * 2014-05-30 2015-12-03 Cummins, Inc. Systems and methods of adjusting a transmission shift schedule
CN107100993A (zh) * 2017-05-08 2017-08-29 合肥工业大学 一种车辆质量与坡道坡度识别的自动变速换挡修正方法
CN108361366A (zh) * 2018-01-17 2018-08-03 北京理工大学 一种机械式自动变速器换挡方法
CN108506474A (zh) * 2018-04-19 2018-09-07 吉林大学 一种基于车载导航系统的自动变速器换挡点预测控制方法及装置
CN109555847A (zh) * 2018-12-06 2019-04-02 重庆大学 一种基于动态规划的混合动力公交车amt换挡方法
CN111140651A (zh) * 2020-01-21 2020-05-12 厦门金龙联合汽车工业有限公司 一种两挡自动变速器车辆的爬坡换挡策略

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849062A1 (de) * 1998-10-24 2000-04-27 Zahnradfabrik Friedrichshafen Verfahren zur Steuerung eines automatischen Schaltgetriebes
US8872645B2 (en) * 2011-02-28 2014-10-28 GM Global Technology Operations LLC Method for road grade estimation for enhancing the fuel economy index calculation
US20140095132A1 (en) * 2012-10-01 2014-04-03 Ford Global Technologies, Llc System and method for rating computer model relative to empirical results for dynamic systems
CN108382387A (zh) * 2018-01-12 2018-08-10 上海汽车集团股份有限公司 车辆驱动控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102756A (zh) * 2011-03-21 2011-06-22 重庆长安汽车股份有限公司 一种at变速器差值换档规律控制方法
US20150345622A1 (en) * 2014-05-30 2015-12-03 Cummins, Inc. Systems and methods of adjusting a transmission shift schedule
CN107100993A (zh) * 2017-05-08 2017-08-29 合肥工业大学 一种车辆质量与坡道坡度识别的自动变速换挡修正方法
CN108361366A (zh) * 2018-01-17 2018-08-03 北京理工大学 一种机械式自动变速器换挡方法
CN108506474A (zh) * 2018-04-19 2018-09-07 吉林大学 一种基于车载导航系统的自动变速器换挡点预测控制方法及装置
CN109555847A (zh) * 2018-12-06 2019-04-02 重庆大学 一种基于动态规划的混合动力公交车amt换挡方法
CN111140651A (zh) * 2020-01-21 2020-05-12 厦门金龙联合汽车工业有限公司 一种两挡自动变速器车辆的爬坡换挡策略

Also Published As

Publication number Publication date
EP4242494A1 (en) 2023-09-13
US11982346B2 (en) 2024-05-14
US20230392685A1 (en) 2023-12-07
CN114439921A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
US9709161B2 (en) Shift control apparatus and shift control method of automatic transmission
CN108506474B (zh) 一种基于车载导航系统的自动变速器换挡点预测控制方法
CN109139894B (zh) 一种基于前方道路信息的自动变速器换挡控制方法
Terwen et al. Predictive powertrain control for heavy duty trucks
JP2011207465A (ja) 車両の制御装置および制御方法
JP6222194B2 (ja) 駆動力制御装置
JP2018194043A (ja) 車両制御装置
WO2018207863A1 (ja) 車両制御装置
JP2019137196A (ja) 車両走行制御装置
JP2019137195A (ja) 車両走行制御装置
JP2019084917A (ja) 車両制御装置
JP2019137194A (ja) 走行態様認識装置
WO2018207870A1 (ja) 車両制御装置
JP2018194044A (ja) 車両制御装置
US20240017712A1 (en) Dynamic control system and method for power of vehicle
WO2018207855A1 (ja) 車両制御装置
WO2018207860A1 (ja) 車両制御装置
JP2007139090A (ja) 車両用走行制御装置
WO2022095522A1 (zh) 一种基于地形的车辆动态换挡控制方法和系统
JPH0650073B2 (ja) 自動変速機付車両のスロットル位置制御装置
CN110651140B (zh) 车辆控制装置及车辆控制方法
WO2018207877A1 (ja) 車両制御装置
CN113446395B (zh) 自动变速箱换挡控制系统以及自动变速箱换挡控制方法
EP3705342A1 (en) Vehicle propulsion control using gear dependent pedal mapping during gear shift
JP2017150650A (ja) 駆動力制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18250793

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021888221

Country of ref document: EP

Effective date: 20230605