WO2022094821A1 - 一种指示预编码矩阵的方法、用户设备、接入设备 - Google Patents

一种指示预编码矩阵的方法、用户设备、接入设备 Download PDF

Info

Publication number
WO2022094821A1
WO2022094821A1 PCT/CN2020/126611 CN2020126611W WO2022094821A1 WO 2022094821 A1 WO2022094821 A1 WO 2022094821A1 CN 2020126611 W CN2020126611 W CN 2020126611W WO 2022094821 A1 WO2022094821 A1 WO 2022094821A1
Authority
WO
WIPO (PCT)
Prior art keywords
weighting coefficients
indication information
zero weighting
preset condition
precoding matrix
Prior art date
Application number
PCT/CN2020/126611
Other languages
English (en)
French (fr)
Inventor
王潇涵
黄胜武
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237017982A priority Critical patent/KR20230096072A/ko
Priority to EP20960283.8A priority patent/EP4236095A4/en
Priority to JP2023527104A priority patent/JP2023548870A/ja
Priority to PCT/CN2020/126611 priority patent/WO2022094821A1/zh
Priority to CN202080106810.9A priority patent/CN116508369A/zh
Publication of WO2022094821A1 publication Critical patent/WO2022094821A1/zh
Priority to US18/309,197 priority patent/US20230299834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a method, user equipment, and access device for indicating a precoding matrix.
  • MIMO Multiple Input Multiple Output
  • MIMO technology can significantly improve the performance of wireless communication systems by deploying multiple antennas on the transmitter and receiver devices. For example, in diversity scenarios, MIMO technology can effectively improve transmission reliability; in multiplexing scenarios, MIMO technology can double the transmission throughput.
  • precoding processes the signal to be transmitted with the help of a precoding matrix that matches the channel properties, so that the precoded signal to be transmitted is adapted to the channel, so the transmission process is optimized, and the receiving process is optimized.
  • Signal quality eg SINR
  • precoding technology has been adopted by various wireless communication standards, such as but not limited to LTE and 5G NR.
  • the 5G NR R16 protocol currently under discussion introduces a channel information reporting scheme called Enhanced Type II, which is used to report multiple parameters to construct a precoding matrix.
  • Enhanced Type II a channel information reporting scheme
  • the above precoding matrix is at least based on multiple weighting coefficients, multiple spatial components (eg, spatial vectors) and It is constructed from multiple frequency domain components (such as frequency domain vectors), and at least a part of the above weighting coefficients, spatial domain components and frequency domain components needs to be reported by the terminal to the base station, for example, at least a part of the weighting coefficients, and/or at least a part of the spatial domain components, and/or at least a portion of the frequency domain components.
  • a method for indicating a precoding matrix including:
  • the indication information is used to indicate K NZ -v non-zero weighting coefficients, the K NZ -v non-zero weighting coefficients belong to the K NZ non-zero weighting coefficients, v is the number of transmission layers, and the K The NZ non-zero weighting coefficients are used to construct a precoding matrix, and the precoding matrix is constructed based on at least the K NZ non-zero weighting coefficients, m spatial domain vectors and n frequency domain vectors, wherein, if the first When the preset condition is used, the indication information is generated based on the first method, and when the second preset condition is satisfied, the indication information is generated based on the second method;
  • the first preset condition is related to the value of the first parameter.
  • the second preset condition is related to the value of the first parameter.
  • the first parameter is
  • the first preset condition at least includes the following conditions:
  • the first preset condition at least includes the following conditions:
  • the second preset condition at least includes the following conditions:
  • the second preset condition at least includes the following conditions:
  • the first preset condition at least includes the following conditions:
  • the second preset condition includes at least the following conditions:
  • the first preset condition at least includes the following conditions:
  • the second preset condition includes at least the following conditions:
  • Yet another aspect of the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, which, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • the embodiment of the present invention can send parameters related to the precoding matrix in different ways according to different conditions, thereby solving the problem that the current protocol is not perfect, so that the reporting scheme can be adapted to various configuration scenarios.
  • FIG. 1 is an exemplary schematic diagram of a wireless communication network 100 according to an embodiment of the present invention
  • FIG. 2 is an exemplary flowchart of a method 200 of indicating a precoding matrix according to an embodiment of the present invention
  • FIG. 3 is an exemplary flowchart of a method 300 of indicating a precoding matrix according to an embodiment of the present invention
  • FIG. 4 is an exemplary structural diagram of a user equipment 400 according to an embodiment of the present invention.
  • FIG. 5 is an exemplary structural diagram of a user equipment 500 according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an exemplary hardware structure of a communication device 600 according to an embodiment of the present invention.
  • FIG. 1 is an exemplary schematic diagram of a wireless communication network 100 according to an embodiment of the present invention.
  • the wireless communication network 100 includes base stations 102-106 and terminal devices 108-122, wherein the base stations 102-106 can pass a backhaul link (such as a straight line between the base stations 102-106).
  • the backhaul link may be a wired backhaul link (eg, fiber optic, copper cable), or a wireless backhaul link (eg, microwave).
  • Terminal devices 108-122 may communicate with corresponding base stations 102-106 through wireless links (as shown by the broken lines between base stations 102-106 and terminal devices 108-122).
  • the base stations 102-106 generally serve as access devices to provide wireless access services for the terminal devices 108-122, which generally serve as user equipment.
  • each base station corresponds to a service coverage area (also known as a cell, as shown in each oval area in Figure 1), and terminal equipment entering this area can communicate with the base station through wireless signals to receive the base station.
  • Wireless access service provided.
  • the service coverage areas of the base stations may overlap, and the terminal equipment in the overlapping area can receive wireless signals from multiple base stations, so these base stations can cooperate with each other to provide services for the terminal equipment.
  • multiple base stations may use coordinated multipoint (Coordinated multipoint, CoMP) technology to provide services for terminal devices in the above-mentioned overlapping areas. For example, as shown in FIG.
  • CoMP Coordinatd multipoint
  • the service coverage areas of the base station 102 and the base station 104 overlap, and the terminal device 112 is located in the overlapping area, so the terminal device 112 can receive wireless signals from the base station 102 and the base station 104
  • the base station 102 and the base station 104 may cooperate with each other to provide services for the terminal device 112 .
  • the service coverage areas of the base station 102, the base station 104 and the base station 106 have a common overlapping area, and the terminal device 120 is located in the overlapping area, so the terminal device 120 can receive information from the base station.
  • the wireless signals of 102 , 104 and 106 , the base stations 102 , 104 and 106 can cooperate with each other to provide services for the terminal device 120 .
  • the base station may also be called a Node B (NodeB), an evolved NodeB (eNodeB), an Access Point (Access Point, AP), and the like.
  • NodeB Node B
  • eNodeB evolved NodeB
  • Access Point Access Point
  • AP Access Point
  • base stations can be divided into macro base stations for providing macro cells, micro base stations for providing micro cells, and micro base stations for providing pico cells (Pico cells). cell) and a femto base station for providing femto cells.
  • other names may also be adopted for future base stations.
  • a base station typically includes multiple components, such as, but not limited to, a baseband portion, a radio frequency portion, and an antenna array portion.
  • the baseband part is used to perform various baseband processing operations, such as, but not limited to, encoding and decoding, modulation and demodulation, precoding, and time-frequency conversion.
  • the baseband part is usually implemented by, for example, but not limited to, a baseband unit (BaseBand Unit, BBU).
  • BBU BaseBand Unit
  • the RF section is used to perform various RF processing operations such as, but not limited to, IF processing and filtering.
  • the radio frequency part is usually implemented by, for example, but not limited to, a radio frequency unit (Radio Frequency Unit, RFU).
  • RFU Radio Frequency Unit
  • Antenna arrays can be divided into active antenna arrays and passive antenna arrays, which are responsible for transmitting and receiving signals.
  • the product form of base station is very rich.
  • the BBU can be integrated with the RFU within the same device, which is connected to the antenna array through cables such as, but not limited to, feeders.
  • the BBU can also be set apart from the RFU, and the two are connected by optical fibers, and communicate through, for example, but not limited to, the Common Public Radio Interface (Common Public Radio Interface, CPRI) protocol.
  • the RFU is usually called an RRU (Remote Radio Unit), which is connected to the antenna array through a cable.
  • the RRU can also be integrated with the antenna array.
  • the active antenna unit (Active Antenna Unit, AAU) product currently on the market adopts this structure.
  • the BBU can be further broken down into multiple parts.
  • the BBU can be further subdivided into a centralized unit (Centralized Unit, CU) and a distributed unit (Distribute Unit, DU) according to the real-time nature of the processed services.
  • the CU is responsible for processing non-real-time protocols and services
  • the DU is responsible for processing physical layer protocols and real-time services.
  • some physical layer functions can also be separated from the BBU or DU and integrated in the AAU.
  • the base station may include multiple parts, and there are multiple different product forms.
  • the technical solutions described in the embodiments of the present invention may only involve one or more parts of the base station, or may involve the entire base station. Therefore, the base station in this embodiment of the present invention may refer to a base station product that only includes several parts for implementing the technical solutions of the embodiment of the present invention, or may refer to the entire base station, where the above several parts may include, for example, but not limited to, the above One or more of the baseband part, radio frequency part, antenna array, BBU, RRU, RFU, AAU, CU and DU, etc.
  • the technical solutions provided by the embodiments of the present invention may only be implemented by corresponding chips in each of the above-mentioned parts.
  • the technical solutions provided by the embodiments of the present invention may involve one chip, or may Multiple chips are involved.
  • the technical solutions provided in the embodiments of the present invention can be implemented by the entire base station, or by several parts of the base station, and can also be implemented by one or more chips in these parts, that is, It is implemented by one or more chips in the base station.
  • a technical solution may only be implemented by the part involving baseband processing in the base station.
  • the technical solution may be implemented by the BBU, or by the CU, or by the DU, or by the CU and the DU jointly. Implementation, either by the AAU, or by one or more chips in these devices.
  • the terminal devices 108-122 may be various wireless communication devices with wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablet computers, wireless Data cards, wireless modems (Modulator demodulator, Modem) or wearable devices such as smart watches.
  • PDAs personal digital assistants
  • V2X Vehicle-to-everything
  • more and more devices that did not have communication functions before, such as but not limited to, household appliances, vehicles, Tool equipment, service equipment and service facilities begin to obtain wireless communication functions by configuring wireless communication units, so that they can access wireless communication networks and accept remote control.
  • Such devices have wireless communication functions because they are equipped with wireless communication units, so they also belong to the category of wireless communication devices.
  • the terminal devices 108-122 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and the like.
  • the base stations 102-106 and the terminal devices 108-122 can be configured with multiple antennas to support MIMO (Multiple Input Multiple Output, Multiple Input Multiple Output) technology. Further, the base stations 102 to 106 and the terminal devices 108 to 122 can support either a single-user MIMO (Single-User MIMO, SU-MIMO) technology or a multi-user MIMO (Multi-User MIMO, MU-MIMO), wherein MU-MIMO can be implemented based on space division multiple access (Space Division Multiple Access, SDMA) technology.
  • MIMO Multiple Input Multiple Output
  • SU-MIMO single-user MIMO
  • Multi-User MIMO, MU-MIMO multi-user MIMO
  • MU-MIMO can be implemented based on space division multiple access (Space Division Multiple Access, SDMA) technology.
  • the base stations 102 to 106 and the terminal devices 108 to 122 can also flexibly support Single Input Single Output (Single Input Single Output, SISO) technology, Single Input Multiple Output (Single Input Multiple Output, SIMO) and multiple input Single output (Multiple Input Single Output, MISO) technology to achieve various diversity (such as but not limited to transmit diversity and receive diversity) and multiplexing technology, where diversity technology may include, for example, but not limited to Transmit Diversity (TD) technology and receive diversity (Receive Diversity, RD) technology, the multiplexing technology may be a spatial multiplexing (Spatial Multiplexing) technology.
  • the transmit diversity technology may include Transmit Diversity.
  • Transmit Diversity improves transmission reliability by redundantly transmitting the original signal (eg, symbols) in time, frequency, space (eg, antennas), or various combinations of the three dimensions.
  • the quantity of redundant transmission can be set according to the channel model or channel quality.
  • the object of redundant transmission can be the original signal itself, or the signal after processing the original signal.
  • processing can include: For example, but not limited to, processing such as delay, negation, conjugation, rotation, etc., as well as processing obtained after the above-mentioned various processing are derived, evolved and combined.
  • transmit diversity includes, for example but not limited to, Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (SFTD), Time Switched Transmit Diversity (Time Switched Transmit Diversity, Diversity methods such as TSTD), Frequency Switch Transmit Diversity (FSTD), Orthogonal Transmit Diversity (OTD), Cyclic Delay Diversity (CDD), and the above-mentioned diversity methods are derived , evolution, and the diversity obtained after combining.
  • LTE Long Term Evolution, Long Term Evolution
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • CDD Cyclic Delay Diversity
  • transmit diversity also includes other various implementations. Therefore, the above description should not be construed as a limitation on the technical solutions of the present invention, and the technical solutions of the present invention should be understood as being applicable to various possible transmit diversity solutions.
  • the base stations 102-106 and the terminal devices 108-122 may communicate using various wireless communication technologies.
  • wireless communication technologies include but are not limited to time division multiple access (Time Division Multiple Access, TDMA) technology, frequency division multiple access (Frequency Division Multiple Access, FDMA) technology, code division multiple access (Code Division Multiple Access, CDMA) technology, time division Synchronous Code Division Multiple Access (Time Division-Synchronous Code Division Multiple Access, TD-SCDMA), Orthogonal Frequency Division Multiple Access (Orthogonal FDMA, OFDMA) technology, Single Carrier Frequency Division Multiple Access (Single Carrier FDMA, SC-FDMA) technology , Space Division Multiple Access (Space Division Multiple Access, SDMA) technology and the evolution and derivative technology of these technologies.
  • the above wireless communication technologies are adopted by many wireless communication standards as Radio Access Technology (RAT), thus constructing various wireless communication systems (or networks) that are widely known today, including but not limited to Global System for Mobile Communications (GSM), CDMA2000, Wideband CDMA (WCDMA), WiFi defined by the 802.11 series of standards, Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (Long Term Evolution, LTE), LTE-Advanced (LTE-Advanced, LTE-A), 5G, and evolution systems of these wireless communication systems, etc.
  • GSM Global System for Mobile Communications
  • WCDMA Wideband CDMA
  • WiFi defined by the 802.11 series of standards
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5G evolution systems
  • the wireless communication network 100 shown in FIG. 1 is only used for example, and is not used to limit the technical solution of the present invention. Those skilled in the art should understand that in a specific implementation process, the wireless communication network 100 may also include other devices, and the number of base stations and terminal devices may also be configured according to specific needs.
  • the terminal when reporting the weighting coefficients used to construct the precoding matrix, the terminal needs to report K NZ -v non-zero weighting coefficients, and these non-zero weighting coefficients will be further divided into amplitude and Various component parameters such as phase are then reported through, for example, but not limited to, multiple parameter groups (Group).
  • multiple parameter groups Group
  • the chapters in 38.214 V16.3.0 such as but not limited to chapter 5.2.3, which parameters are included in at least some of the parameters in the above-mentioned multiple parameter groups, which may be different from the numerical values. related, where K NZ is the number of non-zero coefficients, and v is the number of transmission layers.
  • the reporting parameters related to the precoding matrix can be included in three parameter groups for reporting, namely Group 0, Group 1 and Group 2, and the above chapters have detailed regulations on the specific reporting methods.
  • FIG. 2 is an exemplary flowchart of a method 200 of indicating a precoding matrix according to an embodiment of the present invention.
  • the method 200 can be performed by, for example, but not limited to, a user equipment (such as but not limited to a terminal).
  • Step 202 Generate indication information, where the indication information is used to indicate K NZ -v non-zero weighting coefficients, the K NZ -v non-zero weighting coefficients belong to K NZ non-zero weighting coefficients, v is the number of transmission layers,
  • the K NZ non-zero weighting coefficients are used to construct a precoding matrix, and the precoding matrix is constructed based on at least the K NZ non-zero weighting coefficients, m space domain vectors and n frequency domain vectors, wherein, in When the first preset condition is met, the indication information is generated based on the first manner, and when the second preset condition is met, the indication information is generated based on the second manner;
  • Step 204 Send the indication information.
  • the above indication information can be understood as including information used to indicate the relevant parameters of K NZ -v non-zero weighting coefficients, and on this basis, the indication information may also include other information, such as, but not limited to, for Information indicating spatial domain vectors and/or frequency domain vectors.
  • the embodiment of the present invention does not limit the indication manners of the m space-domain vectors and the n frequency-domain vectors. vector and n frequency domain vectors to indicate.
  • the precoding matrix is constructed based on at least the K NZ non-zero weighting coefficients, m spatial domain vectors and n frequency domain vectors.
  • other parameters may also be used, such as, but not limited to, other non-zero weighting coefficients, or other weighting coefficients, or other spatial domain vectors and/or frequency domain vectors.
  • K NZ is the number of some or all non-zero weighting coefficients used in the process of constructing the precoding matrix
  • v is the number of transmission layers or other quantitative parameters , these parameters are used in the process of constructing the precoding matrix.
  • K NZ and v can refer to the definitions in 38.214 V16.3.0, of course, can also be different from 38.214 V16.3.0, for example, but not limited to, the definitions in 38.214 V16.3.0 Add or delete other restrictions on the basis.
  • the first preset condition is related to the value of the first parameter.
  • the second preset condition is related to the value of the first parameter.
  • the first parameter is
  • the first preset condition at least includes the following conditions:
  • the first preset condition at least includes the following conditions:
  • the second preset condition at least includes the following conditions:
  • the second preset condition at least includes the following conditions:
  • the embodiments of the present invention do not limit the foregoing first manner and second manner.
  • the above-mentioned first mode may be the mode specified in the current standard. For example, set the number to A specific type of parameter (such as amplitude and/or phase), placed in Group 1 for sending, other provisions from the current standard, such as sending other parameters through other groups, etc.
  • the second preset condition contains , all the above-mentioned specific types of parameters can be placed in Group 1 for transmission, or all of them can be placed in Group 2 for transmission.
  • the second preset condition includes , the above-mentioned specific types of parameters, together with all parameters in Group 2, can be sent through Group 1. In this case, Group 2 will no longer be needed.
  • the above-mentioned first manner and second manner may also be other manners.
  • the number of transmission layers may be indicated by, for example, but not limited to, RI (Rank Indication, rank indication).
  • satisfying the first preset condition or satisfying the second preset condition should be understood in a broad sense, that is, the situation corresponding to the corresponding condition may occur, and should not be limited to the necessity of performing relevant judgment operations.
  • the indication information is generated based on the first manner or the second manner, and it can be understood that the indication information adopts a format corresponding to the corresponding manner.
  • parameters related to the precoding matrix can be sent in different ways according to different conditions, so as to solve the problem that the current protocol is not perfect, so that the reporting solution can be adapted to various configuration scenarios. .
  • FIG. 3 is an exemplary flowchart of a method 300 of indicating a precoding matrix according to an embodiment of the present invention.
  • the method 300 corresponds to the method 200, and in a specific implementation process, the method 300 can be performed by, for example, but not limited to, an access device (such as but not limited to a base station).
  • an access device such as but not limited to a base station.
  • Step 302 Receive indication information, where the indication information is used to indicate K NZ -v non-zero weighting coefficients, the K NZ -v non-zero weighting coefficients belong to K NZ non-zero weighting coefficients, v is the number of transmission layers, The K NZ non-zero weighting coefficients are used to construct a precoding matrix, and the precoding matrix is constructed based on at least the K NZ non-zero weighting coefficients, m space domain vectors and n frequency domain vectors, wherein, in When the first preset condition is met, the indication information is generated based on the first manner, and when the second preset condition is met, the indication information is generated based on the second manner;
  • Step 304 Determine K NZ -v non-zero weighting coefficients according to the indication information.
  • FIG. 4 is an exemplary structural diagram of a user equipment 400 according to an embodiment of the present invention.
  • the user equipment 400 includes a processing module 402 and a communication module 404 , where the processing module 402 is configured to perform step 202 in the method 200 , and the communication module 404 is configured to perform the step 204 in the method 200 .
  • FIG. 5 is an exemplary structural diagram of a user equipment 500 according to an embodiment of the present invention.
  • the user equipment 500 includes a processing module 502 and a communication module 504 , wherein the processing module 502 is configured to perform step 304 in the method 300 , and the communication module 504 is configured to perform the step 302 in the method 300 .
  • the processing module may be implemented by a processor, and the communication module 404 may be implemented by a transceiver.
  • FIG. 6 is a schematic diagram of an exemplary hardware structure of a communication device 600 according to an embodiment of the present invention.
  • the communication device may be used to implement the above-mentioned user equipment, and may also be used to implement the above-mentioned access device.
  • the user equipment 600 includes a processor 602 , a transceiver 604 , a plurality of antennas 606 , a memory 608 , an I/O (Input/Output) interface 610 and a bus 612 .
  • Memory 608 is further used to store instructions 6082 and data 6084.
  • the processor 602 , the transceiver 604 , the memory 608 , and the I/O interface 610 are communicatively connected to each other through a bus 612 , and a plurality of antennas 606 are connected to the transceiver 604 .
  • the processor 602 , the transceiver 604 , the memory 608 and the I/O interface 610 may also be communicatively connected to each other in other connection manners than the bus 612 .
  • the processor 602 can be a general-purpose processor, such as, but not limited to, a central processing unit (Central Processing Unit, CPU), or can be a special-purpose processor, such as, but not limited to, a digital signal processor (Digital Signal Processor, DSP), application Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA), etc. Furthermore, the processor 602 may also be a combination of multiple processors. In particular, in the technical solutions provided by the embodiments of the present invention, the processor 602 may be configured to perform, for example, the operations performed by the processing module 402 in the user equipment 400 shown in FIG. 4 , or the access device shown in FIG. 5 . Operations performed by processing module 502 in 500.
  • the processor 602 may be a processor specially designed to perform the above operations, or may be a processor that performs the above operations by reading and executing the instructions 6082 stored in the memory 608. The processor 602 may perform the above operations during the process. Data 6084 is required.
  • the transceiver 604 is configured to transmit signals through at least one antenna of the plurality of antennas 606 and receive signals through at least one antenna of the plurality of antennas 606 .
  • the transceiver 604 may be specifically configured to be executed by at least one antenna among the multiple antennas 606.
  • the transceiver module 404 in the user equipment 400 shown in FIG. The operation performed, or the operation performed by the transceiver module 504 in the access device 500 shown in FIG. 5 .
  • the memory 608 can be various types of storage media, such as random access memory (Random Access Memory, RAM), read only memory (Read Only Memory, ROM), non-volatile RAM (Non-Volatile RAM, NVRAM), optional Programmable ROM (Programmable ROM, PROM), Erasable PROM (Erasable PROM, EPROM), Electrically Erasable PROM (Electrically Erasable PROM, EEPROM), Flash memory, optical memory and registers, etc.
  • the memory 608 is specifically used to store the instructions 6082 and the data 6084.
  • the processor 602 can perform the operations described above by reading and executing the instructions 6082 stored in the memory 608, and data may be required in the process of performing the above operations. 6084.
  • the I/O interface 610 is used to receive instructions and/or data from peripheral devices, and output instructions and/or data to peripheral devices.
  • the user equipment 600 may also include other hardware devices, which are not listed one by one herein.
  • an embodiment of the present invention further provides a processor for executing the foregoing various methods.
  • the process of sending the above-mentioned information and receiving the above-mentioned information in the above-mentioned methods can be understood as the process of outputting the above-mentioned information by the processor, and the process of receiving the above-mentioned information input by the processor.
  • the processor when outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver, that is, the processor transmits the above-mentioned information through the transceiver.
  • other processing may be required before reaching the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor, that is, the processor receives the above-mentioned information through the transceiver. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to perform other processing before being input to the processor.
  • receiving the indication information mentioned in the foregoing method may be understood as the processor receiving the input indication information.
  • sending the indication information may be understood as the processor outputting the indication information.
  • the above-mentioned processor may be a processor specially used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor, in this case, the processor and the memory Attributable to, eg, contained in, a communication device.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • ROM read-only memory
  • the present invention does not limit the type of the memory and the setting manner of the memory and the processor.
  • a computer-readable storage medium comprising instructions, which when executed on a computer, cause the computer to execute any of the above methods.
  • the above-mentioned computer-readable storage medium is non-transitory.
  • an embodiment of the present invention also provides a computer program product containing instructions, which, when executed on a computer, causes the computer to execute any of the above methods.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.

Abstract

本发明实施例提供了一种指示预编码矩阵的方法、用户设备、接入设备,指示预编码矩阵的方法包括:生成指示信息,所述指示信息用于指示KNZ-v个非零加权系数,所述KNZ-v个非零加权系数属于KNZ个非零加权系数,v为传输层数,所述KNZ个非零加权系数用于构建预编码矩阵,所述预编码矩阵至少是基于所述KNZ个非零加权系数、m个空域向量和n个频域向量构建的,其中,在满足第一预设条件时,所述指示信息基于第一方式生成,在满足第二预设条件时,所述指示信息基于第二方式生成;发送所述指示信息。本发明实施例还提供了一种用户设备、接入设备,可以根据不同的条件,采用不同的方式发送预编码矩阵有关的参数,从而解决当前协议不够完善的问题,以使得上报方案适应多种配置场景。

Description

一种指示预编码矩阵的方法、用户设备、接入设备 技术领域
本发明实施例涉及通信技术,尤其涉及一种指示预编码矩阵的方法、用户设备、接入设备。
背景技术
多入多出(Multiple Input Multiple Output,MIMO)技术的出现,给无线通信带来了革命性的变化。通过在发射端设备和接收端设备上部署多根天线,MIMO技术可以显著提高无线通信系统的性能。例如,在分集场景下,MIMO技术可有效提升传输可靠性;在复用场景下,MIMO技术可成倍提升传输吞吐量。
MIMO技术的一个重要分支是预编码,该技术借助与信道属性相匹配的预编码矩阵来对待发射信号进行处理,使得经过预编码的待发射信号与信道相适配,因此传输过程得到优化,接收信号质量(例如SINR)得以提升。目前,预编码技术已经被多种无线通信标准采纳,例如但不限于LTE和5G NR。
目前正在讨论的5G NR R16协议引入了一种称为增强型类型二(Enhanced Type II)的信道信息上报方案,该上报方案用于上报多个参数,以构建预编码矩阵。具体来说,依照当前的R16协议38.214 V16.3.0中的章节,例如但不限于章节5.2.2.2.5,上述预编码矩阵至少是基于多个加权系数、多个空域分量(例如空域向量)和多个频域分量(例如频域向量)来构建的,而上述加权系数、空域分量和频域分量的至少一部分内容,需要由终端上报给基站,例如至少一部分加权系数,和/或至少一部分空域分量,和/或至少一部分频域分量。为此,最新的协议版本38.214 V16.3.0的章节,例如但不限于,章节5.2.3,对上述参数的上报进行了详细的规定,以具体说明需要上报上述参数之中的哪些参数,以及这些参数的具体上报方式。然而,由于需要上报的参数较多,38.214 V16.3.0尚有不完善之处,因此有必要进行进一步的优化。
发明内容
有鉴于此,实有必要提供一种指示预编码矩阵的方法,对现有指示方案进行优化。
根据本发明实施例的一个方面,提供了一种指示预编码矩阵的方法,包括:
生成指示信息,所述指示信息用于指示K NZ-v个非零加权系数,所述K NZ-v个非零加权系数属于K NZ个非零加权系数,v为传输层数,所述K NZ个非零加权系数用于构建预编码矩阵,所述预编码矩阵至少是基于所述K NZ个非零加权系数、m个空域向量和n个频域向量构建的,其中,在满足第一预设条件时,所述指示信息基于第一方式生成,在满足第二预设条件时,所述指示信息基于第二方式生成;
发送所述指示信息。
在一种可行的方案中,所述第一预设条件与第一参数的值有关。
在一种可行的方案中,所述第二预设条件与第一参数的值有关。
在一种可行的方案中,所述第一参数为
Figure PCTCN2020126611-appb-000001
在一种可行的方案中,所述第一预设条件至少包含如下条件:
Figure PCTCN2020126611-appb-000002
在一种可行的方案中,所述第一预设条件至少包含如下条件:
Figure PCTCN2020126611-appb-000003
在一种可行的方案中,所述第二预设条件至少包含如下条件,
Figure PCTCN2020126611-appb-000004
在一种可行的方案中,所述第二预设条件至少包含如下条件,
Figure PCTCN2020126611-appb-000005
在一种可行的方案中,所述第一预设条件至少包含如下条件:
Figure PCTCN2020126611-appb-000006
所述第二预设条件至少包含如下条件,
Figure PCTCN2020126611-appb-000007
在一种可行的方案中,所述第一预设条件至少包含如下条件:
Figure PCTCN2020126611-appb-000008
所述第二预设条件至少包含如下条件,
Figure PCTCN2020126611-appb-000009
本申请的又一方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本发明实施例可以根据不同的条件,采用不同的方式发送预编码矩阵有关的参数,从而解决当前协议不够完善的问题,以使得上报方案适应多种配置场景。
附图说明
图1是依照本发明一实施例的无线通信网络100的示范性示意图;
图2是依照本发明一实施例的指示预编码矩阵的方法200的示范性流程图;
图3是依照本发明一实施例的指示预编码矩阵的方法300的示范性流程图;
图4是依照本发明一实施例的用户设备400的示范性结构图;
图5是依照本发明一实施例的用户设备500的示范性结构图;
图6是依照本发明一实施例的通信设备600的示范性硬件结构示意图。
具体实施方式
图1是依照本发明一实施例的无线通信网络100的示范性示意图。如图1所示,无线通信网络100包括基站102~106和终端设备108~122,其中,基站102~106彼此之间可通过回程(backhaul)链路(如基站102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如基站102~106与终端设备108~122之间的折线所示)与对应的基站102~106通信。
基站102~106通常作为接入设备来为通常作为用户设备的终端设备108~122提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此这些基站可以进行相互协同,以此来为该终端设备提供服务。例如,多个基站可以采用多点协作(Coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,基站102与基站104的服务覆 盖区域存在交叠,终端设备112便处于该交叠区域之内,因此终端设备112可以收到来自基站102和基站104的无线信号,基站102和基站104可以进行相互协同,来为终端设备112提供服务。又例如,如图1所示,基站102、基站104和基站106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自基站102、104和106的无线信号,基站102、104和106可以进行相互协同,来为终端设备120提供服务。
依赖于所使用的无线通信技术,基站又可称为节点B(NodeB),演进节点B(evolved NodeB,eNodeB)以及接入点(Access Point,AP)等。此外,根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Micro cell)的微基站、用于提供微微蜂窝(Pico cell)的微微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站等。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
基站通常包含多个组成部分,例如但不限于,基带部分、射频部分和天线阵列部分。
基带部分用于执行多种基带处理操作,例如但不限于,编解码、调制解调、预编码和时频转换等。在具体实现过程中,基带部分通常由,例如但不限于,基带单元(BaseBand Unit,BBU)来实现。
射频部分用于执行多种射频处理操作,例如但不限于,中频处理和滤波等。在具体实现过程中,射频部分通常由,例如但不限于,射频单元(Radio Frequency Unit,RFU)来实现。
天线阵列可以分为有源天线阵列和无源天线阵列,负责完成信号的发射和接收。
基站的产品形态十分丰富。例如,在产品实现过程中,BBU可以与RFU集成在同一设备内,该设备通过线缆(例如但不限于馈线)连接至天线阵列。BBU还可以与RFU分离设置,二者之间通过光纤连接,通过例如但不限于,通用公共射频接口(Common Public Radio Interface,CPRI)协议进行通信。在这种情况下,RFU通常称为RRU(Remote Radio Unit,射频拉远单元),其通过线缆连接至天线阵列。此外,RRU还可以与天线阵列集成在一起,例如,目前市场上的有源天线单元(Active Antenna Unit,AAU)产品就采用了这种结构。
此外,BBU可以进一步分解为多个部分。例如,可以按照所处理业务的实时性将BBU进一步细分为集中单元(Centralized Unit,CU)和分布单元(Distribute Unit,DU)。CU负责处理非实时协议和服务,DU负责处理物理层协议和实时服务。更进一步的,部分物理层功能还可以从BBU或者DU中分离出来,集成在AAU中。
由上文可知,基站可以包含多个部分,且存在多种不同的产品形态。在这种情况下,本发明实施例描述的技术方案,可以仅仅涉及基站的一个或者多个部分,也可以涉及整个基站。因此,本发明实施例中的基站,可以是指仅包含用于实现本发明实施例技术方案的若干部分的基站产品,也可以是指整个基站,其中上述若干部分可以包括例如但不限于上文所述的基带部分、射频部分、天线阵列、BBU、RRU、RFU、AAU、CU和DU等之中的一个或者多个。更进一步的,本发明实施例提供的技术方案可能仅由上述若干部分之中各部分中的相应芯片来实现,在每个部分中,本发明实施例提供的技术方案可以涉及一个芯片,也可以涉及多个芯片。由此可见,本发明实施例提供的技术方案可以由整个基站来 实现,也可以由基站中的若干部分来实现,还可以由这些部分之中的一个或者多个芯片来实现,也就是说,由基站中的一个或者多个芯片来实现。举例来说,一个技术方案可能仅由基站中涉及基带处理的部分来实现,更进一步的,该技术方案可由BBU来实现,或者由CU来实现,或者由DU来实现,或者由CU和DU共同实现,或者由AAU来实现,或者由这些设备之中的一个或者多个芯片来实现。
有关基站的功能和产品形态在现有技术中已经进行了清楚的描述,本文不再赘述。
终端设备108~122可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(Modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(Internet of Things,IOT)技术和车联网(Vehicle-to-everything,V2X)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~122还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
基站102~106,和终端设备108~122均可配置有多根天线,以支持MIMO(多入多出,Multiple Input Multiple Output)技术。进一步的说,基站102~106和终端设备108~122既可以支持单用户MIMO(Single-User MIMO,SU-MIMO)技术,也可以支持多用户MIMO(Multi-User MIMO,MU-MIMO),其中MU-MIMO可以基于空分多址(Space Division Multiple Access,SDMA)技术来实现。由于配置有多根天线,基站102~106和终端设备108~122还可灵活支持单入单出(Single Input Single Output,SISO)技术、单入多出(Single Input Multiple Output,SIMO)和多入单出(Multiple Input Single Output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于发射分集(Transmit Diversity,TD)技术和接收分集(Receive Diversity,RD)技术,复用技术可以是空间复用(Spatial Multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如发射分集技术可以包括,Transmit Diversity。
MIMO技术的一个重要用途是发射分集(Transmit Diversity,TD)。发射分集通过在时间、频率、空间(例如天线)或者上述三个维度的各种组合上对原始信号(例如符号)进行冗余传输来提高传输可靠性。在具体实现过程中,冗余传输的数量可以根据信道模型或者信道质量进行设置,冗余传输的对象可以是原始信号本身,也可以是对原始信号进行处理后的信号,这种处理可以包括,例如但不限于,延迟、取反、共轭、旋转等处理,以及上述各种处理经过衍生、演进以及组合后获得的处理。
目前常用的发射分集包括,例如但不限于,空时发射分集(Space-Time Transmit Diversity,STTD)、空频发射分集(Space-Frequency Transmit Diversity,SFTD)、时间切换发射分集(Time Switched Transmit Diversity,TSTD)、频率切换发射分集(Frequency Switch Transmit Diversity,FSTD)、正交发射分集(Orthogonal Transmit Diversity,OTD)、循环延迟分集(Cyclic Delay Diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前LTE(长期演进,Long Term Evolution)标准便采用了空时块编码(Space Time Block Coding,STBC)、空频块编码(Space Frequency  Block Coding,SFBC)和CDD等发射分集方式。
上文以举例的方式对发射分集进行了的概括性的描述。本领域技术人员应当明白,除上述实例外,发射分集还包括其他多种实现方式。因此,上述介绍不应理解为对本发明技术方案的限制,本发明技术方案应理解为适用于各种可能的发射分集方案。
此外,基站102~106和终端设备108~122可采用各种无线通信技术进行通信。
伴随着通信理论和实践的不断发展,越来越多的无线通信技术开始出现并且逐步走向成熟。上述无线通信技术包括但不限于时分多址(Time Division Multiple Access,TDMA)技术、频分多址(Frequency Division Multiple Access,FDMA)技术、码分多址(Code Division Multiple Access,CDMA)技术、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、正交频分多址(Orthogonal FDMA,OFDMA)技术、单载波频分多址(Single Carrier FDMA,SC-FDMA)技术、空分多址(Space Division Multiple Access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(Radio Access Technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于全球移动通信系统(Global System for Mobile Communications,GSM)、CDMA2000、宽带CDMA(Wideband CDMA,WCDMA)、由802.11系列标准定义的WiFi、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)、长期演进(Long Term Evolution,LTE)、LTE升级版(LTE-Advanced,LTE-A)、5G以及这些无线通信系统的演进系统等。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络100还可能包括其他设备,同时也可根据具体需要来配置基站和终端设备的数量。
根据当前已经起草的R16协议38.214 V16.3.0,在上报用于构建预编码矩阵的加权系数时,终端需要上报K NZ-v个非零加权系数,并且这些非零加权系数会进一步划分成幅度和相位等多种分量参数,然后通过,例如但不限于多个参数组(Group)进行上报。依照38.214 V16.3.0中的章节,例如但不限于章节5.2.3,上述多个参数组中的至少部分参数分别具体包含哪些参数,可能与数值
Figure PCTCN2020126611-appb-000010
有关,其中为K NZ为非零系数的个数,v为传输层数。例如,依照38.214 V16.3.0中的章节5.2.3CSI reporting using PUSCH(使用PUSCH的CSI上报),与预编码矩阵有关的上报参数可以包含在三个参数组中进行上报,分别为Group 0,Group 1和Group 2,且上述章节对具体的上报方式进行了详细的规定。其中,
Figure PCTCN2020126611-appb-000011
代表Group 1中包含的特定类型的参数的个数,因此,通常情况下,
Figure PCTCN2020126611-appb-000012
需要为一个有效的值,即
Figure PCTCN2020126611-appb-000013
或者
Figure PCTCN2020126611-appb-000014
然而,在特定配置场景下,数值
Figure PCTCN2020126611-appb-000015
可能为无效值,例如
Figure PCTCN2020126611-appb-000016
或者
Figure PCTCN2020126611-appb-000017
由此可见,如果依照当前协议涉及相关通信设备,例如但不限于接入设 备和/或用户设备,则在特定场景下,可能会出现问题。因此,需要提供一种方案,可以解决上述问题。
图2是依照本发明一实施例的指示预编码矩阵的方法200的示范性流程图。在具体实现过程中,方法200可由例如但不限于用户设备(例如但不限于终端)来执行。
步骤202,生成指示信息,所述指示信息用于指示K NZ-v个非零加权系数,所述K NZ-v个非零加权系数属于K NZ个非零加权系数,v为传输层数,所述K NZ个非零加权系数用于构建预编码矩阵,所述预编码矩阵至少是基于所述K NZ个非零加权系数、m个空域向量和n个频域向量构建的,其中,在满足第一预设条件时,所述指示信息基于第一方式生成,在满足第二预设条件时,所述指示信息基于第二方式生成;
步骤204,发送所述指示信息。
具体来说,上述指示信息可以理解为包含用于指示K NZ-v个非零加权系数的相关参数的信息,在此基础上,该指示信息还可包含其他信息,例如但不限于,用于指示空域向量和/或频域向量的信息。同时,本发明实施例对上述m个空域向量和n个频域向量的指示方式不做限定,例如,可以采用现有指示方式,例如但不限于,38.214 V16.3.0,来对上述m个空域向量和n个频域向量进行指示。
此外,所述预编码矩阵至少是基于所述K NZ个非零加权系数、m个空域向量和n个频域向量构建的。换句话说,在构建预编码矩阵的过程中,还可能使用到其他参数,例如但不限于,其他的非零加权系数,或者其他的加权系数,或者其他的空域向量和/或频域向量。
由此可见,本发明实施例提供的技术方案可进行进一步的概括,K NZ为构建预编码矩阵过程中用到的部分或者全部非零加权系数的个数,v为传输层数或者其他数量参数,在构建预编码矩阵的过程中,会用到这些参数。
在具体实现过程中,上述参数例如但不限于K NZ和v可参考38.214 V16.3.0中的定义,当然,也可以与38.214 V16.3.0不同,例如但不限于,在38.214 V16.3.0中的定义基础上增删其他限定。
在具体实现过程中,所述第一预设条件与第一参数的值有关。
在具体实现过程中,所述第二预设条件与第一参数的值有关。
在具体实现过程中,所述第一参数为
Figure PCTCN2020126611-appb-000018
在具体实现过程中,所述第一预设条件至少包含如下条件:
Figure PCTCN2020126611-appb-000019
在具体实现过程中,所述第一预设条件至少包含如下条件:
Figure PCTCN2020126611-appb-000020
在具体实现过程中,所述第二预设条件至少包含如下条件,
Figure PCTCN2020126611-appb-000021
在具体实现过程中,所述第二预设条件至少包含如下条件,
Figure PCTCN2020126611-appb-000022
有上文所述可知,对于
Figure PCTCN2020126611-appb-000023
的情形,可以根据具体需要,包含在第一预设条件或者第二预设条件中。
本发明实施例对上述第一方式和第二方式不做限定。举例来说,当第一预设条件包含
Figure PCTCN2020126611-appb-000024
时,上述第一方式可以是当前标准中规定的方式。例如,将个数为
Figure PCTCN2020126611-appb-000025
的特定类型的参数(例如幅度和/或相位),放置在Group 1中发送,从当前标准的其他规定,例如通过其他Group发送其他参数等。而当第二预设条件包含
Figure PCTCN2020126611-appb-000026
时,可将上述特定类型的参数,全部放置在Group1发送,或者全部放置在Group 2中发送。又或者,当第二预设条件包含
Figure PCTCN2020126611-appb-000027
时,可将上述特定类型的参数,连同Group 2中的所有参数,均通过Group 1来发送。在这种情况下,将不再需要Group 2。不难理解,除上述方式外,上述第一方式和第二方式还可以为其他方式。
在具体实现过程中,传输层数可通过例如但不限于RI(Rank Indication,秩指示)来指示。
此外,上述满足第一预设条件或者满足第二预设条件,应做宽泛的理解,即出现相应条件所对应的情形即可,而不应限定于必须进行相关的判断操作。
此外,指示信息基于第一方式或者第二方式生成,可以理解为,指示信息采用相应方式对应的格式。
不难看出,通过本发明实施例提供的技术方案,可以根据不同的条件,采用不同的方式发送预编码矩阵有关的参数,从而解决当前协议不够完善的问题,以使得上报方案适应多种配置场景。
图3是依照本发明一实施例的指示预编码矩阵的方法300的示范性流程图。方法300与方法200相对应,在具体实现过程中,方法300可由例如但不限于接入设备(例如但不限于基站)来执行。
步骤302,接收指示信息,所述指示信息用于指示K NZ-v个非零加权系数,所述K NZ-v个非零加权系数属于K NZ个非零加权系数,v为传输层数,所述K NZ个非零加权系数用于构建预编码矩阵,所述预编码矩阵至少是基于所述K NZ个非零加权系数、m个空域向量和n个频域向量构建的,其中,在满足第一预设条件时,所述指示信息基于第一方式生成,在满足第二预设条件时,所述指示信息基于第二方式生成;
步骤304,根据所述指示信息确定K NZ-v个非零加权系数。
方法300中涉及的相关技术特性已经在上文结合方法200进行了详细的描述,因此此处不再赘述。
图4是依照本发明一实施例的用户设备400的示范性结构图。如图4所示,用户设备400包括处理模块402和通信模块404,其中处理模块402用于执行方法200中的步骤202,通信模块404用于执行方法200中的步骤204。
图5是依照本发明一实施例的用户设备500的示范性结构图。如图5所示,用户设备500包括处理模块502和通信模块504,其中处理模块502用于执行方法300中的步骤304,通信模块504用于执行方法300中的步骤302。
应注意,在具体实现过程中,处理模块可以通过处理器来实现,通信模块404可以通过收发器来实现。
图6是依照本发明一实施例的通信设备600的示范性硬件结构示意图。在具体实现过程中,该通信设备可以用于实现上述用户设备,也可以用于实现上述接入设备。
如图6所示,用户设备600包括处理器602、收发器604、多根天线606,存储器608、I/O(输入/输出,Input/Output)接口610和总线612。存储器608进一步用于存储指令6082和数据6084。此外,处理器602、收发器604、存储器608和I/O接口610通过总线612彼此通信连接,多根天线606与收发器604相连。在具体实现过程中,处理器602、收发器604、存储器608和I/O接口610也可以采用总线612之外的其他连接方式彼此通信连接。
处理器602可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,处理器602还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,处理器602可以用于执行,例如,图4所示的用户设备400中处理模块402所执行的操作,或者图5所示的接入设备500中处理模块502所执行的操作。处理器602可以是专门设计用于执行上述操作的处理器,也可以是通过读取并执行存储器608中存储的指令6082来执行上述操作的处理器,处理器602在执行上述操作的过程中可能需要用到数据6084。
收发器604用于通过多根天线606之中的至少一根天线发送信号,以及通过多根天线606之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,收发器604具体可以用于通过多根天线606之中的至少一根天线执行,例如,图4所示的用户设备400中收发模块404所执行的操作,或者图5所示的接入设备500中收发模块504所执行的操作。
存储器608可以是各种类型的存储介质,例如随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、非易失性RAM(Non-Volatile RAM,NVRAM)、可编程ROM(Programmable ROM,PROM)、可擦除PROM(Erasable PROM,EPROM)、电可擦除PROM(Electrically Erasable PROM,EEPROM)、闪存、光存储器和寄存器等。存储器608具体用于存储指令6082和数据6084,处理器602可以通过读取并执行存储器608中存储的指令6082,来执行上文所述的操作,在执行上述操作的过程中可能需要用到数据6084。
I/O接口610用于接收来自外围设备的指令和/或数据,以及向外围设备输出指令和/或数据。
应注意,在具体实现过程中,用户设备600还可以包括其他硬件器件,本文不再一一列举。
此外,本发明实施例还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信息和接收上述信息的过程,可以理解为由处理器输出 上述信息的过程,以及处理器接收输入的上述信息过程。具体来说,在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射,即处理器通过收发器发射上述信息。更进一步的,该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器,即处理器通过收发器接收上述信息。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
基于上述原理,举例来说,前述方法中提及的接收所述指示信息可以理解为处理器接收输入的所述指示信息。又例如,发送所述指示信息可以理解为处理器输出所述指示信息。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器,此时,处理器和存储器归属于一通信设备,例如包含在该通信设备中。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本发明实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
根据本发明实施例的第二十四方面,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
在具体实现过程中,上述计算机可读存储介质为非瞬时性的。
此外,本发明实施例还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
综上所述,以上仅为本发明的实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种指示预编码矩阵的方法,其特征在于,包括:
    生成指示信息,所述指示信息用于指示K NZ-v个非零加权系数,所述K NZ-v个非零加权系数属于K NZ个非零加权系数,v为传输层数,所述K NZ个非零加权系数用于构建预编码矩阵,所述预编码矩阵至少是基于所述K NZ个非零加权系数、m个空域向量和n个频域向量构建的,其中,在满足第一预设条件时,所述指示信息基于第一方式生成,在满足第二预设条件时,所述指示信息基于第二方式生成;
    发送所述指示信息。
  2. 如权利要求1所述的方法,其特征在于,所述第一预设条件与第一参数的值有关。
  3. 如权利要求1或者2所述的方法,其特征在于,所述第二预设条件与第一参数的值有关。
  4. 如权利要求2或者3所述的方法,其特征在于,所述第一参数为
    Figure PCTCN2020126611-appb-100001
  5. 如权利要求1所述的方法,其特征在于,所述第一预设条件至少包含如下条件:
    Figure PCTCN2020126611-appb-100002
  6. 如权利要求1所述的方法,其特征在于,所述第一预设条件至少包含如下条件:
    Figure PCTCN2020126611-appb-100003
  7. 如权利要求1或者5所述的方法,其特征在于,所述第二预设条件至少包含如下条件,
    Figure PCTCN2020126611-appb-100004
  8. 如权利要求1或者6所述的方法,其特征在于,所述第二预设条件至少包含如下条件,
    Figure PCTCN2020126611-appb-100005
  9. 一种指示预编码矩阵的方法,其特征在于,包括:
    接收指示信息,所述指示信息用于指示K NZ-v个非零加权系数,所述K NZ-v个非零加权系数属于K NZ个非零加权系数,v为传输层数,所述K NZ个非零加权系数用于构建预编码矩阵,所述预编码矩阵至少是基于所述K NZ个非零加权系数、m个空域向量和n个频域向量构建的,其中,在满足第一预设条件时,所述指示信息基于第一方式生成,在满足第二预设条件时,所述指示信息基于第二方式生成;
    根据所述指示信息确定所述K NZ-v个非零加权系数。
  10. 一种处理器,其特征在于,用于执行权利要求1至9中任一项所述的方法。
  11. 一种通信设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行存储器中存储的计算机程序,以执行权利要求1至9中任一项所述的方法。
  12. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使 得计算机执行权利要求1至9中任一项所述的方法。
  13. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至9中任一项所述的方法。
  14. 一种用户设备,其特征在于,包括:
    处理模块,用于生成指示信息,所述指示信息用于指示K NZ-v个非零加权系数,所述K NZ-v个非零加权系数属于K NZ个非零加权系数,v为传输层数,所述K NZ个非零加权系数用于构建预编码矩阵,所述预编码矩阵至少是基于所述K NZ个非零加权系数、m个空域向量和n个频域向量构建的,其中,在满足第一预设条件时,所述指示信息基于第一方式生成,在满足第二预设条件时,所述指示信息基于第二方式生成;
    通信模块,用于发送所述指示信息。
  15. 一种接入设备,其特征在于,包括:
    通信模块,用于接收指示信息,所述指示信息用于指示K NZ-v个非零加权系数,所述K NZ-v个非零加权系数属于K NZ个非零加权系数,v为传输层数,所述K NZ个非零加权系数用于构建预编码矩阵,所述预编码矩阵至少是基于所述K NZ个非零加权系数、m个空域向量和n个频域向量构建的,其中,在满足第一预设条件时,所述指示信息基于第一方式生成,在满足第二预设条件时,所述指示信息基于第二方式生成;
    处理模块,用于根据所述指示信息确定所述K NZ-v个非零加权系数。
  16. 如权利要求14或者15所述的设备,其特征在于,所述通信模块为收发器,所述处理模块为处理器。
PCT/CN2020/126611 2020-11-04 2020-11-04 一种指示预编码矩阵的方法、用户设备、接入设备 WO2022094821A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237017982A KR20230096072A (ko) 2020-11-04 2020-11-04 프리코딩 행렬 지시 방법, 사용자 장비 및 액세스 디바이스
EP20960283.8A EP4236095A4 (en) 2020-11-04 2020-11-04 METHOD FOR INDICating A PRECODING MATRIX, USER EQUIPMENT AND ACCESS DEVICE
JP2023527104A JP2023548870A (ja) 2020-11-04 2020-11-04 プリコーディング行列指示方法、ユーザ機器、およびアクセスデバイス
PCT/CN2020/126611 WO2022094821A1 (zh) 2020-11-04 2020-11-04 一种指示预编码矩阵的方法、用户设备、接入设备
CN202080106810.9A CN116508369A (zh) 2020-11-04 2020-11-04 一种指示预编码矩阵的方法、用户设备、接入设备
US18/309,197 US20230299834A1 (en) 2020-11-04 2023-04-28 Precoding Matrix Indication Method, User Equipment, and Access Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/126611 WO2022094821A1 (zh) 2020-11-04 2020-11-04 一种指示预编码矩阵的方法、用户设备、接入设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/309,197 Continuation US20230299834A1 (en) 2020-11-04 2023-04-28 Precoding Matrix Indication Method, User Equipment, and Access Device

Publications (1)

Publication Number Publication Date
WO2022094821A1 true WO2022094821A1 (zh) 2022-05-12

Family

ID=81456853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126611 WO2022094821A1 (zh) 2020-11-04 2020-11-04 一种指示预编码矩阵的方法、用户设备、接入设备

Country Status (6)

Country Link
US (1) US20230299834A1 (zh)
EP (1) EP4236095A4 (zh)
JP (1) JP2023548870A (zh)
KR (1) KR20230096072A (zh)
CN (1) CN116508369A (zh)
WO (1) WO2022094821A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102349243A (zh) * 2009-02-13 2012-02-08 Lg电子株式会社 在多天线系统中的数据传输方法和设备
CN106487435A (zh) * 2015-08-24 2017-03-08 电信科学技术研究院 一种传输编码指示信息和确定预编码矩阵的方法和装置
WO2020147104A1 (en) * 2019-01-18 2020-07-23 Qualcomm Incorporated Layer-specific coefficient quantity and/or quantization scheme reporting for type ii channel state information compression
US20200295812A1 (en) * 2019-03-11 2020-09-17 Samsung Electronics Co., Ltd. Method and apparatus for multiplexing and omitting channel state information

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020142974A1 (en) * 2019-01-10 2020-07-16 Qualcomm Incorporated Feedback for type ii channel state information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102349243A (zh) * 2009-02-13 2012-02-08 Lg电子株式会社 在多天线系统中的数据传输方法和设备
CN106487435A (zh) * 2015-08-24 2017-03-08 电信科学技术研究院 一种传输编码指示信息和确定预编码矩阵的方法和装置
WO2020147104A1 (en) * 2019-01-18 2020-07-23 Qualcomm Incorporated Layer-specific coefficient quantity and/or quantization scheme reporting for type ii channel state information compression
US20200295812A1 (en) * 2019-03-11 2020-09-17 Samsung Electronics Co., Ltd. Method and apparatus for multiplexing and omitting channel state information

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (SAMSUNG): "Feature lead summary for MU-MIMO CSI", 3GPP DRAFT; R1-2002138, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200430, 15 April 2020 (2020-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051876440 *
See also references of EP4236095A4 *

Also Published As

Publication number Publication date
EP4236095A1 (en) 2023-08-30
KR20230096072A (ko) 2023-06-29
CN116508369A (zh) 2023-07-28
EP4236095A4 (en) 2024-01-10
US20230299834A1 (en) 2023-09-21
JP2023548870A (ja) 2023-11-21

Similar Documents

Publication Publication Date Title
CN110419170B (zh) 一种指示及确定预编码向量的方法和设备
CN109194377B (zh) 信道测量方法和用户设备
WO2021083285A1 (zh) 信道测量方法和用户设备
US11496198B2 (en) Channel measurement method and user equipment
WO2019196768A1 (zh) 通信的方法和通信装置
WO2020143577A1 (zh) 参数配置方法和通信装置
WO2019109625A1 (zh) 秩指示方法,秩指示上报方法、设备及系统、存储介质
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
US20200128547A1 (en) Frequency Band Indication Method, Frequency Band Determining Method, Transmit End Device, And Receive End Device
US11909485B2 (en) Channel measurement method and user equipment
WO2019095969A1 (zh) 一种用户设备和接入设备
CN109428636B (zh) 波束指示和上报方法、网络设备、终端
WO2022094821A1 (zh) 一种指示预编码矩阵的方法、用户设备、接入设备
US9456411B2 (en) Transmission point selection
WO2019095970A1 (zh) 一种用户设备、接入设备和预编码方法
WO2022151458A1 (zh) 信道信息获取方法及相关设备
CN109802786B (zh) 一种用户设备和信道测量方法
US20240022289A1 (en) Methods of extending type ii port selection codebook for supporting higher rank transmission
WO2018082319A1 (zh) 一种预编码配置方法、设备及系统
WO2018127072A1 (zh) 一种信道信息反馈及确定方法、接收端和发射端设备
CN116633384A (zh) 信息传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960283

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 202080106810.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023527104

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023008073

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237017982

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020960283

Country of ref document: EP

Effective date: 20230525

ENP Entry into the national phase

Ref document number: 112023008073

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230427

NENP Non-entry into the national phase

Ref country code: DE