WO2022092887A1 - 모노머형 스트렙타비딘을 발현하는 균주 및 비오틴화된 화합물을 포함하는 암 세포 표적용 조성물 - Google Patents

모노머형 스트렙타비딘을 발현하는 균주 및 비오틴화된 화합물을 포함하는 암 세포 표적용 조성물 Download PDF

Info

Publication number
WO2022092887A1
WO2022092887A1 PCT/KR2021/015411 KR2021015411W WO2022092887A1 WO 2022092887 A1 WO2022092887 A1 WO 2022092887A1 KR 2021015411 W KR2021015411 W KR 2021015411W WO 2022092887 A1 WO2022092887 A1 WO 2022092887A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
composition
msa
seq
host cell
Prior art date
Application number
PCT/KR2021/015411
Other languages
English (en)
French (fr)
Inventor
권성영
민정준
홍영진
유성환
김동연
임진희
Original Assignee
전남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교 산학협력단 filed Critical 전남대학교 산학협력단
Priority to US18/251,188 priority Critical patent/US20230405131A1/en
Publication of WO2022092887A1 publication Critical patent/WO2022092887A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/555Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound pre-targeting systems involving an organic compound, other than a peptide, protein or antibody, for targeting specific cells
    • A61K47/557Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound pre-targeting systems involving an organic compound, other than a peptide, protein or antibody, for targeting specific cells the modifying agent being biotin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/66Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid the modifying agent being a pre-targeting system involving a peptide or protein for targeting specific cells
    • A61K47/665Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid the modifying agent being a pre-targeting system involving a peptide or protein for targeting specific cells the pre-targeting system, clearing therapy or rescue therapy involving biotin-(strept) avidin systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0052Small organic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0097Cells, viruses, ghosts, red blood cells, viral vectors, used for imaging or diagnosis in vivo
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/36Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria

Definitions

  • the present invention relates to a composition for targeting cancer cells comprising a strain expressing monomeric streptavidin and a biotinylated compound.
  • Cancer is currently one of the diseases that cause the most deaths worldwide, and the incidence of cancer is continuously increasing due to the extension of the average lifespan and the lowering of the age at which cancer occurs. According to the 2013 statistical data provided by the National Cancer Center of Korea, the total number of cancer patients in Korea registered in the Cancer Registration Statistics Department in 2010 was 202,053, and the number is continuously increasing.
  • streptavidin streptavidin
  • avidin avidin protein
  • biotin biotin
  • an anticancer agent that responds specifically to biotin-expressing tumors Or it can be applied to various biological applications, such as can utilize immune cells.
  • the above methods do not grasp the in vivo distribution of microorganisms in real time. Therefore, if it is possible to track how the symbiotic or pathogenic microorganisms are distributed in the body in a non-invasive way in real time, it can be applied to various biological applications, such as the production of beneficial microorganisms and the development of treatment methods for pathogenic microorganisms. can
  • One object of the present invention is to provide a composition for diagnosis and fluorescence imaging of cancer, including a host cell expressing monomeric streptavidin (mSA) and a selectively biotinylated compound.
  • mSA monomeric streptavidin
  • Another object of the present invention is a method for providing information for confirming the distribution of cells in vivo, comprising the step of confirming the host cell by imaging means in a target subject administered with a host cell expressing monomeric streptavidin is to provide
  • Another object of the present invention is to provide a pharmaceutical composition for preventing or treating cancer comprising a strain expressing monomeric streptavidin (mSA) and a selectively biotinylated compound.
  • mSA monomeric streptavidin
  • references to "in one embodiment” or “an embodiment” in various places throughout this specification do not necessarily refer to the same embodiment of the invention. Additionally, the particular features, forms, compositions, or properties may be combined in any suitable manner in one or more embodiments. Unless specifically defined in the present invention, all scientific and technical terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
  • compositions for tracking cells in vivo and for diagnosing cancer including a host cell transformed by introducing a gene encoding monomeric streptavidin (mSA) do.
  • mSA monomeric streptavidin
  • a method for providing information for diagnosing cancer comprising administering to a target subject an effective amount of a composition for diagnosing cancer.
  • the "streptavidin” is a protein having a high binding affinity to biotin and has been applied to various biological applications by using a specific interaction with the biotin.
  • the amino acid sequence of the streptavidin protein may be as shown in SEQ ID NO: 1, and the gene encoding the streptavidin may be shown in SEQ ID NO: 2, but is not limited thereto.
  • the "monomeric streptavidin (mSA)" is streptavidin present as a monomer so that the streptavidin forms a tetramer and may cause unwanted cross-linking of the biotin conjugate.
  • the host cell may be one into which a gene encoding a maltose-binding protein (MBP) is further introduced.
  • MBP maltose-binding protein
  • the “maltose-binding protein (MBP)” is a part of the maltose/maltodextrin system of E. coli, and is a protein of about 42.5 kDa that is responsible for the absorption and efficient catabolism of maltodextrin, and the amino acid of SEQ ID NO: 3 It may be represented by a sequence, and the gene encoding the maltose binding protein may be one represented by SEQ ID NO: 4, but is not limited thereto.
  • the host cell may be one into which a regulatory gene for regulating the expression of a gene encoding the monomeric streptavidin is further introduced.
  • the “regulation” or “regulation of expression” may mean that the transcription and translation of a specific gene is activated or repressed.
  • the regulatory gene is structurally DNA-dependent RNA polymerase (DNA-dependent RNA polymerase) binding site, transcription initiation point and transcription factor binding site, inhibitory and active protein binding site and directly to those skilled in the art Alternatively, it may refer to a nucleic acid fraction including any other sequence of nucleotides known to indirectly act on transcriptional amount regulation, but is not limited thereto.
  • the regulatory gene may be operably linked 5' upstream of the start codon of the gene encoding the monomeric streptavidin.
  • the regulatory gene is a ribosome binding site (RBS), a 5'-untranslated region (5'-Untransrated Region; 5'-UTR), a transcription factor binding site (transcription factor binding site) and induction It may be at least one selected from the group consisting of inducible promoters, but is not limited thereto.
  • the "ribosome-binding site (RBS)" is responsible for the recruitment of ribosomes upstream of the start codon of the gene to proceed with translation.
  • the ribosome binding site of prokaryotes includes a Shine-Dalgarno (SD) sequence having a 5'-AGGAGG-3' sequence.
  • SD Shine-Dalgarno
  • the 3' end of the 16S rRNA is complementary to the Shine-Dalgarno sequence to start translation, and the CCUCCU sequence, which is the complementary sequence, is called an anti-Shine-Dalgarno (ASD) sequence. .
  • the "5'-untranslated region (5'-UTR)" is a translation located on both sides of the coding region, which is a portion that is translated into amino acids of mRNA in the 5' region. It is a part that does not do this, and it was considered a part (junk) that was unnecessary in the evolutionary process, but it is known that it plays a big role in regulating gene expression.
  • the "transcription factor binding site” is a DNA region that serves to turn on or off a specific gene nearby.
  • the transcription factor binding site may be at least one selected from the group consisting of a promoter, an enhancer, and a silencer of a gene encoding the regulatory protein, but is not limited thereto.
  • the "inducible promoter” is a promoter that transcribes a gene specifically linked downstream only under specific chemical or physical conditions to be expressed, for example, IPTG (isopropyl-beta-D-1-thiogalactopyranoside)
  • the promoter of the LacZ gene expressed in the presence of galactose such as the araBAD promoter, which is an arabinose operon expressed only in the presence of L-arabinose, and the tet promoter whose expression is regulated by tetracycline, preferably the araBAD promoter can
  • the regulatory gene when the recombinant vector is transformed into a host cell, the regulatory gene is such that the monomeric streptavidin is expressed into the periplasm of the host cell, staying inside the host cell or the periplasm. It is preferable because the utilization of the expressed monomeric streptavidin is higher than that of the case where it is discharged without staying in the same.
  • the regulatory gene may be one represented by any one of SEQ ID NOs: 26 to 92.
  • the regulated gene may have a total Gibbs free energy change ( ⁇ G total ) of 0 or less.
  • the “total Gibbs free energy change ( ⁇ G total )” is, in the translation process of the monomeric streptavidin, the mRNA transcript of the regulatory gene on the 30S subunit complex of the ribosome. It is the difference between the Gibbs free energy before and after bonding.
  • the total Gibbs free energy change amount ( ⁇ G total ) is 0 or less, the transcription and translation ability of the gene encoding the monomeric streptavidin may increase.
  • the total Gibbs free energy change amount ( ⁇ G total ) may be calculated in the same way as in Equations 1 and 2 below.
  • ⁇ G total ( ⁇ G final )-( ⁇ G initial )
  • Equations 1 and 2 the “ ⁇ G final ” is the change in Gibbs free energy after the 30S subunit complex of the ribosome binds to the mRNA transcript of the regulatory gene;
  • the “ ⁇ G initial ” is the change in Gibbs free energy before the 30S subunit complex of the ribosome binds to the mRNA transcript of the regulatory gene.
  • the “ ⁇ G mRNA-rRNA ” is the amount of change in Gibbs free energy when a reaction that forms a complex between the mRNA of the regulatory gene and the 30S subunit of the ribosome occurs
  • the “ ⁇ G spacing ” is the regulatory gene It is a Gibbs free energy penalty for the sequence that forms the complex of the 30S subunit of the ribosome in the mRNA transcript and the spacing between the start codon is not optimized
  • the “ ⁇ G stacking ” is Spacing
  • the “ ⁇ G standby ” is the Gibbs free energy penalty when a binding reaction between the ribosome and the standby site of the mRNA transcript of the regulatory gene occurs
  • the “ ⁇ G” start ” is the change in Gibbs free energy when a reaction to form an mRNA-tRNA complex occurs
  • “ ⁇ G mRNA ” is the change in Gibbs free energy
  • each Gibbs free energy change is calculated in consideration of variables such as interaction of gene strands in a diluted solution, concentration, complexity of base pairing, knot structure, etc. in a diluted solution, such as NUPACK, ViennaRNA, or UNAfold. It may be calculated by software, but is not limited thereto.
  • the regulatory gene may be one whose translation initiation rate (TIR) is adjusted to have a specific range so as to maximize the production of monomeric streptavidin.
  • TIR translation initiation rate
  • the "translation initiation rate (TIR)" can be calculated by Equation 3 below, and in synthetic biology, the translation step is a step that limits the rate of overall protein production, so it is an important factor in gene expression.
  • TIR exp[k ⁇ ( ⁇ G total )-( ⁇ G1 total ) ⁇ ]
  • TIR The unit of TIR is au
  • k is the Boltzmann constant, which may be 0.4 to 0.6 mol/kcal;
  • ⁇ G total is as defined in Equation 1 above;
  • ⁇ G1 total corresponds to the amount of change in Gibbs free energy in the vector of the present invention that does not include the regulatory gene, preferably does not include the regulatory gene, and the remaining sequences may correspond to the amount of change in free energy of the same vector, However, the present invention is not limited thereto. Therefore, when the regulatory gene is not included, the translation initiation rate corresponds to 1 au.
  • the regulating gene has a translation initiation rate of 50 to 45000 au, preferably 900 to 45000 au, because the transformed strain can produce the monomeric streptavidin with high efficiency.
  • sequence length of the regulatory gene may be 15 to 39 bp, preferably 26 to 31 bp, but is not limited thereto.
  • the regulatory gene may include “AGG”, which is the gene sequence shown in SEQ ID NO: 5
  • the regulatory gene may include “TAGG”, which is the gene sequence shown in SEQ ID NO: 6
  • the regulatory gene may include, but is not limited to, "ATAGG”, which is the gene sequence shown in SEQ ID NO: 7.
  • the regulatory gene may have a spacing of 6 to 13 bp, preferably 6 to 10 bp, from the 3' end of the gene sequence shown in SEQ ID NOs: 5 to 7 to the start codon.
  • the spacing is 6 to 13 bp, the Gibbs free energy penalty ( ⁇ G spacing ) for the non-optimized spacing between the initiation codon and the sequence forming the rRNA complex in the mRNA transcript is minimized, and as a result, the monomeric strep It can increase the expression level of tavidin.
  • the regulatory gene has a total Gibbs free energy change ( ⁇ G total ) of Equation 1 or less, and a translation initiation rate (TIR) of 900 to 9000 au, and a sequence length of 26 to 9000 au It consists of 31 bp, contains the gene sequence represented by any one of SEQ ID NOs: 5 to 7, and from the 3' end of the gene represented by any one of SEQ ID NOs: 5 to 7 Start of the gene encoding the monomeric streptavidin The spacing to the codon may be 6 to 10 bp.
  • the regulatory gene may be represented by SEQ ID NO: 32 or 36.
  • Transformation of the present invention can be accomplished by a vector.
  • the “vector” or gene construct is a means for delivering and expressing a foreign gene into a cell, and the vector of the present invention includes plasmids, cosmids, artificial chromosomes, It may be a non-viral vector such as liposomes, or a viral vector such as a retrovirus, an adenovirus, an adenovirus-associated virus (AAV), or a phage.
  • AAV adenovirus-associated virus
  • the "plasmids" are episomal DNA molecules separated from chromosomes and capable of independently proliferating by possessing their own origin of replication.
  • the plasmid can function as a vector by being recombined by a restriction enzyme and then transferred to a host cell.
  • the “cosmids” are plasmids using cos sites, which are the cohesive ends of pie phages, and are mainly used to make gene libraries due to the large size of insertable genes.
  • the "artificial chromosomes” are chromosomes whose structure has been artificially changed for use as a vector, such as bacterial artificial chromosomes, yeast artificial chromosomes, and human artificial chromosomes.
  • the liposomes are artificially made vesicular structures composed of one or more lipid bilayers. It is a drug carrier system that delivers The efficacy of the liposome depends on its ability to deliver and penetrate the target according to the properties of the membrane and components.
  • the "retrovirus” refers to a virus having a single-stranded positive-sense RNA as a genome that requires a DNA intermediate through reverse transcription, and a retroviral vector is a host cell. It is widely used in gene therapy because the viral vector remains stable even after being inserted into the chromosome and dividing cells.
  • the “Lentivirus” is a kind of retrovirus, and is a virus endogenous to the host (endogenous retrovirus; ERV).
  • the virion particles are slightly polymorphic, 80-100 nm in diameter spherical, the nucleocapsid (core) is isometric, and the nucleotides are concentric rod-shaped or cone-shaped.
  • the "adenovirus (Adenovirus)" is a virus having about 36 kb DNA, and has 50 or more genes, so a vector can be generated by substituting several viral genes with genes to be expressed.
  • the "Adenovirus-associated virus (AAV)” is a satellite virus that has a very small DNA genome and requires an adenovirus. When used as a vector, it is inserted into a specific region of the human chromosome. Causes latent infection.
  • the recombinant vector may be a constitutive expression vector or an inducible expression vector, for example, pKD13, pCP20, pMA1, pUC19, pJL, pBAD, pET, pGEX, pMAL, pALTER, pCal, pcDNA, pDUAL, pTrc, pQE, pTet, pProEX HT, pPROLar.A, pPROTet.E, pRSET, pSE280, pSE380, pSE420, pThioHis, pTriEx, pTrxFus, Split GFP Fold ′nCDuet, pACYCDuet -1, pCDF-1b, pCDFDuet-1, pCOLADuet-1, pLysS, pRSF-1b, pRSFDuet-1, pT7-FLAG
  • the pKD13 consists of about 3.4 kbp, beta-lactamase, Tn5 neomycin phosphotransferase, lambda terminator and R6K gamma
  • the origin of replication may include a gene.
  • the pCP20 plasmid consists of about 9.4 kbp, EcoRI, cat, Pstl, HindIII, Ci857, flp, bamHi, beta-lactamase, mobA, mob2 and repA101ts gene regions. may include
  • the pMA1 plasmid is Microcystis aeruginosa f. aeruginosa Kutzing , consists of about 2.3 kbp, and may include the HincII gene region.
  • the pJL plasmid may have an empty backbone and be based on an RNA virus.
  • the pBAD, pCMV and pCMV plasmids are expressed in mammalian host cells, use CMV and a promoter, and may have ampicillin resistance.
  • the pET, pBluescript, pCal and pcDNA plasmids are expressed in a bacterial host cell, use a T7 or Lac promoter, and may have ampicillin resistance.
  • the pMAL and pGEX plasmids may be expressed in a bacterial host cell, use the Tac promoter, and have ampicillin resistance.
  • the pALTER plasmid is expressed in a bacterial host cell, uses the T7 promoter, and may have tetracycline resistance.
  • the pDUAL plasmid is expressed in a bacterial host cell, uses a T7 or Lac promoter, and may have kanamycin resistance.
  • the pTrc plasmid is expressed in a bacterial host cell, uses the trc promoter, and may have ampicillin resistance.
  • the pUC19 plasmid is a vector expressed in a bacterial host cell, consisting of circular double-stranded DNA of about 2.6 kbp, and the pUC18 and MCS regions are opposite.
  • the pU19 vector is most widely used for transformation, and the host cells introduced with the foreign DNA by the pU19 have a different color of colonies in the growth medium compared to the control, and thus can be distinguished.
  • the pQE plasmid may use the T5-lac promoter and have ampicillin resistance.
  • the pCas9, pwtCas9-bacteria and pgRNA-bacteria plasmids may be for expressing Cas9 nuclease gRNA using CRISPR technology.
  • the method for transforming the host cell may be performed according to a conventional introduction method in the art, and the specific method is not particularly limited, but for example, a bacterial transformation method, CaCl 2 precipitation method, Hanahan method, electroporation method, calcium phosphate precipitation method, protoplast fusion method, stirring method using silicon carbide fiber, agrobacterium-mediated trait by using DMSO (dimethyl sulfoxide) as a reducing material in CaCl 2 method Transformation method, transformation method using PEG, dextran sulfate, lipofectamine and drying/suppression mediated transformation method, etc. can be used.
  • DMSO dimethyl sulfoxide
  • the host cell when the host cell is administered to an individual having cancer, there is an effect of expressing the monomeric streptavidin only in the cancerous tissue. Therefore, the host cells of the present invention have low viability in normal tissues compared to cancer tissues when administered to individuals with cancer, there is no infection in normal tissues, and can express monomeric streptavidin only in cancer tissues, desirable.
  • the normal tissue may be a tissue of an organ selected from the group consisting of lung, liver, and spleen, but is not limited thereto.
  • the host cells when the host cells are administered in vivo, there is an effect of confirming the distribution of the host cells in vivo.
  • the host cell may be any one or more cells selected from the group consisting of bacteria, yeast, fungal cells, plant cells, insect cells, and animal cells.
  • Lactococcus Lactococcus
  • Leuconostoc Leuconostoc
  • Pediococcus Pediococcus
  • Entrococcus Enterococcus
  • Streptococcus Streptococcus
  • Veilonella Veilonella
  • Escherichia Escherichia Eubacterium
  • Pseudomonas Salmonella , Shigella , Helicobacter , Campylobacter , Yersinia , Listeria , Streptomyces ( Streptomyces ), Peptococcus ( Peptococcus ), Peptostreptococcus , Proteus ( Proteus ), Ruminococcus , Enterobacter ( Enterobacter ), Citrobacter ( Citrobacter ) ), Haemophilus ( Haemophilus ), Staphylococcus ), Mycobacterium (
  • the yeast is Saccharomyces ( Saccharomyces ), Debaromyces ( Debaromyces ), Candida ( Candida ), Kluyveromyces ( Kluyveromyces ), Pichia ( Pichia ), Torulaspora ( Torulaspora ) and green onions It may be any one or more selected from Phaffia , but is not limited thereto.
  • the fungus may be any one or more selected from Aspergillus , Rhizopus , Mucor , Penicillium and Basidiomycota , but is limited thereto. it doesn't happen
  • the insect cell may be any one or more selected from Drosophila and Spodoptera Sf9 cells, but is not limited thereto.
  • the animal cells are CHO (Chinese hamster ovary cells), SP2/0 (mouse myeloma), human lymphoblastoid, COS, NSO (mouse myeloma), 293T cells, Bow Mela Any one or more selected from Norma cells, HT-1080 cells, BHK cells (Baby Hamster Kidney cells), HEK cells (Human Embryonic Kidney cells) and PERC.6 cells (human retinal cells) may be, but is not limited thereto.
  • the host cell may be a bacterial cell, preferably an anaerobic strain.
  • the above-described host cells are injected into the human body for the purpose of cancer diagnosis, prevention and treatment, since the blood vessel formation is incomplete and targets the inside of the cancer tissue, which is an oxygen-deficient environment, real-time imaging in such a strain is possible.
  • a recombinant vector capable of simultaneously expressing a reporter protein and an anticancer protein is introduced, it is possible to diagnose and treat cancer very effectively at the same time.
  • the bacteria may be at least one selected from the group consisting of Salmonella sp. strain, Clostridium sp. strain, Bifidobacterium sp. strain, and Escherichia coli sp. strain, more preferably Preferably, it may be at least one selected from the group consisting of Salmonella typhimurium, Salmonella choleraesuis and Salmonella enteritidis, and more preferably, Salmonella typhimurium.
  • the present invention is not limited thereto.
  • the "Salmonella typhimurium” is a causative bacterium that causes typhoid of the genus Salmonella.
  • the Salmonella typhimurium is a rod-shaped bacillus that has flagella and is Gram-negative.
  • the Salmonella typhimurium is weak to heat and dies in 20 minutes at 60 ° C. It is also a cause of food poisoning because it is primarily contaminated by livestock, wild animals, carriers, etc., milk, eggs, etc. It can cause a type of salmonellosis.
  • the "Salmonella choleraesuis” is a fungus well known as swine cholera in the genus Salmonella, which infects both humans and animals.
  • the Salmonella cholerasuis is the main causative agent of acute sepsis caused by Salmonella.
  • This fungus is a Gram-negative, facultative anaerobic bacillus with motile hairs. It has no lactose decomposition ability, does not form indole, and does not produce hydrogen sulfide, which distinguishes it from E. coli.
  • the optimum temperature for growth is 35 ⁇ 37°C
  • the proliferative temperature range is 10 ⁇ 43°C, and it is killed by heating at 60°C for 20 minutes.
  • the optimum pH is 7.2 ⁇ 7.4, and the size is 0.5 ⁇ 0.8 ⁇ 3 ⁇ 4 ⁇ m.
  • the "Salmonella enteritidis” is a causative bacterium of bacterial infection-type food poisoning of the genus Salmonella, also called enteritis.
  • the Salmonella enteritidis is a representative bacterium of Salmonella, which can cause infection in all animals and has very high host adaptability. It is a Gram-negative, facultative anaerobic bacillus with a motile hair. It has no lactose decomposition ability, does not form indole, and does not produce hydrogen sulfide, which distinguishes it from E. coli.
  • the optimum temperature for growth is 35 ⁇ 37°C, and the temperature range for growth is 10 ⁇ 43°C, and it is killed by heating at 60°C for 20 minutes.
  • the optimum pH is 7.2 ⁇ 7.4, and the size is 0.5 ⁇ 0.8 ⁇ 3 ⁇ 4 ⁇ m.
  • the "Salmonella infantis" is a strain infected by eggs or poultry, and Salmonella paratyphi and Salmonella typhi are the causative strains of typhoid.
  • the bacteria may be attenuated to reduce toxicity and other side effects when administered to a subject.
  • the bacteria are aroA, aroC, aroD, aroE, Rpur, htrA, ompR, ompF, ompC, galE, cya, crp, cyp, phoP, phoQ, rfaY, dksA, hupA, sipC, clpB, at least selected from the group consisting of clpP, clpX, pab, nadA, pncB, pmi, rpsL, hemA, rfc, poxA, galU, cdt, pur, ssa, guaA, guaB, fliD, flgK, flgL, relA, spoA and spoT
  • a gene encoding one may be modified and expressed.
  • the bacteria may be attenuated due to lack of guanosine polyphosphate synthesis ability.
  • the guanosine polyphosphate may be guanosine-5-diphosphate-3-diphosphate (ppGpp), and the host cell is relA that hydrolyzes guanosine-5-diphosphate-3-diphosphate (ppGpp) or
  • the spoT-encoding gene for synthesizing guanosine-5-diphosphate-3-diphosphate (ppGpp) may be modified to lack the ability to synthesize guanosine-5-diphosphate-3-diphosphate (ppGpp),
  • the present invention is not limited thereto.
  • the method of applying the modification to the gene in the bacteria can be performed by a method of deletion or disruption of various genes known in the art, for example, the deletion and disruption method is homologous recombination, chemical mutation. Induction, irradiation mutagenesis or transposon mutagenesis may be performed by a method such as, but not limited to.
  • composition of the present invention may further include a biotinylated compound, wherein the monomeric streptavidin expressed in the host cell is a biotin-binding protein and may include a binding site capable of interacting with biotin.
  • the biotinylated compound is biotin, preferably a compound containing at least one amine group to react with D-biotin, such as N-hydroxysuccinimidyl ester (NHS-biotin) of D-biotin. It may be modified to have a biotin group using a general biotinylated reagent.
  • D-biotin such as N-hydroxysuccinimidyl ester (NHS-biotin) of D-biotin.
  • NHS-biotin N-hydroxysuccinimidyl ester
  • the biotinylated compound can pre-target the monomeric streptavidin expressed in the host cell, and thus the host cell, or the monomeric streptavidin expressed from the host cell, and biotinylated
  • the compound-biotin-streptavidin complex can be formed with high efficiency at the location of the host cell in the living body.
  • the biotinylated compound may be a biotinylated contrast agent.
  • the contrast agent may be at least one selected from the group consisting of a radionuclide, a fluorescent label, an enzyme label, a chemiluminescent marker, a gold agent, and a magnetic agent, but alpha rays, gamma rays, positrons (Positron), X-rays, ultraviolet rays , as long as it generates or amplifies one or more signals selected from visible light, infrared light, ultrasonic wave and magnetic resonance.
  • the radioactive isotopes or radionuclides are C-11, F-18, Cu-64, N-13, Ga-68, Sc-44, Zr-89, Y-90, Tc-99m, In- It may be any one or more selected from the group consisting of 111, I-123, I-124, I-125, I-131 and Lu-177, but is not limited thereto.
  • the means for detecting the radioactive isotope or radionuclide may be positron emission tomography (PET) or single photon emission computed tomography (SPECT), but is not limited thereto.
  • PET positron emission tomography
  • SPECT single photon emission computed tomography
  • positron emission tomography In the positron emission tomography (PET) method, when a drug (radioactive drug) bound to a radioactive isotope emitting a positron is injected into the body, the positron emitted from the body combines with an adjacent electron and annihilates to generate two photons, and This is a method of composing an image by detecting these two photons.
  • the single photon emission computed tomography (SPECT) is a method of constructing an image by detecting gamma rays emitted from the body when a drug bound to a radioisotope that generates a single photon (gamma rays) is injected into the body.
  • the positron tomography is a method of constructing an image in real time by injecting a drug bound to a radioactive isotope that emits positrons into the body, measuring positrons generated in the body, and the brain single photon tomography (SPECT) is a test that shows the state of cerebral blood flow by injecting an isotope into a blood vessel.
  • PET positron tomography
  • SPECT brain single photon tomography
  • the enzyme label may be at least one selected from the group consisting of horseradish peroxidase (HRP), luciferase and alkaline phosphatase, but is not limited thereto.
  • HRP horseradish peroxidase
  • luciferase luciferase
  • alkaline phosphatase alkaline phosphatase
  • the term “in vivo” refers to an organism in which the host cell can be infected or injected, and the subject may include both mammals and non-mammals.
  • mammals include humans, non-human primates such as chimpanzees, other apes or monkey species; livestock animals such as cattle, horses, sheep, goats, pigs; domestic animals such as rabbits, dogs or cats; laboratory animals such as rodents such as rats, mice or guinea pigs, but are not limited thereto.
  • examples of the non-mammal in the present invention may include, but are not limited to, birds or fish.
  • the cancer is melanoma, fallopian tube cancer, brain cancer, small intestine cancer, esophageal cancer, lymph adenocarcinoma, gallbladder cancer, blood cancer, thyroid cancer, endocrine adenocarcinoma, oral cancer, liver cancer, biliary tract cancer, colorectal cancer, rectal cancer, cervical cancer, ovarian cancer , kidney cancer, stomach cancer, duodenal cancer, prostate cancer, breast cancer, brain tumor, lung cancer, undifferentiated thyroid cancer, uterine cancer, colon cancer, bladder cancer, ureter cancer, pancreatic cancer, bone/soft tissue sarcoma, skin cancer, non-Hodgkin's lymphoma, Hodgkin's lymphoma, multiple It may be at least one selected from the group consisting of myeloma, leukemia, myelodysplastic syndrome, acute lymphoblastic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myelom
  • the "diagnosis” means determining the susceptibility of a subject to a specific disease or disorder, determining whether the subject currently has a specific disease or disorder, or having a specific disease or disorder Determining a subject's prognosis (e.g., identifying a pre-metastatic or metastatic cancer state, staging the cancer, or determining the responsiveness of a cancer to treatment), or therametrics (e.g., for treatment efficacy); monitoring the state of an object to provide information).
  • the diagnosis is to determine whether or not the above-described cancer occurs or the size of the cancerous tissue.
  • the "individual” refers to an individual in need of diagnosis, prevention or treatment of cancer, and may include both mammals and non-mammals.
  • mammals include humans, non-human primates such as chimpanzees, other apes or monkey species; livestock animals such as cattle, horses, sheep, goats, pigs; domestic animals such as rabbits, dogs or cats; laboratory animals such as rodents such as rats, mice or guinea pigs, but are not limited thereto.
  • examples of the non-mammal in the present invention may include, but are not limited to, birds or fish.
  • the “administration” refers to the process of introducing the active ingredient of the present invention to an individual by any suitable method, and the preparation of the compound administered as described above is not particularly limited, and solid form preparation, liquid It may be administered as a preparation in the form of an aerosol preparation for inhalation, or in a solid form preparation which is intended to be converted immediately before use into a liquid form preparation for oral or parenteral administration, for example, as a powder, granules, capsules. , tablets, oral dosage forms such as aqueous suspensions, external preparations, suppositories, and sterile injection solutions may be formulated and administered, but the present invention is not limited thereto.
  • a pharmaceutically acceptable carrier may be additionally administered together with the host cell or compound of the present invention.
  • the pharmaceutically acceptable carrier may include a binder, a lubricant, a disintegrant, an excipient, a solubilizer, a dispersing agent, a stabilizer, a suspending agent, a pigment, a flavoring agent, etc.
  • a buffer Preservatives, analgesics, solubilizers, isotonic agents, stabilizers, etc.
  • bases, excipients, lubricants, preservatives, etc. can be used for topical administration.
  • the formulation of the compound of the present invention can be prepared in various ways by mixing with a pharmaceutically acceptable carrier as described above.
  • a pharmaceutically acceptable carrier as described above.
  • it in the case of oral administration, it can be prepared in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, etc., and in the case of injections, it can be prepared in the form of unit dose ampoules or multiple doses. there is.
  • it can be formulated as a solution, suspension, tablet, capsule, sustained release formulation, and the like.
  • suitable carriers, excipients and diluents for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, malditol, starch, acacia gum, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate or mineral oil may be used.
  • it may further include a filler, an anti-agglomeration agent, a lubricant, a wetting agent, a flavoring agent, an emulsifier, a preservative, and the like.
  • Routes of administration of the compounds according to the present invention include, but are not limited to, oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual or work. Oral or parenteral administration is preferred.
  • parenteral includes subcutaneous, intradermal, intravenous, intramuscular, intraarticular, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.
  • compositions of the present invention may also be administered in the form of suppositories for rectal administration.
  • the effective amount of the host cell or compound in the present invention depends on several factors including the type of host cell used, the activity of the particular compound used, the age, weight, general health, sex, diet, time of administration, route of administration, excretion rate and formulation of the subject. It can be variously changed depending on the patient, but may be appropriately selected by those skilled in the art, and may be administered at 0.0001 to 100 mg/kg or 0.001 to 100 mg/kg per day. Administration may be administered once a day, or may be administered in several divided doses. The above dosage does not limit the scope of the present invention in any way.
  • the host cell or compound according to the present invention may be formulated as pills, dragees, capsules, solutions, gels, syrups, slurries, and suspensions.
  • a target subject administered with a host cell expressing monomeric streptavidin confirming the distribution of cells in vivo or cancer comprising the step of confirming the host cell by imaging means It provides a method of providing information for the diagnosis of
  • the target subject may also be administered with a biotinylated compound.
  • the biotinylated compound binds to the host cell in which the monomeric streptavidin is expressed, and has the effect of confirming the in vivo distribution of the host cell.
  • the target subject may also be administered with a biotinylated compound.
  • the biotinylated compound has the effect of expressing the monomeric streptavidin, binding to the host cell present in the cancer cell, and confirming the size and location of the cancer.
  • the photographing means may be one using one or more signals selected from alpha rays, gamma rays, positrons, X-rays, ultraviolet rays, visible rays, infrared rays, ultrasonic waves, and magnetic resonance.
  • the signal may be included without limitation as long as it is non-invasive or has low invasiveness to the target object, and is generated or amplified by the biotinylated compound.
  • the presence, range or magnitude of the signal generated or amplified by the biotinylated compound may be measured by the imaging means during the confirming step.
  • the target subject may also be administered arabinose.
  • the arabinose enables the continuous expression of the monomeric streptavidin of the host cell, thereby having the effect of confirming the biodistribution of the host cell.
  • the confirming step may be performed once or a plurality of times.
  • the step of checking can be performed multiple times based on a specific time point, or the step of checking can be performed multiple times over a predetermined period to check the in vivo distribution of the host cells over time, In addition to diagnosing the likelihood of developing cancer, it is also possible to predict the prognosis of a cancer patient.
  • the prognosis of cancer can also be predicted by detecting the signal generated by the biotinylated compound in the confirming step of the present invention.
  • the description of the host cell, the organism and the biotinylated compound is overlapped with that described above, and detailed description thereof will be omitted below in order to avoid undue complexity of the specification.
  • a pharmaceutical composition for preventing or treating cancer comprising a host cell transformed by introducing a gene encoding monomeric streptavidin (mSA). .
  • a method for preventing or treating cancer comprising administering to a target subject an effective amount of the pharmaceutical composition comprising the host cell according to the present invention.
  • the host cell may be one into which a gene encoding a maltose-binding protein (MBP) is further introduced.
  • MBP maltose-binding protein
  • the host cell may be one into which a regulatory gene for regulating the expression of a gene encoding the monomeric streptavidin is further introduced.
  • the composition may further include a biotinylated compound.
  • the biotinylated compound may be a biotinylated cancer therapeutic substance.
  • the cancer treatment material is an anticancer agent, a metabolic antagonist, an alkylating agent, a topoisomerase antagonist, a microtubule antagonist, an anticancer antibiotic, a plant-derived alkaloid, an antibody anticancer agent, a molecular target anticancer agent, an immune anticancer agent, a gene expression inhibitor, a ROS-induced progenitor It may be any one or more selected from the group consisting of a drug, an aptamer, and a radioactive therapeutic agent.
  • the gene expression inhibitor of the present invention may be a transcription inhibitor (repressor) or a protein activity antagonist (antagonist).
  • the transcription inhibitor may be a substance that inhibits the initiation of transcription or induces degradation of the transcript.
  • the transcription inhibitor is an antisense oligonucleotide, small interference RNA (siRNA), small hairpin RNA (small hairpin RNA, short hairpin RNA; shRNA), micro RNA (microRNA; miRNA), or a combination thereof.
  • siRNA small interference RNA
  • shRNA small hairpin RNA
  • microRNA micro RNA
  • it is not limited thereto.
  • the antisense oligonucleotide refers to DNA or RNA or a derivative thereof containing a nucleic acid sequence complementary to a specific mRNA sequence, and binds to a complementary sequence in mRNA to inhibit the translation of mRNA into protein. can do.
  • the small interfering RNA is a nucleic acid that inhibits expression of a target gene by mediating RNA interference or gene silencing.
  • the small interfering RNA refers to RNA that makes a strong hairpin turn, and can be used to silence gene expression through RNA interference.
  • the micro RNA is a single-stranded RNA molecule of 21 to 25 nucleotides and can bind to the 3'-UTR (untranslation region) of mRNA to control gene expression in eukaryotes.
  • the protein activity antagonist is a substance that reduces the activity of the protein
  • the active antagonist may be a natural extract, a chemical substance, or a combination thereof.
  • the holiday junction (HJ) inhibitor peptide 2 may be represented by the amino acid sequence of SEQ ID NO: 38, but is not limited thereto.
  • the immune anticancer agent may be an anti-PD-1/PD-L1 immune anticancer agent
  • the anti-PD-1/PD-L1 immune anticancer agent may be nivolumab or pembrolizumab, but related to apoptosis As long as it is related to PD-1 or PD-L1, it may be included without limitation.
  • the aptamer is a single-stranded oligonucleotide having binding activity to a predetermined target molecule, and may inhibit the activity of the target molecule by binding to the target molecule.
  • the aptamer may have various three-dimensional structures according to its nucleotide sequence, and may have high affinity for a specific substance, such as an antigen-antibody reaction.
  • the aptamer may be RNA, DNA, modified nucleic acid, or a mixture thereof, and the form may be linear or cyclic.
  • the radiotherapeutic agent may be one that emits alpha rays or positrons, for example consisting of Cu-67, Y-90, I-131, Lu-177, At-211, Ra-223 and AC-225. It may be any one or more selected from the group, but is not limited thereto.
  • the "prevention" of the present invention may be included without limitation as long as it blocks the symptoms caused by the cancer using the composition of the present invention, or suppresses or delays the symptoms.
  • treatment of the present invention may be included without limitation as long as the symptoms caused by the cancer are improved or beneficial by using the composition of the present invention.
  • the monomeric streptavidin expressed from the host cell can maintain its functionality in vivo. Through this, the presence and distribution of the host cells in vivo can be confirmed by administering the biotinylated imaging agent.
  • a biotinylated drug for diagnosis, prevention or treatment of cancer is administered together with a cancer-targeting host cell, the biotinylated drug binds to the monomeric streptavidin to selectively act only on cancer tissues.
  • FIG. 2 shows the MBP-mSA gene expression results in Experimental Example 2.
  • 5 is an image showing the biotin binding of the recombinant strain in Experimental Example 2 through a confocal microscope.
  • FIG. 6 is an image showing the biotin binding of the recombinant strain in Experimental Example 2 through a confocal microscope.
  • FIG. 11 is a graph showing the results of analyzing the biotin binding of the recombinant strain in Experimental Example 4.
  • FIG. 13 is an image showing the biotin binding of the recombinant strain in Experimental Example 4 through a confocal microscope.
  • Figure 14a is a graph showing the results of analyzing the biotin binding specificity of the recombinant strain in Experimental Example 5.
  • Figure 14b is a graph showing the results of analyzing the biotin binding specificity of the recombinant strain in Experimental Example 5.
  • Figure 15a is a graph showing the results of analyzing the biotin binding specificity of the recombinant strain in Experimental Example 5.
  • Figure 15b is a graph showing the results of analyzing the biotin binding specificity of the recombinant strain in Experimental Example 5.
  • Figure 16 is an image showing the biotin binding of the recombinant strain injected into the muscle of the mouse in Experimental Example 5.
  • Figure 17 shows the number of recombinant strains injected into the muscle of the mouse in Experimental Example 5.
  • Figure 21 shows the number of individuals in the liver of the recombinant strain injected into the mouse vein in Experimental Example 5.
  • 25 is an image showing the biotin binding of the recombinant strain in the tumor animal model in Experimental Example 5.
  • 26 is an image showing the biotin binding of the recombinant strain in the tumor animal model in Experimental Example 5.
  • the monomeric streptavidin (mSA) gene represented by SEQ ID NO: 2 was synthesized (Macrogen, Korea) and amplified, cut with restriction enzymes EcoRI and Sal I, and purified. After the gene amplification product was obtained, it was cloned into the pBAD24 plasmid digested with the same restriction enzyme to prepare a pBAD-mSA (B-mSA) plasmid.
  • pBAD_RBS 0.3-mSA B_R0.3-mSA
  • pBAD_RBS 0.6 by inserting BBa_B0032, BBa_B0030, BBa_B0034, which are ribosome binding sites (RBS) in Table 1 below, downstream of the promoter -mSA (B_R0.6-mSA), pBAD_RBS 1.0-mSA (B_R1.0-mSA) plasmids were prepared.
  • the mSA gene was amplified using the pBAD-mSA plasmid as a template, cut with restriction enzymes EcoRI and HindIII, and purified to obtain a gene amplification product, which is then cut with the same restriction enzyme
  • pMAl_p2x pMAl_p2x-mSA
  • M_p-mSA pMAl_p2x-mSA
  • M_c-mSA pMAl_c2x-mSA
  • the gene encoding the maltose binding protein (MBP) shown in SEQ ID NO: 4 was cloned back into pBAD24 to pBAD_p2x- mSA (B_p-mSA), pBAD_c2x-mSA (B_c-mSA), pBAD_RBS1-p2x-mSA (B_R1.0-p-mSA), pBAD_RBS1-c2x-mSA (B_R1.0-c-mSA) plasmids were constructed.
  • MBP maltose binding protein
  • the mSA gene was amplified using the pBAD-mSA plasmid as a template, cut with restriction enzymes EcoRI and HindIII, and purified to obtain a gene amplification product, which was then cloned into pMAl_p2x and pMAl_c2x plasmids cut with the same restriction enzymes to clone pMAl_p2x -mSA (M_p-mSA), pMAl_c2x-mSA (M_c-mSA) plasmids were constructed.
  • ( ⁇ G final ) - ( ⁇ G initial ) [( ⁇ G mRNA-rRNA ) + ( ⁇ G spacing ) + ( ⁇ G stacking ) + ( ⁇ G standby ) + ( ⁇ G start )] - ( ⁇ G mRNA )
  • each translation initiation rate according to the regulatory gene sequence prepared as described above was calculated and shown in Table 3 below. .
  • SEQ ID NO: 29 133.266441 SEQ ID NO: 30 678.2310709 SEQ ID NO: 31 152.7003477 SEQ ID NO: 32 6110.586323 SEQ ID NO: 33 1152.963841 SEQ ID NO: 34 287.0559877 SEQ ID NO: 35 216.8312084 SEQ ID NO: 36 5847.72872 SEQ ID NO: 37 374.5906748 SEQ ID NO: 66 143.6296318 SEQ ID NO: 67 43914.95671 SEQ ID NO: 68 1536.365645 SEQ ID NO: 69 526.4033937 SEQ ID NO: 70 403.5382313 SEQ ID NO: 71 975.1871797 SEQ ID NO: 72 204.582929 SEQ ID NO: 73 410.8314232 SEQ ID NO: 74 150.2547754 SEQ ID NO: 75 592.8668512 SEQ ID NO: 76 944.9
  • the regulatory genes of SEQ ID NOs: 29 to 37 and 65 to 92 among the regulatory genes of the prepared plasmid had translation initiation rates in the range of 50 to 45000 au, and among them, the regulatory genes of SEQ ID NOs: 32 and 36 confirmed that the translation initiation rate corresponds to the range of 900 to 9000 au.
  • the regulatory gene sequence according to whether the regulatory gene sequence includes the AGG, TAGG or ATAGG sequence and the spacing from the 3' end of the AGG sequence to the start codon is shown in Table 4 below.
  • the regulatory genes of SEQ ID NOs: 32,36, 67, 77, 78, 79, 83, 85, 87, 88, 89, 90, 91 and 92 among the regulatory genes of the produced plasmid include TAGG or ATAGG sequences.
  • each of the transformed strains was cultured overnight using an LB solid medium containing ampicillin. Thereafter, the resulting colonies are newly diluted using LB liquid medium containing antibiotics at a ratio of 1:100, and when the OD 600 value reaches 0.5 to 0.7 through additional culture, the final concentration in the culture medium is 0.1 % of arabinose was added and cultured in a shaking incubator at 200 rpm and 37°C.
  • strains including a plasmid in which RBS sequences known as BBa_B0032, BBa_B0030, and BBa_B0034 were inserted before the mSA gene sequence to improve protein expression were unable to confirm mSA protein expression on SDS-PAGE.
  • RBS sequences known as BBa_B0032, BBa_B0030, and BBa_B0034 were inserted before the mSA gene sequence to improve protein expression
  • M_p-mSA and M_c-mSA plasmids fused with MBP genes were prepared as in Example 1, and then transformed and cultured as in Example 2.
  • IPTG Isopropyl beta-D-1-thiogalactopyranoside
  • the cultured recombinant E. coli was shown in FIG. 2 by adding SDS-PAGE sample buffer based on OD4 and boiling at 95 degrees for 10 minutes, then checking the SDS-PAGE loading and protein expression level.
  • strain lysate was electrophoresed in 12% SDS-PAGE, and the protein was transferred from the gel to a nitrocellulose membrane and blocked at room temperature using 5% skim milk. Thereafter, the expression level of mSA was confirmed using a his tag antibody, and biotin-binding activity of mSA was confirmed using biotinylated peroxidase. performed and shown in FIG. 3 .
  • the expression level of mSA protein fused with MBP of the M_c-mSA and M_p-mSA plasmids into which both the MBP gene and the mSA gene were inserted was not fused with the MBP of the B-mSA plasmid into which only the simple mSA gene was inserted. It was higher than the expression level of mSA protein.
  • a biotin uptake assay was performed, and the results are shown in FIG. 4 .
  • a biotinylated fluorescent dye biotin-flamma 675 dye, BioActs
  • PBS protein-binding protein
  • the fluorescence value of the fluorescent dye absorbed into the recombinant strain was measured using a measurement reader (Infinite m200, Tecan).
  • the strain (344%) containing the B-mSA plasmid which is the control for the increased amount of biotin binding signal before and after the addition of arabinose, was pBAD (151%), M_c-mSA (141%) and M_p- It was confirmed that the biotin-binding ability of the MBP-mSA-expressing recombinant strain was not improved because the biotin activity was higher than that of the strain containing mSA (158%).
  • the recombinant strain cultured as in Example 2 was fixed on a slide and confirmed with a confocal microscope, as shown in FIGS. 5 and 6 .
  • SDS-PAGE was performed to confirm the expression and activity of mSA of the recombinant strain transformed with the RBS-added plasmid. Specifically, B_p-mSA and B_c-mSA in which the MBP-mSA gene was transferred to the pBAD plasmid, and B_R1.0-p-mSA and B_R1.0-c-mSA plasmids to which the BBa_B0034 sequence was added to improve the expression of the plasmids. 7 shows the results of performing SDS-PAGE on the recombinant strain transformed with .
  • the recombinant strain was loaded on SDS-PAGE to check the protein expression level, and it was confirmed that the mSA protein fused with MBP was overexpressed even in the pBAD plasmid.
  • the B_p-mSA, B_c-mSA, B_R1.0-p-mSA and B_R1.0-c-mSA plasmids into which both the MBP gene and the mSA gene were inserted were MBP It was confirmed that overexpression of mSA protein fused with MBP was higher than that of simple mSA protein not fused with MBP.
  • the present inventors analyzed the RBS sequence of the B_p-mSA plasmid in order to induce increased functional expression of the gene in the recombinant strain, and as in Example 1, B_R01-p-mSA, B_R02-p-mSA, B_R1-p-mSA , B_R11-p-mSA, B_R12-p-mSA, B_R13-p-mSA B_R2-p-mSA, B_R21-p-mSA Plasmids were prepared and then transformed and cultured in the strain. In order to confirm the protein expression level of the recombinant strain, Western blot analysis was performed in the same manner as in Experimental Example 2-2, as shown in FIG. 9 .
  • the recombinant strain containing the M_p-mSA plasmid had higher expression and secretion levels of mSA than the recombinant strain containing the B_p-mSA plasmid.
  • the recombinant strain containing the M_p-mSA plasmid had higher levels of mSA expression and secretion than the recombinant strain containing the B_R1-p-mSA and B_R2-p-mSA plasmids.
  • the recombinant strain containing the B_R1-p-mSA and B_R2-p-mSA plasmid showed less secreted protein compared to the expression amount compared to the recombinant strain containing the M_p-mSA plasmid, so the B_R1-p-mSA and B_R2 -p-mSA mSA expressed in the plasmid was found to stay in the periplasm of the strain.
  • the biotin-binding activity was in the order of the recombinant strains containing the B_p-mSA, B_R1-p-mSA, M_p-mSA, and B_R2-p-mSA plasmids, and the secreted protein-binding activity was M_p-mSA, B_p-mSA, B_R1-p- Recombinant strains containing mSA and B_R2-p-mSA plasmids were confirmed in order.
  • the recombinant strain containing the B_R1-p-mSA and B_R2-p-mSA plasmids had significantly higher biotin-binding activity than the recombinant strain containing the pBAD and B-mSA plasmids, and the B_R1- It was confirmed that mSA expressed in the genes of p-mSA and B_R2-p-mSA plasmids had a significant biotin-binding activity compared to mSA expressed in other plasmids. In addition, it was confirmed that the biotin-binding activity is not proportional to the protein expression level, and thus the biotin-binding activity effect cannot be predicted simply by the protein expression level.
  • the cultured strain was fixed on a slide and confirmed with a confocal microscope as shown in FIGS. 12 and 13 .
  • the recombinant strain containing the B_R1-p-mSA and B_R2-p-mSA plasmids strongly binds the biotinylated fluorescent dye to the strain compared to the controls B-mSA and B_p-mSA shown in FIG. 13 .
  • the expression of mSA by the B_R2-p-mSA plasmid was optimal for binding with the biotinylated fluorescent dye.
  • an in vivo imaging system IVIS was taken. Specifically, 1x10 9 CFU of the recombinant strain transformed with B_R2-p-mSA was injected into a mouse (BALB/C) intramuscularly in the right thigh (Intramuscle injection; IM). Then, arabinose was injected to express mSA in the recombinant strain, and arabinose was not injected in the control group. Thereafter, the result of checking the signal by injecting biotin-dye into each of the experimental group and the control group is shown in FIG. 16 .
  • IVIS in vivo imaging system
  • the recombinant strain of the present invention is confirmed that the strain is present in all of the thigh muscle tissue regardless of whether or not arabinose treatment, the distribution of the recombinant strain in the muscle tissue is recombinant by the arabinose treatment It was confirmed that it can be traced by the mSA expressed in the strain.
  • an in vivo imaging system (IVIS) photographing was performed for the intraperitoneally injected strain. Specifically, 5x10 9 CFU of the recombinant strain transformed with B_R2-p-mSA was injected into mice (BALB/C) intraperitoneally (IP). Then, arabinose was injected to express mSA in the recombinant strain, and arabinose was not injected in the control group. Thereafter, the result of checking the signal by injecting biotin-dye into each of the experimental group and the control group is shown in FIG. 18 .
  • IVIS in vivo imaging system
  • the recombinant strain of the present invention is confirmed that the strain is present in the intestinal tract regardless of whether or not arabinose treatment, the distribution of the recombinant strain in the abdominal cavity and intestinal tract in the recombinant strain by the arabinose treatment It was confirmed that it can be traced by the expressed mSA.
  • an in vivo imaging system IVIS was taken for the intravenously injected strain. Specifically, 1x10 9 CFU of the recombinant strain transformed with B_R2-p-mSA was injected into mice (BALB/C) intravenously (IV). Then, arabinose was injected to express mSA in the recombinant strain, and arabinose was not injected in the control group. Thereafter, the result of checking the signal by injecting biotin-dye into each of the experimental group and the control group is shown in FIG. 20 .
  • IVIS in vivo imaging system
  • mice (right) injected with the recombinant strain and arabinose generated a strong signal due to biotin staining for more than 6 hours, but the control group (left) or arabinose that was not injected with the recombinant strain was injected
  • the control group (left) or arabinose that was not injected with the recombinant strain was injected
  • the signal due to biotin staining disappeared after 6 hours, and in the result of confirming the signal by extracting the liver and spleen, only the mouse (right) injected with the recombinant strain and arabinose
  • it was confirmed that the signal was generated it was confirmed that the distribution of the recombinant strain in the organ could be traced when using biotin staining after expressing mSA by injecting the recombinant strain and arabinose.
  • the recombinant strain of the present invention is confirmed that the strain exists regardless of the presence or absence of arabinose treatment, the distribution of the recombinant strain in vivo is expressed in the recombinant strain by the arabinose treatment It was confirmed that it can be traced by mSA.
  • an in vivo imaging system (IVIS) photographing was performed for the orally administered strain. Specifically, 1x10 9 CFU of the recombinant strain transformed with B_R2-p-mSA was orally administered to mice (BALB/C). Then, arabinose was injected to express mSA in the recombinant strain, and arabinose was not injected in the control group. Thereafter, the result of checking the signal by injecting biotin-dye into each of the experimental group and the control group is shown in FIG. 22 .
  • mice injected with the recombinant strain and arabinose (right) generated a strong signal by biotin staining in the intestine for more than 6 hours, but the control group (left) or arabinose that was not injected with the recombinant strain
  • the control group left or arabinose that was not injected with the recombinant strain
  • the recombinant strain and the mouse injected with arabinose (right) as a result of checking the signal by extracting the intestine
  • the signal was generated only in the mSA by injecting the recombinant strain and arabinose, and then using biotin staining, it was confirmed that the distribution of the recombinant strain in the intestinal tract could be traced.
  • the number of strains was confirmed with respect to the intestine extracted in Experimental Example [5-8]. Specifically, in Experimental Example [5-8], the intestines were extracted from each mouse (Induction) and control mouse (Non-induction) in which the signal of the recombinant strain by biotin staining exists, and the number of remaining strains was confirmed. is shown in FIG. 23 .
  • the recombinant strain of the present invention is confirmed that the strain is present in the intestinal tract with or without arabinose treatment, the distribution of the recombinant strain in the intestinal tract is expressed in the recombinant strain by the arabinose treatment. It was confirmed that it can be traced by mSA.
  • the stability of the monomeric streptavidin (mSA) expressed in the recombinant vector or construct according to the present invention is excellent, and it can bind strongly to external biotin. It was confirmed that it is effective in vivo, and it can be treated multiple times or by controlling the time of the biotinylated fluorescent dye.
  • in vivo imaging system In Vivo Imaging System; IVIS
  • the CT26 cell line was first injected subcutaneously into the flank of Balb/c mice to construct a tumor animal model.
  • Recombinant strains were each injected into the tumor animal model, and as a control, only dye was injected into the tumor animal model.
  • the recombinant strains were transformed with B-mSA, B_p-mSA, B_R2-p-mSA (non-induction) and B_R2-p-mSA, respectively.
  • biotinylated fluorescent dye was injected, and IVIS imaging was performed 6 hours later, as shown in FIG. 16, IVIS imaging was performed after 9 hours and shown as shown in FIG. 25, and IVIS imaging was performed after 24 hours. was carried out and shown in FIG. 26 .
  • a tumor animal model injected with only dye (only dye), and a recombinant strain transformed with B-mSA, B_p-mSA, B_R2-p-mSA (non-induction) plasmids Biotinylated fluorescent dyes each injected into the tumor animal model injected with were gradually eliminated in vivo over time after injection, suggesting that there was no specificity to the tumor.
  • the tumor animal model injected with the recombinant strain including the B_R2-p-mSA plasmid showed a stronger signal in the tumor compared to the control group after injection of the biotinylated fluorescent dye in the cancer tissue, and 24 hours after the injection of the biotinylated fluorescent dye.
  • the biotinylated fluorescent dye is strongly bound only to the recombinant strain of the present invention in small animals.
  • the biotinylated fluorescent dye is specific to the tumor through the recombinant strain. It was confirmed that real-time tumor imaging was possible by checking the signal generated from the biotinylated fluorescent dye by means of imaging.
  • the recombinant strain-treated group including the B_R2-p-mSA plasmid maintained strong fluorescence activity compared to other groups.
  • the biotinylated fluorescent dye was strongly bound only when the recombinant strain of the present invention was used in small animals, and in particular, it was confirmed that real-time tumor imaging using a recombinant strain with tumor specificity was possible.
  • an in vivo imaging system (IVIS) was taken. Specifically, the CT26 cell line was first injected subcutaneously into the flank of Balb/c mice to construct a tumor animal model. Three days after the injection of the recombinant strain into the tumor animal model, the primary biotinylated fluorescent dye was injected. Two days later, a second biotinylated fluorescent dye was injected into the same tumor animal model. IVIS imaging was performed before the primary fluorescent dye injection, 6 hours after injection, and 9 hours after injection, and then IVIS imaging was performed before the second fluorescent dye injection, 6 hours after injection, and 9 hours after injection.
  • the biotinylated fluorescent dye signal was strongly maintained by the recombinant strain of the present invention in cancer tissue over time in the first injected biotinylated fluorescent dye. It was confirmed that the signal of the biotinylated fluorescent dye was strongly maintained in cancer tissue over time by the secondary injected biotinylated fluorescent dye after it was cleared in vivo.
  • the tumor image can be continuously checked even when the biotinylated fluorescent dye is treated multiple times, and the biotinylated conjugate can be treated separately by controlling the time. .
  • the stability of the monomeric streptavidin (mSA) expressed in the recombinant vector or construct according to the present invention is excellent, and it can bind strongly to external biotin. It was confirmed that it is effective in vivo, and it can be treated multiple times or by controlling the time of the biotinylated fluorescent dye.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 모노머형 스트렙타비딘을 발현하는 숙주 세포에 관한 것으로서, 본 발명에 따른 숙주 세포는 체내에서 스트렙타비딘을 발현하여, 비오틴화한 진단제로 숙주 세포가 예비 표적한 생체 내 암조직 분포를 시각화하고 실시간으로 모니터링할 수 있을 뿐만 아니라 비오틴화한 항암제의 암 표적 효율을 높일 수 있다.

Description

모노머형 스트렙타비딘을 발현하는 균주 및 비오틴화된 화합물을 포함하는 암 세포 표적용 조성물
본 발명은 모노머형 스트렙타비딘을 발현하는 균주 및 비오틴화된 화합물을 포함하는 암 세포 표적용 조성물에 관한 것이다.
암은 현재 전세계적으로 가장 많은 사망자를 내는 질병 중 하나로서, 평균 수명의 연장과 암 발생 연령이 낮아짐에 의해 암 발생률은 계속적으로 증가되고 있는 추세이다. 한국의 국립 암센터(National Cancer Center)에서 제공하는 2013년 통계 자료에 따르면, 2010년 암 등록 통계과에 등록된 우리 나라 암 발생 환자는 모두 202,053 명이며 계속적으로 증가되는 추세이다.
따라서, 암에 관해서는 세포수준의 기본연구에서부터 전방위적인 항암치료에 대한 연구가 전 세계적으로 추진되어 왔으나, 아직까지 암의 발생기전이 불명확하고, 재발방지 및 완치가 어려워 항암제에 대한 수요가 폭발적으로 늘어나고 있으며, 막대한 연구비가 연구소 및 기업체에 투자되고 있다. 하지만, 고가의 암 진단 및 항암치료 비용은 직접적인 의료비용일 뿐 아니라 발병 이후의 사회 경제활동의 위축, 재활 및 환자 간호에 따른 간접비용이 추가되어 암환자 가족 및 사회 구성원 전체에게 경제적으로 큰 부담이 되고 있으며 저비용의 새로운 기술도입이 요구되고 있는 실정이다.
한편, 스트렙타비딘(streptavidin) 및 아비딘(avidin) 단백질은 비오틴(biotin)에 대하여 높은 결합력을 갖는 단백질이며 비오틴과의 특이적인 상호작용을 이용한다면, 비오틴을 발현하는 종양에 특이적으로 반응하는 항암제 또는 면역 세포를 활용할 수 있는 등, 다양한 생물학적 응용분야에 적용될 수 있다.
그러나 이 단백질의 테트라머 형태는 비오틴 컨쥬게이트의 원치 않는 가교 결합을 초래할 수 있어 비오틴 활성이 유지되는 모노머형 스트렙타비딘 개발이 요구되고 있다. 최근 아비딘 중 하나인 리자비딘에 돌연변이를 도입시켜 모노머화 시키거나 스트렙타비딘과 리자비딘 서열을 융합하여 모노머형 단백질을 개발하는 등 모노머형 아비딘 유사 단백질이 개발되어 보고되고 있다. 그러나 생물학적 응용 분야에 활용하기 위해서는 정제과정을 거쳐 가용성을 담보하는 순도 높은 단백질을 얻어야 한다. 또한 아비딘 유사 단백질은 생체 내 주입시 혈청에서 신속하게 분해되어 임상 연구의 이용이 제한적이게 되는 문제가 있다.
또한 상기 방법들은 미생물들의 생체 내 분포를 실시간으로 파악하지는 못한다. 따라서, 상기 공생 미생물 또는 병원성 미생물들이 체내에서 어떻게 분포하는지 비침습적인 방법으로 실시간으로 추적할 수 있다면, 이로운 미생물들에 대한 생산과 병원성 미생물들에 대한 치료 방법을 개발하는 등 다양한 생물학적 응용분야에 적용될 수 있다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명의 일 목적은 모노머형 스트렙타비딘(monomeric streptavidin; mSA)을 발현하는 숙주 세포 및 선택적으로 비오틴화된 화합물을 포함하는 암의 진단과 형광 이미징화 하는 조성물을 제공하는 것이다.
본 발명의 다른 목적은 모노머형 스트렙타비딘을 발현하는 숙주 세포가 투여된 목적하는 개체에서, 상기 숙주 세포를 촬영 수단으로 확인하는 단계를 포함하는, 생체 내 세포의 분포를 확인하기 위한 정보 제공 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 모노머형 스트렙타비딘(mSA)을 발현하는 균주 및 선택적으로 비오틴화된 화합물을 포함하는 암의 예방 또는 치료를 위한 약학적 조성물을 제공하는 것이다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당 업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하, 본원에 기재된 다양한 구현예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세사항, 예컨대, 특이적 형태, 조성물 및 공정 등이 기재되어 있다. 그러나, 특정의 구현예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구현예" 또는 "구현예"에 대한 본 명세서 전체를 통한 참조는 구현예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구현예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구현예에서" 또는 "구현예"의 상황은 반드시 본 발명의 동일한 구현예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구현예에서 어떠한 적합한 방법으로 조합될 수 있다. 본 발명 내 특별한 정의가 없으면 본 명세서에 사용된 모든 과학적 및 기술적인 용어는 본 발명이 속하는 기술분야에서 당업자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가진다.
본 발명의 일 구현 예에 따르면, 모노머형 스트렙타비딘(monomeric streptavidin; mSA)을 코딩하는 유전자가 도입되어 형질 전환된 숙주 세포를 포함하는, 생체 내 세포 추적용 및 암의 진단을 위한 조성물을 제공한다.
본 발명의 다른 구현 예에 따르면, 목적하는 개체에, 상기 암의 진단을 위한 조성물을 유효량으로 투여하는 단계를 포함하는, 암의 진단을 위한 정보 제공 방법을 제공한다.
본 발명에서 상기 “스트렙타비딘(streptavidin)”은 비오틴(biotin)에 대하여 높은 결합력을 갖는 단백질이며 상기 비오틴과의 특이적인 상호작용을 이용하여 다양한 생물학적 응용분야에 적용되어 왔다. 상기 스트렙타비딘 단백질의 아미노산 서열은 상기 서열번호 1과 같이 나타낼 수 있고, 상기 스트렙타비딘을 코딩하는 유전자는 서열번호 2로 표시되는 것일 수 있으나, 이에 제한되지는 않는다.
본 발명에서 상기 “모노머형 스트렙타비딘(monomeric streptavidin; mSA)”은 상기 스트렙타비딘이 테트라머를 형성하며 바이오틴 컨쥬게이트의 원치 않는 가교 결합을 초래할 수 있도록, 모노머로 존재하는 스트렙타비딘이다.
본 발명에서, 상기 숙주 세포는 말토오즈 결합 단백질(maltose-binding protein; MBP)을 코딩하는 유전자가 더 도입된 것일 수 있다. 상기 “말토오즈 결합 단백질(maltose-binding protein; MBP)”은 대장균의 말토오즈/말토 덱스트린 시스템의 일부로, 말토 덱스트린의 흡수와 효율적인 이화 작용을 담당하는 약 42.5kDa의 단백질이며, 서열번호 3의 아미노산 서열로 나타낼 수 있고, 상기 말토오즈 결합 단백질을 코딩하는 유전자는 서열번호 4로 표시되는 것일 수 있으나, 이에 제한되지는 않는다.
본 발명에서, 상기 숙주 세포는 상기 모노머형 스트렙타비딘을 코딩하는 유전자의 발현을 조절하는 조절 유전자가 더 도입된 것일 수 있다. 상기 “조절” 내지 “발현 조절”은 특정 유전자의 전사 및 번역이 활성화 또는 억제되는 것을 의미할 수 있다.
본 발명에서, 상기 조절 유전자는 구조적으로 DNA-의존 RNA 폴리머라제(DNA-dependent RNA polymerase) 결합 위치, 전사 개시 지점 및 전사 인자 결합 지점, 억제 및 활성 단백질 결합 지점 및 당해 기술 분야의 숙련자에게 직접적으로 혹은 간접적으로 전사량 조절에 작용할 수 있다고 알려진 뉴클레오티드의 다른 어떠한 서열을 포함되는 핵산 분획을 나타낼 수 있으나, 이에 제한되지 않는다.
본 발명에서, 상기 조절 유전자는 상기 모노머형 스트렙타비딘을 코딩하는 유전자의 개시코돈의 5' 상류에 작동가능하도록 연결될 수 있다.
본 발명에서, 상기 조절 유전자는 리보솜 결합 부위(Ribosome binding site; RBS), 5'-비 번역 영역(5'-Untransrated Region; 5'-UTR), 전사 인자 결합 부위(transcription factor binding site) 및 유도성 프로모터(Inducible promoter)로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서, 상기 “리보솜 결합 부위(Ribosome-binding site; RBS)”는 유전자의 개시코돈의 상류에서 리보솜의 모집을 담당하여 번역을 진행시킨다. 원핵 생물의 리보솜 결합 부위는 5'-AGGAGG-3' 서열을 가지는 샤인-달가노(Shine-Dalgarno; SD) 서열을 포함한다. 상기 샤인-달가노 서열에 16S rRNA의 3' 말단이 상보적으로 결합하여 번역이 시작되는데, 상기 상보적인 서열인 CCUCCU 서열을 항-샤인-달가노(anti-Shine-Dalgarno; ASD) 서열이라고 한다.
본 발명에서, 상기 “5'-비 번역 영역(5'-Untransrated Region; 5'-UTR)”은 5' 지역에서 mRNA의 아미노산으로 번역되는 부분인 코딩 부분(coding region)의 양 쪽에 위치하는 번역이 되지 않는 부분으로, 진화 과정에서 불필요하게 버려지는 부분(junk)로 여겨졌으나, 유전자 발현 조절에 큰 역할을 하는 것으로 알려졌다.
본 발명에서, 상기 “전사 인자 결합 부위(transcription factor binding site)”는 근처의 특정 유전자를 켜거나 끄는 역할을 하는 DNA 부위이다. 상기 전사 인자 결합 부위는 상기 조절 단백질을 암호화하는 유전자의 프로모터, 인핸서(enhancer) 및 사일렌서(silencer)로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으나, 이에 제한되지는 않는다.
본 발명에서 상기 "유도성 프로모터"란, 특정 화학적 또는 물리적 조건 하에서만 특이적으로 하류에 연결된 유전자가 발현될 수 있도록 전사하는 프로모터로서, 예를 들면 IPTG(isopropyl-beta-D-1-thiogalactopyranoside)와 같은 갈락토스의 존재하에서 발현되는 LacZ 유전자의 프로모터, L-아라비노스의 존재 하에서만 발현되는 아라비노스 오페론인 araBAD 프로모터, 테트라사이클린에 의해 발현이 조절되는 tet 프로모터일 수 있고, 바람직하게는 araBAD 프로모터일 수 있다.
본 발명에서, 상기 조절 유전자는 재조합된 상기 벡터가 숙주 세포에 형질 전환되는 경우, 상기 숙주 세포의 주변 세포질로 모노머형 스트렙타비딘이 발현되도록 하는 것이, 상기 숙주 세포의 내부에 머물거나 상기 주변 세포질에 머물지 않고 배출되는 경우보다 발현되는 모노머형 스트렙타비딘의 활용성이 높아 바람직하다.
본 발명에서, 상기 조절 유전자는 서열번호 26 내지 92 중 어느 하나로 표시되는 것일 수 있다.
본 발명에서, 상기 조절 유전자는 총 깁스 자유 에너지 변화량(ΔGtotal)이 0 이하인 것일 수 있다. 상기 “총 깁스 자유에너지 변화량(total Gibbs free energy change; ΔGtotal)”은, 상기 모노머형 스트렙타비딘의 번역 과정에서, 상기 조절 유전자의 mRNA 전사체(transcript)가 리보솜의 30S 서브유닛 복합체 상에 결합하기 전과 후의 깁스 자유 에너지의 차이 값이다. 상기 총 깁스 자유 에너지 변화량(ΔGtotal)이 0 이하인 경우, 상기 모노머형 스트렙타비딘을 코딩하는 유전자의 전사와 번역 능력이 상승할 수 있다. 상기 총 깁스 자유 에너지 변화량(ΔGtotal)은 하기 식 1 및 식 2와 같은 방법으로 계산될 수 있다.
[식 1]
ΔGtotal=(ΔGfinal)-(ΔGinitial)
[식 2]
(ΔGfinal)-(ΔGinitial)=[(ΔGmRNA-rRNA)+(ΔGspacing)+(ΔGstacking)+(ΔGstandby)+(ΔGstart)]-(ΔGmRNA)
상기 식 1 및 식 2에서, 상기 “ΔGfinal”은 리보솜의 30S 서브유닛 복합체가 상기 조절 유전자의 mRNA 전사체 상에 결합한 후의 깁스 자유 에너지 변화량이고; 상기 “ΔGinitial”은 리보솜의 30S 서브유닛 복합체가 상기 조절 유전자의 mRNA 전사체 상에 결합하기 전의 깁스 자유 에너지 변화량이다. 또한, 상기 식 2에서, 상기 “ΔGmRNA-rRNA”는 조절 유전자의 mRNA와 리보솜의 30S 서브유닛의 복합체를 형성하는 반응이 일어날 때의 깁스 자유 에너지 변화량이고, 상기 “ΔGspacing”은 상기 조절 유전자의 mRNA 전사체에서 리보솜의 30S 서브유닛의 복합체를 형성하는 서열과 개시코돈 간의 간격(Spacing)이 최적화 되지 않음으로써 발생하는 대한 깁스 자유 에너지 패널티(penalty)이며, 상기 “ΔGstacking”은 상기 간격(Spacing)의 영역에서 쌓인 뉴클레오티드의 깁스 자유 에너지 변화량이고, 상기 “ΔGstandby”는 상기 조절 유전자의 mRNA 전사체의 대기 부위(Stanby Site)와 리보솜 간 결합 반응이 일어나는 경우 깁스 자유 에너지 패널티, 상기 “ΔGstart”는 mRNA-tRNA 복합체를 형성하는 반응이 일어날 때의 깁스 자유 에너지 변화량, 상기 “ΔGmRNA”는 상기 조절 유전자의 mRNA 전사체가 접힌 복합체 구조물을 형성할 때의 깁스 자유 에너지 변화량이다.
본 발명에서, 상기 각 깁스 자유 에너지 변화량(ΔG)은 NUPACK, ViennaRNA 또는 UNAfold와 같이, 희석된 용액에서 유전자 가닥들의 상호 작용, 농도, 염기쌍의 복잡도, 매듭 구조 등의 변수를 고려하여 계산을 수행하는 소프트웨어에 의해 계산될 수 있으나, 이에 제한되지는 않는다.
본 발명에서, 상기 조절 유전자는 모노머형 스트렙타비딘의 생산량을 극대화할 수 있도록, 번역 개시 속도(Translation Initiation Rate; TIR)가 특정 범위를 갖도록 조절된 것일 수 있다.
본 발명에서 상기 “번역 개시 속도(Translation Initiation Rate; TIR)”는 하기 식 3으로 계산될 수 있으며, 합성 생물학에서 번역 단계는 전체 단백질 생산의 속도를 제한하는 단계이므로 유전자의 발현에 중요한 인자이다.
[식 3]
TIR = exp[k{(ΔGtotal)-(ΔG1total)}]
상기 식 3에서,
TIR의 단위는 au이고;
k는 볼츠만 상수로, 0.4 내지 0.6 mol/kcal일 수 있으며;
ΔGtotal은 상기 식 1에서 정의된 바와 같고;
ΔG1total은 상기 조절 유전자가 포함되지 않은 본 발명의 벡터에서의 깁스 자유 에너지 변화량에 해당하고, 바람직하게는 상기 조절 유전자가 포함되지 않고, 나머지 서열은 동일한 벡터의 자유 에너지 변화량에 해당할 수 있으나, 이에 제한되지는 않는다. 따라서, 상기 조절 유전자가 포함되지 않을 경우에 번역 개시 속도는 1au에 해당한다.
본 발명에서, 상기 조절 유전자는 번역 개시 속도가 50 내지 45000au, 바람직하게는 900 내지 45000au가 되도록 조절된 것이 형질 전환된 균주가 상기 모노머형 스트렙타비딘을 고효율로 생산할 수 있어 바람직하다.
본 발명에서, 상기 조절 유전자의 서열 길이는 15 내지 39bp인 것일 수 있고, 바람직하게는 26 내지 31bp로 이루어 질 수 있으나, 이에 제한되지는 않는다.
본 발명에서, 상기 조절 유전자는 서열번호 5로 표시되는 유전자 서열인 “AGG”를 포함하는 것일 수 있고, 상기 조절 유전자는 서열번호 6으로 표시되는 유전자 서열인 “TAGG”를 포함하는 것일 수 있으며, 상기 조절 유전자는 서열번호 7로 표시되는 유전자 서열인 “ATAGG”을 포함하는 것일 수 있으나, 이에 제한되지는 않는다.
본 발명에서, 상기 조절 유전자는 서열번호 5 내지 7로 표시되는 유전자 서열의 3’ 말단에서 개시코돈 까지의 간격(Spacing)이 6 내지 13bp, 바람직하게는 6 내지 10bp인 것일 수 있다. 상기 간격이 6 내지 13bp인 경우, 상기 mRNA 전사체에서 rRNA 복합체를 형성하는 서열과 개시코돈 간의 최적화되지 않은 간격(Spacing)에 대한 깁스 자유 에너지 패널티(ΔGspacing)가 최소화되어, 그 결과 모노머형 스트렙타비딘의 발현 수준을 높일 수 있다.
본 발명의 바람직한 일 예시에서, 상기 조절 유전자는 상기 식 1의 총 깁스 자유 에너지 변화량(ΔGtotal)이 0 이하이고, 번역 개시 속도(TIR)가 900 내지 9000au로 조절된 것으로, 서열 길이는 26 내지 31bp로 이루어진 것이며, 서열번호 5 내지 7 중 어느 하나로 표시되는 유전자 서열을 포함하고, 상기 서열번호 5 내지 7 중 어느 하나로 표시되는 유전자의 3’ 말단으로부터 상기 모노머형 스트렙타비딘을 코딩하는 유전자의 개시코돈까지 간격(Spacing)이 6 내지 10bp일 수 있다.
본 발명의 바람직한 다른 일 예시에서, 상기 조절 유전자는 서열번호 32 또는 36으로 표시될 수 있다.
본 발명의 형질 전환은 벡터에 의해 이루어질 수 있다. 상기 “벡터(vector)”내지 유전자 컨스트럭트는 외래 유전자를 세포로 전달하여 발현할 수 있는 수단으로, 본 발명의 상기 벡터는 플라스미드(plasmids), 코스미드(cosmids), 인공 염색체(artificial chromosomes), 리포솜(Liposomes)과 같은 비바이러스성 벡터이거나, 레트로바이러스(retrovirus), 아데노바이러스(Adenovirus), 아데노-관련 바이러스(Adenovirus-associated virus; AAV), 파지(phage)와 같은 바이러스성 벡터일 수 있다.
본 발명에서 상기 “플라스미드(plasmids)”는 염색체와 분리되어 있고 자신의 복제기점을 소유하여 독립적으로 증식 가능한 에피솜 DNA 분자이다. 상기 플라스미드는 제한효소에 의해 재조합된 후 숙주 세포에 전달되어 벡터의 기능을 할 수 있다.
본 발명에서 상기 “코스미드(cosmids)”는 파이 파지의 점착성 말단(cohesive ends)인 cos 부위를 이용한 플라스미드로, 삽입할 수 있는 유전자의 크기가 커서 유전자 라이브러리를 만드는데 주로 사용된다.
본 발명에서 상기 “인공 염색체(artificial chromosomes)”는 벡터로 사용하기 위하여 인위적으로 구조를 변화시킨 염색체로, 박테리아 인공염색체, 효모 인공염색체, 인간 인공염색체 등이 있다.
본 발명에서 상기 “리포솜(Liposomes)”은 인위적으로 만든 1개 이상의 지질 2중층으로 되어 있는 소낭 구조물로, 세포막의 형태와 유사하고 다양한 물질을 혼입하는 능력 때문에 핵산뿐만 아니라 펩티드, 항체, 앱타머 등을 전달하는 약물 운반체 시스템이다. 상기 리포솜의 효능은 막과 성분의 특성에 따른 표적 전달 및 침투 능력에 달려 있다.
본 발명에서 상기 “레트로바이러스(retrovirus)”는 역전사(reverse transcription)를 통한 DNA 중간체를 필수로 하는 단일가닥의 양성 센스(positive-sense) RNA를 게놈으로 가지는 바이러스로, 레트로바이러스 벡터는 숙주 세포의 염색체에 삽입되어 세포분열을 하여도 바이러스 벡터가 안정적으로 유지되므로 유전자 치료에 많이 사용된다.
본 발명에서, 상기 “렌티바이러스(Lentivirus)”는 레트로바이러스의 일종으로, 숙주에 내인성인 바이러스(endogenous retrovirus; ERV)이다. 비리온 입자는 약간 다형성의 직경 80 내지 100nm 구형이고, 뉴클레오캡시드(코어)는 등척성이며, 뉴클레오티드는 동심 막대 형상 또는 원추 형상이다.
본 발명에서 상기 “아데노바이러스(Adenovirus)”는 약 36kb DNA를 가지는 바이러스로, 50가지 이상의 유전자를 가지고 있어 몇 가지의 바이러스 유전자를 발현하려는 유전자로 치환하여 벡터를 생성할 수 있다.
본 발명에서 상기 “아데노바이러스-관련 바이러스(Adenovirus-associated virus; AAV)”는 DNA 유전체가 매우 작고, 아데노바이러스가 필요한 인공위성바이러스(Satellite virus)로, 벡터로 사용할 경우 사람 염색체의 특정한 부위에 삽입되어 잠복감염(latent infection)을 일으킨다.
본 발명에서, 상기 재조합 벡터는 구성적 발현 벡터(Constitutive Expression Vector)나 유도성 발현 벡터(Inducible Expression Vector) 일 수 있고, 그 예시로 pKD13, pCP20, pMA1, pUC19, pJL, pBAD, pET, pGEX, pMAL, pALTER, pCal, pcDNA, pDUAL, pTrc, pQE, pTet, pProEX HT, pPROLar.A, pPROTet.E, pRSET, pSE280, pSE380, pSE420, pThioHis, pTriEx, pTrxFus, Split GFP Fold ′n′ Glow, pACYCDuet-1, pCDF-1b, pCDFDuet-1, pCOLADuet-1, pLysS, pRSF-1b, pRSFDuet-1, pT7-FLAG, T7Select, pCMV, pBluescript, pBac, pAc, pFastBacHT, pFastBac, pAO815, pPIC, pESC, pCas9, pwtCas9-bacteria, pgRNA-bacteria 및 pGRG 플라스미드 또는 에서 선택된 1 이상의 플라스미드에서 유래된 것일 수 있으나, 이에 제한되지는 않는다.
본 발명의 일 예시에서, 상기 pKD13은 약 3.4kbp로 이루어져 있고, 베타-락타마제(beta-lactamase), Tn5 네오마이신 포스포트랜스퍼라제(Tn5 neomycin phosphotransferase), 람다 종결자(lambda terminator) 및 R6K 감마 복제 원점(R6K gamma replication origin) 유전자를 포함할 수 있다.
본 발명의 일 예시에서, 상기 pCP20 플라스미드는 약 9.4kbp로 이루어져 있고, EcoRI, cat, Pstl, HindⅢ, Ci857, flp, bamHi, 베타-락타마제(beta-lactamase), mobA, mob2 및 repA101ts 유전자 부위를 포함할 수 있다.
본 발명의 일 예시에서, 상기 pMA1 플라스미드는 Microcystis aeruginosa f. aeruginosa Kutzing에서 유래하고, 약 2.3kbp로 이루어져 있으며, HincⅡ 유전자 부위를 포함하는 것일 수 있다.
본 발명의 일 예시에서, 상기 pJL 플라스미드는 빈 백본을 가지고 RNA 바이러스 기반인 것일 수 있다.
본 발명의 일 예시에서, 상기 pBAD, pCMV 및 pCMV 플라스미드는 포유류 숙주 세포에서 발현되고 CMV, 프로모터를 이용하며, 암피실린내성을 가지는 것일 수 있다.
본 발명의 일 예시에서, 상기 pET, pBluescript, pCal 및 pcDNA 플라스미드는 박테리아 숙주 세포에서 발현되고 T7 또는 Lac 프로모터를 이용하며, 암피실린 내성을 가지는 것일 수 있다.
본 발명의 일 예시에서, 상기 pMAL 및 pGEX 플라스미드는 박테리아 숙주 세포에서 발현되고 Tac 프로모터를 이용하며, 암피실린 내성을 가지는 것일 수 있다.
본 발명의 일 예시에서, 상기 pALTER 플라스미드는 박테리아 숙주 세포에서 발현되고 T7 프로모터를 이용하며, 테트라사이클린 내성을 가지는 것일 수 있다.
본 발명의 일 예시에서, 상기 pDUAL 플라스미드는 박테리아 숙주 세포에서 발현되고 T7 또는 Lac 프로모터를 이용하며, 카나마이신 내성을 가지는 것일 수 있다.
본 발명의 일 예시에서, 상기 pTrc 플라스미드는 박테리아 숙주 세포에서 발현되고 trc 프로모터를 이용하며, 암피실린 내성을 가지는 것일 수 있다.
본 발명의 일 예시에서, 상기 pUC19 플라스미드는 박테리아 숙주 세포에서 발현되고, 약 2.6kbp의 원형 이중 가닥 DNA로 이루어져 있으며, pUC18과 MCS 영역이 반대인 벡터이다. 상기 pU19 벡터는 형질 전환을 위하여 가장 널리 사용되는데, 상기 pU19에 의해 외래 DNA가 도입된 숙주 세포는 대조군에 비하여 성장 배지 속 콜로니의 색상이 달라지므로, 구별이 가능하다.
본 발명의 일 예시에서, 상기 pQE 플라스미드는 T5-lac 프로모터를 이용하고, 암피실린 내성을 가지는 것일 수 있다.
본 발명의 일 예시에서, 상기 pTet 플라스미드는 tet 오페론으로부터의 조절 서열의 제어 하에 CMV 프로모터를 포함하고 있어, 트랜스 활성화제인 pTet-tTAk와 공동 형질 감염될 때 독시사이클린이 없는 경우에만 단백질을 발하는 것일 수 있다.
본 발명의 일 예시에서, 상기 pCas9, pwtCas9-bacteria 및 pgRNA-bacteria 플라스미드는 CRISPR 기술을 사용하여, Cas9 뉴클레아제 gRNA을 발현시키기 위한 것일 수 있다.
본 발명에서, 상기 숙주 세포를 형질 전환시키는 방법은 당업계의 통상적인 도입 방법에 따라 수행될 수 있고, 구체적인 방법을 특별히 제한하지는 않으나, 예를 들면, 박테리아의 형질 전환 방법, CaCl2침전법, CaCl2방법에 환원물질인 DMSO(Dimethyl sulfoxide)를 사용함으로써 효율을 높인 Hanahan 방법, 전기천공법(Electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로 박테리아 매개된 형질 전환법, PEG를 이용한 형질 전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질 전환 방법 등을 사용할 수 있다.
본 발명에서, 상기 숙주 세포를 암이 발병한 개체에 투여하는 경우 암 조직에서만 모노머형 스트렙타비딘을 발현할 수 있는 효과가 있다. 따라서, 본 발명의 상기 숙주 세포는 암이 발병한 개체에 투여하였을 때에 암 조직에 비하여 정상 조직에서 생존력이 낮은 것이, 정상 조직에는 감염이 없고, 암 조직에서만 모노머형 스트렙타비딘을 발현할 수 있어 바람직하다. 여기서, 상기 정상 조직은 폐, 간 및 비장으로 이루어진 군에서 선택되는 장기의 조직일 수 있으나, 이에 제한되지 않는다.
본 발명에서, 상기 숙주 세포를 생체 내에 투여하는 경우 생체 내에서 상기 숙주 세포의 분포를 확인할 수 있는 효과가 있다.
본 발명에서, 상기 숙주 세포는 박테리아, 효모, 균류 세포, 식물 세포, 곤충 세포 및 동물 세포로 이루어진 군으로부터 선택되는 어느 하나 이상의 세포인 것일 수 있다.
본 발명에서 상기 박테리아는, 락토코쿠스(Lactococcus), 류코노스톡(Leuconostoc), 페디오코커스(Pediococcus), 엔트로코커스(Enterococcus), 스트렙토코커스(Streptococcus), 베일로넬라(Veilonella), 에스체리시아(Escherichia), 유박테리움(Eubacterium), 슈도모나스(Pseudomonas), 살모넬라(Salmonella), 시겔라(Shigella), 헬리코박터(Helicobacter), 캄필로박터(Campylobacter), 어시니아(Yersinia), 리스테리아(Listeria), 스트렙토미세스(Streptomyces), 펩토코커스(Peptococcus), 펩토스트렙토코커스(Peptostreptococcus), 프로투스(Proteus), 루미노코커스(Ruminococcus), 엔테로박터(Enterobacter), 시트로박터(Citrobacter), 세라티아(Serratia), 해모필러브(Haemophilus), 스타필로코커스(Staphylococcus), 마이코박테리움(Mycobacterium), 클로스트리디움(Clostridium), 바실러스(Bacillus), 마이크로코커스(Micrococcus), 비브리오(Vibrio), 박테로이데스(Bacteroides), 멜리소코코스(Melissococcus), 코쿠리아(Kocuria), 아에로코코스(Aerococcus), 오에노코코스(Oenococcus), 락토바실러스(Lactobacillus), 스포로락토바실러스(Sporolactobacilus), 아커만시아(Akkermansia), 비피도박테리움(Bifidobacterium), 부티리치코쿠스(Butyricicoccus), 부티리시모나스(Butyricimonas), 부티비브리오(Butyrivibrio), 슈도부티비브리오(Pseudobutyrivibrio), 웨이셀라(Weissella), 푸소박테리움(Fusobacterium), 카르노박테리움(Carnobacterium), 프로피오니박테리움(Propionibacterium), 메가스파에라(Megasphaera), 알리스팁스(alistipes), 알로바쿨룸(allobaculum), 바네시엘라(barnesiella), 블라우티아(blautia), 도레아(dorea), 헤스펠리아(hespellia), 홀데마니아(holdemania), 라우소니아(lawsonia), 오실리박터(oscillibacter), 파라박테로이드(parabacteroides), 파스콜락토박테리움(phascolarctobacterium), 프리보텔라(prevotella), 세디멘티박터(sedimentibacter), 엑시구오박데리움(Exiguobacterium), 아시네토박터(Acinetobacter), 카프노시토파가(Capnocytophaga), 네이세리아(Neisseria), 스핑고모나스(Sphingomonas), 아그레가티박터(Aggregatibacter), 렙토트리키아(Leptotrichia), 그라눌리카텔라(Granulicatella), 크리세오박테리움(Chryseobacterium), 포르피로모나스(Porphyromonas), 브라키박테리움(Brachybacterium), 엔하이드로박터(Enhydrobacter), 파라코커스(Paracoccus), 코리네박테리움(Corynebacterium), 로티아(Rothia), 엑티노마이세스(Actinomyces), 디알리스터(Dialister), 페칼리박테리움(Faecalibacterium), 할로모나스(Halomonas), 수테렐라(Sutterella), 베일로넬라(Veillonella), 로도코커스(Rhodococcus), 아토포비움(Atopobium), 크로모할로박터(Chromohalobacter), 쿠프리아비두스(Cupriavidus), 메타노브레비박터(Methanobrevibacter), 오도리박터(Odoribacter), 피라미도박터(Pyramidobacter), 빌로필라(Bilophila), 데설포비브리오(Desulfovibrio), 아시다미노코커스(Acidaminococcus), 아크로모박터(Achromobacter), 아그로박테리움(Agrobacterium), 로시텔레스(Roseateles), 코프로코커스(Coprococcus), 터리시박터(Turicibacter), 로즈뷰리아(Roseburia), 라크노스피라(Lachnospira), 오스실로스피라(Oscillospira), SMB53, 카테니박테리움(Catenibacterium), 파라프레보텔라(Paraprevotella), 아들러크레우치아(Adlercreutzia), 슬라키아(Slackia) 및 데르모아나데로박테리움(Thermoanaerobacterium)에서 선택된 어느 하나 이상일 수 있으나 이에 제한되지는 않는다.
본 발명에서 상기 효모는, 사카로마이세스(Saccharomyces), 데바로마이세스(Debaromyces), 칸디다(Candida), 클루이베로마이세스(Kluyveromyces), 피치아(Pichia), 토룰라스포라(Torulaspora) 및 파피아(Phaffia)에서 선택된 어느 하나 이상일 수 있으나 이에 제한되지는 않는다.
본 발명에서, 상기 균류는 아스페르길루스(Aspergillus), 리조푸스(Rhizopus), 뮤코르(Mucor), 페니실리움(Penicillium) 및 바시디오마이코타(Basidiomycota)에서 선택된 어느 하나 이상일 수 있으나 이에 제한되지는 않는다.
본 발명에서, 상기 곤충 세포는 드로조필라 및 스포도프테라 Sf9 세포에서 선택된 어느 하나 이상일 수 있으나 이에 제한되지는 않는다.
본 발명에서, 상기 동물 세포는 CHO(중국 햄스터 난소 세포, Chinese hamster ovary cells), SP2/0(생쥐 골수종), 인간 림프아구(Human lymphoblastoid), COS, NSO(생쥐 골수종), 293T 세포, 보우 멜라노마 세포, HT-1080 세포, BHK 세포(베이비 햄스터 신장세포, Baby Hamster Kidney cells), HEK 세포(인간 배아신장 세포, Human Embryonic Kidney cells) 및 PERC.6 세포(인간 망막 세포)에서 선택된 어느 하나 이상일 수 있으나 이에 제한되지는 않는다.
본 발명에서, 상기 숙주 세포는 박테리아 세포일 수 있고, 바람직하게는 혐기성 균주인 것일 수 있다. 상기한 숙주 세포를 암 진단, 예방 및 치료의 목적으로 인체에 주입한 경우에, 혈관 형성이 불완전하여 산소가 결핍된 환경인 암 조직의 내부를 표적하기 때문에, 이와 같은 균주 내에 실시간으로 이미징이 가능한 리포터 단백질과 항암 단백질이 동시에 균형적으로 발현될 수 있는 재조합 벡터가 도입되어 있는 경우 암을 매우 효과적으로 진단과 동시에 예방 및 치료가 가능할 수 있도록 한다.
본 발명의 일 예시에서, 상기 박테리아는 살모넬라 속 균주, 클로스트리듐(Clostridium) 속 균주, 비피도박테리움(Bifidobacterium) 속 균주 및 대장균 속 균주로 구성된 군으로부터 선택되는 적어도 하나일 수 있으며, 보다 바람직하게는 살모넬라 티피뮤리움(Salmonella typhimurium), 살모넬라 콜레라수스(Salmonella choleraesuis) 및 살모넬라 엔테리티디스(Salmonella enteritidis)로 구성된 군으로부터 선택되는 적어도 하나인 것일 수 있고, 더욱 바람직하게는 살모넬라 티피뮤리움일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 “살모넬라 티피무륨(Salmonella typhimurium)”은 살모넬라(Salmonella) 속의 장티푸스를 일으키는 원인균이다. 상기 살모넬라 티피무륨은 막대기 모양의 간균으로 편모가 있고 그람 음성이다. 상기 살모넬라 티피무륨은 열에 약하여 60℃에서 20분만에 사멸하며, 가축, 야생 동물, 보균자 등이나 우유, 계란 등에 의해 1차 오염되고 오염된 생육 등에서 2차 감염을 받기 쉬운 샐러드 등도 원인이 되어 식중독의 일종인 살모넬라증(Salmonellosis)을 유발할 수 있다.
본 발명에서 상기 “살모넬라 콜레라수이스(Salmonella choleraesuis)”는 살모넬라(Salmonella)속의 돼지 콜레라균으로 잘 알려져 있는 균으로 사람과 동물 모두에게 감염되는 균이다. 상기 살모넬라 콜레라수이스는 살모넬라에 의한 급성패혈증의 주된 원인균이다. 이 균은 주모(周毛)를 가지고 있어 운동성이 있는 그람 음성의 통성 혐기성 간균이다. 유당 분해력이 없고, 인돌을 형성하지 않으며, 황화수소를 생성하지 않아 대장균과는 구별된다. 발육최적온도 35~37℃이고 증식가능 온도범위는 10~43℃이며, 60℃에서 20분간 가열로 사멸한다. 최적 pH는 7.2~7.4이고, 크기는 0.5~0.8×3~4μm이다.
본 발명에서 상기 “살모넬라 엔테리티디스(Salmonella enteritidis)”는 살모넬라(Salmonella) 속의 세균성 감염형 식중독의 원인균으로 장염균이라고도 한다. 상기 살모넬라 엔테리티디스는 살모넬라의 대표적인 균으로 모든 동물에서 감염을 일으킬 수 있고 숙주 적응력이 매우 높다. 주모(周毛)를 가지고 있어 운동성이 있는 그람 음성의 통성 혐기성 간균이다. 유당 분해력이 없고, 인돌을 형성하지 않으며, 황화수소를 생성하지 않아 대장균과는 구별된다. 발육 최적 온도는 35~37℃이고 증식이 가능한 온도 범위는 10∼43℃이며, 60℃에서 20분간 가열로 사멸한다. 최적 pH는 7.2~7.4이고, 크기는 0.5~0.8×3~4μm이다.
본 발명에서 상기 “살모넬라 인판티스(Salmonella infantis)”는 계란 또는 가금육류에 의해 감염되는 균주이고, 파라티푸스 균(Salmonella paratyphi) 및 장티푸스 균(Salmonella typhi)은 장티푸스의 원인균주이다.
또한, 본 발명에서, 상기 박테리아는 개체에 투여 시 독성 및 다른 부작용 등을 감소시킬 수 있도록 약독화된 것일 수 있다.
본 발명의 일 예시에서, 상기 박테리아는 aroA, aroC, aroD, aroE, Rpur, htrA, ompR, ompF, ompC, galE, cya, crp, cyp, phoP, phoQ, rfaY, dksA, hupA, sipC, clpB, clpP, clpX, pab, nadA, pncB, pmi, rpsL, hemA, rfc, poxA, galU, cdt, pur, ssa, guaA, guaB, fliD, flgK, flgL, relA, spoA 및 spoT로 이루어진 군으로부터 선택되는 적어도 하나를 코딩하는 유전자가 변형되어 발현된 것일 수 있다.
본 발명의 다른 일 예시에서, 상기 박테리아는 구아노신 다인산 합성능이 결여되어 약독화된 것일 수 있다. 상기 구아노신 다인산은 구아노신-5-이인산-3-이인산(ppGpp)일 수 있고, 상기 숙주 세포는, 구아노신-5-이인산-3-이인산(ppGpp)을 가수분해하는 relA 또는 구아노신-5-이인산-3-이인산(ppGpp)을 합성하는 spoT 코딩하는 유전자가 변형되어 상기 구아노신-5-이인산-3-이인산(ppGpp)의 합성능이 결여된 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서, 상기 박테리아에 유전자에 변형을 가하는 방법은 당업계에 공지된 다양한 유전자의 결실 또는 파괴하는 방법에 의해 수행될 수 있고, 예를 들면, 상기 결실 및 파괴 방법은 상동성 재조합, 화학적 변이유발, 조사 변이유발 또는 트랜스포존 변이유발 등과 같은 방법에 의해 수행될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 조성물은 비오틴화된 화합물을 더 포함할 수 있고, 이때 상기 숙주 세포에서 발현되는 모노머형 스트렙타비딘은 비오틴-결합성 단백질로서, 비오틴과 상호 작용할 수 있는 결합 부위를 포함할 수 있다.
본 발명에서, 상기 비오틴화된 화합물은 비오틴, 바람직하게는 D-비오틴과 반응하도록 적어도 하나의 아민기를 포함하는 화합물에, D-비오틴의 N-히드록시숙신이미딜 에스테르(NHS-비오틴) 와 같은 일반적인 비오틴화된 시약을 이용하여 비오틴기를 갖도록 개질된 것일 수 있다.
본 발명에서, 상기 비오틴화된 화합물은 상기 숙주 세포에서 발현되는 모노머형 스트렙타비딘을 예비 표적화 할 수 있고, 이에 따라 상기 숙주 세포, 또는 상기 숙주 세포로부터 발현되는 모노머형 스트렙타비딘과, 비오틴화된 화합물을 생체 내에 투여하는 경우, 생체 체내의 숙주 세포가 위치한 곳에서 높은 효율로 화합물-비오틴-스트렙타비딘 복합체가 형성될 수 있다.
본 발명에서, 상기 비오틴화된 화합물은 비오틴화된 조영제일 수 있다. 여기서, 상기 조영제는 방사성 핵종, 형광 표지, 효소 표지, 화학 발광 마커, 금 제제 및 자성 제제로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있으나, 알파선, 감마선, 양전자(Positron), X-선, 자외선, 가시광선, 적외선, 초음파(ultrasonic wave) 및 자기 공명(magnetic resonance)에서 선택된 하나 이상의 신호를 발생하거나 증폭시키는 것이라면 어떤 것이든 제한되지는 않는다.
본 발명에서, 상기 방사성 동위원소 내지 방사성 핵종은 C-11, F-18, Cu-64, N-13, Ga-68, Sc-44, Zr-89, Y-90, Tc-99m,In-111,I-123,I-124,I-125,I-131및 Lu-177으로 이루어진 군에서 선택된 어느 하나 이상인 것일 수 있으나, 이에 제한되지는 않는다.
본 발명에서, 상기 방사성 동위원소 내지 방사성 핵종을 검출할 수 있는 수단은, 양전자방출단층촬영(PET) 또는 단일광자방출전산화 단층촬영(SPECT) 일 수 있으나, 이에 제한되지는 않는다.
상기 양전자방출단층촬영(PET)은 양전자를 방출하는 방사성 동위원소를 결합한 약물(방사성의약품)을 체내에 주입하면 체내에서 방출된 양전자가 인접한 전자와 결합하여 소멸(annihilation)하면서 2개의 광자를 발생하고 이 2개의 광자를 검출하여 영상을 구성하는 방법이다. 상기 단일 광자방출전산화단층촬영(SPECT)은 단일 광자(감마선)를 발생하는 방사성동위원소를 결합한 약물을 체내에 주입하면 체내에서 방출되는 감마선을 검출하여 영상을 구성하는 방법이다.
상기 양전자 단층촬영(PET)은 양전자를 방출하는 방사성 동위원소를 결합한 약물을 체내에 주입하여, 체내에서 발생하는 양전자를 측정해 실시간으로 영상을 구성하는 방법이고, 상기 뇌 단일 광자 단층촬영(SPECT)은 환자가 혈관으로 동위원소를 주입하여 뇌혈류의 상태를 보여주는 검사이다.
본 발명에서, 상기 형광 표지는 플루오레세인, 로다민, 로돌, 로사민 및 이들의 유도체를 비제한적으로 포함하는 피페라진, 크산텐, 쿠마린, 아크리딘, 푸란, 인돌, 퀴놀린, 시아닌, 벤조푸란, 퀴나졸리논, 벤자졸, 붕소-디피로메텐 및 이들의 유도체로 이루어진 군으로부터 선택된 어느 하나 이상일 수 있으나, 이에 제한되지는 않는다.
본 발명에서, 상기 효소 표지는 양고추냉이 퍼옥시다제(Horseradish peroxidase; HRP), 루시퍼라제 및 알칼리성 포스파타제로 이루어진 군에서 선택된 어느 하나 이상인 것일 수 있으나, 이에 제한되지는 않는다.
본 발명에서 상기 “생체 내”란, 상기 숙주 세포가 감염 내지 주입될 수 있는 개체의 생체 내로서, 상기 개체는 포유동물 및 비-포유동물을 모두 포함할 수 있다. 여기서, 상기 포유동물의 예로는 인간, 비-인간 영장류, 예컨대 침팬지, 다른 유인원 또는 원숭이 종; 축산 동물, 예컨대 소, 말, 양, 염소, 돼지; 사육 동물, 예컨대 토끼, 개 또는 고양이; 실험 동물, 예를 들어 설치류, 예컨대 래트, 마우스 또는 기니아 피그 등을 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한, 본 발명에서 상기 비-포유동물의 예로는 조류 또는 어류 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서, 상기 암은 흑색종, 나팔관암, 뇌암, 소장암, 식도암, 임파선암, 담낭암, 혈액암, 갑상선암, 내분비선암, 구강암, 간암, 담도암, 대장암, 직장암, 자궁경부암, 난소암, 신장암, 위암, 십이지장암, 전립선암, 유방암, 뇌종양, 폐암, 갑상선 미분화암, 자궁암, 결장암, 방광암, 요관암, 췌장암, 뼈/연부조직 육종, 피부암, 비호지킨 림프종, 호지킨 림프종, 다발성 골수종, 백혈병, 골수이형성증후군, 급성 림프모구성 백혈병, 급성 골수성 백혈병, 만성 림프구성 백혈병, 만성 골수성 백혈병 및 고립성 골수종으로 구성되는 군으로부터 선택되는 적어도 하나 일 수 있고, 바람직하게는 흑색종, 나팔관암, 뇌암, 소장암, 식도암, 임파선암, 담낭암, 갑상선암, 내분비선암, 구강암, 간암, 담도암, 대장암, 직장암, 자궁경부암, 난소암, 신장암, 위암, 십이지장암, 전립선암, 유방암, 뇌종양, 폐암, 갑상선 미분화암, 자궁암, 결장암, 방광암, 요관암, 췌장암, 뼈/연부조직 육종, 피부암 및 골수종으로 구성되는 군으로부터 선택되는 적어도 하나 일 수 있으나, 이에 제한되지는 않는다.
본 발명에서 상기 “진단”은 특정 질병 또는 질환에 대한 대상(subject)의 감수성(susceptibility)을 판정하는 것, 대상이 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 대상의 예후(prognosis)(예컨대, 전-전이성 또는 전이성 암 상태의 동정, 암의 단계 결정 또는 치료에 대한 암의 반응성 결정)를 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링하는 것)을 포함한다. 본 발명의 목적상, 상기 진단은 상기한 암의 발병 여부 또는 암 조직의 크기를 확인하는 것이다.
본 발명에서 상기 “개체”란, 암의 진단, 예방 또는 치료가 필요한 개체로서, 포유동물 및 비-포유동물을 모두 포함할 수 있다. 여기서, 상기 포유동물의 예로는 인간, 비-인간 영장류, 예컨대 침팬지, 다른 유인원 또는 원숭이 종; 축산 동물, 예컨대 소, 말, 양, 염소, 돼지; 사육 동물, 예컨대 토끼, 개 또는 고양이; 실험 동물, 예를 들어 설치류, 예컨대 래트, 마우스 또는 기니아 피그 등을 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한, 본 발명에서 상기 비-포유동물의 예로는 조류 또는 어류 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 “투여”란, 임의의 적절한 방법으로 개체에게 본 발명의 유효성분을 도입하는 과정을 의미하는 것으로서, 상기와 같이 투여되는 화합물의 제제는 특별히 제한하지 않으며, 고체 형태의 제제, 액체 형태의 제제 또는 흡인용 에어로졸 제제로 투여될 수 있으며, 사용하기 바로 전에 경구 또는 비경구 투여용 액체 형태 제제로 전환되도록 의도되는 고체 형태 제제로 투여될 수 있고, 예를 들면, 산제, 과립제, 캡슐, 정제, 수성 현탁액 등의 경구형 제형, 외용제, 좌제 및 멸균 주사용액의 형태로 제형화하여 투여될 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명에서 상기 투여 시 본 발명의 숙주 세포 내지 화합물과 함께 약학적으로 허용 가능한 담체를 추가로 투여할 수 있다. 여기서, 상기 약학적으로 허용되는 담체는 경구 투여 시에는 결합제, 활탁제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등을 사용할 수 있으며, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제 등을 혼합하여 사용할 수 있으며, 국소투여용의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다. 본 발명의 화합물의 제형은 상술한 바와 같은 약학적으로 허용되는 담체와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 경구 투여시에는 정제, 트로키, 캡슐, 엘릭서(elixir), 서스펜션, 시럽, 웨이퍼 등의 형태로 제조할 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조할 수 있다. 기타, 용액, 현탁액, 정제, 캡슐, 서방형 제제 등으로 제형할 수 있다.
한편, 제제화에 적합한 담체, 부형제 및 희석제의 예로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말디톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등이 사용될 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제, 방부제 등을 추가로 포함할 수 있다.
본 발명에 따른 화합물의 투여 경로는 이들로 한정되는 것은 아니지만 구강, 정맥 내, 근육 내, 동맥 내, 골수 내, 경막 내, 심장 내, 경피, 피하, 복강 내, 비강 내, 장관, 국소, 설하 또는 직장이 포함된다. 경구 또는 비경구 투하가 바람직하다.
본 발명에서, "비경구"는 피하, 피내, 정맥내, 근육내, 관절내, 활액낭내, 흉골내, 경막내, 병소내 및 두개골내 주사 또는 주입기술을 포함한다. 본 발명의 조성물은 또한 직장 투여를 위한 좌제의 형태로 투여될 수 있다.
본 발명에서, "유효량"은 바람직한 생물학적 결과를 제공하기 위한 작용제의 충분한 양을 지칭한다. 상기 결과는 생체 내 숙주 세포의 분포를 실시간으로 확인하거나 임의의 다른 바람직한 변화를 이끌어 내는 것일 수 있다. 예를 들어, 숙수 세포를 추적하기 위한 "유효량"은 생체 내에서 숙주 세포를 추적하기 위하여 유의한 양의 신호를 발생하는데 요구되는, 본 발명에 개시된 화합물의 양이다. 임의의 개별적인 경우에서 적절한 "효과적인" 양은 일상적인 실험을 사용하여 당업자에 의해 결정될 수 있다. 본 발명의 경우에, 활성 물질은, 생체 내 세포 추적용 조성물이며, . 따라서, 표현 "유효량"은 일반적으로 활성 물질이 예방 또는 치료 효과를 갖는 양을 지칭한다. 본 발명의 경우에, 활성 물질은, 암의 예방, 개선 또는 치료제이다.
본 발명에 숙주 세포 내지 화합물의 유효량은 사용된 숙주 세포의 종류, 사용된 특정 화합물의 활성, 개체의 연령, 체중, 일반적인 건강, 성별, 정식, 투여 시간, 투여 경로, 배출율 및 배합을 포함한 여러 요인에 따라 다양하게 변할 수 있지만 당업자에 의해 적절하게 선택될 수 있고, 1일 0.0001 내지 100mg/kg 또는 0.001 내지 100mg/kg으로 투여할 수 있다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다. 본 발명에 따른 숙주 세포 내지 화합물은 환제, 당의정, 캡슐, 액제, 겔, 시럽, 슬러리, 현탁제로 제형될 수 있다.
본 발명의 다른 구현 예에 따르면, 모노머형 스트렙타비딘을 발현하는 숙주 세포가 투여된 목적하는 개체에서, 상기 숙주 세포를 촬영 수단으로 확인하는 단계를 포함하는, 생체 내 세포의 분포를 확인 또는 암의 진단을 위한 정보 제공 방법을 제공한다.
본 발명에서, 상기 목적하는 개체는 비오틴화된 화합물 또한 투여된 것일 수 있다. 상기 비오틴화된 화합물은 모노머형 스트렙타비딘이 발현된 숙주 세포에 결합하여, 상기 숙주 세포의 생체 내 분포를 확인할 수 있는 효과를 가진다.
본 발명에서 상기 목적하는 개체란, 암이 발병하였거나 발병 가능성이 높은 개체로서, 인간 또는 인간을 제외한 동물을 모두 포함할 수 있다. 여기서, 인간을 제외한 동물의 예로는 비-인간 영장류, 예컨대 침팬지, 다른 유인원 또는 원숭이 종; 축산 동물, 예컨대 소, 말, 양, 염소, 돼지; 사육 동물, 예컨대 토끼, 개 또는 고양이; 실험 동물, 예를 들어 설치류, 예컨대 래트, 마우스 또는 기니아 피그; 조류; 또는 어류를 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서, 상기 목적하는 개체는 비오틴화된 화합물 또한 투여된 것일 수 있다. 본 발명에서 상기 비오틴화된 화합물은 모노머형 스트렙타비딘이 발현되고, 암 세포에 존재하는 상기 숙주 세포에 결합하여, 암의 크기 및 위치를 확인할 수 있는 효과를 가진다.
본 발명에서 상기 촬영 수단은, 알파선, 감마선, 양전자(Positron), X-선, 자외선, 가시광선, 적외선, 초음파(ultrasonic wave) 및 자기 공명(magnetic resonance)에서 선택된 하나 이상의 신호를 이용한 것일 수 있으나, 상기 신호는 목적하는 개체에 비침습적이거나 낮은 침습성을 가지고, 상기 비오틴화된 화합물에 의해 발생되거나 증폭되는 것이라면 제한없이 포함될 수 있다.
본 발명에서, 상기 확인하는 단계 시 상기 비오틴화된 화합물에 의해 발생되거나 증폭되는 상기 신호의 여부, 범위 또는 크기를 상기 촬영 수단에 의해 측정할 수 있다.
본 발명에서, 상기 목적하는 개체는 아라비노스 또한 투여된 것일 수 있다. 상기 아라비노스는 상기 숙주 세포의 모노머형 스트렙타비딘을 지속적으로 발현할 수 있게 하여, 상기 숙주 세포의 생체 내 분포를 확인할 수 있는 효과를 가진다.
또한, 본 발명에서, 상기 확인하는 단계는 1회 또는 복수 회에 걸쳐 수행될 수 있다. 본 발명에서는 특정 시점을 기준으로 복수 회에 걸쳐 확인하는 단계를 수행할 수 있고, 혹은 소정의 기간에 걸쳐 복수 회로 확인하는 단계를 수행하여, 시간에 따른 상기 숙주 세포의 생체 내 분포를 확인하고, 암의 발병 가능성의 진단 뿐만 아니라 암 환자의 예후 또한 예측할 수 있다.
본 발명의 상기 확인하는 단계에서 비오틴화된 화합물에 의해 발생된 신호가 검출되는 경우, 암이 발병하였거나 발병 가능성이 높은 것으로 예측할 수 있다.
또한, 본 발명의 확인하는 단계에서 비오틴화된 화합물에 의해 발생된 신호를 검출함으로써 암의 예후 또한 예측할 수 있다.
본 발명의 정보 제공 방법에서, 상기 숙주 세포, 개체 및 비오틴화된 화합물에 관한 기재는 앞서 기재된 바와 중복되어 명세서의 과도한 복잡을 피하기 위하여 이하 그 자세한 기재를 생략한다.
본 발명의 또 다른 구현 예에 따르면, 모노머형 스트렙타비딘(monomeric streptavidin; mSA)을 코딩하는 유전자가 도입되어 형질 전환된 숙주 세포를 포함하는, 암의 예방 또는 치료를 위한 약학적 조성물을 제공한다.
본 발명의 또 다른 구현 예에 따르면, 목적하는 개체에 본 발명에 따른 숙주 세포를 포함하는 상기 약학적 조성물을 유효량으로 투여하는 단계를 포함하는, 암의 예방 또는 치료 방법을 제공한다.
본 발명에서, 상기 숙주 세포는 말토오즈 결합 단백질(maltose-binding protein; MBP)을 코딩하는 유전자가 더 도입된 것일 수 있다.
본 발명에서, 상기 숙주 세포는 상기 모노머형 스트렙타비딘을 코딩하는 유전자의 발현을 조절하는 조절 유전자가 더 도입된 것일 수 있다.
본 발명에서, 상기 조성물은 비오틴화된 화합물을 더 포함하는 것일 수 있다.
본 발명에서, 상기 비오틴화된 화합물은 비오틴화된 암 치료 물질일 수 있다. 여기서, 상기 암 치료 물질은 항암제로서, 대사길항제, 알킬화제, 토포아이소머라제 길항제, 미세소관 길항제, 항암 항생제, 식물유래 알칼로이드, 항체 항암제, 분자표적 항암제, 면역 항암제, 유전자 발현 억제제, ROS-유발 전구약물, 압타머 및 방사성 치료제로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다.
본 발명에서 상기 항암제는 탁솔, 나이트로젠 머스타드, 이마티닙, 옥살리플라틴, 리툭시맙, 엘로티닙, 트라스투주맙, 제피티닙, 보르테조밉, 수니티닙, 카보플라틴, 소라페닙, 베바시주맙, 시스플라틴, 세툭시맙, 비스쿰알붐, 아스파라기나제, 트레티노인, 하이드록시카바마이드, 다사티닙, 에스트라머스틴, 겜투주맵오조가마이신, 이브리투모맙튜세탄, 헵타플라틴, 메칠아미노레불린산, 암사크린, 알렘투주맙, 프로카르바진, 알프로스타딜, 질산홀뮴 키토산, 젬시타빈, 독시플루리딘, 페메트렉세드, 테가푸르, 카페시타빈, 기메라실, 오테라실, 아자시티딘, 메토트렉세이트, 우라실, 시타라빈, 플루오로우라실, 플루다라빈, 에노시타빈, 데시타빈, 머캅토푸린, 티오구아닌, 클라드리빈, 카르모퍼, 랄티트렉세드, 도세탁셀, 파클리탁셀, SBT-1214, 스콰모신(Squamocin), 불라타신(bullatacin) 이리노테칸, 벨로테칸, 토포테칸, 비노렐빈, 에토포시드, 빈크리스틴, 빈블라스틴, 테니포시드, 독소루비신, 이다루비신, 에피루비신, 미톡산트론, 미토마이신, 블레오마이신, 다우노루비신, 닥티노마이신, 피라루비신, 아클라루비신, 페플로마이신, 테모졸로마이드, 부설판, 이포스파미드, 사이클로포스파미드, 멜파란, 알트레트민, 다카바진, 치오테파, 니무스틴, 클로람부실, 미토락톨, 로무스틴, 카르무스틴, 이매티닙, 게피티닙, 에르토티닙, 트리스투주맙, 로실레티닙, 네시투무맙, 에버롤리무스, 라무시루맙, 다코미티닙, 포레티닙, 팸브롤리주맙, 이필리무맙, 니볼루맙, 다브라페닙, 벨리파립, 세리티닙, 카무스틴, 시클로포스파미드, 이포스파마이드, 익사베필론, 멜팔란, 메르캅토푸린, 미토산트론, 티에스원, 레이저티닙, 부팔린, 트리아핀, 할러데이 접합(HJ) 억제제 펩타이드 2로 이루어진 군으로부터 선택되는 어느 하나 이상 일 수 있고, 바람직하게는 플루오로우라실, 독소루비신, 젬시타빈, 레이저티닙, 파클리탁셀, SBT-1214, 스콰모신, 불라타신, 부팔린, 트리아핀 및 할러데이 접합(HJ) 억제제 펩타이드 2로 이루어진 군으로부터 선택되는 어느 하나 이상 일 수 있으나, 이에 제한되지는 않는다.
본 발명의 상기 유전자의 발현 억제제는, 전사 억제제(repressor) 또는 단백질 활성 길항제(antagonist) 일 수 있다. 상기 전사 억제제는 전사의 개시를 억제하거나, 전사물의 분해를 유도하는 물질일 수 있다.
본 발명에서 상기 전사 억제제는 안티센스 올리고뉴클레오티드, 작은 간섭 RNA(small interference RNA; siRNA), 작은 헤어핀 RNA(small hairpin RNA, short hairpin RNA; shRNA), 마이크로 RNA(microRNA; miRNA) 또는 이들의 조합인 것일 수 있으나, 이에 제한되지는 않는다.
본 발명에서 상기 안티센스 올리고뉴클레오티드는 특정 mRNA의 서열에 상보적인 핵산 서열을 함유하고 있는 DNA 또는 RNA 또는 이들의 유도체를 말하고, mRNA 내의 상보적인 서열에 결합하여 mRNA의 단백질로의 번역을 저해하는 작용을 할 수 있다.
본 발명에서 상기 작은 간섭 RNA는 RNA 방해 또는 유전자 사일런싱을 매개하여 표적 유전자의 발현을 억제하는 핵산이다. 상기 작은 간섭 RNA는 견고한 헤어핀 턴을 만드는 RNA를 말하고, RNA 간섭을 통해 유전자 발현을 사일런스시키는 데 이용될 수 있다.
본 발명에서, 상기 마이크로 RNA는 21 내지 25 뉴클레오티드의 단일가닥 RNA 분자로서 mRNA의 3'-UTR(untranslation region)에 결합하여 진핵생물의 유전자 발현을 제어할 수 있다.
본 발명에서, 상기 단백질 활성 길항제(antagonist)는 단백질의 활성을 감소시키는 물질로, 상기 활성 길항제는 천연 추출물, 화학 물질, 또는 이들의 조합일 수 있다.
본 발명에서, 상기 할러데이 접합(HJ) 억제제 펩타이드 2는 서열번호 38의 아미노산 서열로 나타낼 수 있으나 이에 제한되지는 않는다.
본 발명에서, 상기 면역 항암제는 항-PD-1/PD-L1 면역 항암제일 수 있고, 상기 항-PD-1/PD-L1 면역 항암제는 니볼루맙 또는 펨브로리주맙 일 수 있으나, 세포예정사와 관련된 PD-1 또는 PD-L1과 관련된 것이라면 제한없이 포함될 수 있다.
본 발명에서, 상기 압타머는 소정의 표적 분자에 대한 결합 활성을 갖는 단일 가닥 올리고 뉴클레오티드로서, 표적 분자에 결합함으로써 표적 분자의 활성을 저해할 수 있다. 상기 압타머는 그 염기 서열에 따라 다양한 3차원 구조를 가질 수 있으며, 항원-항체 반응과 같이 특정 물질에 대하여 높은 친화력을 가질 수 있다. 상기 압타머는 RNA, DNA, 변형된(Modified) 핵산 또는 이들의 혼합물일 수 있으며, 그 형태가 직쇄상 또는 환상 일 수 있다.
본 발명에서, 상기 방사성 치료제는 알파선 또는 양전자를 방출하는 것일 수 있고, 그 예시로 Cu-67, Y-90, I-131, Lu-177, At-211, Ra-223 및 AC-225로 이루어진 군으로부터 선택되는 어느 하나 이상 일 수 있으나, 이에 제한되지는 않는다.
본 발명의 상기 "예방"이란, 본 발명의 상기 조성물을 이용하여 상기 암에 의해 발생되는 증상을 차단하거나, 그 증상을 억제 또는 지연시키는 행위라면 제한없이 포함될 수 있다.
본 발명의 상기 "치료"란, 본 발명의 상기 조성물을 이용하여 상기 암에 의해 발생된 증상이 호전되거나 이롭게 되는 행위라면 제한 없이 포함될 수 있다.
본 발명의 약학적 조성물에서, 상기 말토오즈 결합 단백질, 조절 유전자, 총 깁스 자유 에너지 변화량(ΔGtotal),번역 개시 속도, 숙주 세포, 형질 전환, 암, 개체 및 투여에 관한 기재는 앞서 기재된 바와 중복되어 명세서의 과도한 복잡을 피하기 위하여 이하 그 자세한 기재를 생략한다.
본 발명에 따라 모노머형 스트렙타비딘을 발현하는 숙주 세포를 개체에 투여하는 경우, 상기 숙주 세포로부터 발현되는 모노머형 스트렙타비딘은 생체 내에서 그 기능성을 유지할 수 있다. 이를 통해 비오틴화된 영상제제를 투여함으로써 생체 내 상기 숙주 세포의 존재 및 분포를 확인할 수 있다. 또한, 암을 타겟으로 숙주 세포와 함께 암의 진단, 예방 또는 치료용 비오틴화된(biotinylated) 약물을 함께 투여하게 되면 상기 비오틴화된 약물은 모노머형 스트렙타비딘에 결합하여 암 조직에만 선택적으로 작용할 수 있고, 이를 통해 암의 발병 여부를 정확히 진단하거나 암을 표적으로 하는 예방 또는 치료가 가능한 장점이 있다.
도 1은 실험예 1에서 mSA 유전자를 단독으로 형질 도입시킨 플라스미드의 발현 결과를 나타낸 것이다.
도 2는 실험예 2에서 MBP-mSA 유전자 발현 결과를 나타낸 것이다.
도 3은 실험예 2에서 MBP-mSA 유전자 발현 및 활성 확인을 위한 웨스턴 블롯 결과를 나타낸 것이다.
도 4는 실험예 2에서 재조합 균주의 비오틴 결합을 분석한 결과를 그래프로 나타낸 것이다.
도 5는 실험예 2에서 재조합 균주의 비오틴 결합을 공초점 현미경을 통해 이미지로 나타낸 것이다.
도 6은 실험예 2에서 재조합 균주의 비오틴 결합을 공초점 현미경을 통해 이미지로 나타낸 것이다.
도 7은 실험예 3에서 MBP-mSA 유전자 발현 결과를 나타낸 것이다.
도 8은 실험예 3에서 MBP-mSA 유전자 발현 및 활성 확인을 위한 웨스턴 블롯 결과를 나타낸 것이다.
도 9는 실험예 4에서 MBP-mSA 유전자 발현 확인을 위한 웨스턴 블롯 결과를 나타낸 것이다.
도 10은 실험예 4에서 MBP-mSA 유전자 발현 비교를 위한 웨스턴 블롯 결과를 나타낸 것이다.
도 11은 실험예 4에서 재조합 균주의 비오틴 결합을 분석한 결과를 그래프로 나타낸 것이다.
도 12는 실험예 4에서 재조합 균주의 비오틴 결합을 공초점 현미경을 통해 이미지로 나타낸 것이다.
도 13은 실험예 4에서 재조합 균주의 비오틴 결합을 공초점 현미경을 통해 이미지로 나타낸 것이다.
도 14a는 실험예 5에서 재조합 균주의 비오틴 결합 특이성을 분석한 결과를 그래프로 나타낸 것이다.
도 14b는 실험예 5에서 재조합 균주의 비오틴 결합 특이성을 분석한 결과를 그래프로 나타낸 것이다.
도 15a는 실험예 5에서 재조합 균주의 비오틴 결합 특이성을 분석한 결과를 그래프로 나타낸 것이다.
도 15b는 실험예 5에서 재조합 균주의 비오틴 결합 특이성을 분석한 결과를 그래프로 나타낸 것이다.
도 16은 실험예 5에서 마우스의 근육으로 주입된 재조합 균주의 비오틴 결합을 이미지로 나타낸 것이다.
도 17은 실험예 5에서 마우스의 근육으로 주입된 재조합 균주의 개체수를 나타낸 것이다.
도 18은 실험예 5에서 마우스 복강으로 주입된 재조합 균주의 비오틴 결합을 이미지로 나타낸 것이다.
도 19는 실험예 5에서 마우스 복강으로 주입된 재조합 균주의 장관에서 개체수를 나타낸 것이다.
도 20은 실험예 5에서 마우스 정맥으로 주입된 재조합 균주의 비오틴 결합을 이미지로 나타낸 것이다.
도 21은 실험예 5에서 마우스 정맥으로 주입된 재조합 균주의 간에서 개체수를 나타낸 것이다.
도 22는 실험예 5에서 마우스에 경구투여된 재조합 균주의 비오틴 결합을 이미지로 나타낸 것이다.
도 23은 실험예 5에서 마우스에 경구투여된 재조합 균주의 장관에서 개체수를 나타낸 것이다.
도 24는 실험예 5에서 종양 동물 모델에서 재조합 균주의 비오틴 결합을 이미지로 나타낸 것이다.
도 25는 실험예 5에서 종양 동물 모델에서 재조합 균주의 비오틴 결합을 이미지로 나타낸 것이다.
도 26은 실험예 5에서 종양 동물 모델에서 재조합 균주의 비오틴 결합을 이미지로 나타낸 것이다.
도 27은 실험예 5에서 적출된 종양에서 재조합 균주의 비오틴 결합을 이미지로 나타낸 것이다.
도 28은 실험예 5에서 종양 동물 모델에서 재조합 균주의 비오틴 결합을 이미지로 나타낸 것이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
[실시예 1] mSA 발현 플라스미드 제작
[1-1] mSA 유전자 삽입 플라스미드 제작
재조합 균주에서 mSA 발현을 위한 플라스미드 제작을 위해 서열번호 2로 표시되는 모노머형 스트렙타비딘(mSA) 유전자를 합성(마크로젠, 한국)하여 증폭한 뒤, 제한효소 EcoRⅠ 및 SalⅠ을 넣어 절단하고 이를 정제하여 유전자 증폭 산물을 얻은 뒤에 이를 동일한 제한효소로 절단한 pBAD24 플라스미드에 클로닝 하여 pBAD-mSA(B-mSA) 플라스미드를 제작하였다.
추가로 mSA 유전자의 발현을 증가시키기 위해 프로모터 하류에 하기 표 1의 리보솜 결합 부위(Ribosome Binding Site; RBS)인 BBa_B0032, BBa_B0030, BBa_B0034를 삽입하여 pBAD_RBS 0.3-mSA(B_R0.3-mSA), pBAD_RBS 0.6-mSA(B_R0.6-mSA), pBAD_RBS 1.0-mSA(B_R1.0-mSA) 플라스미드를 제작하였다.
또한, 유전자의 발현과 가용성을 증가시키기 위해 pBAD-mSA 플라스미드를 주형으로 하여 mSA 유전자를 증폭한 뒤, 제한효소 EcoRⅠ 및 HindⅢ을 넣어 절단하고 이를 정제하여 유전자 증폭 산물을 얻은 뒤에 이를 동일한 제한효소로 절단한 pMAl_p2x, pMAl_c2x 플라스미드에 클로닝 하여 pMAl_p2x-mSA(M_p-mSA), pMAl_c2x-mSA(M_c-mSA) 플라스미드를 제작하였다.
[1-2] MBP-mSA- 발현 플라스미드 제작
그 다음, 동물실험에 이용할 수 있도록 pBAD24 플라스미드에, 서열번호 4로 표시되는 말토오즈 결합 단백질(MBP)을 코딩하는 유전자와 서열번호 2로 표시되는 mSA 유전자 및 BBa_B0034 서열을 pBAD24에 다시 클로닝하여 pBAD_p2x-mSA(B_p-mSA), pBAD_c2x-mSA(B_c-mSA), pBAD_RBS1-p2x-mSA(B_R1.0-p-mSA), pBAD_RBS1-c2x-mSA(B_R1.0-c-mSA) 플라스미드를 제작하였다.
또한, pBAD-mSA 플라스미드를 주형으로 하여 mSA 유전자를 증폭한 뒤, 제한효소 EcoRⅠ 및 HindⅢ을 넣어 절단하고 이를 정제하여 유전자 증폭 산물을 얻은 뒤에 이를 동일한 제한효소로 절단한 pMAl_p2x, pMAl_c2x 플라스미드에 클로닝 하여 pMAl_p2x-mSA(M_p-mSA), pMAl_c2x-mSA(M_c-mSA) 플라스미드를 제작하였다.
[1-3] RBS 치환 플라스미드 제작
mSA 발현 수준 및 기능성을 증가시키기 위해서, 기존 RBS를 신규한 조절 유전자로 치환한 유전자 컨스트럭트를 추가로 제작하였다(하기 표 1). 우선 플라스미드의 RBS 서열을 분석하여 서열 라이브러리를 제작하였다. 다음으로 RBS 계산기(Penn State University) 프로그램을 이용하여 B_p-mSA 플라스미드의 번역 개시 속도(TIR)를 분석한 후, RBS 라이브러리 계산기(RBS Library Calculator)를 통하여 번역 개시 속도의 값 범위가 3.97에서 42889인 조절 유전자 라이브러리를 구축하였다. 상기 라이브러리에 따라 제작된 조절 유전자를 B_p-mSA 플라스미드의 RBS 서열과 치환하여 클로닝한 후 생성된 콜로니를 선별하여 최종 플라스미드 pBAD_R01-p2x-mSA(B_R01-p-mSA), pBAD_R02-p2x-mSA(B_R02-p-mSA), pBAD_R1-p2x-mSA(B_R1-p-mSA), pBAD_R11-p2x-mSA(B_R11-p-mSA), pBAD_R12-p2x-mSA(B_R12-p-mSA), pBAD_R13-p2x-mSA(B_R13-p-mSA), pBAD_R2-p2x-mSA(B_R2-p-mSA), pBAD_R21-p2x-mSA(B_R21-p-mSA)를 제작하였다(하기 표 1 참고).
상기 실시예 [1-1] 내지 [1-3]에서 제작한 각 유전자 컨스트럭트의 명칭, 약자, 기본 플라스미드 및 전체 서열은 하기 표 1에 나타낸 바와 같다.
명칭
(약자)
기본 플라스미드 유전자 컨스트럭트
mSA MBP RBS 전체 서열
pBAD-mSA
(B-mSA)
pBAD24 서열번호 2 미추가 비치환 서열번호 8
pBAD_RBS 0.3-mSA
(B_R0.3-mSA)
pBAD24 서열번호 2 미추가 서열번호 26 서열번호 9
pBAD_RBS 0.6-mSA
(B_R0.6-mSA)
pBAD24 서열번호 2 미추가 서열번호 27 서열번호 10
pBAD_RBS 1.0-mSA
(B_R1.0-mSA)
pBAD24 서열번호 2 미추가 서열번호 28 서열번호 11
pMAl_p2x-mSA(M_p-mSA) pMAl_p2x 서열번호 2 서열번호 4 비치환 서열번호 12
pMAl_c2x-mSA
(M_c-mSA)
pMAl_c2x 서열번호 2 서열번호 4 비치환 서열번호 13
pBAD_p2x-mSA
(B_p-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 29 서열번호 14
pBAD_c2x-mSA(B_c-mSA) pBAD24 서열번호 2 서열번호 4 서열번호 29 서열번호 15
pBAD_RBS1-p2x-mSA(B_R1.0-p-mSA) pBAD24 서열번호 2 서열번호 4 서열번호 28 서열번호 16
pBAD_RBS1-c2x-mSA(B_R1.0-c-mSA) pBAD24 서열번호 2 서열번호 4 서열번호 28 서열번호 17
pBAD_R01-p2x-mSA(B_R01-p-mSA) pBAD24 서열번호 2 서열번호 4 서열번호 30 서열번호 18
pBAD_R02-p2x-mSA
(B_R02-p-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 31 서열번호 19
pBAD_R1-p2x-mSA
(B_R1-p-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 32 서열번호 20
pBAD_R11-p2x-mSA
(B_R11-p-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 33 서열번호 21
pBAD_R12-p2x-mSA
(B_R12-p-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 34 서열번호 22
pBAD_R13-p2x-mSA
(B_R13-p-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 35 서열번호 23
pBAD_R2-p2x-mSA
(B_R2-p-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 36 서열번호 24
pBAD_R21-p2x-mSA
(B_R21-p-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 37 서열번호 25
pBAD R-lib-1-1-mSA
(R-lib-1-1-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 66 서열번호 39
pBAD R-lib-1-5-mSA
(R-lib-1-5-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 67 서열번호 40
pBAD R-lib-1-7-mSA
(R-lib-1-7-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 68 서열번호 41
pBAD R-lib-1-10-mSA
(R-lib-1-10-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 69 서열번호 42
pBAD R-lib-1-11-mSA
(R-lib-1-11-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 70 서열번호 43
pBAD R-lib-1-12-mSA
(R-lib-1-12-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 71 서열번호 44
pBAD R-lib-1-13-mSA
(R-lib-1-13-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 72 서열번호 45
pBAD R-lib-1-14-mSA
(R-lib-1-14-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 73 서열번호 46
pBAD R-lib-1-16-mSA
(R-lib-1-16-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 74 서열번호 47
pBAD R-lib-1-17-mSA
(R-lib-1-17-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 75 서열번호 48
pBAD R-lib-1-18-mSA
(R-lib-1-18-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 76 서열번호 49
pBAD R-lib-2-2-mSA
(R-lib-2-2-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 77 서열번호 50
pBAD R-lib-2-3-mSA
(R-lib-2-3-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 78 서열번호 51
pBAD R-lib-2-4-mSA
(R-lib-2-4-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 79 서열번호 52
pBAD R-lib-2-5-mSA
(R-lib-2-5-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 80 서열번호 53
pBAD R-lib-2-6-mSA
(R-lib-2-6-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 81 서열번호 54
pBAD R-lib-2-7-mSA
(R-lib-2-7-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 82 서열번호 55
pBAD R-lib-2-8-mSA
(R-lib-2-8-mSA)
pBAD24 서열번호 2 서열번호 4 서열번호 83 서열번호 56
pBAD R-lib-2-14-mSA
(R-lib-2-14-mSA
pBAD24 서열번호 2 서열번호 4 서열번호 84 서열번호 57
pBAD R-lib-2-16-mSA
(R-lib-2-16-mSA
pBAD24 서열번호 2 서열번호 4 서열번호 85 서열번호 58
pBAD R-lib-2-17-mSA
(R-lib-2-17-mSA
pBAD24 서열번호 2 서열번호 4 서열번호 86 서열번호 59
pBAD R-lib-3-4-mSA
(R-lib-3-4-mSA
pBAD24 서열번호 2 서열번호 4 서열번호 87 서열번호 60
pBAD R-lib-3-5-mSA
(R-lib-3-5-mSA
pBAD24 서열번호 2 서열번호 4 서열번호 88 서열번호 61
pBAD R-lib-3-11-mSA
(R-lib-3-11-mSA
pBAD24 서열번호 2 서열번호 4 서열번호 89 서열번호 62
pBAD R-lib-3-13-mSA
(R-lib-3-13-mSA
pBAD24 서열번호 2 서열번호 4 서열번호 90 서열번호 63
pBAD R-lib-3-18-mSA
(R-lib-3-18-mSA
pBAD24 서열번호 2 서열번호 4 서열번호 91 서열번호 64
pBAD R-lib-3-20-mSA
(R-lib-3-20-mSA
pBAD24 서열번호 2 서열번호 4 서열번호 92 서열번호 65
[1-4] 조절 유전자 전사체의 총 깁스 자유 에너지 변화량 계산
상기 실시예 [1-3]에서 제작된 리보솜 결합 부위(RBS)의 프로모터로부터 개시코돈 까지의 서열에서, 총 깁스 자유 에너지 변화량(ΔGtotal)에 따른 상기 유전자 컨스트럭트의 mSA 발현 능력을 확인하기 위해, 조절 유전자의 mRNA와 리보솜의 30S 서브유닛의 복합체를 형성하는 반응이 일어날 때의 깁스 자유 에너지 변화량(ΔGmRNA-rRNA), 상기 조절 유전자의 mRNA 전사체에서 리보솜의 30S 서브유닛의 복합체를 형성하는 서열과 개시코돈 간의 간격(Spacing)이 최적화 되지 않음으로써 발생하는 대한 깁스 자유 에너지 패널티(ΔGspacing), 상기 간격(Spacing)의 영역에서 쌓인 뉴클레오티드의 깁스 자유 에너지 변화량(ΔGstacking), 상기 조절 유전자의 mRNA 전사체의 대기 부위(Stanby Site)와 리보솜 간 결합 반응이 일어나는 경우 깁스 자유 에너지 패널티(ΔGstandby), mRNA-tRNA 복합체를 형성하는 반응이 일어날 때의 깁스 자유 에너지 변화량(ΔGstart) 및 상기 조절 유전자의 mRNA 전사체가 접힌 복합체 구조물을 형성할 때의 깁스 자유 에너지 변화량(ΔGmRNA)을 계산하여 총 깁스 자유 에너지 변화량(ΔGtotal)을 계산한 결과를 하기 표 2에 나타내었다. 여기서, 상기 총 깁스 자유 에너지 변화량(ΔGtotal)은 하기 식 1 및 식 2와 같은 방법으로 계산되었다:
[식 1]
ΔGtotal = (ΔGfinal) - (ΔGinitial)
[식 2]
(ΔGfinal) - (ΔGinitial) = [(ΔGmRNA-rRNA) + (ΔGspacing) + (ΔGstacking) + (ΔGstandby) + (ΔGstart)] - (ΔGmRNA)
RBS 단위 kcal/mol
서열번호 ΔGmRNA-rRNA ΔGspacing ΔGstacking ΔGstandby ΔGstart ΔGmRNA ΔGtotal
29 -14.4914 4.992 0 2.41 -2.76 -15.01 4.944348676
30 -6.84135 1.525 0 1.5336 -2.76 -7.76 1.328848924
31 1.158649 0.005326 0 0.4314 -0.42 -3.4 4.641874373
32 -7.05135 0 0 1.0898 -2.76 -5.79 -3.555751381
33 -1.37135 0 0 0.0786 -2.76 -4.17 0.1498488
34 -0.24135 0 0 0.29 -2.76 -6.12 3.239348447
35 -5.39135 0.672 0 4.0728 -2.76 -7.41 3.862748471
36 -9.37135 0.288 0 4.0728 -2.76 -4.61 -3.458051381
37 -7.44135 0 0 4.8986 -2.76 -8.12 2.647948438
66 -7.44135 0 0 4.8986 -2.76 -10.25 4.777948552
67 -13.8614 0.288 0 4.0728 -2.76 -4.62 -7.9380514
68 -7.77135 0.288 0 4.0728 -2.76 -5.98 -0.488051352
69 -5.39135 0.288 0 4.0728 -2.76 -5.98 1.891948643
70 -2.68135 0.288 0 3.3234 -2.76 -4.61 2.482548676
71 -5.39135 0.288 0 4.0728 -2.76 -4.61 0.521948757
72 -2.68135 0.288 0 4.0728 -2.76 -5.37 3.991948428
73 -2.56135 0 0 3.3234 -2.76 -4.61 2.4427488
74 -3.96135 0.288 0 4.8986 -2.76 -6.51 4.67774886
75 -6.95135 0.288 0 4.8986 -2.76 -6.45 1.627748371
76 -7.49135 0.288 0 4.0728 -2.76 -6.78 0.59194881
77 -9.37135 0 0 2.6504 -2.76 -5.68 -4.216651686
78 -7.27135 0 0 2.6504 -2.76 -4.59 -3.283051219
79 -7.27135 0 0 2.6504 -2.76 -4.59 -2.966951219
80 -10.9714 0 0 2.6504 -2.76 -3.99 -7.41975141
81 -8.87135 0 0 2.6504 -2.76 -2.9 -6.510651419
82 -10.9714 0 0 2.6504 -2.76 -3.58 -7.860951495
83 -9.37135 0 0 2.6504 -2.76 -4.59 -5.403751362
84 -8.87135 0 0 2.6504 -2.76 -3.82 -5.729451581
85 -9.37135 0 0 2.6504 -2.76 -2.44 -7.456651457
86 -8.87135 0 0 2.6504 -2.76 -2.31 -7.100651572
87 -7.58135 1.525 0 0.0168 -2.76 -4.78 -4.109751104
88 -5.27135 0 0 0.4314 -2.76 -4.46 -3.219451333
89 -5.27135 0 0 0.4314 -2.76 -4.27 -3.76635139
90 -5.27135 0 0 0.4314 -2.76 -5.47 -2.476551581
91 -5.06135 0.005326 0 0.2168 -2.76 -4.1 -3.800725876
92 -7.75135 1.525 0 0.4314 -2.76 -4.95 -3.695151507
[1-5] 조절 유전자의 번역 개시 속도 계산
상기 조절 유전자의 번역 개시 속도(Translation Initiation Rate; TIR)에 따른 플라스미드의 mSA 발현 능력을 확인하기 위해, 상기와 같이 제작된 조절 유전자 서열에 따른 각 번역 개시 속도를 계산하여 하기 표 3와 같이 나타내었다.
조절 유전자 번역 개시 속도(au)
비치환된 경우 1
서열번호 29 133.266441
서열번호 30 678.2310709
서열번호 31 152.7003477
서열번호 32 6110.586323
서열번호 33 1152.963841
서열번호 34 287.0559877
서열번호 35 216.8312084
서열번호 36 5847.72872
서열번호 37 374.5906748
서열번호 66 143.6296318
서열번호 67 43914.95671
서열번호 68 1536.365645
서열번호 69 526.4033937
서열번호 70 403.5382313
서열번호 71 975.1871797
서열번호 72 204.582929
서열번호 73 410.8314232
서열번호 74 150.2547754
서열번호 75 592.8668512
서열번호 76 944.9445588
서열번호 77 8227.297678
서열번호 78 5404.842895
서열번호 79 4688.141139
서열번호 80 34778.40472
서열번호 81 23100.64943
서열번호 82 42417.31004
서열번호 83 14037.12899
서열번호 84 16253.13229
서열번호 85 35360.78091
서열번호 86 30125.96282
서열번호 87 7840.852282
서열번호 88 5252.334127
서열번호 89 6718.078741
서열번호 90 3759.681518
서열번호 91 6822.815917
서열번호 92 6506.222717
상기 표 3에서 나타낸 바와 같이, 제작된 플라스미드의 조절 유전자 중 서열번호 29 내지 37 및 65 내지 92의 조절 유전자는 번역 개시 속도가 50 내지 45000au 범위에 해당하였고, 그 중 서열번호 32 및 36의 조절 유전자는 번역 개시 속도가 900 내지 9000au 범위에 해당하는 것을 확인하였다.
[1-6] 조절 유전자의 서열 분석
상기 조절 유전자 서열의 AGG, TAGG 또는 ATAGG 서열 포함 여부 및 상기 AGG 서열의 3' 말단에서 개시코돈 까지의 간격(Spacing)에 따른 플라스미드의 mSA 발현 능력을 확인하기 위해, 각 플라스미드에 따른 조절 유전자 서열 및 상기 AGG 서열의 3' 말단에서 개시코돈 까지의 간격(Spacing, 단위 bp)을 하기 표 4와 같이 나타내었다.
조절 유전자 서열 Spacing(bp)
서열번호 26 TCACACAGGAAAG 4
서열번호 27 ATTAAAGAGGAGAAA 5
서열번호 28 AAAGAGGAGAAA 5
서열번호 29 ACCCGTTTTTTGGGCTAACAGGAGGAAGCTAGCGCTAGC 14
서열번호 30 TAGCACTCGTTGACATACGGACGTCAC -
서열번호 31 ACTACTGAGGCTACT 5
서열번호 32 TGGAACAGCTCACGCAAAAATAGGTTTCTT 6
서열번호 33 CGCTTTTTATCGCAACTCTCTACTGTTTCTCCAT -
서열번호 34 TCTGAGAAAGACACGATCTTACTAG -
서열번호 35 TCTAGAGAAAGAGCGGATCCTACCTAG -
서열번호 36 TCTAGAGAAAGATAGGAGAATACTAG 10
서열번호 37 TCTAGAGAAAGAGGCGACGGTACTAG 11
서열번호 66 TCTAGAGAAAGAGGCGAGTGTACTAG 12
서열번호 67 TCTAGAGAAAGATAGGAGGTTACTAG 10
서열번호 68 TCTAGAGAAAGAGGGGACACTACTAG 12
서열번호 69 TCTAGAGAAAGAGCGGAAACTACTAG -
서열번호 70 TTCTAGAGAAAGATTTGAATATACTAG -
서열번호 71 TCTAGAGAAAGAACGGACATTACTAG -
서열번호 72 TCTAGAGAAAGACATGACTATACTAG -
서열번호 73 TCTAGAGAAAGAACTGAAGATACTAG -
서열번호 74 TCTAGAGAAAGAGGCGATCCTACTAG 12
서열번호 75 TCTAGAGAAAGAAGAGAGCCTACTAG -
서열번호 76 TCTAGAGAAAGACTTGAGGCTACTAG 7
서열번호 77 GAACCCTAATACATTAGGAGATCTTCT 9
서열번호 78 GAACCCTAATACATTAGGACATATTCT 9
서열번호 79 GAACCCTAATACATTAGGACATCATCT 9
서열번호 80 GAACCCTAATACATAAGGAGATCATAT 9
서열번호 81 GAACCCTAATACATAAGGACATAATAT 9
서열번호 82 GAACCCTAATACATAAGGAGATTATCT 9
서열번호 83 GAACCCTAATACATTAGGAGATTATAT 9
서열번호 84 GAACCCTAATACATAAGGACATCTTAT 9
서열번호 85 GAACACTAATACATTAGGAGATCTTCT 9
서열번호 86 GAACACTAATACATAAGGACATAATAT 9
서열번호 87 TTAAGTAGTTAAACAGGGTATATAGGGGAAGA 6
서열번호 88 TTAAGTAGTTAAACAGGGTATATAGGACGAGA 6
서열번호 89 TTAAGTAGTTAAACAGGGTATATAGGGCTATA 6
서열번호 90 TTAAGTAGTTAAACAGGGTATATAGGAGGATA 6
서열번호 91 TTAAGTAGTTAAACAGGGTATATAGGGCGATA 6
서열번호 92 TTAAGTAATTAAACAGGGTATATAGGGGAAGA 6
상기 표 4에서 나타낸 바와 같이, 제작된 플라스미드의 조절 유전자 중 서열번호 26, 27, 28, 29, 31, 32, 36, 37, 66, 67, 68, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91 및 92의 조절 유전자는 AGG 서열을 포함하고 있었고, 그 중 서열번호 32 및 36의 조절 유전자는 상기 AGG 서열의 3' 말단에서 개시코돈 까지의 간격(Spacing)이 6 내지 13bp인 것을 확인하였다. 또한 제작된 플라스미드의 조절 유전자 중 서열번호 32,36, 67, 77, 78, 79, 83, 85, 87, 88, 89, 90, 91 및 92의 조절 유전자는 TAGG 또는 ATAGG 서열을 포함하는 것을 확인하였다.
[실시예 2] 숙주 세포의 형질 전환 및 배양
상기 실시예 1에서 제작한 플라스미드를 박테리아 균주에 형질 전환한 뒤, 엠피실린(Ampicillin)이 포함된 LB 고체 배지를 이용하여 상기 형질 전환된 각각의 균주를 밤새 배양하였다. 그 뒤, 생성된 콜로니를 새로 항생제가 포함된 LB 액체 배지를 사용하여 1:100의 비율로 희석하고, 추가 배양을 통해 OD600값이 0.5 내지 0.7에 도달할 때, 상기 배양액에 최종 농도가 0.1%인 아라비노오스(arabinose)를 첨가하고 200rpm 및 37℃의 조건으로 진탕 배양기에서 배양하였다.
[실험예 1] 재조합 mSA 플라스미드의 mSA 발현 수준 확인
mSA 유전자를 단독으로 삽입한 플라스미드의 발현 수준을 확인하기 위해 상기 실시예 1에서 제작된 플라스미드 B-mSA, B_R0.3-mSA, B_R0.6-mSA, B_R1.0-mSA를 포함하는 재조합 대장균 콜로니를 실시예 2와 같이 형질 전환 및 배양한 후, 배양된 재조합 대장균을 OD4 기준으로 SDS-PAGE 샘플 버퍼를 첨가하여 95도에서 10분간 끓인 후 SDS-PAGE에 로딩하여 단백질 발현 정도를 확인하여 도 1에 나타내었다.
도 1에서 나타난 바와 같이, 단백질 발현을 개선하기 위해 BBa_B0032, BBa_B0030, BBa_B0034로 알려진 RBS 서열을 mSA 유전자 서열 앞에 삽입한 플라스미드를 포함한 균주들은 SDS-PAGE 상에서 mSA 단백질 발현을 확인할 수 없었다. 이를 통해서 mSA 유전자를 단독 발현함에 있어서 pBAD 발현 시스템에서는 RBS 서열의 추가는 유전자가 과발현에 영향을 크게 미치지 않음을 알 수 있었다.
[실험예 2] MBP-mSA 플라스미드의 mSA 발현 수준 및 활성 확인
[2-1] SDS-PAGE
mSA의 발현과 가용성을 증대시키기 위해 MBP 유전자를 융합한 MBP-mSA 플라스미드로 형질 전환된 균주의 mSA 발현 수준을 확인하였다. 구체적으로는, MBP 유전자를 융합한 M_p-mSA, M_c-mSA 플라스미드를 상기 실시예 1과 같이 제작한 후, 상기 실시예 2와 같이 형질 전환 및 배양하였다. 배양 중 OD600값이 0.5 내지 0.7에 도달할 때 상기 배양액에 최종 농도가 0.1 mM인 IPTG(Isopropyl beta-D-1-thiogalactopyranoside)를 첨가하고 200 rpm 및 37℃의 조건으로 진탕 배양기에서 배양하였다. 배양된 재조합 대장균은 OD4 기준으로 SDS-PAGE sample buffer를 첨가하여 95도에서 10분간 끓인 후 SDS-PAGE 로딩 및 단백질 발현 수준을 확인하여 도 2에 나타내었다.
그 결과, 도 2와 같이, MBP와 융합한 mSA 단백질은 겔(gel) 상에서 과발현됨을 확인하였으며 분비 서열이 없는 MBP 유전자를 융합한 mSA 유전자가 분비 서열이 있는 경우 보다 더 과발현됨을 알 수 있었다.
[2-2] 웨스턴 블롯 분석
MBP-mSA 플라스미드로 형질 전환된 재조합 균주의 mSA 발현 수준과 비오틴 결합 활성을 확인하기 위해 웨스턴 블롯 분석을 수행하였다. 구체적으로, 상기 실시예 2의 균주의 배양액을 4 x 107CFU/ml이 되도록 PBS를 이용하여 희석하고, 13,000rpm에서 5분동안 원심분리 하여 펠렛을 수집하였다. 상기 펠렛 분획을 PBS를 이용하여 세척하고, 0.2% 베타-머캅토에탄올(beta-mercaptoethanol)(카탈로그 번호: EBA-1052, ELPIS BIOTECH)이 포함된 SDS 샘플 완충액과 혼합하여 균주 용해물을 수득하였다. 그런 다음, 12% SDS-PAGE에서 상기 균주 용해물을 전기영동 하고, 상기 겔로부터 니트로 셀룰로스 막에 단백질을 옮긴 뒤 5% 탈지유를 이용하여 상온에서 블로킹 하였다. 이후, his tag 항체를 이용하여 mSA의 발현 수준을 확인하고, 비오틴화된 과산화효소(Biotinylated peroxidase)를 이용하여 mSA의 비오틴 결합 활성을 확인하였다. 수행하여 도 3에 나타내었다.
도 3에서 나타난 바와 같이, MBP 유전자와 mSA 유전자를 모두 삽입한 M_c-mSA 및 M_p-mSA 플라스미드의 MBP와 융합한 mSA 단백질 발현량이 단순 mSA 유전자만 삽입한 B-mSA 플라스미드의 MBP와 융합하지 않은 단순 mSA 단백질 발현량 보다 높았다.
또한, M_c-mSA 플라스미드에서 발현된 단백질이 M_p-mSA 보다 많음에도 불구하고 biotin과의 결합 활성은 분비 서열이 있는 MBP와 융합한 mSA가 더 높음을 확인할 수 있었다.
[2-3] 비오틴 흡수 분석
MBP-mSA 플라스미드로 형질 전환된 재조합 균주의 비오틴 결합 활성을 분석하기 위해 비오틴 흡수 분석(biotin uptake assay)을 수행하여 그 결과를 도 4와 같이 나타내었다. 구체적으로, 배양된 균주에 비오틴화된 형광염료(biotinylated fluorescent dye, biotin-flamma 675 dye, BioActs)를 첨가하여 반응한 후, PBS로 세척하여 균주에 결합하지 않는 비오틴화된 형광염료를 제거하여 형광 측정 리더기(Infinite m200, Tecan)를 이용하여 재조합 균주에 흡수된 형광염료의 형광값을 측정하였다.
그 결과, 도 4와 같이, 아라비노즈 첨가 전/후 비오틴 결합 시그널 증가량이 대조군인 B-mSA 플라스미드를 포함하는 균주(344%)가 pBAD(151%), M_c-mSA(141%) 및 M_p-mSA(158%)를 포함하는 균주보다 비오틴 활성이 더 높아 상기 MBP-mSA 발현 재조합 균주의 비오틴 결합능이 개선되지 않음을 확인하였다.
[2-4] 공초점 현미경 관찰
실제 재조합 균주와 비오틴화된 형광염료의 결합을 이미지로 확인하기 위해 상기 실시예 2와 같이 배양한 재조합 균주를 슬라이드에 고정하여 공초점 현미경으로 확인하여 도 5 및 도 6과 같이 나타내었다.
도 5 및 도 6의 비오틴 흡수 분석(biotin uptake assay)의 결과와 같이 MBP 융합 여부와 상관없이 균주에 결합한 비오틴화된 형광염료는 매우 적은 수를 보였다. 이를 통해 MBP 유전자 융합을 통해 mSA의 발현이 개선되었으나, MBP를 통한 유전자의 발현 및 가용성의 변화가 비오틴 결합 활성을 개선시킬 수 없다는 것을 확인할 수 있었다.
[실험예 3] RBS 추가 플라스미드의 mSA 발현 수준 및 활성 확인
[3-1] SDS-PAGE
RBS가 추가된 플라스미드로 형질 전환된 재조합 균주의 mSA의 발현 및 활성을 확인하기 위해 SDS-PAGE를 수행하였다. 구체적으로는, MBP-mSA 유전자를 pBAD 플라스미드에 옮긴 B_p-mSA, B_c-mSA 및 상기 플라스미드의 발현을 개선하기 위해 BBa_B0034 서열을 추가한 B_R1.0-p-mSA, B_R1.0-c-mSA 플라스미드로 형질 전환된 재조합 균주에 대하여 SDS-PAGE를 수행한 결과를 도 7과 같이 나타내었다.
도 7에서 나타난 바와 같이, 상기 재조합 균주를 SDS-PAGE에 로딩하여 단백질 발현 정도를 확인한 결과, pBAD 플라스미드에서도 MBP와 융합한 mSA 단백질은 과발현됨을 확인하였다.
[3-2] 웨스턴 블롯 분석
RBS가 추가된 플라스미드로 형질 전환된 재조합 균주의 mSA의 발현 및 활성을 확인하기 위해 웨스턴 블롯 분석을 수행하였다. MBP-mSA 유전자를 pBAD 플라스미드에 옮긴 B_p-mSA, B_c-mSA와 이 플라스미드의 발현을 개선하기 위해 BBa_B0034 서열을 추가한 B_R1.0-p-mSA, B_R1.0-c-mSA 플라스미드에 대하여 상기 실험예 2-2와 같은 방식으로 웨스턴 블롯 분석을 수행하여 도 8과 같이 나타내었다.
도 8에서 나타난 바와 같이, 웨스턴 블롯 분석을 수행한 결과, MBP 유전자와 mSA 유전자를 모두 삽입한 B_p-mSA, B_c-mSA, B_R1.0-p-mSA 및 B_R1.0-c-mSA 플라스미드는 MBP와 융합한 mSA 단백질을 과발현하는 것을 확인하였으며, 이는 MBP와 융합하지 않은 단순 mSA 단백질 발현량 보다 높았다.
[실험예 4] RBS 치환 플라스미드의 mSA 발현 수준 및 활성 확인
[4-1] 웨스턴 블롯 분석(1)
본 발명자는 재조합 균주에서 유전자의 기능성 발현이 증가하게 유도되도록 하기 위해서 B_p-mSA 플라스미드의 RBS 서열을 분석하여 상기 실시예 1과 같이 B_R01-p-mSA, B_R02-p-mSA, B_R1-p-mSA, B_R11-p-mSA, B_R12-p-mSA, B_R13-p-mSA B_R2-p-mSA, B_R21-p-mSA 플라스미드를 제작한 후 균주에 형질 전환 및 배양하였다. 상기 재조합 균주의 단백질 발현 정도를 확인하기 위해 상기 실험예 2-2와 같은 방식으로 웨스턴 블롯 분석을 수행하여 도 9와 같이 나타내었다.
도 9에서 나타난 바와 같이, mSA를 발현하는 균주 중 B_R1-p-mSA와 B_R2-p-mSA 플라스미드로 형질 전환된 재조합 균주가 다른 균주에 비해 mSA 발현 수준이 뛰어난 것을 확인하였다.
[4-2] 웨스턴 블롯 분석(2)
mSA 발현 수준이 높은 B_R1-p-mSA와 B_R2-p-mSA 플라스미드로 형질 전환된 상기 두 균주를 선정하여 추가 실험을 수행하여, 그 결과를 도 10에 나타내었다.
도 10에서 나타난 바와 같이, 대조군에서는 M_p-mSA 플라스미드를 포함하는 재조합 균주가 B_p-mSA 플라스미드를 포함하는 재조합 균주보다 mSA의 발현과 분비 수준이 높았다. 실험군에서도 M_p-mSA 플라스미드를 포함하는 재조합 균주가 B_R1-p-mSA와 B_R2-p-mSA 플라스미드를 포함하는 재조합 균주 보다 mSA의 발현과 분비 수준이 높음을 확인하였다.
또한, B_R1-p-mSA와 B_R2-p-mSA 플라스미드를 포함하는 재조합 균주가 M_p-mSA 플라스미드를 포함하는 재조합 균주보다 발현양 대비 분비된 단백질은 더 적은 것으로 나타나서, 상기 B_R1-p-mSA와 B_R2-p-mSA 플라스미드에서 발현된 mSA는 균주의 주변세포질(periplasm)에 머무는 것을 알 수 있었다. 비오틴 결합 활성은 B_p-mSA, B_R1-p-mSA, M_p-mSA, B_R2-p-mSA 플라스미드를 포함하는 재조합 균주 순이였으며, 분비된 단백질 결합 활성은 M_p-mSA, B_p-mSA, B_R1-p-mSA, B_R2-p-mSA 플라스미드를 포함하는 재조합 균주 순으로 확인되었다.
[4-3] 비오틴 흡수 분석
또한, 발현이 개선된 재조합 균주의 비오틴 결합 활성을 분석하기 위해 실험예 2와 같은 방식으로 비오틴 흡수 분석(biotin uptake assay)을 수행하여 그 결과를 도 11과 같이 나타내었다.
도 11에서 나타난 바와 같이, 대조군으로 pBAD와 B-mSA 플라스미드를 포함하는 재조합 균주보다, B_R1-p-mSA와 B_R2-p-mSA 플라스미드를 포함하는 재조합 균주가 비오틴 결합 활성이 현저히 높아, 상기 B_R1-p-mSA와 B_R2-p-mSA 플라스미드의 유전자에서 발현된 mSA가 다른 플라스미드에서 발현된 mSA에 비하여 현저한 비오틴 결합 활성 효과를 가지는 것을 확인하였다. 또한, 비오틴 결합 활성은 단백질 발현량과는 비례하지 않아, 단순히 단백질 발현량 만으로는 비오틴 결합 활성 효과를 예측할 수 없음을 확인하였다.
[4-4] 공초점 현미경 관찰
실제 재조합 균주와 비오틴화된 형광염료의 결합을 이미지로 확인하기 위해 상기 배양한 균주를 슬라이드에 고정하여 도 12 및 도 13과 같이 공초점 현미경으로 확인하였다.
도 12에서 나타난 바와 같이, B_R1-p-mSA와 B_R2-p-mSA 플라스미드를 포함하는 재조합 균주는 도 13에 나타난 대조군인 B-mSA 및 B_p-mSA에 비하여 비오틴화된 형광염료가 균주에 강하게 결합하는 것을 확인할 수 있었으며, 특히, B_R2-p-mSA 플라스미드에 의한 mSA 발현이 비오틴화된 형광염료와 결합하기에 최적의 상태임을 알 수 있었다. 이를 통해 MBP 유전자 융합을 통해 mSA 유전자의 발현이 개선된 균주의 경우에도 외부 비오틴과의 충분한 결합을 하지 못하였으나, mSA 유전자와 함께 MBP 유전자 및 RBS 유전자를 결합시킨 경우 mSA 유전자의 발현이 보다 기능적으로 개선되어 외부 비오틴과의 결합능이 매우 향상됨을 알 수 있었다.
[실험예 5] mSA 발현 재조합 균주에 대한 추적 기능 확인
[5-1] 비오틴 흡수 분석
상기 제작된 본 발명의 재조합 균주에서 발현된 mSA 유전자가 비오틴(biotin)에 특이성을 갖는지 확인하기 위해 대장균(E. coli) 및 살모넬라(Salmonella) 균주에 pBAD, B-mSA, B_p-mSA, B_R1-p-mSA, B_R2-p-mSA 플라스미드를 실험예 1과 같이 형질 전환 및 배양 후, 상기 실험예 2와 같은 방식으로 비오틴 흡수 분석(biotin uptake assay)을 수행하여 그 결과를 도 14 및 도 15에 나타내었다.
도 14a 또는 14b에서 나타난 바와 같이, 비오틴화된 형광염료만 처리하였을 때 B_R2-p-mSA 플라스미드를 포함하는 재조합 대장균(E. coli) 및 살모넬라(Salmonella) 균주가 가장 높은 비오틴 흡수(biotin uptake)를 보였다. 반면, 도 15a 또는 15b에서 나타난 바와 같이, 형광염료가 없는 비오틴을 미리 첨가한 후 비오틴화된 형광염료를 처리하였을 때 재조합 균주의 비오틴화된 형광염료의 흡수가 감소함을 확인하였다. 상기 도 14와 도 15 간의 차이를 통하여 비오틴화된 형광염료를 첨가하기 전에 형광염료가 없는 200 nM의 비오틴을 첨가하는 경우 비오틴화된 형광염료와 재조합 균주의 결합 저해할 수 있다는 것을 확인하였고, 이를 통하여 본 발명의 재조합 균주는 비오틴에 특이적으로 결합함을 알 수 있었다.
[5-2] 근육조직에서 균주 추적(1)
본 발명에 따른 근육조직에서 균주 추적 효과를 확인하기 위해 in vivo 이미지 시스템(In Vivo Imaging System; IVIS) 촬영을 실시하였다. 구체적으로는, 마우스(BALB/C)에 B_R2-p-mSA에 의해 형질 전환된 재조합 균주 1x109CFU를 오른쪽 허벅지 근육내 주사(Intramuscle injection; IM)하였다. 이후 아라비노스(arabinose)를 주입하여 상기 재조합 균주에 mSA를 발현하였고, 대조군에서는 아라비노스를 주입하지 않았다. 이후 실험군과 대조군 각각에 비오틴 염색(Biotin-dye)을 주입하여 시그널을 확인한 결과를 도 16에 나타내었다.
도 16에 나타난 것과 같이, 상기 재조합 균주와 아라비노스를 주입한 마우스(오른쪽)의 오른쪽 허벅지에는 6시간이 넘게 비오틴 염색에 의한 강한 시그널이 발생하였으나, 아라비노스를 주입하지 않은 대조군 마우스(왼쪽)의 경우, 비오틴 염색에 의한 시그널이 없는 것을 확인한 바, 상기 재조합 균주와 아라비노스를 주입하여 mSA를 발현시킨 후 비오틴 염색을 이용할 경우, 근육조직에서 상기 재조합 균주의 분포를 추적할 수 있음을 확인하였다.
[5-3] 근육조직에서 균주 추적(2)
본 발명의 재조합 균주가 실제 근육조직에 분포하는지 확인하기 위해 앞서 실험예 [5-2]에서 균주를 주입했던 오른쪽 허벅지 조직을 적출하여 균주의 개체수를 확인하였다. 구체적으로는 실험예 [5-2]에서 비오틴 염색에 의한 재조합 균주의 시그널이 존재하는 마우스(Induction)와 대조군 마우스(Non-induction) 각각에 대한 오른쪽 허벅지 조직을 적출하여, 잔류하는 균주의 개체수를 확인한 결과를 도 17에 나타내었다.
도 17에 나타난 것과 같이, 본 발명의 재조합 균주는 아라비노스 처리 유무와 상관없이 허벅지 근육조직 모두에 균주가 존재하는 것으로 확인되는 바, 근육조직에서 상기 재조합 균주의 분포는 상기 아라비노스 처리에 의해 재조합 균주에서 발현된 mSA에 의해 추적할 수 있는 것임을 확인하였다.
[5-4] 복강으로 투여한 균주 추적(1)
본 발명에 따른 균주 추적 효과를 확인하기 위해 복강으로 주입한 균주에 대한 in vivo 이미지 시스템(In Vivo Imaging System; IVIS) 촬영을 실시하였다. 구체적으로는, 마우스(BALB/C)에 B_R2-p-mSA에 의해 형질 전환된 재조합 균주 5x109CFU를 마우스 복강내 주사 (Intraperitonealy injection; IP)하였다. 이후 아라비노스(arabinose)를 주입하여 상기 재조합 균주에 mSA를 발현하였고, 대조군에서는 아라비노스를 주입하지 않았다. 이후 실험군과 대조군 각각에 비오틴 염색(Biotin-dye)을 주입하여 시그널을 확인한 결과를 도 18에 나타내었다.
도 18에 나타난 것과 같이, 상기 재조합 균주와 아라비노스를 주입한 마우스(오른쪽)의 복강 장기에서는 6시간이 넘게 비오틴 염색에 의한 강한 시그널이 발생하였으나, 재조합 균주를 주입하지 않은 대조군(왼쪽) 또는 아라비노스를 주입하지 않은 대조군 마우스(가운데)의 경우, 6시간이 지났을 때 비오틴 염색에 의한 시그널이 사라진 것을 확인하였고, 장을 적출하여 시그널을 확인한 결과에서도 상기 재조합 균주와 아라비노스를 주입한 마우스(오른쪽)에서만 시그널이 발생한 것을 확인한 바, 상기 재조합 균주와 아라비노스를 주입하여 mSA를 발현시킨 후 비오틴 염색을 이용할 경우, 복강에 주입한 상기 재조합 균주의 분포를 추적할 수 있음을 확인하였다.
[5-5] 복강으로 투여한 균주 추적(2)
본 발명의 재조합 균주가 실제 복강 및 장관에 분포하는지 확인하기 위해 앞서 실험예 [5-4]에서 적출한 장에 대하여 균주의 개체수를 확인하였다. 구체적으로는 실험예 [5-4]에서 비오틴 염색에 의한 재조합 균주의 시그널이 존재하는 마우스(Induction)와 대조군 마우스(Non-induction) 각각에 대한 장을 적출하여, 잔류하는 균주의 개체수를 확인한 결과를 도 19에 나타내었다.
도 19에 나타난 것과 같이, 본 발명의 재조합 균주는 아라비노스 처리 유무와 상관없이 장관에 균주가 존재하는 것으로 확인되는 바, 복강 및 장관에서 상기 재조합 균주의 분포는 상기 아라비노스 처리에 의해 재조합 균주에서 발현된 mSA에 의해 추적할 수 있는 것임을 확인하였다.
[5-6] 정맥으로 투여한 균주 추적(1)
본 발명에 따른 균주 추적 효과를 확인하기 위해 정맥으로 주입한 균주에 대한 in vivo 이미지 시스템(In Vivo Imaging System; IVIS) 촬영을 실시하였다. 구체적으로는, 마우스(BALB/C)에 B_R2-p-mSA에 의해 형질 전환된 재조합 균주 1x109CFU를 마우스 정맥내 주사(Intravenously injection; IV)하였다. 이후 아라비노스(arabinose)를 주입하여 상기 재조합 균주에 mSA를 발현하였고, 대조군에서는 아라비노스를 주입하지 않았다. 이후 실험군과 대조군 각각에 비오틴 염색(Biotin-dye)을 주입하여 시그널을 확인한 결과를 도 20에 나타내었다.
도 20에 나타난 것과 같이, 상기 재조합 균주와 아라비노스를 주입한 마우스(오른쪽)에는 6시간이 넘게 비오틴 염색에 의한 강한 시그널이 발생하였으나, 재조합 균주를 주입하지 않은 대조군(왼쪽) 또는 아라비노스를 주입하지 않은 대조군 마우스(가운데)의 경우, 6시간이 지났을 때 비오틴 염색에 의한 시그널이 사라진 것을 확인하였고, 간과 비장을 적출하여 시그널을 확인한 결과에서도 상기 재조합 균주와 아라비노스를 주입한 마우스(오른쪽)에서만 시그널이 발생한 것을 확인한 바, 상기 재조합 균주와 아라비노스를 주입하여 mSA를 발현시킨 후 비오틴 염색을 이용할 경우, 장기에서 상기 재조합 균주의 분포를 추적할 수 있음을 확인하였다.
[5-7] 정맥으로 투여한 균주 추적(2)
본 발명의 재조합 균주가 실제 장기에 분포하는지 확인하기 위해 앞서 실험예 [5-6]에서 적출한 간에 대하여 균주의 개체수를 확인하였다. 구체적으로는 실험예 [5-6]에서 비오틴 염색에 의한 재조합 균주의 시그널이 존재하는 마우스(Induction)와 대조군 마우스(Non-induction) 각각에 대한 간 및 비장을 적출하여, 잔류하는 균주의 개체수를 확인한 결과를 도 21에 나타내었다.
도 21에 나타난 것과 같이, 본 발명의 재조합 균주는 아라비노스 처리 유무와 상관없이 간에 균주가 존재하는 것으로 확인되는 바, 생체 내에서 상기 재조합 균주의 분포는 상기 아라비노스 처리에 의해 재조합 균주에서 발현된 mSA에 의해 추적할 수 있는 것임을 확인하였다.
[5-8] 경구로 투여한 균주 추적(1)
본 발명에 따른 균주 추적 효과를 확인하기 위해 경구 투여한 균주에 대한 in vivo 이미지 시스템(In Vivo Imaging System; IVIS) 촬영을 실시하였다. 구체적으로는, 마우스(BALB/C)에 B_R2-p-mSA에 의해 형질 전환된 재조합 균주 1x109CFU를 경구 투여(Oral administration) 하였다. 이후 아라비노스(arabinose)를 주입하여 상기 재조합 균주에 mSA를 발현하였고, 대조군에서는 아라비노스를 주입하지 않았다. 이후 실험군과 대조군 각각에 비오틴 염색(Biotin-dye)을 주입하여 시그널을 확인한 결과를 도 22에 나타내었다.
도 22에 나타난 것과 같이, 상기 재조합 균주와 아라비노스를 주입한 마우스(오른쪽)에는 6시간이 넘게 장관에서 비오틴 염색에 의한 강한 시그널이 발생하였으나, 재조합 균주를 주입하지 않은 대조군(왼쪽) 또는 아라비노스를 주입하지 않은 대조군 마우스(가운데)의 경우, 6시간이 지났을 때 비오틴 염색에 의한 시그널이 사라진 것을 확인하였고, 장을 적출하여 시그널을 확인한 결과에서도 상기 재조합 균주와 아라비노스를 주입한 마우스(오른쪽)에서만 시그널이 발생한 것을 확인한 바, 상기 재조합 균주와 아라비노스를 주입하여 mSA를 발현시킨 후 비오틴 염색을 이용할 경우, 장관에서 상기 재조합 균주의 분포를 추적할 수 있음을 확인하였다.
[5-9] 경구로 투여한 균주 추적(2)
본 발명의 재조합 균주가 실제 장관에 분포하는지 확인하기 위해 앞서 실험예 [5-8]에서 적출한 장에 대하여 균주의 개체수를 확인하였다. 구체적으로는 실험예 [5-8]에서 비오틴 염색에 의한 재조합 균주의 시그널이 존재하는 마우스(Induction)와 대조군 마우스(Non-induction) 각각에 대한 장을 적출하여, 잔류하는 균주의 개체수를 확인한 결과를 도 23에 나타내었다.
도 23에 나타난 것과 같이, 본 발명의 재조합 균주는 아라비노스 처리 유무와 상관없이 장관에 균주가 존재하는 것으로 확인되는 바, 장관에서 상기 재조합 균주의 분포는 상기 아라비노스 처리에 의해 재조합 균주에서 발현된 mSA에 의해 추적할 수 있는 것임을 확인하였다.
구체적으로 상기 실험을 통해, 본 발명에 따르는 재조합 벡터 내지 컨스트럭트, 특히는 본 발명에 따르는 조절 유전자를 포함하는 경우 발현되는 모노머형 스트렙타비딘(mSA)의 안정성이 뛰어나며 외부 비오틴과 강하게 결합할 수 있고, 이는 생체 내에서도 유효하며, 비오틴화된 형광염료를 다회 처리하거나 시간을 조절하여 처리할 수도 있음을 확인하였다.
[5-10] 종양 영상화 분석(1)
본 발명의 재조합 균주에서 비오틴 결합 활성을 확인하기 위해 in vivo 이미지 시스템(In Vivo Imaging System; IVIS) 촬영을 실시하였다. 구체적으로는, 먼저 CT26 세포주를 Balb/c 쥐의 옆구리에 피하 주사하여, 종양 동물 모델을 구축하였다. 상기 종양 동물 모델에 재조합 균주를 각각 주입하였고, 대조군으로는 상기 종양 동물 모델에 염색약만 주입(only dye)하였다. 상기 재조합 균주는 각각 B-mSA, B_p-mSA, B_R2-p-mSA(non-induction) 및 B_R2-p-mSA로 형질 전환된 것이다. 이후 3일 뒤, 비오틴화된 형광염료를 주입하여, 6시간 후 IVIS 촬영을 실시하여 도 16과 같이 나타내었고, 9시간 후 IVIS 촬영을 실시하여 도 25과 같이 나타내었으며, 24시간 후 IVIS 촬영을 실시하여 도 26과 같이 나타내었다.
도 24 내지 도 26에서 나타난 바와 같이, 대조군으로서 염색약만 주입한 종양 동물 모델(only dye), 그리고 B-mSA, B_p-mSA, B_R2-p-mSA(non-induction) 플라스미드로 형질 전환된 재조합 균주가 주입된 종양 동물 모델에 각각 주입된 비오틴화된 형광염료는, 주입된 후 시간이 지남에 따라 점차 생체 내에서 소거되어, 종양에 특이성이 없음을 알 수 있었다. 반면, B_R2-p-mSA 플라스미드를 포함한 재조합 균주를 주입한 종양 동물 모델은 암조직에서 비오틴화된 형광염료를 주입 후 대조군에 비하여 종양에서 강한 시그널을 보였고, 비오틴화된 형광염료를 주입 후 24시간이 지난 후에도 시그널이 여전히 강하게 유지됨을 확인하였다. 이를 통하여, 소동물에서는 본 발명의 재조합 균주에만 비오틴화된 형광염료가 강하게 결합됨을 확인하였으며 특히, 종양 특이성이 있는 재조합 균주를 이용하면, 상기 비오틴화된 형광염료가 재조합 균주를 통하여 종양에 특이적으로 결합할 수 있어, 상기 비오틴화된 형광염료에서 발생한 신호를 촬영 수단으로 확인하여, 실시간 종양 영상화가 가능함을 알 수 있었다.
[5-11] 종양 영상화 분석(2)
또한 본 발명의 재조합 균주에서 비오틴 결합 활성을 확인하기 위해 상기 종양 동물 모델에서 암 조직을 적출하여 in vivo 이미지 시스템(In Vivo Imaging System; IVIS) 촬영을 실시하였다. 구체적으로는 상기 종양 동물 모델에 비오틴화된 형광염료를 주입한지 24시간 이후, 각 그룹의 종양을 적출하여 비오틴화된 형광염료의 시그널을 확인하기 위하여 IVIS 촬영을 실시하여 도 27에 나타내었다.
도 27에서 나타난 바와 같이, 다른 그룹에 비해 B_R2-p-mSA 플라스미드를 포함한 재조합 균주 처리군이 강한 형광 활성을 유지하고 있었다. 이를 통하여 소동물에서 본 발명의 재조합 균주를 이용했을 경우에만 비오틴화된 형광염료가 강하게 결합됨을 확인하였으며, 특히 종양 특이성이 있는 재조합 균주를 이용한 실시간 종양 영상화가 가능함을 알 수 있었다.
[5-12] 종양 영상화 분석(3)
본 발명의 재조합 균주에서 비오틴 다회 결합을 확인하기 위해 in vivo 이미지 시스템(In Vivo Imaging System; IVIS) 촬영을 실시하였다. 구체적으로는, 먼저 CT26 세포주를 Balb/c 쥐의 옆구리에 피하 주사하여, 종양 동물 모델을 구축하였다. 상기 종양 동물 모델에 재조합 균주를 주입한 후 3일 뒤, 1차로 비오틴화된 형광염료를 주입하였다. 이후 2일 뒤 같은 종양 동물 모델에 2차로 비오틴화된 형광염료를 주입하였다. 1차 형광염료 주입 전, 주입 6시간 후 및 주입 9시간 후에 IVIS 촬영이 이루어졌고, 이후 2차 형광염료 주입 전, 주입 6시간 후 및 주입 9시간 후에도 IVIS 촬영을 실시하여 도 28에 나타내었다.
도 28에서 나타난 바와 같이, 1차 주입한 비오틴화된 형광염료는 시간이 지남에 따라 암 조직에서 본 발명의 재조합 균주에 의해 비오틴화된 형광염료의 시그널이 강하게 유지됨을 확인하였으며 비오틴화된 형광염료가 생채 내에서 소거된 후 다시 2차 주입한 비오틴화된 형광염료에 의해 시간이 지남에 따라 암 조직에서 비오틴화된 형광염료의 시그널이 강하게 유지됨을 확인하였다. 이를 통하여 본 발명의 재조합 균주의 mSA 발현을 조절함으로서 비오틴화된 형광염료를 다회 처리하여도 지속적으로 종양 이미지를 확인할 수 있다는 것 및 비오틴화 컨쥬게이트를 시간을 조절하여 구분하여 처리할 수 있음 의미한다.
구체적으로 상기 실험을 통해, 본 발명에 따르는 재조합 벡터 내지 컨스트럭트, 특히는 본 발명에 따르는 조절 유전자를 포함하는 경우 발현되는 모노머형 스트렙타비딘(mSA)의 안정성이 뛰어나며 외부 비오틴과 강하게 결합할 수 있고, 이는 생체 내에서도 유효하며, 비오틴화된 형광염료를 다회 처리하거나 시간을 조절하여 처리할 수도 있음을 확인하였다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (59)

  1. 모노머형 스트렙타비딘(monomeric streptavidin; mSA)을 코딩하는 유전자가 도입되어 형질 전환된 숙주 세포를 포함하는, 생체 내 세포 추적용 조성물.
  2. 제 1 항에 있어서, 상기 숙주 세포는 말토오즈 결합 단백질(maltose-binding protein; MBP)을 코딩하는 유전자가 더 도입된 것인, 조성물.
  3. 제 1 항에 있어서, 상기 숙주 세포는 상기 모노머형 스트렙타비딘을 코딩하는 유전자의 발현을 조절하는 조절 유전자가 더 도입된 것인, 조성물.
  4. 제 3 항에 있어서, 상기 조절 유전자는 리보솜 결합 부위(Ribosome binding site; RBS), 5'-비 번역 영역(5'-Untransrated Region; 5'-UTR) 및 전사 인자 결합 부위(transcription factor binding site) 및 유도성 프로모터(Inducible promoter)로 이루어진 군으로부터 선택되는 적어도 하나인 것인, 조성물.
  5. 제 3 항에 있어서, 상기 조절 유전자를 포함하는 재조합 벡터가 상기 숙주 세포에 형질 전환되는 경우, 상기 숙주 세포의 주변 세포질로 모노머형 스트렙타비딘이 발현되도록 하는 것인, 조성물.
  6. 제 3 항에 있어서, 상기 조절 유전자는 총 깁스 자유 에너지 변화량(ΔGtotal)이 0 이하인 것인, 조성물.
  7. 제 3 항에 있어서, 상기 조절 유전자는 번역 개시 속도(Translation Initiation Rate; TIR)가 특정 범위를 갖도록 조절된 것인, 조성물.
  8. 제 3 항에 있어서, 상기 조절 유전자의 서열 길이는 15 내지 39bp인 것인, 조성물.
  9. 제 3 항에 있어서, 상기 조절 유전자는 서열번호 5 내지 7 중 어느 하나로 표시되는 유전자 서열을 포함하는 것인, 조성물.
  10. 제 9 항에 있어서, 상기 조절 유전자에서, 상기 서열번호 5 내지 7 중 어느 하나로 표시되는 유전자 서열의 3' 말단에서 상기 모노머형 스트렙타비딘을 코딩하는 유전자의 개시코돈 까지의 간격이 6 내지 13bp인, 조성물.
  11. 제 1 항에 있어서, 상기 숙주 세포는 박테리아, 효모, 균류 세포, 식물 세포, 곤충 세포 및 동물 세포로 이루어진 군으로부터 선택되는 어느 하나 이상의 세포인 것인, 조성물.
  12. 제 11 항에 있어서, 상기 박테리아는 락토코쿠스(Lactococcus), 류코노스톡(Leuconostoc), 페디오코커스(Pediococcus), 엔트로코커스(Enterococcus), 스트렙토코커스(Streptococcus), 베일로넬라(Veilonella), 에스체리시아(Escherichia), 유박테리움(Eubacterium), 슈도모나스(Pseudomonas), 살모넬라(Salmonella), 시겔라(Shigella), 헬리코박터(Helicobacter), 캄필로박터(Campylobacter), 어시니아(Yersinia), 리스테리아(Listeria), 스트렙토미세스(Streptomyces), 펩토코커스(Peptococcus), 펩토스트렙토코커스(Peptostreptococcus), 프로투스(Proteus), 루미노코커스(Ruminococcus), 엔테로박터(Enterobacter), 시트로박터(Citrobacter), 세라티아(Serratia), 해모필러브(Haemophilus), 스타필로코커스(Staphylococcus), 마이코박테리움(Mycobacterium), 클로스트리디움(Clostridium), 바실러스(Bacillus), 마이크로코커스(Micrococcus), 비브리오(Vibrio), 박테로이데스(Bacteroides), 멜리소코코스(Melissococcus), 코쿠리아(Kocuria), 아에로코코스(Aerococcus), 오에노코코스(Oenococcus), 락토바실러스(Lactobacillus), 스포로락토바실러스(Sporolactobacilus), 아커만시아(Akkermansia), 비피도박테리움(Bifidobacterium), 부티리치코쿠스(Butyricicoccus), 부티리시모나스(Butyricimonas), 부티비브리오(Butyrivibrio), 슈도부티비브리오(Pseudobutyrivibrio), 웨이셀라(Weissella), 푸소박테리움(Fusobacterium), 카르노박테리움(Carnobacterium), 프로피오니박테리움(Propionibacterium), 메가스파에라(Megasphaera), 알리스팁스(alistipes), 알로바쿨룸(allobaculum), 바네시엘라(barnesiella), 블라우티아(blautia), 도레아(dorea), 헤스펠리아(hespellia), 홀데마니아(holdemania), 라우소니아(lawsonia), 오실리박터(oscillibacter), 파라박테로이드(parabacteroides), 파스콜락토박테리움(phascolarctobacterium), 프리보텔라(prevotella), 세디멘티박터(sedimentibacter), 엑시구오박데리움(Exiguobacterium), 아시네토박터(Acinetobacter), 카프노시토파가(Capnocytophaga), 네이세리아(Neisseria), 스핑고모나스(Sphingomonas), 아그레가티박터(Aggregatibacter), 렙토트리키아(Leptotrichia), 그라눌리카텔라(Granulicatella), 크리세오박테리움(Chryseobacterium), 포르피로모나스(Porphyromonas), 브라키박테리움(Brachybacterium), 엔하이드로박터(Enhydrobacter), 파라코커스(Paracoccus), 코리네박테리움(Corynebacterium), 로티아(Rothia), 엑티노마이세스(Actinomyces), 디알리스터(Dialister), 페칼리박테리움(Faecalibacterium), 할로모나스(Halomonas), 수테렐라(Sutterella), 베일로넬라(Veillonella), 로도코커스(Rhodococcus), 아토포비움(Atopobium), 크로모할로박터(Chromohalobacter), 쿠프리아비두스(Cupriavidus), 메타노브레비박터(Methanobrevibacter), 오도리박터(Odoribacter), 피라미도박터(Pyramidobacter), 빌로필라(Bilophila), 데설포비브리오(Desulfovibrio), 아시다미노코커스(Acidaminococcus), 아크로모박터(Achromobacter), 아그로박테리움(Agrobacterium), 로시텔레스(Roseateles), 코프로코커스(Coprococcus), 터리시박터(Turicibacter), 로즈뷰리아(Roseburia), 라크노스피라(Lachnospira), 오스실로스피라(Oscillospira), SMB53, 카테니박테리움(Catenibacterium), 파라프레보텔라(Paraprevotella), 아들러크레우치아(Adlercreutzia), 슬라키아(Slackia) 및 데르모아나데로박테리움(Thermoanaerobacterium)에서 선택된 어느 하나 이상인 것인, 조성물.
  13. 제 11 항에 있어서, 상기 박테리아는 aroA, aroC, aroD, aroE, Rpur, htrA, ompR, ompF, ompC, galE, cya, crp, cyp, phoP, phoQ, rfaY, dksA, hupA, sipC, clpB, clpP, clpX, pab, nadA, pncB, pmi, rpsL, hemA, rfc, poxA, galU, cdt, pur, ssa, guaA, guaB, fliD, flgK, flgL, relA, spoA 및 spoT로 이루어진 군으로부터 선택되는 적어도 하나를 코딩하는 유전자가 변형된 것인, 조성물.
  14. 제 11 항에 있어서, 상기 박테리아는 구아노신-5-이인산-3-이인산(ppGpp)의 합성능이 결여된 것인, 조성물.
  15. 제 1 항에 있어서, 상기 조성물은 비오틴화된 화합물을 더 포함하는 것인, 조성물.
  16. 제 15 항에 있어서, 상기 화합물은 조영제인 것인, 조성물.
  17. 제 16 항에 있어서, 상기 조영제는 방사성 핵종, 형광 표지, 효소 표지, 화학 발광 마커, 금 제제 및 자성 제제로 이루어진 군으로부터 선택되는 적어도 하나인 것인, 조성물.
  18. 제 17 항에 있어서, 상기 방사성 핵종을 검출할 수 있는 수단은, 양전자방출단층촬영(PET) 또는 단일광자방출전산화 단층촬영(SPECT)인 것인, 조성물.
  19. 제 1 항에 있어서, 상기 조성물은 아라비노스를 더 포함하는 것인, 조성물.
  20. 모노머형 스트렙타비딘을 발현하는 숙주 세포가 투여된 목적하는 개체에서, 상기 숙주 세포를 촬영 수단으로 확인하는 단계를 포함하는, 생체 내 세포의 분포를 확인하기 위한 정보 제공 방법.
  21. 제 20 항에 있어서, 상기 숙주 세포는 박테리아, 효모, 균류 세포, 식물 세포, 곤충 세포 및 동물 세포로 이루어진 군으로부터 선택되는 어느 하나 이상의 세포인 것인, 정보 제공 방법.
  22. 제 20 항에 있어서, 상기 목적하는 개체는 비오틴화된 화합물이 더 투여된 것인, 정보 제공 방법.
  23. 제 20 항에 있어서, 상기 목적하는 개체는 아라비노스가 더 투여된 것인, 정보 제공 방법.
  24. 제 20 항에 있어서, 상기 확인하는 단계는 복수 회에 걸쳐 수행되는, 정보 제공 방법.
  25. 모노머형 스트렙타비딘(monomeric streptavidin; mSA)을 코딩하는 유전자가 도입되어 형질 전환된 숙주 세포를 포함하는, 암을 진단하기 위한 조성물.
  26. 제 25 항 에 있어서, 상기 숙주 세포는 말토오즈 결합 단백질(maltose-binding protein; MBP)을 코딩하는 유전자가 더 도입된 것인, 조성물.
  27. 제 25 항에 있어서, 상기 숙주 세포는 상기 모노머형 스트렙타비딘을 코딩하는 유전자의 발현을 조절하는 조절 유전자가 더 도입된 것인, 조성물.
  28. 제 27 항에 있어서, 상기 조절 유전자는 리보솜 결합 부위(Ribosome binding site; RBS), 5'-비 번역 영역(5'-Untransrated Region; 5'-UTR) 및 전사 인자 결합 부위(transcription factor binding site)로 이루어진 군으로부터 선택되는 적어도 하나인 것인, 조성물.
  29. 제 27 항에 있어서, 상기 조절 유전자를 포함하는 재조합 벡터가 상기 숙주 세포에 형질 전환되는 경우, 상기 숙주 세포의 주변 세포질로 모노머형 스트렙타비딘이 발현되도록 하는 것인, 조성물.
  30. 제 27 항에 있어서, 상기 조절 유전자는 총 깁스 자유 에너지 변화량(ΔGtotal)이 0 이하인 것인, 조성물.
  31. 제 27 항에 있어서, 상기 조절 유전자는 번역 개시 속도(Translation Initiation Rate; TIR)가 특정 범위를 갖도록 조절된 것인, 조성물.
  32. 제 27 항에 있어서, 상기 조절 유전자의 서열 길이는 15 내지 39bp인 것인, 조성물.
  33. 제 27 항에 있어서, 상기 조절 유전자는 서열번호 5 내지 7 중 어느 하나로 표시되는 유전자 서열을 포함하는 것인, 조성물.
  34. 제 33 항에 있어서, 상기 조절 유전자에서, 상기 서열번호 5 내지 7 중 어느 하나로 표시되는 유전자 서열의 3' 말단에서 상기 모노머형 스트렙타비딘을 코딩하는 유전자의 개시코돈 까지의 간격이 6 내지 13bp인, 조성물.
  35. 제 25 항에 있어서, 상기 숙주 세포는 박테리아, 포유 동물, 식물 및 곤충으로 이루어진 군으로부터 선택되는 어느 하나 이상의 세포인 것인, 조성물.
  36. 제 35 항에 있어서, 상기 박테리아는 대장균, 스트렙토미세스 또는 살모넬라 속 균주인, 조성물.
  37. 제 35 항에 있어서, 상기 박테리아는 혐기성 균주인 것인, 조성물.
  38. 제 35 항에 있어서, 상기 박테리아는 약독화된 것인, 조성물.
  39. 제 38 항에 있어서, 상기 박테리아는 aroA, aroC, aroD, aroE, Rpur, htrA, ompR, ompF, ompC, galE, cya, crp, cyp, phoP, phoQ, rfaY, dksA, hupA, sipC, clpB, clpP, clpX, pab, nadA, pncB, pmi, rpsL, hemA, rfc, poxA, galU, cdt, pur, ssa, guaA, guaB, fliD, flgK, flgL, relA, spoA 및 spoT로 이루어진 군으로부터 선택되는 적어도 하나를 코딩하는 유전자가 변형된 것인, 조성물.
  40. 제 38 항에 있어서, 상기 박테리아는 구아노신-5-이인산-3-이인산(ppGpp)의 합성능이 결여된 것인, 조성물.
  41. 제 25 항에 있어서, 상기 암은 흑색종, 나팔관암, 뇌암, 소장암, 식도암, 임파선암, 담낭암, 혈액암, 갑상선암, 내분비선암, 구강암, 간암, 담도암, 대장암, 직장암, 자궁경부암, 난소암, 신장암, 위암, 십이지장암, 전립선암, 유방암, 뇌종양, 폐암, 갑상선 미분화암, 자궁암, 결장암, 방광암, 요관암, 췌장암, 뼈/연부조직 육종, 피부암, 비호지킨 림프종, 호지킨 림프종, 다발성 골수종, 백혈병, 골수이형성증후군, 급성 림프모구성 백혈병, 급성 골수성 백혈병, 만성 림프구성 백혈병, 만성 골수성 백혈병 및 고립성 골수종으로 구성되는 군으로부터 선택되는 어느 하나 이상인 것인, 조성물.
  42. 제 25 항에 있어서, 상기 조성물은 비오틴화된 화합물을 더 포함하는 것인, 조성물.
  43. 제 42 항에 있어서, 상기 화합물은 조영제인 것인, 조성물.
  44. 제 43 항에 있어서, 상기 조영제는 방사성 핵종, 형광 표지, 효소 표지, 화학 발광 마커, 금 제제 및 자성 제제로 이루어진 군으로부터 선택되는 적어도 하나인 것인, 조성물.
  45. 모노머형 스트렙타비딘을 발현하는 숙주 세포가 투여된 목적하는 개체에서, 상기 숙주 세포를 촬영 수단으로 확인하는 단계를 포함하는, 암의 진단을 위한 정보 제공 방법.
  46. 제 45 항에 있어서, 상기 목적하는 개체는 비오틴화된 화합물이 더 투여된 것인, 정보 제공 방법.
  47. 제 45 항에 있어서, 상기 확인하는 단계는 복수 회에 걸쳐 수행되는, 정보 제공 방법.
  48. 모노머형 스트렙타비딘(monomeric streptavidin; mSA)을 코딩하는 유전자가 도입되어 형질 전환된 숙주 세포를 포함하는, 암을 예방 또는 치료하기 위한 약학적 조성물.
  49. 제 48 항에 있어서, 상기 숙주 세포는 말토오즈 결합 단백질(maltose-binding protein; MBP)을 코딩하는 유전자가 더 도입된 것인, 조성물.
  50. 제 48 항에 있어서, 상기 숙주 세포는 상기 모노머형 스트렙타비딘을 코딩하는 유전자의 발현을 조절하는 조절 유전자가 더 도입된 것인, 조성물.
  51. 제 50 항에 있어서, 상기 조절 유전자는 리보솜 결합 부위(Ribosome binding site; RBS), 5'-비 번역 영역(5'-Untransrated Region; 5'-UTR) 및 전사 인자 결합 부위(transcription factor binding site)로 이루어진 군으로부터 선택되는 적어도 하나인 것인, 조성물.
  52. 제 50 항에 있어서, 상기 조절 유전자를 포함하는 재조합 벡터가 상기 숙주 세포에 형질 전환되는 경우, 상기 숙주 세포의 주변 세포질로 모노머형 스트렙타비딘이 발현되도록 하는 것인, 조성물.
  53. 제 50 항에 있어서, 상기 조절 유전자는 총 깁스 자유 에너지 변화량(ΔGtotal)이 0 이하인 것인, 조성물.
  54. 제 50 항에 있어서, 상기 조절 유전자는 번역 개시 속도(Translation Initiation Rate; TIR)가 특정 범위를 갖도록 조절된 것인, 조성물.
  55. 제 50 항에 있어서, 상기 조절 유전자의 서열 길이는 15 내지 39bp인 것인, 조성물.
  56. 제 50 항에 있어서, 상기 숙주 세포는 박테리아, 포유 동물, 식물 및 곤충으로 이루어진 군으로부터 선택되는 어느 하나 이상의 세포인 것인, 조성물.
  57. 제 48 항에 있어서, 상기 암은 흑색종, 나팔관암, 뇌암, 소장암, 식도암, 임파선암, 담낭암, 혈액암, 갑상선암, 내분비선암, 구강암, 간암, 담도암, 대장암, 직장암, 자궁경부암, 난소암, 신장암, 위암, 십이지장암, 전립선암, 유방암, 뇌종양, 폐암, 갑상선 미분화암, 자궁암, 결장암, 방광암, 요관암, 췌장암, 뼈/연부조직 육종, 피부암, 비호지킨 림프종, 호지킨 림프종, 다발성 골수종, 백혈병, 골수이형성증후군, 급성 림프모구성 백혈병, 급성 골수성 백혈병, 만성 림프구성 백혈병, 만성 골수성 백혈병 및 고립성 골수종으로 구성되는 군으로부터 선택되는 어느 하나 이상인 것인, 조성물.
  58. 제 48 항에 있어서, 상기 조성물은 비오틴화된 화합물을 더 포함하는 것인, 조성물.
  59. 제 58 항에 있어서, 상기 비오틴화된 화합물은 비오틴화된 암 치료 물질인, 조성물.
PCT/KR2021/015411 2020-10-30 2021-10-29 모노머형 스트렙타비딘을 발현하는 균주 및 비오틴화된 화합물을 포함하는 암 세포 표적용 조성물 WO2022092887A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/251,188 US20230405131A1 (en) 2020-10-30 2021-10-29 Composition for targeting cancer cell, comprising strain expressing monomeric streptavidin, and biotinylated compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200143546 2020-10-30
KR10-2020-0143546 2020-10-30
KR20210006608 2021-01-18
KR10-2021-0006608 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022092887A1 true WO2022092887A1 (ko) 2022-05-05

Family

ID=81384277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015411 WO2022092887A1 (ko) 2020-10-30 2021-10-29 모노머형 스트렙타비딘을 발현하는 균주 및 비오틴화된 화합물을 포함하는 암 세포 표적용 조성물

Country Status (2)

Country Link
US (1) US20230405131A1 (ko)
WO (1) WO2022092887A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006084388A1 (en) * 2005-02-11 2006-08-17 Uti Limited Partnership Monomeric streptavidin muteins
US20120214970A1 (en) * 2009-10-30 2012-08-23 Mark Howarth High Stability Streptavidin Mutant Proteins
KR20160121276A (ko) * 2015-04-10 2016-10-19 전남대학교산학협력단 고형암 조직 타겟팅 박테리아 및 그의 용도
US20190263872A1 (en) * 2016-07-25 2019-08-29 The Research Foundation For The State University Of New York Monomeric streptavidin mutants, methods of using the same and processes of manufacturing proteins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006084388A1 (en) * 2005-02-11 2006-08-17 Uti Limited Partnership Monomeric streptavidin muteins
US20120214970A1 (en) * 2009-10-30 2012-08-23 Mark Howarth High Stability Streptavidin Mutant Proteins
KR20160121276A (ko) * 2015-04-10 2016-10-19 전남대학교산학협력단 고형암 조직 타겟팅 박테리아 및 그의 용도
US20190263872A1 (en) * 2016-07-25 2019-08-29 The Research Foundation For The State University Of New York Monomeric streptavidin mutants, methods of using the same and processes of manufacturing proteins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG GE, NIANJUAN LIU, KAIYU YANG: " High-level expression of prochymosin in Escherichia coli: effect of the secondary structure of the ribosome binding site", PROTEIN EXPRESSION AND PURIFICATION, vol. 6, 30 June 1995 (1995-06-30), pages 284 - 290, XP055926532, DOI: 10.1006/prep.1995.1037 *

Also Published As

Publication number Publication date
US20230405131A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
US10434169B2 (en) Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus
JP7395628B2 (ja) キメラポックスウイルス組成物及びその使用
JP5710262B2 (ja) ポックスウイルス腫瘍細胞崩壊性ベクター
EP0551401B1 (en) Methods and compositions for genetic therapy and potentiation of anti-tumor immunity
Liu et al. Surface-displayed porcine IFN-λ3 in Lactobacillus plantarum inhibits porcine enteric coronavirus infection of porcine intestinal epithelial cells
WO2018166307A1 (zh) 靶向nkg2dl的特异性嵌合抗原受体t细胞,其制备方法和应用
KR20190033066A (ko) 입양 세포 전달 및 종양붕괴 바이러스 병용 치료
WO2018199593A1 (ko) Her3 및 cd3에 결합하는 이중특이적 항체
WO2019117632A1 (ko) 재조합 아데노바이러스 및 이를 포함하는 줄기세포
WO2019083172A1 (ko) 스트렙토니그린 및 라파마이신을 유효성분으로 포함하는, 암 예방 또는 치료용 약학적 조성물
WO2010137900A2 (ko) 선택적 경색 조직 타겟팅 박테리아 및 그의 용도
WO2022092887A1 (ko) 모노머형 스트렙타비딘을 발현하는 균주 및 비오틴화된 화합물을 포함하는 암 세포 표적용 조성물
TW202023582A (zh) 治療血液性癌症之溶瘤病毒平臺
Sun et al. Gig1 and Gig2 homologs (CiGig1 and CiGig2) from grass carp (Ctenopharyngodon idella) display good antiviral activities in an IFN-independent pathway
Wu et al. IFNb of black carp functions importantly in host innate immune response as an antiviral cytokine
WO2022045827A1 (ko) 신규한 코로나바이러스 재조합 스파이크 단백질, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터 및 상기 벡터를 포함하는 코로나바이러스감염증 예방 또는 치료용 백신
WO2021066612A2 (ko) 종양 표적화 단백질 또는 이의 단편 및 그것에 결합하는 항체 및 이의 용도
Gowen et al. Potent inhibition of arenavirus infection by a novel fusion inhibitor
WO2023048532A1 (ko) 레오바이러스 기반 신규한 백신플랫폼 및 이의 용도
WO2022098213A1 (ko) 암의 예방 및 치료용 살모넬라 균주 및 이의 용도
WO2021167262A1 (ko) 뉴클레오사이드 가수분해효소 억제제, 이를 포함하는 병원성 미생물의 독성 억제용 조성물, 이를 포함하는 병원성 미생물의 독성 억제 방법 및 뉴클레오사이드 가수분해효소 억제제의 스크리닝 방법
US20240091284A1 (en) Oncolytic virus comprising immunomodulatory transgenes and uses thereof
WO2021256599A1 (ko) 암의 치료용 살모넬라 균주 및 이의 용도
WO2020231137A1 (ko) 암의 진단 및 치료용 dna 컨스트럭트
WO2024106866A1 (ko) 암의 치료용 면역증강 살모넬라 균주 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886881

Country of ref document: EP

Kind code of ref document: A1