WO2022094962A1 - 飞行器的悬停方法、飞行器及存储介质 - Google Patents

飞行器的悬停方法、飞行器及存储介质 Download PDF

Info

Publication number
WO2022094962A1
WO2022094962A1 PCT/CN2020/127240 CN2020127240W WO2022094962A1 WO 2022094962 A1 WO2022094962 A1 WO 2022094962A1 CN 2020127240 W CN2020127240 W CN 2020127240W WO 2022094962 A1 WO2022094962 A1 WO 2022094962A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
change
receiving array
rate
hovering
Prior art date
Application number
PCT/CN2020/127240
Other languages
English (en)
French (fr)
Inventor
陈文平
黄宾
吴鑫
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/127240 priority Critical patent/WO2022094962A1/zh
Priority to CN202080075399.3A priority patent/CN114730011A/zh
Publication of WO2022094962A1 publication Critical patent/WO2022094962A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present application relates to the technical field of flight control, and in particular, to a hovering method for an aircraft, an aircraft and a storage medium.
  • the hovering control for the aircraft is usually realized based on GPS technology. For example, in the case of determining the flying height of the aircraft, it can be determined by the GPS module installed on the aircraft. The coordinate position of the aircraft, and control the aircraft to hover at a specific position accordingly.
  • this kind of hovering control based on GPS is greatly affected by the signal. When the GPS signal is weak or unstable, such as there may be no GPS signal indoors, the accuracy of the hovering control is low, which reduces the user's experience. experience.
  • the embodiments of the present application provide a hovering method for an aircraft, an aircraft and a storage medium, so as to improve the hovering accuracy of the aircraft.
  • an embodiment of the present application provides a hovering method for an aircraft, which is applied to an aircraft, where a radar device is installed on the aircraft, and the radar device includes a first receiving array and a second receiving array, the first receiving array The array and the second receiving array are set at a preset angle; the hovering method includes:
  • the radar image includes a first range angle image corresponding to the first receiving array and a second range angle image corresponding to the second receiving array;
  • the aircraft is flight controlled to hover based on the changing speed.
  • an embodiment of the present application further provides an aircraft, the aircraft comprising:
  • the radar is mounted on the frame, and includes a first receiving array and a second receiving array, the first receiving array and the second receiving array are arranged at a preset angle;
  • the memory is used to store a computer program;
  • the processor is used to execute the computer program and implement the following steps when executing the computer program:
  • the radar image includes a first range angle image corresponding to the first receiving array and a second range angle image corresponding to the second receiving array;
  • the aircraft is flight controlled to hover based on the changing speed.
  • an embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the implementation of the present application.
  • the hovering method for an aircraft, the aircraft, and the storage medium disclosed in the embodiments of the present application may not be affected by environmental factors, thereby improving the accuracy of hovering control, thereby improving flight safety and customer experience.
  • FIG. 1 is a schematic structural diagram of an aircraft provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an antenna structure of a radar device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an observation target of a radar device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the position of a target in a radar coordinate system provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of steps of a hovering method for an aircraft provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of steps of another method for hovering an aircraft provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an aircraft provided by an embodiment of the present application.
  • the hovering of the aircraft is generally realized based on GPS technology. Specifically, when the flying height of the aircraft is determined, the coordinate position of the aircraft can be determined through the GPS module installed on the aircraft, and the aircraft can be controlled to fly and hover at the coordinate position accordingly. corresponding specific location. Or based on the optical flow technology, the hovering of the aircraft is realized based on the optical flow technology. Specifically, the image is collected by a visual sensor (such as a camera), the displacement and speed information of the aircraft is determined, and the aircraft is controlled based on the displacement and speed information to achieve hovering.
  • a visual sensor such as a camera
  • this kind of hover control based on GPS is greatly affected by the signal.
  • the GPS signal is weak or unstable, for example, there may be no GPS signal indoors, and the accuracy of the hover control is low, resulting in the hover effect. Poor, serious may lead to a crash, reducing the user experience.
  • the optical flow technology is greatly affected by the light intensity and surrounding textures, so the control accuracy of hovering is also relatively low.
  • embodiments of the present application provide a hovering method for an aircraft, an aircraft, and a storage medium.
  • the radar device is installed on the aircraft, and the speed of the aircraft is determined by the radar device to achieve hovering. Since the radar device is not affected by signal quality As well as the influence of the brightness of the surrounding environment, it can improve the hovering accuracy of the aircraft.
  • FIG. 1 shows a structure of an aircraft 100 provided by an embodiment of the present application.
  • the aircraft 100 may include a power system, a control system, a frame 10 and a radar device 20 .
  • the frame 10 may include a fuselage and a foot frame (also known as a landing gear).
  • the fuselage may include a center frame and one or more arms connected to the center frame, the one or more arms extending radially from the center frame.
  • the tripod is connected with the fuselage, and is used for supporting the aircraft 100 when it is landed.
  • the radar device 20 can be installed on the aircraft, specifically, can be installed on the frame 10 of the aircraft 100. During the flight of the aircraft 100, the radar device 20 is used to measure the surrounding environment of the aircraft 100, such as obstacles, to ensure the safety of flight. .
  • the power system may include one or more electronic governors (referred to as ESCs for short), one or more propellers, and one or more motors corresponding to the one or more propellers, wherein the motors are connected between the electronic governors and the propellers.
  • the motor and the propeller are arranged on the arm of the aircraft 100; the electronic governor is used to receive the driving signal generated by the control system, and provide driving current to the motor according to the driving signal to control the rotation speed of the motor.
  • the motor is used to drive the propeller to rotate, thereby providing power for the flight of the aircraft 100, and the power enables the aircraft 100 to achieve one or more degrees of freedom movement.
  • aircraft 100 may rotate about one or more axes of rotation.
  • the above-mentioned rotation axes may include a roll axis, a yaw axis, and a pitch axis.
  • the motor may be a DC motor or a permanent magnet synchronous motor.
  • the motor may be a brushless motor or a brushed motor.
  • the control system may include a controller and a sensing system.
  • the controller is used to control the flight of the aircraft 100.
  • the flight of the aircraft 100 can be controlled according to the attitude information measured by the sensing system.
  • the controller may control the aircraft 100 according to pre-programmed instructions.
  • the sensing system is used to measure the attitude information of the aircraft 100, that is, the position information and state information of the aircraft 100 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration and three-dimensional angular velocity.
  • the sensing system may include, for example, at least one of a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit, IMU), a visual sensor, a global navigation satellite system, and a barometer and other sensors.
  • a gyroscope an ultrasonic sensor
  • an electronic compass an inertial measurement unit (Inertial Measurement Unit, IMU)
  • IMU inertial Measurement Unit
  • visual sensor e.g., a global navigation satellite system
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • GPS Global Positioning System
  • the radar device 20 is installed on the tripod of the aircraft 100, the radar device 20 is connected to the control system in communication, and the radar device 20 transmits the collected observation data to the control system for processing by the control system.
  • the aircraft 100 may include two or more tripods, and the radar device 20 is mounted on one of the tripods.
  • the radar device 20 may also be mounted on other positions of the aircraft 100, which is not specifically limited.
  • the radar device 20 mainly includes a radio frequency front-end module and a signal processing module.
  • the radio frequency front-end module may include a transmitting antenna and a receiving antenna.
  • the transmitting antenna is used to send a signal to the target, and the receiving antenna is used to receive the signal reflected by the target.
  • the signal processing module is responsible for generating Modulate the signal and process and analyze the collected intermediate frequency signal, where the target is, for example, an obstacle, specifically a building, an iron tower, a tree, etc.
  • the RF front-end module includes a transmitting antenna, a first receiving array and a second receiving array.
  • the arrangement direction between the first receiving array and the second receiving array is designed at a preset angle, for example, the preset angle is 60 degrees, 90 degrees or 120 degrees.
  • the signal processing module is responsible for generating the modulated signal and processing and analyzing the collected intermediate frequency signal.
  • the arrangement direction between the first receiving array and the second receiving array is designed at a preset angle, so that the radar device can measure at least two distance and angle images about the surrounding environment of the aircraft, and the distance and angle images include the distance between the target in the surrounding environment and the radar device. Distance information and angle information.
  • the range angle image may be a range Doppler angle map.
  • the first receiving array includes at least two receiving array elements
  • the second receiving array includes at least two receiving array elements.
  • the transmitting antenna is Tx, which is used to transmit radar signals to targets in the surrounding environment of the aircraft
  • the first receiving array includes a receiving array element Rx1 (the first antenna) and a receiving array element Rx2 (the second antenna).
  • the second receiving array includes a receiving array element Rx1 (first antenna) and a receiving array element Rx3 (third antenna), which are respectively used to receive radar signals reflected by targets in the surrounding environment.
  • the first receiving array and the second receiving array are designed at an angle of 90 degrees, but of course other angles are also possible. Both the first receiving array and the second receiving array include two receiving array elements, and certainly may include more receiving array elements.
  • the first receive array and the second receive array can share receive array elements.
  • the receiving array element shared by the first receiving array and the second receiving array is Rx1, that is, the first antenna Rx1.
  • the angle information obtained based on the first receiving array and the second receiving array includes the azimuth angle in the horizontal direction and the pitch angle in the vertical direction.
  • the nose direction of the aircraft is the positive direction of the X axis
  • the right direction of the aircraft is the positive direction of the Y axis
  • the bottom of the aircraft is the positive direction of the Z axis.
  • the installation direction of the first antenna is consistent with the right direction of the aircraft
  • the installation direction of the second antenna is consistent with the direction of the aircraft's head.
  • the first antenna points in the direction of the second antenna is the direction of the Y-axis
  • the direction of the first antenna pointing to the third antenna is the direction of the X-axis
  • the direction of the Z-axis is directly below the radar array
  • FIG. 4 is a schematic diagram of the position of the target in the radar coordinate system in the embodiment of the present application.
  • the origin of the radar coordinate system is the position of the first antenna Rx1, and the X-axis of the radar coordinate system
  • the direction is the direction in which the first antenna Rx1 points to the third antenna Rx3, the direction of the Y-axis of the radar coordinate system is the direction in which the first antenna Rx1 points to the second antenna Rx2, and the direction of the Z-axis of the radar coordinate system is directly below the radar array
  • ⁇ 1 is the angle observed through the first receiving array, that is, the angle between the line connecting the origin O to the target a, and the projection of the line on the YOZ plane of the radar coordinate system
  • ⁇ 2 is the angle observed through the second receiving array
  • the angle between the origin O and the target a is the angle between the line connecting the origin O and the target a, and the projection of the line on the XOZ plane of the radar coordinate system
  • r 1 is the angle
  • the aircraft 100 includes an unmanned aerial vehicle, and the unmanned aerial vehicle includes a rotary-wing type unmanned aerial vehicle, such as a quad-rotor unmanned aerial vehicle, a hexa-rotor unmanned aerial vehicle, an eight-rotor unmanned aerial vehicle, or a fixed-wing unmanned aerial vehicle or a rotary-wing unmanned aerial vehicle.
  • a rotary-wing type unmanned aerial vehicle such as a quad-rotor unmanned aerial vehicle, a hexa-rotor unmanned aerial vehicle, an eight-rotor unmanned aerial vehicle, or a fixed-wing unmanned aerial vehicle or a rotary-wing unmanned aerial vehicle.
  • a rotary-wing type unmanned aerial vehicle such as a quad-rotor unmanned aerial vehicle, a hexa-rotor unmanned aerial vehicle, an eight-rotor unmanned aerial vehicle, or a fixed-wing unmanned aerial vehicle or a rotary-wing unmanned aerial vehicle.
  • the combination of type and fixed-wing UAV is not limited here.
  • the aircraft 100 specifically the controller of the control system of the aircraft 100, is configured to execute the hovering method for an aircraft provided in any one of the embodiments of the present application, so as to realize precise control of the hovering of the aircraft.
  • the controller is configured to: obtain a radar image of the radar device measuring the surrounding environment of the aircraft, and the radar image includes a first range angle image corresponding to the first receiving array and a corresponding image of the second receiving array. the second distance angle image; determining the change speed of the aircraft relative to the surrounding environment according to the first distance angle image and the second distance angle image; and performing flight control on the aircraft based on the change speed to achieve hover.
  • FIG. 5 is a schematic flowchart of steps of a hovering method for an aircraft provided by an embodiment of the present application.
  • the hovering control method can be applied to a control system of an aircraft. Precise control of aircraft hovering to improve the safety of aircraft flight.
  • the hovering control method includes steps S101 to S103 .
  • the radar device includes a first receiving array and a second receiving array, which are respectively used to receive radar signals reflected by the target.
  • the first receiving array and the second receiving array are set at a preset angle.
  • the preset angle includes 60 degrees, 90 degrees or 120 degrees, of course other values are also possible.
  • the first receiving array includes at least two receiving array elements, or the second receiving array includes at least two receiving array elements, or, both the first receiving array and the second receiving array include at least two receiving array elements array element.
  • the first receiving array and the second receiving array have the same number of array elements.
  • the first receiving array and the second receiving array can also share receiving array elements.
  • the arrangement direction between the first receiving array and the second receiving array is designed at a preset angle, so that the radar device can measure the same target to obtain at least two range angle images, and the range angle images include the distance information and angle information from the target to the radar device .
  • a radar image of the radar device measuring the surrounding environment of the aircraft can be obtained, wherein the radar image includes a first range angle image corresponding to the first receiving array and a second range angle image corresponding to the second receiving array. And according to the first distance angle image and the second distance angle image, the change speed of the aircraft relative to the surrounding environment is determined.
  • the surrounding environment may be identified according to the first range angle image and/or the second range angle image, multiple target points in the surrounding environment may be determined, and the rate of change of the radar signals corresponding to the multiple target points may be determined;
  • the preset speed determination model determines the change speed of the aircraft relative to the surrounding environment according to the change rates of the radar signals corresponding to the multiple target points.
  • the first Feature point detection is performed on the distance-angle image and/or the second distance-angle image to obtain multiple target points in the surrounding environment.
  • the preset detection algorithm includes at least one of an extreme value detection algorithm and a CFAR detection algorithm. Of course, other algorithms may also be used, which are not limited herein.
  • the rate of change includes the rate of change of energy with distance, the rate of change of energy with angle, and the rate of change of energy with time under radar coordinates, and the rate of change per unit length and unit angle under space coordinates.
  • the multiple target points in the first distance angle image and the second distance angle Coordinate transformation is performed on the distance and angle data in the image to obtain position data of spatial coordinates; and partial derivation is performed on the position data to obtain the rate of change per unit length and the rate of change per unit angle corresponding to the plurality of target points.
  • the velocity determination model is obtained by Taylor expansion of the energy expression under the condition that the signal energy of the two frames of radar images within a preset time is equal.
  • P(r, ⁇ , t) is the signal energy of one frame of radar image
  • P(r+ ⁇ r , ⁇ + ⁇ ⁇ , t+ ⁇ t ) is the signal energy of another frame of radar image
  • the signal energy of the two frames of radar images is ⁇ t
  • the ⁇ t time is relatively short, such as several microseconds.
  • H.O.T represents a high-order infinitesimal, which can be ignored when the motion is small. According to expressions (1) and (2), it can be obtained:
  • the first receiving array and the second receiving array correspond to the following expressions:
  • A represents the first receiving array
  • B represents the second receiving array
  • the expression (9) is the preset speed determination model. Therefore, the change speed of the aircraft relative to the surrounding environment can be determined according to the change rate of the radar signal corresponding to the multiple target points based on the preset speed determination model.
  • a parameter matrix of the velocity determination model may be constructed according to the rate of change of the radar signals corresponding to the multiple target points; based on the constructed parameter matrix, the least square method is used to calculate the variation velocity of the aircraft relative to the surrounding environment.
  • k target points can be extracted from the measured first range angle image and/or the second range angle image, and the rate of change of the radar signal corresponding to the k target points is used, which are the rate of change of energy with distance, The rate of change of energy with angle and the rate of change of energy with time, as well as the rate of change per unit length and the rate of change per unit angle, according to Construct the parameter matrix.
  • the constructed parameter matrix is as follows:
  • expression (9) can be specifically expressed as:
  • the calculated change speed relative to the surrounding environment includes the horizontal axis speed V x , the vertical axis speed V y and the vertical axis speed V z in the space coordinate system.
  • the hovering method determines the speed required for hovering by the radar device, it is not affected by the environment, such as signal quality and light intensity, etc., which can improve the control accuracy during hovering, thereby improving flight safety and customer experience.
  • FIG. 6 is a schematic flowchart of a hovering method for an aircraft provided by an embodiment of the present application.
  • the hovering method is applied to the control system of the aircraft, specifically the controller of the control system, so as to realize the precise control of the hovering of the aircraft.
  • the aircraft includes a photographing device, such as a gimbal camera, for photographing images of the surrounding environment of the aircraft.
  • a photographing device such as a gimbal camera
  • the hovering method of the aircraft includes steps S201 and S202.
  • S201 Determine an environment type of the surrounding environment of the aircraft and a hovering strategy corresponding to the environment type according to the image captured by the photographing device;
  • the hovering strategies include hovering control strategies based on radar devices, hovering control strategies based on GPS, or hovering control strategies based on Hover control strategy for optical flow technology.
  • the environment type may include an environment that affects the signal quality of GPS, for example, the flight environment includes mountains, etc. There are these obstacles, and the GPS signal is generally not good. Therefore, the hovering strategy corresponding to the environment type including obstacles is: Hover control strategy for radar devices. Specifically, the hovering control strategy based on the radar device is, for example, the hovering method of the aircraft shown in FIG. 5 .
  • the environment type may be an indoor environment, and the indoor environment generally has poor GPS signals, so the hovering strategy corresponding to the indoor environment may be the hovering control strategy of the radar device.
  • the environment type may be an outdoor environment, and the outdoor environment generally has better GPS signals, so the hovering strategy corresponding to the outdoor environment may be a GPS-based hovering control strategy.
  • the environment types may be a first brightness environment and a second brightness environment, where the brightness of the first brightness environment is greater than the brightness of the second brightness environment, the first brightness environment is suitable for using the hover control strategy based on the optical flow technology, and the Two-brightness environments are not suitable for hovering control strategies based on optical flow technology.
  • the first brightness environment and the second brightness environment can be determined by a preset brightness threshold. For example, if the brightness of the environment is greater than the preset brightness threshold, it is determined that the current environment of the aircraft is the first brightness environment, and the brightness of the environment is not greater than the preset brightness threshold. , then it is determined that the current environment of the aircraft is the second brightness environment.
  • the environment type of the surrounding environment of the aircraft can be determined according to the image captured by the photographing device, and the captured image can be specifically identified to determine the environment type. For example, it is recognized that the image includes a mountain, and the environment type is determined to be an environment including obstacles. For another example, if the brightness of the identified image is greater than the preset brightness threshold, it is determined that the environment type corresponding to the environment is the first brightness environment.
  • determining the hovering strategy corresponding to the environment type can be determined according to a preset correspondence between the environment type and the hovering strategy, for example, the environment type of an obstacle corresponds to the hovering control strategy based on the radar device, such as an indoor environment Corresponding to the hovering control strategy based on the radar device, for example, the first brightness environment corresponds to the hovering control strategy based on the optical flow technology.
  • the hovering method of the aircraft provided by the above embodiment can switch between different hovering control strategies in combination with the surrounding environment of the aircraft. For example, in an open environment (without obstacles), a GPS-based hovering control strategy is adopted. In a good indoor environment, the hover control strategy based on the radar device is adopted, which further improves the hover control accuracy of the aircraft, thereby improving the user experience.
  • FIG. 7 is a schematic block diagram of an aircraft provided by an embodiment of the present application. As shown in FIG. 7 , the aircraft 100 also includes at least one or more processors 101 and a memory 102 .
  • the processor 101 may be, for example, a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Procesor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Procesor
  • the memory 102 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, or a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 102 is used for storing a computer program; the processor 101 is used for executing the computer program, and when executing the computer program, executes any one of the hovering methods for the aircraft provided in the embodiments of the present application to provide The control precision of the aircraft hovering.
  • the processor is configured to execute the computer program and implement the following steps when executing the computer program:
  • the radar image includes a first range angle image corresponding to the first receiving array and a second range angle image corresponding to the second receiving array;
  • the first distance angle image and the second distance angle image are used to determine a change speed of the aircraft relative to the surrounding environment; and based on the change speed, the aircraft is controlled in flight to achieve hovering.
  • the predetermined included angle includes 60 degrees, 90 degrees or 120 degrees.
  • the first receiving array includes at least two receiving array elements, and/or the second receiving array includes at least two receiving array elements.
  • the first receive array and the second receive array can share receive array elements.
  • the determining, according to the first distance angle image and the second distance angle image, the changing speed of the aircraft relative to the surrounding environment includes:
  • Identify the surrounding environment according to the first range angle image and/or the second range angle image determine multiple target points in the surrounding environment, and determine changes in radar signals corresponding to the multiple target points rate; based on a preset speed determination model, and according to the rate of change of the radar signals corresponding to the multiple target points, determine the rate of change of the aircraft relative to the surrounding environment.
  • the rate of change includes the rate of change of energy with distance, rate of change of energy with angle, and rate of change of energy with time in radar coordinates, and rate of change per unit length and per unit angle in spatial coordinates.
  • determining the rate of change per unit length and the rate of change per unit angle corresponding to the plurality of target points includes:
  • coordinate transformation is performed on the distance angle data of the plurality of target points in the first distance angle image and the second distance angle image to obtain position data of space coordinates; and A partial derivative is performed on the position data to obtain the rate of change per unit length and the rate of change per unit angle corresponding to the plurality of target points.
  • the determining the change speed of the aircraft relative to the surrounding environment according to the change rate of the radar signal corresponding to the multiple target points based on the preset speed determination model includes:
  • a parameter matrix of the velocity determination model is constructed; based on the constructed parameter matrix, the least square method is used to calculate the variation velocity of the aircraft relative to the surrounding environment.
  • the velocity determination model is obtained by performing Taylor expansion on the energy expression under the condition that the signal energy of the two frames of radar images within a preset time is equal.
  • identifying the surrounding environment according to the first distance angle image and/or the second distance angle image, and determining multiple target points in the surrounding environment including:
  • feature point detection is performed on the first range angle image and/or the second range angle image to obtain multiple target points in the surrounding environment.
  • the preset detection algorithm includes at least one of an extreme value detection algorithm and a CFAR detection algorithm.
  • the changing speed includes a horizontal axis speed, a vertical axis speed and a vertical axis speed in the space coordinate system.
  • the aircraft includes a camera for capturing an image of an environment surrounding the aircraft, and the processor is configured to:
  • the hovering strategy includes a radar device-based hovering control strategy, a GPS-based hovering control strategy, or an optical flow technology-based hovering control strategy.
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the above implementation The steps of any one of the hovering methods of the aircraft provided in the example.
  • the computer-readable storage medium may be an internal storage unit of the aircraft described in any of the foregoing embodiments, such as a memory or internal memory of the aircraft.
  • the computer-readable storage medium may also be an external storage device of the aircraft, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card equipped on the aircraft , Flash card (Flash Card) and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种飞行器的悬停方法、飞行器及存储介质,该方法包括:获取所述雷达装置测量所述飞行器周围环境的雷达图像,所述雷达图像包括所述第一接收阵列对应的第一距离角度图像和所述第二接收阵列对应的第二距离角度图像(S101);根据所述第一距离角度图像和第二距离角度图像,确定所述飞行器相对所述周围环境的变化速度(S102);基于所述变化速度对所述飞行器进行飞行控制以实现悬停(S103)。

Description

飞行器的悬停方法、飞行器及存储介质 技术领域
本申请涉及飞行控制技术领域,尤其涉及一种飞行器的悬停方法、飞行器以及存储介质。
背景技术
目前,在控制飞行器飞行过程中,需要控制飞行器悬停,针对飞行器的悬停控制,通常是基于GPS技术实现的,比如在确定飞行器飞行高度的情况下,可以通过安装在飞行器上的GPS模块确定该飞行器的坐标位置,依此控制飞行器悬停在特定位置。但是,这种基于GPS实现的悬停控制,受信号影响较大,在GPS信号较弱或者不稳定的状态下,比如室内可能没有GPS信号,悬停控制的精确度较低,降低了用户的体验。
发明内容
本申请提实施例供了一种飞行器的悬停方法、飞行器及存储介质,以提高飞行器的悬停精确度。
第一方面,本申请实施例提供了一种飞行器的悬停方法,应用于飞行器,所述飞行器安装有雷达装置,所述雷达装置包括第一接收阵列和第二接收阵列,所述第一接收阵列和第二接收阵列呈预设夹角设置;所述悬停方法包括:
获取所述雷达装置测量所述飞行器周围环境的雷达图像,所述雷达图像包括所述第一接收阵列对应的第一距离角度图像和所述第二接收阵列对应的第二距离角度图像;
根据所述第一距离角度图像和第二距离角度图像,确定所述飞行器相对所述周围环境的变化速度;以及
基于所述变化速度对所述飞行器进行飞行控制以实现悬停。
第二方面,本申请实施例还提供了一种飞行器,所述飞行器包括:
机架;
雷达装置,所述雷达安装在所述机架上,且包括第一接收阵列和第二接收阵列,所述第一接收阵列和第二接收阵列呈预设夹角设置;
处理器和存储器;
其中,所述存储器用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取所述雷达装置测量所述飞行器周围环境的雷达图像,所述雷达图像包括所述第一接收阵列对应的第一距离角度图像和所述第二接收阵列对应的第二距离角度图像;
根据所述第一距离角度图像和第二距离角度图像,确定所述飞行器相对所述周围环境的变化速度;以及
基于所述变化速度对所述飞行器进行飞行控制以实现悬停。
第三方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如本申请实施例提供的任一项所述的悬停方法的步骤。
本申请实施例公开的飞行器的悬停方法、飞行器及存储介质,可以不受环境因素影响,由此提高了悬停控制的精确度,进而提高了飞行的安全性以及客户的体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种飞行器的结构示意图;
图2是本申请实施例提供的一种雷达装置的天线结构示意图;
图3是本申请实施例提供的雷达装置观测目标的示意图;
图4是本申请实施例提供的目标在雷达坐标系的位置示意图;
图5是本申请实施例提供的一种飞行器的悬停方法的步骤示意流程图;
图6是本申请实施例提供的另一种飞行器的悬停方法的步骤示意流程图;
图7是本申请实施例提供的一种飞行器的示意框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
目前,飞行器的悬停一般基于GPS技术实现,具体是在确定飞行器飞行高度的情况下,可以通过安装在飞行器上的GPS模块确定该飞行器的坐标位置,依此控制飞行器飞行并悬停在坐标位置对应的特定位置。或者基于光流技术实现,基于光流技术实现飞行器的悬停,具体是通过视觉传感器(比如摄像头)采集图像,确定飞行器的位移和速度信息,基于该位移和速度信息控制飞行器进而实现悬停。
但是,这种基于GPS实现的悬停控制,受信号影响较大,在GPS信号较弱或者不稳定的状态下,比如室内可能没有GPS信号,悬停控制的精确度较低,导致悬停效果较差,严重可能导致坠机,降低了用户的体验。而光流技术受光 强及周围纹理影响较大,因此悬停的控制精度也比较低。
为此,本申请的实施例提供了一种飞行器的悬停方法、飞行器及存储介质,该雷达装置安装在飞行器上,通过该雷达装置确定飞行器的速度实现悬停,由于雷达装置不受信号质量以及周围环境的光照亮度的影响,因此可以提高飞行器悬停的精度。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1示出了本申请实施例提供的一种飞行器100的结构,如图1所示,飞行器100可以包括动力系统、控制系统、机架10和雷达装置20。
机架10可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在飞行器100着陆时起支撑作用。
雷达装置20,可以安装在飞行器上,具体可以安装在飞行器100的机架10上,在飞行器100的飞行过程中,用于测量飞行器100的周围环境,比如障碍物等,以确保飞行的安全性。
动力系统可以包括一个或多个电子调速器(简称为电调)、一个或多个螺旋桨以及与一个或多个螺旋桨相对应的一个或多个电机,其中电机连接在电子调速器与螺旋桨之间,电机和螺旋桨设置在飞行器100的机臂上;电子调速器用于接收控制系统产生的驱动信号,并根据驱动信号提供驱动电流给电机,以控制电机的转速。
电机用于驱动螺旋桨旋转,从而为飞行器100的飞行提供动力,该动力使得飞行器100能够实现一个或多个自由度的运动。在某些实施例中,飞行器100可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机可以是直流电机,也可以是永磁同步电机。或者,电机可以是无刷电机,也可以是有刷电机。
控制系统可以包括控制器和传感系统。控制器用于控制飞行器100的飞行,例如,可以根据传感系统测量的姿态信息控制飞行器100的飞行。应理解,控制器可以按照预先编好的程序指令对飞行器100进行控制。传感系统用于测量飞行器100的姿态信息,即飞行器100在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统例如 可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。
雷达装置20安装在飞行器100的脚架上,该雷达装置20与控制系统通信连接,雷达装置20将采集到的观测数据传输至控制系统,由控制系统进行处理。
需要说明的是,飞行器100可以包括两个或两个以上脚架,雷达装置20搭载在其中一个脚架上。雷达装置20也可以搭载在飞行器100的其他位置,对此不作具体限定。
雷达装置20主要包括射频前端模块和信号处理模块,射频前端模块可以包括发射天线和接收天线,发射天线用于向目标发送信号,接收天线用于接收被目标反射回来的信号,信号处理模块负责产生调制信号以及对采集的中频信号进行处理分析,其中目标比如为障碍物,具体可以是建筑物、铁塔、树木等。
射频前端模块包括发射天线、第一接收阵列和第二接收阵列,第一接收阵列与第二接收阵列之间排列方向呈预设夹角设计,比如预设夹角为60度、90度或120度,信号处理模块负责产生调制信号以及对采集的中频信号进行处理分析。
第一接收阵列与第二接收阵列之间排列方向呈预设夹角设计,可以使得雷达装置测量至少两个关于飞行器周围环境的距离角度图像,该距离角度图像包括周围环境中目标至雷达装置的距离信息和角度信息。在一个实施方式中,该距离角度图像可以为距离多普勒角度图。
具体地,第一接收阵列包括至少两个接收阵元,第二接收阵列包括至少两个接收阵元。接收到调制信号产生频率随调制信号线性变化的高频信号,通过发射天线向外辐射,电磁波遇到地面、目标物或障碍物被反射回来,再被第一接收阵列和第二接收阵列接收,从而得到阵列雷达采集到的观测数据,即雷达图像。
示例性的,如图2所示,发射天线为Tx,用于向飞行器周围环境中的目标发射雷达信号,第一接收阵列包括接收阵元Rx1(第一天线)和接收阵元Rx2(第二天线),第二接收阵列包括接收阵元Rx1(第一天线)和接收阵元Rx3(第三天线),分别用于接收被周围环境中的目标反射回来雷达信号。
在本申请的实施例中,第一接收阵列和第二接收阵列呈90度角设计,当然 也可以为其他角度。第一接收阵列和第二接收阵列均包括两个接收阵元,当然也可以包括更多个接收阵元。
在一些实施例中,第一接收阵列和第二接收阵列能够共用接收阵元。比如,如图2所示,第一接收阵列和第二接收阵列共用的接收阵元为Rx1,即第一天线Rx1。
基于第一接收阵列和第二接收阵列获取的角度信息包括水平方向的方位角和竖直方向的俯仰角。具体地,如图3所示,飞行器的机头方向为X轴的正方向,飞行器的右侧方向为Y轴的正方向,飞行器的下方为Z轴的正方向。第一天线的安装方向与飞行器的右侧方向保持一致,第二天线的安装方向与飞行器的头部方向保持一致,以第一天线所在的位置为原点O,第一天线指向第二天线的方向为Y轴的方向,第一天线指向第三天线的方向为X轴的方向,雷达阵列的正下方为Z轴的方向,可以建立雷达坐标系。
请参照图4,图4是本申请实施例中目标在雷达坐标系中的位置示意图,如图4所示,雷达坐标系的原点为第一天线Rx1所在的位置,雷达坐标系的X轴的方向为第一天线Rx1指向第三天线Rx3的方向,雷达坐标系的Y轴的方向为第一天线Rx1指向第二天线Rx2的方向,雷达坐标系的Z轴的方向为雷达阵列的正下方,θ 1为通过第一接收阵列观测到的角度,即原点O到目标a的连线,与该连线在雷达坐标系的YOZ平面的投影的夹角,θ 2为通过第二接收阵列观测到的角度,即原点O到目标a的连线,与该连线在雷达坐标系的XOZ平面的投影的夹角,r 1为通过第一接收阵列观测到的目标a的距离,r 2为通过第二接收阵列观测到的目标a的距离。
设目标a在空间坐标系下的位置坐标为(x,y,z),则
Figure PCTCN2020127240-appb-000001
飞行器100包括无人机,该无人机包括旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。
应理解,上述对于飞行器100各组成部分的命名仅是出于标识的目的,并不应理解为对本说明书的实施例的限制。该飞行器100,具体为飞行器100的 控制系统的控制器,用于执行本申请实施例提供的任一项所述的飞行器的悬停方法,实现对飞行器悬停的精确控制。
示例性的,比如控制器用于:获取所述雷达装置测量所述飞行器周围环境的雷达图像,所述雷达图像包括所述第一接收阵列对应的第一距离角度图像和所述第二接收阵列对应的第二距离角度图像;根据所述第一距离角度图像和第二距离角度图像,确定所述飞行器相对所述周围环境的变化速度;以及基于所述变化速度对所述飞行器进行飞行控制以实现悬停。
为了便于理解,以下将结合图1中提供的飞行器,对本申请实施例提供悬停控制方法,进行详细介绍。
请参阅图5,图5是本申请实施例提供的一种飞行器的悬停方法的步骤示意流程图,该悬停控制方法可以应用于飞行器的控制系统中,通过执行该悬停控制方法实现对飞行器悬停的精准控制,以提高飞行器飞行的安全性。
如图5所示,该悬停控制方法包括步骤S101至步骤S103。
S101、获取雷达装置测量飞行器周围环境的雷达图像,雷达图像包括第一接收阵列对应的第一距离角度图像和第二接收阵列对应的第二距离角度图像;
S102、根据第一距离角度图像和第二距离角度图像,确定飞行器相对周围环境的变化速度;
S103、基于变化速度对飞行器进行飞行控制以实现悬停。
其中,该雷达装置包括第一接收阵列和第二接收阵列,分别用于接收被目标反射回来的雷达信号,第一接收阵列和第二接收阵列呈预设夹角设置,比如预设夹角包括60度、90度或120度,当然也可以为其他值。
在一些实施例中,第一接收阵列包括至少两个接收阵元,或者,第二接收阵列包括至少两个接收阵元,再或者,第一接收阵列和第二接收阵列均包括至少两个接收阵元。
在一些实施例中,第一接收阵列和第二接收阵列的阵元数量相同,此外,第一接收阵列和所述第二接收阵列还能够共用接收阵元。
第一接收阵列与第二接收阵列之间排列方向呈预设夹角设计,可以使得雷达装置测量同一目标得到至少两个距离角度图像,该距离角度图像包括目标至雷达装置的距离信息和角度信息。
由此可以获取雷达装置测量飞行器周围环境的雷达图像,其中,该雷达图 像包括第一接收阵列对应的第一距离角度图像和第二接收阵列对应的第二距离角度图像。并根据第一距离角度图像和第二距离角度图像,确定飞行器相对周围环境的变化速度。
具体可以根据第一距离角度图像和/或第二距离角度图像对周围环境进行识别,确定周围环境中的多个目标点,以及确定所述多个目标点对应的雷达信号的变化率;再基于预设的速度确定模型,根据多个目标点对应的雷达信号的变化率,确定所述飞行器相对周围环境的变化速度。
根据所述第一距离角度图像和/或第二距离角度图像对所述周围环境进行识别,确定所述周围环境中的多个目标点,具体可以基于预设的检测算法,对所述第一距离角度图像和/或第二距离角度图像进行特征点检测,得到所述周围环境中的多个目标点。其中,预设的检测算法包括极值检测算法和CFAR检测算法中的至少一种,当然也可以采用其他算法,在此不做限定。
其中,变化率包括在雷达坐标下的能量随距离变化率、能量随角度变化率和能量随时间变化率,以及在空间坐标下的单位长度变化率和单位角度变化率。
确定多个目标点对应的单位长度变化率和单位角度变化率,具体可以基于雷达坐标至空间坐标的转换关系,将所述多个目标点在所述第一距离角度图像中和第二距离角度图像中的距离角度数据进行坐标转换,得到空间坐标的位置数据;以及对所述位置数据进行求偏导,得到所述多个目标点对应的单位长度变化率和单位角度变化率。
示例性,基于雷达坐标至空间坐标的转换关系具体可以表示为:r A=f A(x,y,z),θ A=g A(x,y,z)r B=f B(x,y,z),θ B=g B(x,y,z),在对位置数据进行求偏导,即可以得到多个目标点对应的单位长度变化率和单位角度变化率。
其中,速度确定模型为根据在预设时间内的两帧雷达图像的信号能量相等条件下,对能量表达式进行泰勒展开得到的。
具体地,由短时间δ t内(比如几微秒),两帧雷达图像的信号能量几乎相等,因此可以得到:
P(r,θ,t)=P(r+δ r,θ+δ θ,t+δ t)         (1)
在表达式(1)中,P(r,θ,t)表示为一帧雷达图像的信号能量, P(r+δ r,θ+δ θ,t+δ t)表示为另一帧雷达图像的信号能量,两帧雷达图像的时间间隔为δ t,δ t时间较短,比如为几微秒等。
对表达式(1)中的P(r+δ r,θ+δ θ,t+δ t)进行泰勒展开,可以得到下式:
Figure PCTCN2020127240-appb-000002
在表达式(2)中,H.O.T代表高阶无穷小量,在运动小时可忽略,根据表达式(1)和表达式(2)可以得到:
Figure PCTCN2020127240-appb-000003
由于雷达坐标-空间坐标的转换关系为r=f(x,y,z),θ=g(x,y,z),r和θ分别表示为雷达坐标系中的目标至雷达装置的距离信息和角度信息,(x,y,z)为空间坐标下的位置信息。根据雷达坐标-空间坐标的转换关系,对表达式(3)求偏导,可以得到:
Figure PCTCN2020127240-appb-000004
根据表达式(4),第一接收阵列和第二接收阵列具体对应如下表达式:
Figure PCTCN2020127240-appb-000005
Figure PCTCN2020127240-appb-000006
其中,在表达式(5)和(6)中,A表示第一接收阵列,B表示第二接收阵列,
Figure PCTCN2020127240-appb-000007
分别为第一接收阵列和第二接收阵列对应的能量随距离变化率、能量随角度变化率以及能量随时间的变化率,具体可以通过雷达坐标下的雷达图像获取,
Figure PCTCN2020127240-appb-000008
Figure PCTCN2020127240-appb-000009
分别为第一接收阵列和第二接收阵列在空间坐标中的单位长 度变化率和单位角度变化率,可通过将位于雷达坐标下的距离角度图像转换至空间坐标后求偏导得到。
由于
Figure PCTCN2020127240-appb-000010
Figure PCTCN2020127240-appb-000011
可以将表达式(5)和表达式(6)转换如下表达式(7)和表达式(8),分别为:
Figure PCTCN2020127240-appb-000012
Figure PCTCN2020127240-appb-000013
由于表达式(7)和表达式(8)涉及三个未知数(V x、V y、V z),只有两个方程,因此无法求解出V x、V y和V z
Figure PCTCN2020127240-appb-000014
可以将表达式(7)和(8),转换为矩阵方程的形式,具体为:
Figure PCTCN2020127240-appb-000015
其中,该表达式(9)即为预设的速度确定模型。由此可以基于预设的速度确定模型,根据所述多个目标点对应的雷达信号的变化率,确定所述飞行器相对周围环境的变化速度。
具体地,可以根据所述多个目标点对应的雷达信号的变化率,构建所述速度确定模型的参数矩阵;基于构建的参数矩阵,利用最小二乘法计算所述飞行器相对周围环境的变化速度。
示例性的,具体可以从测量的第一距离角度图像和/或第二距离角度图像中提取k个目标点,利用k个目标点对应的雷达信号的变化率,分别为能量随距离变化率、能量随角度变化率以及能量随时间的变化率,以及单位长度变化率和单位角度变化率,根据
Figure PCTCN2020127240-appb-000016
构 建参数矩阵,构建的参数矩阵具体为:
Figure PCTCN2020127240-appb-000017
由此表达式(9)具体可以表示为:
Figure PCTCN2020127240-appb-000018
可以将上述表达式记做AV=b,利用最小二乘法可以计算出V=(A TA) -1A Tb,A T为A的转置矩阵,(A TA) -1为A TA的逆矩阵。其中,求解出来的相对周围环境的变化速度包括在空间坐标系下的横轴速度V x、纵轴速度V y和竖轴速度V z
在确定飞行器相对周围环境的变化速度后,控制飞行器按照该变化速度飞行器,实现悬停。由于该悬停方法是通过雷达装置确定悬停时需要的速度,因此不受环境影响,比如信号质量和光照强度等,由此可以提高悬停时的控制精度,进而提高了飞行的安全性以及客户的体验度。
请参阅图6,图6是本申请实施例提供的一种飞行器的悬停方法的示意流程图。该悬停方法应用于飞行器的控制系统,具体是控制系统的控制器,以实现对飞行器悬停的精准控制。
其中,飞行器包括拍摄装置,比如云台相机,用于拍摄飞行器周围环境的图像。
如图6所示,该飞行器的悬停方法包括步骤S201和步骤S202。
S201、根据所述拍摄装置拍摄的图像,确定所述飞行器周围环境的环境类型以及所述环境类型对应的悬停策略;
S202、根据确定的悬停策略控制所述飞行器悬停。
其中,不同的环境类型对应的不同的悬停策略,不同的悬停策略对应的悬停方式不同;所述悬停策略包括基于雷达装置的悬停控制策略、基于GPS的悬停控制策略或基于光流技术的悬停控制策略。
示例性的,环境类型可以包括影响GPS的信号质量的环境,比如飞行环境 中包括山体等,存在这些障碍物,一般GPS信号不好,因此对于包括障碍物的环境类型对应的悬停策略,为雷达装置的悬停控制策略。该基于雷达装置的悬停控制策略具体比如为图5示出的飞行器的悬停方法。
示例性的,环境类型可以为室内环境,室内环境一般GPS信号不好,因此对于室内环境对应的悬停策略可以为雷达装置的悬停控制策略。
示例性的,环境类型可以为室外环境,室外环境一般GPS信号较好,因此对于室外环境对应的悬停策略可以为基于GPS的悬停控制策略。
示例性的,环境类型可以第一亮度环境和第二亮度环境,其中,第一亮度环境的亮度大于第二亮度环境的亮度,第一亮度环境适合使用基于光流技术的悬停控制策略,第二亮度环境不适合使用基于光流技术的悬停控制策略。第一亮度环境和第二亮度环境可以用预设亮度阈值确定,比如环境的亮度大于该预设亮度阈值,则确定飞行器的当前环境为第一亮度环境,环境的亮度不大于该预设亮度阈值,则确定飞行器的当前环境为第二亮度环境。
具体地,可以根据所述拍摄装置拍摄的图像,确定所述飞行器周围环境的环境类型,具体对拍摄的图像进行识别,确定环境类型,比如识别图像包括山体,确定环境类型为包括障碍物的环境类型,再比如识别图像的亮度大于预设亮度阈值,则确定环境对应的环境类型为第一亮度环境。
具体地,确定所述环境类型对应的悬停策略,可以根据环境类型与悬停策略之间预设的对应关系确定,比如障碍物的环境类型对应基于雷达装置的悬停控制策略,比如室内环境对应基于雷达装置的悬停控制策略,再比如第一亮度环境对应基于光流技术的悬停控制策略。
上述实施例提供的飞行器的悬停方法,可以结合飞行器的周围环境,切换不同的悬停控制策略,比如在空旷环境(没有障碍物)采用基于GPS的悬停控制策略,再比如在GPS信号不好的室内环境,采用基于雷达装置的悬停控制策略,由此进一步地提高了飞行器悬停控制精度,进而提高了用户体验度。
请参阅图7所示,图7是本申请实施例提供的一种飞行器的示意性框图。如图7所示,该飞行器100还至少包括一个或多个处理器101和存储器102。
处理器101例如可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Procesor,DSP)等。
存储器102可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,存储器102用于存储计算机程序;处理器101用于执行所述计算机程序并在执行所述计算机程序时,执行本申请实施例提供的任一项所述的飞行器的悬停方法,以提供飞行器悬停的控制精度。
示例性的,所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取所述雷达装置测量所述飞行器周围环境的雷达图像,所述雷达图像包括所述第一接收阵列对应的第一距离角度图像和所述第二接收阵列对应的第二距离角度图像;根据所述第一距离角度图像和第二距离角度图像,确定所述飞行器相对所述周围环境的变化速度;以及基于所述变化速度对所述飞行器进行飞行控制以实现悬停。
在一些实施例中,所述预设夹角包括60度、90度或120度。
在一些实施例中,所述第一接收阵列包括至少两个接收阵元,和/或,所述第二接收阵列包括至少两个接收阵元。
在一些实施例中,所述第一接收阵列和所述第二接收阵列能够共用接收阵元。
在一些实施例中,所述根据所述第一距离角度图像和第二距离角度图像,确定所述飞行器相对周围环境的变化速度,包括:
根据所述第一距离角度图像和/或第二距离角度图像对所述周围环境进行识别,确定所述周围环境中的多个目标点,以及确定所述多个目标点对应的雷达信号的变化率;基于预设的速度确定模型,根据所述多个目标点对应的雷达信号的变化率,确定所述飞行器相对周围环境的变化速度。
在一些实施例中,所述变化率包括在雷达坐标下的能量随距离变化率、能量随角度变化率和能量随时间变化率,以及在空间坐标下的单位长度变化率和单位角度变化率。
在一些实施例中,确定多个目标点对应的单位长度变化率和单位角度变化率,包括:
基于雷达坐标至空间坐标的转换关系,将所述多个目标点在所述第一距离角度图像中和第二距离角度图像中的距离角度数据进行坐标转换,得到空间坐 标的位置数据;以及对所述位置数据进行求偏导,得到所述多个目标点对应的单位长度变化率和单位角度变化率。
在一些实施例中,所述基于预设的速度确定模型,根据所述多个目标点对应的雷达信号的变化率,确定所述飞行器相对周围环境的变化速度,包括:
根据所述多个目标点对应的雷达信号的变化率,构建所述速度确定模型的参数矩阵;基于构建的参数矩阵,利用最小二乘法计算所述飞行器相对周围环境的变化速度。
在一些实施例中,所述速度确定模型为:根据在预设时间内的两帧雷达图像的信号能量相等条件下,对能量表达式进行泰勒展开得到的。
在一些实施例中,所述根据所述第一距离角度图像和/或第二距离角度图像对所述周围环境进行识别,确定所述周围环境中的多个目标点,包括:
基于预设的检测算法,对所述第一距离角度图像和/或第二距离角度图像进行特征点检测,得到所述周围环境中的多个目标点。
在一些实施例中,所述预设的检测算法包括极值检测算法和CFAR检测算法中的至少一种。
在一些实施例中,所述变化速度包括在空间坐标系下的横轴速度、纵轴速度和竖轴速度。
在一些实施例中,所述飞行器包括拍摄装置,用于拍摄飞行器周围环境的图像,所述处理器用于:
根据所述拍摄装置拍摄的图像,确定所述飞行器周围环境的环境类型以及所述环境类型对应的悬停策略,不同的环境类型对应的不同的悬停策略,不同的悬停策略对应的悬停方式不同;根据确定的悬停策略控制所述飞行器悬停。
在一些实施例中,所述悬停策略包括基于雷达装置的悬停控制策略、基于GPS的悬停控制策略或基于光流技术的悬停控制策略。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的任一种所述的飞行器的悬停方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的飞行器的内部存储单元,例如所述飞行器的存储器或内存。所述计算机可读存储介质也可以是所述飞行器的外部存储设备,例如所述飞行器上配备的插接式硬盘,智能 存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (29)

  1. 一种飞行器的悬停方法,其特征在于,应用于飞行器,所述飞行器安装有雷达装置,所述雷达装置包括第一接收阵列和第二接收阵列,所述第一接收阵列和第二接收阵列呈预设夹角设置;所述悬停方法包括:
    获取所述雷达装置测量所述飞行器周围环境的雷达图像,所述雷达图像包括所述第一接收阵列对应的第一距离角度图像和所述第二接收阵列对应的第二距离角度图像;
    根据所述第一距离角度图像和第二距离角度图像,确定所述飞行器相对所述周围环境的变化速度;以及
    基于所述变化速度对所述飞行器进行飞行控制以实现悬停。
  2. 根据权利要求1所述的方法,其特征在于,所述预设夹角包括60度、90度或120度。
  3. 根据权利要求1所述的方法,其特征在于,所述第一接收阵列包括至少两个接收阵元,和/或,所述第二接收阵列包括至少两个接收阵元。
  4. 根据权利要求1所述的方法,其特征在于,所述第一接收阵列和所述第二接收阵列能够共用接收阵元。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述根据所述第一距离角度图像和第二距离角度图像,确定所述飞行器相对周围环境的变化速度,包括:
    根据所述第一距离角度图像和/或第二距离角度图像对所述周围环境进行识别,确定所述周围环境中的多个目标点,以及确定所述多个目标点对应的雷达信号的变化率;
    基于预设的速度确定模型,根据所述多个目标点对应的雷达信号的变化率,确定所述飞行器相对周围环境的变化速度。
  6. 根据权利要求5所述的方法,其特征在于,所述变化率包括在雷达坐标下的能量随距离变化率、能量随角度变化率和能量随时间变化率,以及在空间坐标下的单位长度变化率和单位角度变化率。
  7. 根据权利要求5所述的方法,其特征在于,确定多个目标点对应的单位 长度变化率和单位角度变化率,包括:
    基于雷达坐标至空间坐标的转换关系,将所述多个目标点在所述第一距离角度图像中和第二距离角度图像中的距离角度数据进行坐标转换,得到空间坐标的位置数据;以及
    对所述位置数据进行求偏导,得到所述多个目标点对应的单位长度变化率和单位角度变化率。
  8. 根据权利要求5所述的方法,其特征在于,所述基于预设的速度确定模型,根据所述多个目标点对应的雷达信号的变化率,确定所述飞行器相对周围环境的变化速度,包括:
    根据所述多个目标点对应的雷达信号的变化率,构建所述速度确定模型的参数矩阵;
    基于构建的参数矩阵,利用最小二乘法计算所述飞行器相对周围环境的变化速度。
  9. 根据权利要求5所述的方法,其特征在于,所述速度确定模型为:根据在预设时间内的两帧雷达图像的信号能量相等条件下,对能量表达式进行泰勒展开得到的。
  10. 根据权利要求5所述的方法,其特征在于,所述根据所述第一距离角度图像和/或第二距离角度图像对所述周围环境进行识别,确定所述周围环境中的多个目标点,包括:
    基于预设的检测算法,对所述第一距离角度图像和/或第二距离角度图像进行特征点检测,得到所述周围环境中的多个目标点。
  11. 根据权利要求10所述的方法,其特征在于,所述预设的检测算法包括极值检测算法和CFAR检测算法中的至少一种。
  12. 根据权利要求5所述的方法,其特征在于,所述变化速度包括在空间坐标系下的横轴速度、纵轴速度和竖轴速度。
  13. 根据权利要求1所述的方法,其特征在于,所述飞行器包括拍摄装置,用于拍摄飞行器周围环境的图像,所述方法还包括:
    根据所述拍摄装置拍摄的图像,确定所述飞行器周围环境的环境类型以及所述环境类型对应的悬停策略,不同的环境类型对应的不同的悬停策略,不同的悬停策略对应的悬停方式不同;
    根据确定的悬停策略控制所述飞行器悬停。
  14. 根据权利要求13所述的方法,其特征在于,所述悬停策略包括基于雷达装置的悬停控制策略、基于GPS的悬停控制策略或基于光流技术的悬停控制策略。
  15. 一种飞行器,其特征在于,所述飞行器包括:
    机架;
    雷达装置,所述雷达安装在所述机架上,且包括第一接收阵列和第二接收阵列,所述第一接收阵列和第二接收阵列呈预设夹角设置;
    处理器和存储器;
    其中,所述存储器用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
    获取所述雷达装置测量所述飞行器周围环境的雷达图像,所述雷达图像包括所述第一接收阵列对应的第一距离角度图像和所述第二接收阵列对应的第二距离角度图像;
    根据所述第一距离角度图像和第二距离角度图像,确定所述飞行器相对所述周围环境的变化速度;以及
    基于所述变化速度对所述飞行器进行飞行控制以实现悬停。
  16. 根据权利要求15所述的飞行器,其特征在于,所述预设夹角包括60度、90度或120度。
  17. 根据权利要求15所述的飞行器,其特征在于,所述第一接收阵列包括至少两个接收阵元,和/或,所述第二接收阵列包括至少两个接收阵元。
  18. 根据权利要求15所述的飞行器,其特征在于,所述第一接收阵列和所述第二接收阵列能够共用接收阵元。
  19. 根据权利要求15-18任一项所述的飞行器,其特征在于,所述根据所述第一距离角度图像和第二距离角度图像,确定所述飞行器相对周围环境的变化速度,包括:
    根据所述第一距离角度图像和/或第二距离角度图像对所述周围环境进行识别,确定所述周围环境中的多个目标点,以及确定所述多个目标点对应的雷达信号的变化率;
    基于预设的速度确定模型,根据所述多个目标点对应的雷达信号的变化率, 确定所述飞行器相对周围环境的变化速度。
  20. 根据权利要求19所述的飞行器,其特征在于,所述变化率包括在雷达坐标下的能量随距离变化率、能量随角度变化率和能量随时间变化率,以及在空间坐标下的单位长度变化率和单位角度变化率。
  21. 根据权利要求19所述的飞行器,其特征在于,确定多个目标点对应的单位长度变化率和单位角度变化率,包括:
    基于雷达坐标至空间坐标的转换关系,将所述多个目标点在所述第一距离角度图像中和第二距离角度图像中的距离角度数据进行坐标转换,得到空间坐标的位置数据;以及
    对所述位置数据进行求偏导,得到所述多个目标点对应的单位长度变化率和单位角度变化率。
  22. 根据权利要求19所述的飞行器,其特征在于,所述基于预设的速度确定模型,根据所述多个目标点对应的雷达信号的变化率,确定所述飞行器相对周围环境的变化速度,包括:
    根据所述多个目标点对应的雷达信号的变化率,构建所述速度确定模型的参数矩阵;
    基于构建的参数矩阵,利用最小二乘法计算所述飞行器相对周围环境的变化速度。
  23. 根据权利要求19所述的飞行器,其特征在于,所述速度确定模型为:根据在预设时间内的两帧雷达图像的信号能量相等条件下,对能量表达式进行泰勒展开得到的。
  24. 根据权利要求19所述的飞行器,其特征在于,所述根据所述第一距离角度图像和/或第二距离角度图像对所述周围环境进行识别,确定所述周围环境中的多个目标点,包括:
    基于预设的检测算法,对所述第一距离角度图像和/或第二距离角度图像进行特征点检测,得到所述周围环境中的多个目标点。
  25. 根据权利要求24所述的飞行器,其特征在于,所述预设的检测算法包括极值检测算法和CFAR检测算法中的至少一种。
  26. 根据权利要求19所述的飞行器,其特征在于,所述变化速度包括在空间坐标系下的横轴速度、纵轴速度和竖轴速度。
  27. 根据权利要求15所述的飞行器,其特征在于,所述飞行器包括拍摄装置,用于拍摄飞行器周围环境的图像,所述处理器用于:
    根据所述拍摄装置拍摄的图像,确定所述飞行器周围环境的环境类型以及所述环境类型对应的悬停策略,不同的环境类型对应的不同的悬停策略,不同的悬停策略对应的悬停方式不同;
    根据确定的悬停策略控制所述飞行器悬停。
  28. 根据权利要求27所述的飞行器,其特征在于,所述悬停策略包括基于雷达装置的悬停控制策略、基于GPS的悬停控制策略或基于光流技术的悬停控制策略。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1至14任一项所述的悬停方法的步骤。
PCT/CN2020/127240 2020-11-06 2020-11-06 飞行器的悬停方法、飞行器及存储介质 WO2022094962A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/127240 WO2022094962A1 (zh) 2020-11-06 2020-11-06 飞行器的悬停方法、飞行器及存储介质
CN202080075399.3A CN114730011A (zh) 2020-11-06 2020-11-06 飞行器的悬停方法、飞行器及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127240 WO2022094962A1 (zh) 2020-11-06 2020-11-06 飞行器的悬停方法、飞行器及存储介质

Publications (1)

Publication Number Publication Date
WO2022094962A1 true WO2022094962A1 (zh) 2022-05-12

Family

ID=81458512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127240 WO2022094962A1 (zh) 2020-11-06 2020-11-06 飞行器的悬停方法、飞行器及存储介质

Country Status (2)

Country Link
CN (1) CN114730011A (zh)
WO (1) WO2022094962A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115033019A (zh) * 2022-06-01 2022-09-09 天津飞眼无人机科技有限公司 一种无人机避障方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066588A1 (en) * 2008-09-17 2010-03-18 Altek Corporation Image pickup device for detecting moving speed of shot object and method thereof
JP2012098169A (ja) * 2010-11-02 2012-05-24 Tokai Univ レーザドップラ速度計
CN102944879A (zh) * 2012-11-05 2013-02-27 西安交通大学 一种基于mems二维扫描镜的四维成像装置及其成像方法
CN103868521A (zh) * 2014-02-20 2014-06-18 天津大学 基于激光雷达的四旋翼无人机自主定位及控制方法
CN104459645A (zh) * 2014-11-14 2015-03-25 中国人民解放军63680部队 基于多旋翼飞行器的雷达相位标校方法
CN106443062A (zh) * 2016-08-29 2017-02-22 零度智控(北京)智能科技有限公司 无人机速度测量方法、装置及无人机
CN109154552A (zh) * 2016-05-19 2019-01-04 皇家飞利浦有限公司 光学颗粒传感器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992959B (zh) * 2013-12-06 2018-09-14 西门子公司 用于确定至少两个传感器的布置的方法和传感器网络
CN104977559B (zh) * 2014-04-04 2020-04-28 上海机电工程研究所 一种在干扰环境下的目标定位方法
CN205484786U (zh) * 2015-09-14 2016-08-17 长沙普德利生科技有限公司 双天线雷达测速传感模块
CN106199577B (zh) * 2016-06-24 2018-11-06 北京环境特性研究所 基于无线电探测的低慢小目标飞行角度探测方法及系统
CN107255812A (zh) * 2017-06-30 2017-10-17 努比亚技术有限公司 基于3d技术的测速方法、移动终端、及存储介质
CN207586425U (zh) * 2017-10-19 2018-07-06 杨锐 一种轻便高可靠性低空无人机预警探测雷达系统
CN109212471B (zh) * 2018-07-04 2023-12-15 北京全迹科技有限公司 一种定位基站、系统和方法
FR3086066B1 (fr) * 2018-09-13 2021-01-29 Idemia Identity & Security France Procede et dispositif de controle du fonctionnement d'un radar routier.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066588A1 (en) * 2008-09-17 2010-03-18 Altek Corporation Image pickup device for detecting moving speed of shot object and method thereof
JP2012098169A (ja) * 2010-11-02 2012-05-24 Tokai Univ レーザドップラ速度計
CN102944879A (zh) * 2012-11-05 2013-02-27 西安交通大学 一种基于mems二维扫描镜的四维成像装置及其成像方法
CN103868521A (zh) * 2014-02-20 2014-06-18 天津大学 基于激光雷达的四旋翼无人机自主定位及控制方法
CN104459645A (zh) * 2014-11-14 2015-03-25 中国人民解放军63680部队 基于多旋翼飞行器的雷达相位标校方法
CN109154552A (zh) * 2016-05-19 2019-01-04 皇家飞利浦有限公司 光学颗粒传感器
CN106443062A (zh) * 2016-08-29 2017-02-22 零度智控(北京)智能科技有限公司 无人机速度测量方法、装置及无人机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115033019A (zh) * 2022-06-01 2022-09-09 天津飞眼无人机科技有限公司 一种无人机避障方法

Also Published As

Publication number Publication date
CN114730011A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN109596118B (zh) 一种用于获取目标对象的空间位置信息的方法与设备
US20220137643A1 (en) Aircraft control method and aircraft
US11380995B2 (en) Two-dimensional antenna system and method and device for positioning a target
KR101574601B1 (ko) 비전센서가 결합된 다중회전익 무인비행체 및 다중회전익 무인비행체의 자율비행 제어방법, 그 방법을 수행하기 위한 프로그램이 기록된 기록매체
WO2019080924A1 (zh) 导航图配置方法、避障方法以及装置、终端、无人飞行器
WO2020103049A1 (zh) 旋转微波雷达的地形预测方法、装置、系统和无人机
WO2019127029A1 (zh) 一种闪避障碍物的方法、装置及飞行器
WO2021087701A1 (zh) 起伏地面的地形预测方法、装置、雷达、无人机和作业控制方法
US11556681B2 (en) Method and system for simulating movable object states
WO2021037047A1 (zh) 一种飞行器的偏航角修正方法、装置及飞行器
WO2021052334A1 (zh) 一种无人飞行器的返航方法、装置及无人飞行器
WO2021087702A1 (zh) 坡地的地形预测方法、装置、雷达、无人机和作业控制方法
US20210208608A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
WO2021199449A1 (ja) 位置算出方法及び情報処理システム
JP2021117502A (ja) 着陸制御装置、着陸制御方法およびプログラム。
WO2023272633A1 (zh) 无人机的控制方法、无人机、飞行系统及存储介质
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
WO2018068193A1 (zh) 控制方法、控制装置、飞行控制系统与多旋翼无人机
WO2019000328A1 (zh) 无人机的控制方法、控制终端和无人机
WO2021159249A1 (zh) 航线规划方法、设备及存储介质
US20210229810A1 (en) Information processing device, flight control method, and flight control system
WO2021259253A1 (zh) 一种轨迹跟踪方法及无人机
US20210240185A1 (en) Shooting control method and unmanned aerial vehicle
WO2022094962A1 (zh) 飞行器的悬停方法、飞行器及存储介质
Høglund Autonomous inspection of wind turbines and buildings using an UAV

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960423

Country of ref document: EP

Kind code of ref document: A1