WO2022092834A1 - Method for preparing cyclic sulfonic acid ester compound - Google Patents

Method for preparing cyclic sulfonic acid ester compound Download PDF

Info

Publication number
WO2022092834A1
WO2022092834A1 PCT/KR2021/015275 KR2021015275W WO2022092834A1 WO 2022092834 A1 WO2022092834 A1 WO 2022092834A1 KR 2021015275 W KR2021015275 W KR 2021015275W WO 2022092834 A1 WO2022092834 A1 WO 2022092834A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid ester
sulfonic acid
ester compound
producing
cyclic sulfonic
Prior art date
Application number
PCT/KR2021/015275
Other languages
French (fr)
Korean (ko)
Inventor
마재열
유대환
이석종
정광주
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Publication of WO2022092834A1 publication Critical patent/WO2022092834A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/04Five-membered rings

Definitions

  • the present invention relates to a method for producing a cyclic sulfonic acid ester compound, and more particularly, to a method for producing a cyclic sulfonic acid ester compound having excellent reaction stability, shortened reaction time, and simple and economical reaction process.
  • Cyclic sulfonic acid ester compounds are useful organic electronic materials and are represented by propene sultone-based compounds. A variety of methods are known, such as producing from a material.
  • an alkyl sulfonyl halide as a starting material is reacted with a 1,3-dihalo-hydantoin compound and water, and then a cyclization reaction and a dehalogenation reaction are sequentially performed.
  • this method not only needs to go through several steps such as 1,3-dihalo-hydantoin addition reaction, cyclization, and dehalogenation, but also requires a purification step to remove 1-halo-hydantoin formed as a reaction by-product, so it is economical overall. There is a problem with this falling.
  • an object of the present invention is to provide a method for preparing a cyclic sulfonic acid ester compound.
  • the non-catalytic cyclization step and the dehalogenation step provide a method for producing a cyclic sulfonic acid ester compound, characterized in that it proceeds continuously.
  • X is Li, Na, or K.
  • the halogenation step may include: adding 1 to 1.5 equivalents of the halogenating agent based on 1 equivalent of the compound represented by Formula 1 in the hydrophobic solvent and stirring to obtain an unsaturated compound having one terminal substituted with a halogen; and removing the residual halogenating agent and solvent.
  • the cyclizing agent is preferably azo-free and peroxide-free N-halogenated succinimide.
  • the cyclizing agent is preferably added in an amount of 0.8 to 1.5 equivalents based on 1 equivalent of the product of the halogenation step.
  • water and the organic solvent are preferably added in an equivalent ratio of 1 to 2: 0.5 to 2 equivalents with respect to 1 equivalent of the product in the halogenation step.
  • the strong base may be an aqueous solution of NaOH, KOH, or Ca(OH) 2 .
  • the strong base is preferably added in an amount of 2.0 to 2.5 equivalents based on 1 equivalent of the product of the halogenation step.
  • the reaction temperature of the strong base may be 0 °C to 40 °C, preferably added dropwise under a temperature condition of 25 °C to 35 °C.
  • the halogenation step, the non-catalytic cyclization step and the dehalogenation step are each preferably performed at room temperature.
  • the halogenation step may be performed for 1 to 2 hours, the non-catalytic cyclization step may be performed for 3 to 8 hours, and the dehalogenation step may be performed for 1 to 4 hours.
  • the dehalogenation step may be performed at 25°C to 35°C.
  • the compound represented by Formula 1 may be sodium prop-2-ene-1-sulfonate or potassium prop-2-ene-1-sulfonate, and the product of the non-catalytic cyclization step is prop-2- It may be an ene-1-sulfonyl halide, and the compound represented by Formula 2 may be 1,3-prop-1-ene sultone.
  • the method may further include a vacuum distillation step of continuously performing the non-catalytic cyclization step and the dehalogenation step, and then vacuum-distilling and distilling to remove volatiles.
  • the method may further include recrystallizing and purifying after the vacuum distillation step.
  • the compound represented by Formula 2 may have a yield of 80% by weight or more and a purity of 99% by weight or more.
  • the present inventors have prepared N-bromosuccinimide as a non-catalytic cyclizing agent in synthesizing a desired cyclic sulfonic acid ester compound from an inexpensive alkali metal prop-2-ene-1-sulfonate compound as a starting material.
  • NBS N-bromosuccinimide
  • halogen used in the present invention includes, for example, fluorine (F), bromine (Br), chlorine (Cl), iodine (I), and the like.
  • the method for preparing a cyclic sulfonic acid ester compound of the present invention includes, for example, a halogenation step of halogenating one end of the compound represented by the following formula (1) in a hydrophobic solvent; A catalyst-free cyclization step of synthesizing a cyclization compound by reacting the product of the halogenation step with a cyclizing agent in a mixed solvent of water and an organic solvent; and a dehalogenation step of synthesizing a compound represented by the following formula (2) by dropwise adding a strong base to the cyclized compound, wherein the catalyst-free cyclization step and the dehalogenation step are continuously performed, in this case While excellent in reaction stability, reaction time is shortened, and an improved yield is provided due to a small number of side reactions.
  • the starting material used for the halogenation reaction may be, for example, a compound represented by the following Chemical Formula 1.
  • X may be, for example, Li, Na or K, preferably Na.
  • the compound represented by Formula 1 may be sodium prop-2-ene-1-sulfonate or potassium prop-2-ene-1-sulfonate.
  • the product prepared by using the compound represented by Chemical Formula 1 described below in the halogenation step, the non-catalytic cyclization step and the dehalogenation step described below may be, for example, a compound represented by the following formula (2).
  • the compound represented by Formula 2 may be 1,3-prop-1-ene sultone.
  • the preparation method according to the present disclosure aims to obtain an unsaturated compound in which one terminal is substituted with a halogen by a halogenation reaction using the compound represented by the above formula (1) as a starting material.
  • the compound in which one terminal is substituted with a halogen group may be prop-2-ene-1-sulfonyl chloride.
  • X is as shown in Formula 1, and Y is, for example, fluorine (F), bromine (Br), chlorine (Cl) or iodine (I), and preferably chlorine (Cl) or bromine (Br). there is.
  • the halogenating agent used at this time may be, for example, phosphoryl trichloride (POCl 3 ), phosphorus trichloride (PCl 3 ), phosphorus pentachloride (PCl 5 ), or thionyl chloride (SOCl 2 ), and in consideration of double halogenation reaction efficiency, phosphorus trichloride (PCl 3 ) It is preferred to use poryl.
  • POCl 3 phosphoryl trichloride
  • PCl 3 phosphorus trichloride
  • PCl 5 phosphorus pentachloride
  • SOCl 2 thionyl chloride
  • the halogenating agent may be used in an amount of, for example, 1 to 1.5 equivalents, preferably 1 to 1.2 equivalents, based on 1 equivalent of the starting material (compound represented by Formula 1).
  • the starting material compound represented by Formula 1
  • the hydrophobic solvent is not limited thereto, but it is preferable to use a non-polar solvent having a boiling point of 80° C. or higher in consideration of the halogenation reaction efficiency.
  • a non-polar solvent having a boiling point of 80° C. or higher in consideration of the halogenation reaction efficiency.
  • toluene, xylene, chlorobenzene, etc. may be used, and these solvents may be used alone or in combination.
  • the hydrophobic solvent may be used in an amount of 1 to 2 equivalents, preferably 1 to 1.5 equivalents, based on 1 equivalent of the starting material (compound represented by Formula 1).
  • the halogenation reaction is sufficiently performed, stirring is easy, and the residual solvent can be appropriately removed later, which is preferable.
  • the halogenation reaction may be performed, for example, by stirring under reflux at 60 to 90° C. for 0.5 to 3 hours, preferably at 75 to 85° C. for 1 to 2 hours.
  • the produced unsaturated compound (the compound on the right side of Scheme 1, corresponding to the first intermediate) is provided as a colorless product through a step of removing the residual halogenating agent and solvent.
  • the residual halogenating agent may be removed by cooling to 5° C. or less, preferably 0° C. or less, and adding distilled water dropwise by volume of 1-2 times the amount of the halogenating agent.
  • the organic layer extracted with an organic solvent having a lower boiling point than the hydrophobic solvent is dried over magnesium sulfate, filtered, and the resulting filtrate is concentrated under reduced pressure to obtain a colorless product.
  • the colorless product may be prepared in a yield of, for example, 90% by weight or more.
  • the halogenation reaction of the present description uses a hydrophobic solvent and a halogenating agent having a specific boiling point range in consideration of the reactivity of the cyclizing agent to be introduced into the non-catalytic cyclization reaction described later to obtain an unsaturated compound in which halogen is introduced only at one terminal in high yield. It provides the effect of obtaining an intermediate of
  • the preparation method according to the present disclosure aims to synthesize a cyclized compound by adding a (non-catalyst) cyclizing agent to the intermediate obtained as a product of the aforementioned halogenation reaction in a mixed solvent of water and an organic solvent.
  • the cyclizing compound may be 2-halo-1,3-propane sultone.
  • Y is as shown in Scheme 1 above.
  • Y may be chlorine (Cl) or bromine (Br).
  • catalyst-free cyclization refers to a catalyst-free, for example, azo-free and/or peroxide-free cyclization. it is preferable
  • the cyclizing agent is preferably an N-halogenated succinimide alone under radical initiator-free conditions such as azo-free and peroxide-free.
  • AIBN azobisisobutyronitrile
  • the cyclizing agent may be added in an amount of, for example, 0.8 to 1.5 equivalents, preferably 1 to 1.1 equivalents, based on 1 equivalent of the product of the halogenation step. When the above-described range is satisfied, the catalyst-free cyclization reaction can be efficiently performed.
  • the organic solvent may be carried out under a conventional solvent, for example, the organic solvent may be a hydrophobic solvent.
  • the solvent include acetonitrile, dichloromethane, chloroform, benzene, methyl tertiary butyl ether, and the like. It is desirable to be able to remove it.
  • water and the organic solvent are, for example, in a ratio of 1-2:0.5-2 equivalents, preferably 1-2:0.5-1.5 equivalents, more preferably 1: with respect to 1 equivalent of the product of the halogenation step. It is preferable to input in a ratio of 1 equivalent.
  • the non-catalytic cyclization reaction can be efficiently performed as well as the residual organic solvent can be appropriately removed.
  • the catalyst-free cyclization may be carried out at room temperature, and the reaction time may be, for example, 3 to 8 hours, preferably 3 to 5 hours at room temperature, and more preferably 4.5 to 5 hours.
  • the catalytic-free cyclization of the present invention does not generate by-products or use expensive radical initiators or catalysts, and is an azo-free and/or peroxide-free cyclizing agent, that is, azo-free and peroxide-free.
  • an azo-free and/or peroxide-free cyclizing agent that is, azo-free and peroxide-free.
  • the preparation method according to the present disclosure aims to obtain an unsaturated compound in which halogen is desorbed from one terminal thereof by dehalogenation of the aforementioned cyclization product.
  • the unsaturated compound from which a halogen is desorbed from one terminal may be a compound represented by Formula 2 below.
  • the unsaturated compound from which halogen is desorbed from one terminal may be 1,3-prop-1-ene sultone.
  • the strong base used may be an aqueous solution of NaOH, KOH, or Ca(OH)2 to effectively perform the dehalogenation reaction.
  • a weak base such as sodium bicarbonate
  • the dehalogenation reaction time increases, and efficient dehalogenation cannot be performed, thereby reducing yield and purity.
  • the strong base may be added in an amount of, for example, 2.0 to 2.5 equivalents, preferably 2.2 to 2.3 equivalents, based on 1 equivalent of the product of the halogenation step.
  • the dehalogenation reaction can be efficiently performed, and at the same time, the residual acid generated in the non-catalytic cyclization reaction can be neutralized, thereby increasing the yield and purity of the target compound in the subsequent purification process. It is preferable to be able to
  • the temperature when the strong base is added dropwise is preferably 0° C. to 40° C., preferably 25° C. to 35° C., so that the above-described dehalogenation reaction can be efficiently performed.
  • the dehalogenation reaction can be performed by maintaining the dropwise temperature as it is, and the dehalogenation reaction can be carried out under a temperature condition of, for example, 25°C to 35°C.
  • the dehalogenation step may be performed, for example, at room temperature for 1 to 4 hours, preferably at room temperature for 1 to 2 hours.
  • the resulting dehalogenated reactant on the right side of Scheme 3, corresponding to the target compound
  • the dehalogenation reaction of the present invention does not use a weak base, which is difficult to control, but uses a strong base to remove the proton next to the SO 2 group to form a double bond, and at the same time the dehalogenation reaction proceeds. It provides the effect of providing an improved output with excellent stability, reduced reaction time, and fewer side reactions.
  • the selection of the cyclizing agent, the dehalogenating agent and the solvent and the selection of the input order are very important.
  • NBS N-bromosuccinimide
  • the use of NBS (N-bromosuccinimide) alone as the cyclizing agent improves the production efficiency so that the cyclization can proceed without a catalyst under azo-free and peroxide-free conditions while using the cyclizing agent. , and by-products can be minimized.
  • the dehalogenating agent uses a basic material, but forms a double bond by removing the proton next to the SO 2 group, and at the same time the dehalogenation reaction proceeds, preferably using a strong base in an aqueous solution state also improves production efficiency and by-products can be minimized.
  • the cyclizing agent is added under a mixed solvent of water and an organic solvent, and in this case, using a solvent with a low boiling point as the organic solvent not only improves the efficiency of the catalytic cyclization reaction, but also dehalogenates the dehalogenating agent without a solvent without a purification process. It can be added and continuously proceeded to the dehalogenation reaction and then purified, thereby improving production efficiency and minimizing the problem of by-products.
  • the above-described non-catalytic cyclization reaction and dehalogenation reaction are characterized in that it proceeds continuously, and in this case, the cyclization reaction and the cyclization reaction without using an expensive radical initiator or catalyst Since the dehalogenation reaction can be carried out in a one-step process, it is possible to reduce costs and provide simple synthesis, as well as provide the target compound in high yield and high purity.
  • the purity of the compound represented by Formula 2 may be, for example, 99% by weight or more, preferably 99.5% by weight or more.
  • the yield of the compound represented by Formula 2 may be, for example, 80% by weight or more, preferably 80 to 85% by weight.
  • the reaction may further include removing volatiles by vacuum and distillation.
  • reaction may further include the step of recrystallization and purification.
  • the organic layer is extracted, dried over magnesium sulfate, and the filtrate obtained by filtration may be recrystallized from a concentrated solution under reduced pressure using water or isopropyl alcohol.
  • a halogenation reaction was carried out according to Scheme 1, and from sodium prop-2-ene-1-sulfonate, prop-2-ene-1-sulfonyl chloride (prop- 2-ene-1-sulfonyl chloride) was prepared.
  • Prop-2-ene-1-sulfonyl chloride synthesized in Preparation Example 1 was purchased from Sigma Aldrich and prepared.
  • the obtained solid compound was recrystallized from isopropyl alcohol to obtain 14 g of a solid compound in a yield of 85% by weight.
  • 1,3-prop-1-ene sultone was 99.7 wt% pure.
  • Example 2 The same as in Example 1, except that the colorless product of Preparation Example 1 used in Example 1 was replaced with the prop-2-ene-1-sulfonyl chloride product of Preparation Example 2 purchased from Sigma Aldrich. As a result of repeating the process, it was confirmed that a yield of 80% by weight and a purity of 99.5% by weight of the target compound were obtained.
  • Example 1 instead of proceeding with Reaction Scheme 2 and Scheme 3 continuously, Scheme 2 was performed, followed by extraction with dichloromethane twice, the organic layer was dried over magnesium sulfate, filtered, and the resulting filtrate was concentrated under reduced pressure.
  • the yield of 1,3-prop-1-enesultone which is the compound represented by Formula 2
  • the yield of 1,3-prop-1-enesultone was 40 wt. % and purity 98% by weight
  • the 2-bromo-1,3-propane sultone intermediate had a yield of 70% by weight and a purity of 90% by weight.
  • N-bromosuccinimide (NBS) as a cyclizing agent in synthesizing a desired cyclic sulfonic acid ester compound from a low-cost alkali metal prop-2-ene-1-sulfonate compound as a starting material ) alone and the catalyst-free cyclization step and dehalogenation step are continuously performed, mass production with high purity and high yield is possible, and the reaction process is simple and economical.

Abstract

The present invention relates to a method for preparing a cyclic sulfonic acid ester compound and has an effect of providing an economical method for preparing a cyclic sulfonic acid ester compound, in which by using a cyclizing agent alone under a catalyst-free condition, mass production is possible with high purity and high yield, and a reaction process is simple.

Description

환상 설폰산 에스테르 화합물의 제조방법Method for producing a cyclic sulfonic acid ester compound
본 발명은 환상 설폰산 에스테르 화합물의 제조방법에 관한 것으로, 보다 상세하게는 반응 안정성이 우수하면서도 반응시간이 단축되고 반응공정이 간단하고 경제적인 환상 설폰산 에스테르 화합물의 제조방법에 관한 것이다. The present invention relates to a method for producing a cyclic sulfonic acid ester compound, and more particularly, to a method for producing a cyclic sulfonic acid ester compound having excellent reaction stability, shortened reaction time, and simple and economical reaction process.
환상 설폰산 에스테르(cyclic sulfonic acid ester) 화합물은 유용한유기전자 소재로서 프로펜 설톤계 화합물로 대표되며, 그 제조방법 또한 알킬 설포닐 할라이드를 출발물질로 하여 생성하거나, 1,3-프로판설톤을 출발물질로 하여 생성하는 등 다양한 방식이 공지되어 있다. Cyclic sulfonic acid ester compounds are useful organic electronic materials and are represented by propene sultone-based compounds. A variety of methods are known, such as producing from a material.
우선 알킬 설포닐 할라이드를 출발물질로 하여 1,3-디할로-히단토인 화합물 및 물과 반응시킨 다음 고리화반응과 탈할로겐화 반응을 순차적으로 수행하는 반응기전이 국내 등록특허 제10-1135088호에 개시되어 있다. 그러나 이러한 방법은 1,3-디할로-히단토인 부가반응, 고리화, 탈할로겐화 등 여러 단계를 거쳐야 할 뿐 아니라 반응 부산물로 형성되는 1-할로-히단토인을 제거하는 정제단계가 필요하므로 전체적으로 경제성이 떨어지는 문제가 있다. First, an alkyl sulfonyl halide as a starting material is reacted with a 1,3-dihalo-hydantoin compound and water, and then a cyclization reaction and a dehalogenation reaction are sequentially performed. has been disclosed. However, this method not only needs to go through several steps such as 1,3-dihalo-hydantoin addition reaction, cyclization, and dehalogenation, but also requires a purification step to remove 1-halo-hydantoin formed as a reaction by-product, so it is economical overall. There is a problem with this falling.
또한, 1,3-프로판설톤을 출발물질로 하여 AIBN(아조비스이소부티로니트릴)/SOCl2와 반응시켜 할로겐화한 다음 이를 탈할로겐화하는 반응을 순차적으로 수행하는 반응기전이 국내 등록특허 제10-0895191호에 개시되어 있다. 그러나 이러한 방법에 따르면, 반응 과정에서 부산물로 생성되는 3-클로로-1,3-프로판 설톤을 제거하는 정제단계가 요구되는 단점이 있다. In addition, 1,3-propanesultone as a starting material is reacted with AIBN (azobisisobutyronitrile)/SOCl 2 to perform halogenation and then dehalogenation reaction sequentially. Domestic Registration Patent No. 10- 0895191. However, according to this method, there is a disadvantage that a purification step is required to remove 3-chloro-1,3-propane sultone generated as a by-product during the reaction process.
이에 소듐 프로프-2-엔-1-설포네이트를 출발물질로 하여 할로겐화 반응, NBS(N-브로모숙신이미드)와 AIBN(아조비스이소부티로니트릴) 병용하에 고리화반응 및 탈할로겐화 반응을 순차적으로 수행하는 반응기전이 국내 공개특허 제10-2009-0076617호에 개시되어 있다. 그러나 전술한 방법 또한 고가의 염소화, 고리화 및 탈할로겐화 등 여러 단계를 거쳐야할 뿐 아니라 고가의 라디칼 개시제인 AIBN을 사용하므로 공정이 복잡하고 경제성이 떨어지는 단점이 있어 양산에 적합한 기술개발이 여전히 필요한 실정이다. Therefore, a halogenation reaction using sodium prop-2-ene-1-sulfonate as a starting material, a cyclization reaction and a dehalogenation reaction in combination with NBS (N-bromosuccinimide) and AIBN (azobisisobutyronitrile) A reaction mechanism for sequentially performing is disclosed in Korean Patent Application Laid-Open No. 10-2009-0076617. However, the above-described method also has to go through several steps such as expensive chlorination, cyclization and dehalogenation, and because it uses AIBN, an expensive radical initiator, the process is complicated and economical is poor. am.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
한국 등록특허 제10-0895191호 Korean Patent Registration No. 10-0895191
한국 공개특허 제10-2009-0076617호Korean Patent Publication No. 10-2009-0076617
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 환상 설폰산 에스테르 화합물의 제조방법을 제공하는 것을 목적으로 한다. In order to solve the problems of the prior art as described above, an object of the present invention is to provide a method for preparing a cyclic sulfonic acid ester compound.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can all be achieved by the present invention described below.
상기의 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object, the present invention
소수성 용매 하에, 하기 화학식 1로 표시되는 화합물의 일 말단을 할로겐화하는 할로겐화단계; a halogenation step of halogenating one end of the compound represented by the following formula (1) in a hydrophobic solvent;
상기 할로겐화단계의 생성물을 물과 유기용매의 혼합 용매 하에, 고리화제와 반응시켜 고리화 화합물을 합성하는 무촉매 고리화단계; 및 A catalyst-free cyclization step of synthesizing a cyclization compound by reacting the product of the halogenation step with a cyclizing agent in a mixed solvent of water and an organic solvent; and
상기 고리화 화합물에 강염기를 적가하여 하기 화학식 2로 표시되는 화합물을 합성하는 탈할로겐화 단계를 포함하되, A dehalogenation step of synthesizing a compound represented by the following formula (2) by dropwise addition of a strong base to the cyclized compound,
상기 무촉매 고리화단계 및 탈할로겐화 단계는 연속적으로 진행되는 것을 특징으로 하는 환상 설폰산 에스테르 화합물의 제조방법을 제공한다. The non-catalytic cyclization step and the dehalogenation step provide a method for producing a cyclic sulfonic acid ester compound, characterized in that it proceeds continuously.
[화학식 1][Formula 1]
Figure PCTKR2021015275-appb-I000001
Figure PCTKR2021015275-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2021015275-appb-I000002
Figure PCTKR2021015275-appb-I000002
(상기 화학식 1에서, X는 Li, Na 또는 K이다.) (In Formula 1, X is Li, Na, or K.)
상기 할로겐화단계는, 상기 소수성 용매 하에 상기 화학식 1로 나타내는 화합물 1 당량에 대하여 상기 할로겐화제 1 내지 1.5 당량을 투입하고 교반하여 일 말단이 할로겐으로 치환된 불포화 화합물을 수득하는 단계; 및 잔류 할로겐화제 및 용매를 제거하는 단계를 포함하는 것일 수 있다. The halogenation step may include: adding 1 to 1.5 equivalents of the halogenating agent based on 1 equivalent of the compound represented by Formula 1 in the hydrophobic solvent and stirring to obtain an unsaturated compound having one terminal substituted with a halogen; and removing the residual halogenating agent and solvent.
상기 고리화제는 아조-프리(azo-free) 및 과산화물-프리(peroxide-free) N-할로겐화 숙신이미드인 것이 바람직하다. The cyclizing agent is preferably azo-free and peroxide-free N-halogenated succinimide.
상기 고리화제는 상기 할로겐화단계의 생성물 1당량에 대하여 0.8 내지 1.5 당량으로 투입되는 것이 바람직하다. The cyclizing agent is preferably added in an amount of 0.8 to 1.5 equivalents based on 1 equivalent of the product of the halogenation step.
상기 고리화단계에서 물과 유기용매는 상기 할로겐화단계의 생성물 1당량에 대하여 1~2:0.5~2 당량비로 투입하는 것이 바람직하다.In the cyclization step, water and the organic solvent are preferably added in an equivalent ratio of 1 to 2: 0.5 to 2 equivalents with respect to 1 equivalent of the product in the halogenation step.
상기 강염기는 NaOH, KOH 또는 Ca(OH)2의 수용액인 것일 수 있다. The strong base may be an aqueous solution of NaOH, KOH, or Ca(OH) 2 .
상기 강염기는 상기 할로겐화단계의 생성물 1당량에 대하여 2.0 내지 2.5 당량으로 투입되는 것이 바람직하다. The strong base is preferably added in an amount of 2.0 to 2.5 equivalents based on 1 equivalent of the product of the halogenation step.
상기 강염기의 반응온도는 0℃ 내지 40℃, 바람직하게는 25℃ 내지 35℃ 온도조건 하에 적가하는 것일 수 있다. The reaction temperature of the strong base may be 0 ℃ to 40 ℃, preferably added dropwise under a temperature condition of 25 ℃ to 35 ℃.
상기 할로겐화단계, 상기 무촉매 고리화단계 및 상기 탈할로겐화단계는 각각 상온에서 수행되는 것이 바람직하다. The halogenation step, the non-catalytic cyclization step and the dehalogenation step are each preferably performed at room temperature.
상기 할로겐화단계는 1 내지 2시간, 상기 무촉매 고리화단계는 3 내지 8시간, 그리고 상기 탈할로겐화단계는 1 내지 4시간 동안 수행되는 것일 수 있다. The halogenation step may be performed for 1 to 2 hours, the non-catalytic cyclization step may be performed for 3 to 8 hours, and the dehalogenation step may be performed for 1 to 4 hours.
상기 탈할로겐화단계는 25℃ 내지 35℃ 하에 수행되는 것일 수 있다. The dehalogenation step may be performed at 25°C to 35°C.
상기 화학식 1로 나타내는 화합물은 소듐 프로프-2-엔-1-설포네이트 또는 칼륨 프로프-2-엔-1-설포네이트일 수 있고, 상기 무촉매 고리화단계의 생성물은 프로프-2-엔-1-설포닐 할로겐화물일 수 있으며, 상기 화학식 2로 나타내는 화합물은 1,3-프로프-1-엔 설톤인 것일 수 있다. The compound represented by Formula 1 may be sodium prop-2-ene-1-sulfonate or potassium prop-2-ene-1-sulfonate, and the product of the non-catalytic cyclization step is prop-2- It may be an ene-1-sulfonyl halide, and the compound represented by Formula 2 may be 1,3-prop-1-ene sultone.
상기 무촉매 고리화단계 및 상기 탈할로겐화 단계를 연속적으로 진행한 다음 감압 및 증류하여 휘발성 물질을 제거하는 감압증류 단계를 더 포함할 수 있다.The method may further include a vacuum distillation step of continuously performing the non-catalytic cyclization step and the dehalogenation step, and then vacuum-distilling and distilling to remove volatiles.
상기 감압증류 단계 이후 재결정하여 정제하는 단계를 더 포함할 수 있다.The method may further include recrystallizing and purifying after the vacuum distillation step.
상기 화학식 2로 나타내는 화합물의 수율이 80 중량% 이상이고 순도가 99 중량% 이상인 것일 수 있다.The compound represented by Formula 2 may have a yield of 80% by weight or more and a purity of 99% by weight or more.
본 발명에 따르면 고순도 및 고수율로 대량 생산이 가능하면서 반응공정이 간단하고 경제적인 환상 설폰산 에스테르 화합물의 제조방법을 제공하는 효과가 있다. According to the present invention, there is an effect of providing a method for producing a cyclic sulfonic acid ester compound with a simple and economical reaction process while allowing mass production with high purity and high yield.
이하 본 기재의 환상 설폰산 에스테르 화합물의 제조방법을 상세하게 설명한다. Hereinafter, the manufacturing method of the cyclic sulfonic acid ester compound of this description is demonstrated in detail.
본 발명자들은 저가의 알칼리금속 프로프-2-엔-1-설포네이트 화합물을 출발물질로 하여 출발물질로부터 목적하는 환상 설폰산 에스테르 화합물을 합성함에 있어 무촉매 고리화제로서 N-브로모숙신이미드(NBS)를 단독으로 사용하고 고리화단계 및 탈할로겐화단계를 연속적으로 수행하는 경우, 고순도 및 고수율로 대량 생산이 가능하면서 반응공정이 간단하고 경제적인 것을 확인하고 이를 토대로 본 발명을 완성하기에 이르렀다.The present inventors have prepared N-bromosuccinimide as a non-catalytic cyclizing agent in synthesizing a desired cyclic sulfonic acid ester compound from an inexpensive alkali metal prop-2-ene-1-sulfonate compound as a starting material. When (NBS) is used alone and the cyclization step and the dehalogenation step are continuously performed, it is confirmed that the reaction process is simple and economical while allowing mass production with high purity and high yield, and based on this, to complete the present invention reached
또한, 본 발명에서 사용하는 용어 "할로겐"은 일례로 불소(F), 브롬(Br), 염소(Cl), 요오드(I) 등을 포함한다. In addition, the term "halogen" used in the present invention includes, for example, fluorine (F), bromine (Br), chlorine (Cl), iodine (I), and the like.
본 발명의 환상 설폰산 에스테르 화합물 제조방법은 일례로, 소수성 용매 하에, 하기 화학식 1로 표시되는 화합물의 일 말단을 할로겐화하는 할로겐화단계; 상기 할로겐화단계의 생성물을 물과 유기용매의 혼합 용매 하에, 고리화제와 반응시켜 고리화 화합물을 합성하는 무촉매 고리화단계; 및 상기 고리화 화합물에 강염기를 적가하여 하기 화학식 2로 표시되는 화합물을 합성하는 탈할로겐화 단계를 포함하되, 상기 무촉매 고리화단계 및 탈할로겐화 단계는 연속적으로 진행되는 것을 특징으로 하고, 이 경우에 반응 안정성이 우수하면서도 반응시간이 단축되고, 부반응이 적어 개선된 산출량이 제공되는 효과가 있다. The method for preparing a cyclic sulfonic acid ester compound of the present invention includes, for example, a halogenation step of halogenating one end of the compound represented by the following formula (1) in a hydrophobic solvent; A catalyst-free cyclization step of synthesizing a cyclization compound by reacting the product of the halogenation step with a cyclizing agent in a mixed solvent of water and an organic solvent; and a dehalogenation step of synthesizing a compound represented by the following formula (2) by dropwise adding a strong base to the cyclized compound, wherein the catalyst-free cyclization step and the dehalogenation step are continuously performed, in this case While excellent in reaction stability, reaction time is shortened, and an improved yield is provided due to a small number of side reactions.
이하, 본 발명의 환상 설폰산 에스테르 화합물 제조에 필요한 구성별로 상세히 설명하기로 한다. Hereinafter, each component necessary for preparing the cyclic sulfonic acid ester compound of the present invention will be described in detail.
출발물질starting material
본 기재에서 할로겐화 반응에 사용되는 출발물질은 일례로, 하기 화학식 1로 나타내는 화합물일 수 있다. In the present description, the starting material used for the halogenation reaction may be, for example, a compound represented by the following Chemical Formula 1.
[화학식 1][Formula 1]
Figure PCTKR2021015275-appb-I000003
Figure PCTKR2021015275-appb-I000003
여기서, X는 일례로 Li, Na 또는 K, 바람직하게는 Na일 수 있다. Here, X may be, for example, Li, Na or K, preferably Na.
구체적인 예로, 상기 화학식 1로 나타내는 화합물은 소듐 프로프-2-엔-1-설포네이트 또는 칼륨 프로프-2-엔-1-설포네이트일 수 있다. As a specific example, the compound represented by Formula 1 may be sodium prop-2-ene-1-sulfonate or potassium prop-2-ene-1-sulfonate.
생성물질product
본 기재에서 전술한 화학식 1로 나타내는 화합물을 후술하는 할로겐화단계, 무촉매 고리화단계 및 탈할로겐화단계에 사용하여 제조되는 생성물은 일례로, 하기 화학식 2로 나타내는 화합물일 수 있다.In the present description, the product prepared by using the compound represented by Chemical Formula 1 described below in the halogenation step, the non-catalytic cyclization step and the dehalogenation step described below may be, for example, a compound represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2021015275-appb-I000004
Figure PCTKR2021015275-appb-I000004
구체적인 예로, 상기 화학식 2로 나타내는 화합물은 1,3-프로프-1-엔 설톤일 수 있다. As a specific example, the compound represented by Formula 2 may be 1,3-prop-1-ene sultone.
할로겐화 반응halogenation reaction
본 기재에 따른 제조방법은, 전술한 화학식 1로 나타내는 화합물을 출발물질로 하여 할로겐화 반응에 의해 일 말단이 할로겐으로 치환된 불포화 화합물을 수득하는 것을 목적으로 한다.The preparation method according to the present disclosure aims to obtain an unsaturated compound in which one terminal is substituted with a halogen by a halogenation reaction using the compound represented by the above formula (1) as a starting material.
구체적인 예로, 상기 일 말단을 할로겐기로 치환시킨 화합물은 프로프-2-엔-1-설포닐 클로라이드일 수 있다.As a specific example, the compound in which one terminal is substituted with a halogen group may be prop-2-ene-1-sulfonyl chloride.
상기 할로겐화 반응은 하기 반응식으로 나타낸 기전을 참조하여 구체적으로 살펴본다. The halogenation reaction will be described in detail with reference to the mechanism shown in the following reaction formula.
[반응식 1][Scheme 1]
Figure PCTKR2021015275-appb-I000005
Figure PCTKR2021015275-appb-I000005
여기서 X는 상기 화학식 1에 나타낸 것과 같고, Y는 일례로 불소(F), 브롬(Br), 염소(Cl) 또는 요오드(I)이고, 바람직하게는 염소(Cl) 또는 브롬(Br)일 수 있다. Here, X is as shown in Formula 1, and Y is, for example, fluorine (F), bromine (Br), chlorine (Cl) or iodine (I), and preferably chlorine (Cl) or bromine (Br). there is.
상기 반응식 1에서 보듯이, 상기 할로겐화단계는, 소수성 용매 하에 상기 화학식 1로 나타내는 화합물(반응식 1의 좌측 화합물, 출발물질에 해당) 1 당량에 대하여 상기 할로겐화제 1 내지 1.5 당량, 구체적인 예로 1 내지 1.3 당량을 투입하고 교반하여 일 말단이 할로겐으로 치환된 불포화 화합물을 수득한다.As shown in Scheme 1, in the halogenation step, 1 to 1.5 equivalents of the halogenating agent, specific examples 1 to 1.3 with respect to 1 equivalent of the compound represented by Formula 1 (the compound on the left of Scheme 1, corresponding to the starting material) in a hydrophobic solvent An equivalent is added and stirred to obtain an unsaturated compound in which one terminal is substituted with a halogen.
이때 사용하는 할로겐화제는 일례로 삼염화 포스포릴(POCl3), 삼염화인(PCl3), 오염화인(PCl5) 또는 염화티오닐(SOCl2)일 수 있고, 이중 할로겐화 반응효율을 고려하여 삼염화 포스포릴을 사용하는 것이 바람직하다.The halogenating agent used at this time may be, for example, phosphoryl trichloride (POCl 3 ), phosphorus trichloride (PCl 3 ), phosphorus pentachloride (PCl 5 ), or thionyl chloride (SOCl 2 ), and in consideration of double halogenation reaction efficiency, phosphorus trichloride (PCl 3 ) It is preferred to use poryl.
상기 할로겐화제는 상기 출발물질(화학식 1로 나타내는 화합물) 1 당량에 대하여, 일례로 1 내지 1.5 당량, 바람직하게는 1 내지 1.2 당량 범위로 사용할 수 있다. 상술한 범위를 만족하면 상기 출발물질의 일 말단에만 효과적으로 할로겐을 도입할 뿐 아니라 추후 잔류 할로겐화제 또한 적절하게 제거할 수 있어 바람직하다. The halogenating agent may be used in an amount of, for example, 1 to 1.5 equivalents, preferably 1 to 1.2 equivalents, based on 1 equivalent of the starting material (compound represented by Formula 1). When the above-mentioned range is satisfied, it is preferable that not only the halogen is effectively introduced only at one end of the starting material, but also the residual halogenating agent can be appropriately removed later.
상기 소수성 용매는 이에 한정하는 것은 아니나 비점이 80℃ 이상의 무극성 용매를 사용하는 것이 할로겐화 반응효율을 고려할 때 바람직하다. 예를 들어 톨루엔, 자일렌, 클로로벤젠 등을 사용할 수 있으며, 이들 용매는 단독 또는 혼합하여 사용할 수 있다.The hydrophobic solvent is not limited thereto, but it is preferable to use a non-polar solvent having a boiling point of 80° C. or higher in consideration of the halogenation reaction efficiency. For example, toluene, xylene, chlorobenzene, etc. may be used, and these solvents may be used alone or in combination.
상기 소수성 용매는 상기 출발물질(화학식 1로 나타내는 화합물) 1 당량 기준으로 일례로 1 내지 2 당량, 바람직하게는 1 내지 1.5 당량 범위로 사용할 수 있다. 상술한 범위를 만족하면 상기 할로겐화 반응을 충분히 수행할 뿐 아니라 교반이 용이하며, 추후 잔류 용매 또한 적절하게 제거할 수 있어 바람직하다. The hydrophobic solvent may be used in an amount of 1 to 2 equivalents, preferably 1 to 1.5 equivalents, based on 1 equivalent of the starting material (compound represented by Formula 1). When the above-described range is satisfied, the halogenation reaction is sufficiently performed, stirring is easy, and the residual solvent can be appropriately removed later, which is preferable.
상기 할로겐화 반응은 일례로 60 내지 90℃에서 0.5 내지 3시간, 바람직하게는 75 내지 85℃에서 1 내지 2시간 동안 환류 교반하여 수행할 수 있다. The halogenation reaction may be performed, for example, by stirring under reflux at 60 to 90° C. for 0.5 to 3 hours, preferably at 75 to 85° C. for 1 to 2 hours.
또한 생성된 불포화 화합물(반응식 1의 우측 화합물, 제1 중간체에 해당)은 잔류 할로겐화제 및 용매를 제거하는 단계를 거쳐 무색 생성액으로 제공된다. In addition, the produced unsaturated compound (the compound on the right side of Scheme 1, corresponding to the first intermediate) is provided as a colorless product through a step of removing the residual halogenating agent and solvent.
구체적으로는 반응 종료 후 5℃ 이하, 바람직하게는 0℃ 이하로 냉각하고 증류수를 상기 할로겐화제의 함량 기준으로 1~2배 부피로 적가하여 잔류 할로겐화제를 제거할 수 있다. Specifically, after completion of the reaction, the residual halogenating agent may be removed by cooling to 5° C. or less, preferably 0° C. or less, and adding distilled water dropwise by volume of 1-2 times the amount of the halogenating agent.
그런 다음 상기 소수성 용매보다 비점이 낮은 유기용매로 추출한 유기층을 황산마그네슘으로 건조 및 여과하여 수득된 여과액을 감압 농축함으로써 무색 생성액을 수득할 수 있다. Then, the organic layer extracted with an organic solvent having a lower boiling point than the hydrophobic solvent is dried over magnesium sulfate, filtered, and the resulting filtrate is concentrated under reduced pressure to obtain a colorless product.
이때 상기 무색 생성액은 일례로 90 중량% 이상의 수율로 제조될 수 있다. In this case, the colorless product may be prepared in a yield of, for example, 90% by weight or more.
본 기재의 할로겐화 반응은 후술하는 무촉매 고리화반응에 투입하는고리화제의 반응성을 고려하여 특정 비점 범위를 갖는 소수성 용매와 할로겐화제를 사용하여 일 말단에만 할로겐이 도입된 불포화 화합물을 수득함으로써 고수율의 중간체를 수득하는 효과를 제공하게 된다.The halogenation reaction of the present description uses a hydrophobic solvent and a halogenating agent having a specific boiling point range in consideration of the reactivity of the cyclizing agent to be introduced into the non-catalytic cyclization reaction described later to obtain an unsaturated compound in which halogen is introduced only at one terminal in high yield. It provides the effect of obtaining an intermediate of
무촉매 고리화반응Catalyst-free cyclization
본 기재에 따른 제조방법은, 전술한 할로겐화 반응의 생성물로서 수득된 중간체에, 물과 유기용매의 혼합 용매 하에 (무촉매) 고리화제를 투입하여 고리화 화합물을 합성하는 것을 목적으로 한다.The preparation method according to the present disclosure aims to synthesize a cyclized compound by adding a (non-catalyst) cyclizing agent to the intermediate obtained as a product of the aforementioned halogenation reaction in a mixed solvent of water and an organic solvent.
구체적인 예로, 상기 고리화 화합물은 2-할로-1,3-프로판 설톤일 수 있다.As a specific example, the cyclizing compound may be 2-halo-1,3-propane sultone.
상기 무촉매 고리화반응은 하기 반응식으로 나타낸 기전을 참조하여 구체적으로 살펴본다. The catalyst-free cyclization reaction will be described in detail with reference to the mechanism shown in the following reaction formula.
[반응식 2][Scheme 2]
Figure PCTKR2021015275-appb-I000006
Figure PCTKR2021015275-appb-I000006
여기서 Y는 상기 반응식 1에 나타낸 것과 같다. Here, Y is as shown in Scheme 1 above.
바람직하게는 Y는 염소(Cl) 또는 브롬(Br)일 수 있다. Preferably, Y may be chlorine (Cl) or bromine (Br).
상기 반응식 2에서 보듯이, 전술한 할로겐화 반응의 생성물의 불포화 말단부위를 고리화제로서 단독 사용되는 NBS(N-브로모숙신이미드) 내 브롬이 부분 양자화되어 친핵체로서 공격하여 고리화시킨다. As shown in Scheme 2, bromine in NBS (N-bromosuccinimide), which is used alone as a cyclizing agent, is partially protonated to attack and cyclize the unsaturated end portion of the product of the above halogenation reaction as a nucleophile.
본 발명에서 사용되는 용어 무촉매 고리화반응은 촉매-프리(catalyst-free)를 지칭하는 것으로, 일례로 아조-프리(azo-free) 및/또는 과산화물-프리(peroxide-free) 고리화반응인 것이 바람직하다. The term catalyst-free cyclization as used in the present invention refers to a catalyst-free, for example, azo-free and/or peroxide-free cyclization. it is preferable
구체적으로, 상기 고리화제는 아조-프리(azo-free) 및 과산화물-프리(peroxide-free)와 같은 라디칼 개시제 프리 조건하에 N-할로겐화 숙신이미드를 단독으로 사용하는 것이 바람직하다. Specifically, the cyclizing agent is preferably an N-halogenated succinimide alone under radical initiator-free conditions such as azo-free and peroxide-free.
참고로, 통상 사용하는 AIBN(아조비스이소부티로니트릴) 또는 과산화수소와 같은 라디칼 개시제의 경우에는 반응 완료 후 잔류하여 후공정 수행에 영향을 미치며, 염소 포함 부산물을 생성할 수 있어 본 기재의 고리화제와 병용하여 사용하지 않는 것이 바람직하다. For reference, in the case of a commonly used radical initiator such as AIBN (azobisisobutyronitrile) or hydrogen peroxide, it remains after completion of the reaction and affects post-process performance, and can generate chlorine-containing by-products. It is preferable not to use it in combination with
나아가, AIBN(아조비스이소부티로니트릴)에 N-할로겐화 숙신이미드를 배합하여 사용할 경우 라디칼 개시를 통한 반응이 진행되며, 본 기재에서 친핵성 치환반응을 통한 할로겐화 및 무촉매 고리화반응이 진행되는 것과는 반응기전이 상이한 것이다. Furthermore, when AIBN (azobisisobutyronitrile) is mixed with N-halogenated succinimide, the reaction proceeds through radical initiation, and halogenation and non-catalytic cyclization through nucleophilic substitution in the present description proceed. It is different from the reaction mechanism.
상기 고리화제는 상기 할로겐화단계의 생성물 1 당량에 대하여, 일례로 0.8 내지 1.5 당량, 바람직하게는 1 내지 1.1 당량으로 투입될 수 있다. 상술한 범위를 만족하면 상기 무촉매 고리화반응을 효율적으로 수행할 수 있다.The cyclizing agent may be added in an amount of, for example, 0.8 to 1.5 equivalents, preferably 1 to 1.1 equivalents, based on 1 equivalent of the product of the halogenation step. When the above-described range is satisfied, the catalyst-free cyclization reaction can be efficiently performed.
상기 유기용매는 통상적인 용매 하에서 수행될 수 있으며, 일례로 상기 유기용매는 소수성용매인 것을 사용할 수 있다. 용매의 비제한적인 예로는 아세토니트릴, 디클로로메탄, 클로로포름, 벤젠, 메틸 삼차뷰틸 에터 등을 사용할 수 있으며, 이들 용매를 사용할 경우 무촉매 고리화반응을 효율적으로 수행할 뿐 아니라 잔류 유기용매 또한 적절하게 제거할 수 있어 바람직하다. The organic solvent may be carried out under a conventional solvent, for example, the organic solvent may be a hydrophobic solvent. Non-limiting examples of the solvent include acetonitrile, dichloromethane, chloroform, benzene, methyl tertiary butyl ether, and the like. It is desirable to be able to remove it.
상기 무촉매 고리화단계에서 물과 유기용매는 상기 할로겐화단계의 생성물 1당량에 대하여 일례로 1~2:0.5~2 당량비, 바람직하게는 1~2: 0.5~1.5 당량비, 보다 바람직하게는 1 : 1 당량비로 투입하는 것이 바람직하다. 상술한 범위를 만족하면 상기 무촉매 고리화반응을 효율적으로 수행할 뿐 아니라 잔류 유기용매 또한 적절하게 제거할 수 있어 바람직하다. In the non-catalytic cyclization step, water and the organic solvent are, for example, in a ratio of 1-2:0.5-2 equivalents, preferably 1-2:0.5-1.5 equivalents, more preferably 1: with respect to 1 equivalent of the product of the halogenation step. It is preferable to input in a ratio of 1 equivalent. When the above-mentioned range is satisfied, it is preferable that the non-catalytic cyclization reaction can be efficiently performed as well as the residual organic solvent can be appropriately removed.
상기 무촉매 고리화반응은 상온에서 수행할 수 있고, 반응시간은 일례로 3 내지 8시간, 바람직하게는 상온에서 3 내지 5시간, 더욱 바람직하게는 4.5 내지 5시간 동안 수행할 수 있다. The catalyst-free cyclization may be carried out at room temperature, and the reaction time may be, for example, 3 to 8 hours, preferably 3 to 5 hours at room temperature, and more preferably 4.5 to 5 hours.
상기 반응식 2에서 보듯이, 본 기재의 무촉매 고리화반응은 부산물을 생성하거나 고가의 라디칼 개시제 또는 촉매를 사용하지 않고 아조-프리 및/또는 과산화물-프리 고리화제, 즉 아조-프리 및 과산화물-프리 조건 하에서 고리화시키는 고리화제로서 NBS(N-브로모숙신이미드)를 단독 사용하면서 물과 유기용매의 혼합용매를 특정함으로써 반응 안정성이 우수하면서도 부반응이 적어 개선된 산출량이 제공되는 효과를 제공하게 된다. As shown in Scheme 2, the catalytic-free cyclization of the present invention does not generate by-products or use expensive radical initiators or catalysts, and is an azo-free and/or peroxide-free cyclizing agent, that is, azo-free and peroxide-free. By specifying a mixed solvent of water and an organic solvent while using NBS (N-bromosuccinimide) alone as a cyclizing agent for cyclization under conditions, it provides the effect of providing an improved yield with excellent reaction stability and fewer side reactions. .
탈할로겐화반응dehalogenation reaction
본 기재에 따른 제조방법은, 전술한 고리화 생성물을 탈할로겐화반응에 의해 그 일 말단에서 할로겐을 탈착시킨 불포화 화합물을 수득하는 것을 목적으로 한다.The preparation method according to the present disclosure aims to obtain an unsaturated compound in which halogen is desorbed from one terminal thereof by dehalogenation of the aforementioned cyclization product.
구체적인 예로, 상기 일 말단에서 할로겐을 탈착시킨 불포화 화합물은 하기 화학식 2로 나타내는 화합물일 수 있다. As a specific example, the unsaturated compound from which a halogen is desorbed from one terminal may be a compound represented by Formula 2 below.
[화학식 2][Formula 2]
Figure PCTKR2021015275-appb-I000007
Figure PCTKR2021015275-appb-I000007
구체적인 예로, 상기 일 말단에서 할로겐을 탈착시킨 불포화 화합물은 1,3-프로프-1-엔 설톤일 수 있다.As a specific example, the unsaturated compound from which halogen is desorbed from one terminal may be 1,3-prop-1-ene sultone.
상기 탈할로겐화반응은 하기 반응식으로 나타낸 기전을 참조하여 구체적으로 살펴본다. The dehalogenation reaction will be described in detail with reference to the mechanism shown in the following reaction formula.
[반응식 3][Scheme 3]
Figure PCTKR2021015275-appb-I000008
Figure PCTKR2021015275-appb-I000008
상기 반응식 3에서 보듯이, 강염기는 상기 무촉매 고리화반응 생성물(반응식3의 좌측에 해당)의 할로겐 말단부위를 공격하여 탈착시키고 불포화 구조를 생성한다. As shown in Scheme 3, the strong base attacks and desorbs the halogen end portion of the non-catalytic cyclization product (corresponding to the left side of Scheme 3), thereby creating an unsaturated structure.
이때 사용되는 강염기는 NaOH, KOH 또는 Ca(OH)2의 수용액인 것이 탈할로겐화 반응을 효과적으로 수행할 수 있다. 참조로, 탄산수소나트륨과 같은 약염기를 사용하면 탈할로겐화 반응시간이 증가하며, 효율적인 탈할로겐화가 수행되지 못하여 수율 및 순도가 감소하는 단점이 있다. In this case, the strong base used may be an aqueous solution of NaOH, KOH, or Ca(OH)2 to effectively perform the dehalogenation reaction. For reference, if a weak base such as sodium bicarbonate is used, the dehalogenation reaction time increases, and efficient dehalogenation cannot be performed, thereby reducing yield and purity.
상기 강염기는 상기 할로겐화단계의 생성물 1당량에 대하여 일례로 2.0 내지 2.5 당량, 바람직하게는 2.2 내지 2.3 당량으로 투입될 수 있다. 상술한 범위를 만족하면 상기 탈할로겐화반응을 효율적으로 수행할 뿐 아니라 동시에 상기 무촉매 고리화반응에서 생성된 잔류되는 산의 중화를 수행할 수 있어 뒤따르는 정제과정에서 목적 화합물의 수율 및 순도를 높일 수 있어 바람직하다. The strong base may be added in an amount of, for example, 2.0 to 2.5 equivalents, preferably 2.2 to 2.3 equivalents, based on 1 equivalent of the product of the halogenation step. When the above-mentioned range is satisfied, the dehalogenation reaction can be efficiently performed, and at the same time, the residual acid generated in the non-catalytic cyclization reaction can be neutralized, thereby increasing the yield and purity of the target compound in the subsequent purification process. It is preferable to be able to
상기 강염기의 적가 시 온도는 0℃ 내지 40℃, 바람직하게는 25℃ 내지 35℃ 온도조건 하에 적가하는 것이 전술한 탈할로겐화반응을 효율적으로 수행할 수 있어 바람직하다.The temperature when the strong base is added dropwise is preferably 0° C. to 40° C., preferably 25° C. to 35° C., so that the above-described dehalogenation reaction can be efficiently performed.
상기 적가 온도를 그대로 유지하여 탈할로겐화반응을 수행할 수 있는 것으로, 상기 탈로겐화반응은 일례로 25℃ 내지 35℃ 온도조건 하에 수행할 수 있다. The dehalogenation reaction can be performed by maintaining the dropwise temperature as it is, and the dehalogenation reaction can be carried out under a temperature condition of, for example, 25°C to 35°C.
상기 탈할로겐화 단계는 일례로 상온에서 1 내지 4시간, 바람직하게는 상온에서 1 내지 2시간 동안 수행되는 것일 수 있다. 상술한 범위를 만족하면, 생성된 탈할로겐화 반응물 (반응식 3의 우측, 목적 화합물에 해당)이 부반응이 없이 반응 수율을 개선할 뿐 아니라 반응 안정성 또한 제공할 수 있다.The dehalogenation step may be performed, for example, at room temperature for 1 to 4 hours, preferably at room temperature for 1 to 2 hours. When the above-described range is satisfied, the resulting dehalogenated reactant (on the right side of Scheme 3, corresponding to the target compound) may not only improve the reaction yield but also provide reaction stability without side reactions.
상기 반응식 3에서 보듯이, 본 기재의 탈할로겐화반응은 반응 제어가 어려운 약염기를 사용하지 않고 강염기를 사용하여 SO2기 옆의 프로톤을 제거하여 2중결합을 형성하며 동시에 탈할로겐화 반응이 진행됨으로써 반응 안정성이 우수하면서도 반응시간이 단축되고, 부반응이 적어 개선된 산출량이 제공되는 효과를 제공하게 된다.As shown in Scheme 3, the dehalogenation reaction of the present invention does not use a weak base, which is difficult to control, but uses a strong base to remove the proton next to the SO 2 group to form a double bond, and at the same time the dehalogenation reaction proceeds. It provides the effect of providing an improved output with excellent stability, reduced reaction time, and fewer side reactions.
이하에서는, 본 기재의 반응에 있어 특이사항에 대하여 살펴본다. Hereinafter, specific matters in the reaction of the present description will be looked at.
무촉매 고리화반응 및 탈할로겐화반응의 연속 진행Continuous progress of non-catalytic cyclization and dehalogenation reactions
전술한 무촉매 고리화반응 및 탈할로겐화반응에서 투입되는 고리화제, 탈할로겐화제 및 용매의 효과는 매우 중요한 것으로, 다른 조건이 모두 동일하더라도 이들 시약들과 용매에 따라 어떤 반응은 진행되지 않을 수도 있고, 어떤 반응은 거의 100%에 가깝게 진행될 수 있다. The effects of the cyclizing agent, dehalogenating agent, and solvent input in the above-described non-catalytic cyclization and dehalogenation reactions are very important, and even if all other conditions are the same, some reactions may not proceed depending on these reagents and solvents. , some reactions can proceed close to 100%.
따라서 본 기재에 따른 환상 설폰산 에스테르 화합물을 제조하는 방법에서 이들 고리화제, 탈할로겐화제 및 용매의 선택 및 투입순서선정은 매우 중요하다. Therefore, in the method for preparing the cyclic sulfonic acid ester compound according to the present disclosure, the selection of the cyclizing agent, the dehalogenating agent and the solvent and the selection of the input order are very important.
상기 고리화제는 고리화제를 사용하면서 아조-프리 및 과산화물-프리 조건에서 무촉매 고리화반응을 진행할 수 있도록 바람직하게는 NBS (N-브로모숙신이미드) 단독을 사용하는 것이 생산효율을 개선하며, 부산물을 최소화할 수 있다. Preferably, the use of NBS (N-bromosuccinimide) alone as the cyclizing agent improves the production efficiency so that the cyclization can proceed without a catalyst under azo-free and peroxide-free conditions while using the cyclizing agent. , and by-products can be minimized.
또한, 탈할로겐화제는 염기성 물질을 사용하되 SO2기 옆의 프로톤을 제거하여 2중결합을 형성하며 동시에 탈할로겐화 반응이 진행되기에 바람직하게는 강염기를 수용액 상태로 사용하는 것이 역시 생산효율을 개선하며, 부산물을 최소화할 수 있다.In addition, the dehalogenating agent uses a basic material, but forms a double bond by removing the proton next to the SO 2 group, and at the same time the dehalogenation reaction proceeds, preferably using a strong base in an aqueous solution state also improves production efficiency and by-products can be minimized.
한편, 상기 고리화제는 물과 유기용매의 혼합용매 하에 투입되며, 이때 유기용매로서 가급적 비점이 낮은 용매를 사용하는 것이 무촉매 고리화반응 효율을 개선할 뿐 아니라 정제과정 없이 무용제 하에 탈할로겐화제를 투입하여 탈할로겐화 반응까지 연속하여 진행한 다음 정제할 수 있어 생산효율을 개선하며, 부산물이 발생하는 문제점을 최소화할 수 있다.On the other hand, the cyclizing agent is added under a mixed solvent of water and an organic solvent, and in this case, using a solvent with a low boiling point as the organic solvent not only improves the efficiency of the catalytic cyclization reaction, but also dehalogenates the dehalogenating agent without a solvent without a purification process. It can be added and continuously proceeded to the dehalogenation reaction and then purified, thereby improving production efficiency and minimizing the problem of by-products.
즉, 본 발명의 일 실시예에 따르면, 전술한 무촉매 고리화반응과 탈할로겐화반응은 연속하여 진행하는 것을 특징으로 하며, 이 경우에 고가의 라디칼 개시제 또는 촉매를 사용하지 않으면서 고리화반응 및 탈할로겐화 반응을한 단계(one-step) 공정으로 진행할 수 있어 비용 절감 및 간단한 합성을 제공할 뿐 아니라 고수율과 고순도로 목적 화합물을 제공가능한 장점이 있다. That is, according to one embodiment of the present invention, the above-described non-catalytic cyclization reaction and dehalogenation reaction are characterized in that it proceeds continuously, and in this case, the cyclization reaction and the cyclization reaction without using an expensive radical initiator or catalyst Since the dehalogenation reaction can be carried out in a one-step process, it is possible to reduce costs and provide simple synthesis, as well as provide the target compound in high yield and high purity.
실제로 본 기재에 따른 환상 설폰산 에스테르 화합물의 제조방법에 따르면, 상기 화학식 2로 나타내는 화합물의 순도는 일례로 99 중량% 이상, 바람직하게는 99.5 중량% 이상일 수 있다. Actually, according to the method for producing a cyclic sulfonic acid ester compound according to the present disclosure, the purity of the compound represented by Formula 2 may be, for example, 99% by weight or more, preferably 99.5% by weight or more.
또한, 본 기재에 따른 환상 설폰산 에스테르 화합물의 제조방법에 따르면, 상기 화학식 2로 나타내는 화합물의 수율은 일례로 80 중량% 이상, 바람직하게는 80 내지 85 중량%일 수 있다. In addition, according to the method for producing a cyclic sulfonic acid ester compound according to the present disclosure, the yield of the compound represented by Formula 2 may be, for example, 80% by weight or more, preferably 80 to 85% by weight.
본 기재에 따른 환상 설폰산 에스테르 화합물의 제조방법에 따르면, 상기 반응은 감압 및 증류하여 휘발성 물질을 제거하는 단계를 더 포함할 수 있다.According to the method for producing a cyclic sulfonic acid ester compound according to the present disclosure, the reaction may further include removing volatiles by vacuum and distillation.
또한, 상기 반응은 재결정하여 정제하는 단계를 더 포함할 수 있다. In addition, the reaction may further include the step of recrystallization and purification.
일례로, 상기 정제 단계는 유기층을 추출하고 황산마그네슘으로 건조 및 여과하여 수득된 여과액을 감압 농축액을 물 또는 이소프로필알코올을 사용하여 재결정하여 수행할 수 있다. For example, in the purification step, the organic layer is extracted, dried over magnesium sulfate, and the filtrate obtained by filtration may be recrystallized from a concentrated solution under reduced pressure using water or isopropyl alcohol.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are presented to help the understanding of the present invention, but the following examples are merely illustrative of the present invention, and it will be apparent to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention, It goes without saying that such variations and modifications fall within the scope of the appended claims.
[실시예][Example]
제조예 1: 프로프-2-엔-1-설포닐 클로라이드 제조Preparation Example 1: Preparation of prop-2-ene-1-sulfonyl chloride
상기 반응식 1에 따라 할로겐화반응을 수행하고 소듐 프로프-2-엔-1-설포네이트(sodium prop-2-ene-1-sulfonate)로부터 프로프-2-엔-1-설포닐 클로라이드(prop-2-ene-1-sulfonyl chloride)를 제조하였다. A halogenation reaction was carried out according to Scheme 1, and from sodium prop-2-ene-1-sulfonate, prop-2-ene-1-sulfonyl chloride (prop- 2-ene-1-sulfonyl chloride) was prepared.
구체적으로는, 환류 시스템을 갖는 5000 mL 반응기를 사용하여 소듐프로프-2-엔-1-설포닐 클로라이드 1000g(6.94mol, 1eq), 염화 포스포릴 713ml(7.63mol, 1.1eq), 톨루엔 700ml를 투입하고 3시간 동안 환류 교반하였다. Specifically, 1000 g (6.94 mol, 1 eq) of sodium prop-2-ene-1-sulfonyl chloride, 713 ml of phosphoryl chloride (7.63 mol, 1.1 eq), and 700 ml of toluene were prepared using a 5000 mL reactor with a reflux system. and stirred under reflux for 3 hours.
반응 종료 후 0℃ 냉각하고 증류수 1L를 적가하여 잔류 염화 포스포릴을 제거한 다음 디클로로메테인을 사용하여 2회 추출하고 유기층을 MgSO4로 건조한 다음 여과하여 수득된 여과액을 감압 농축하여 무색 생성액 794g을 82 중량% 수율로 얻었다. After completion of the reaction, the reaction was cooled to 0°C, distilled water 1L was added dropwise to remove residual phosphoryl chloride, and then extracted twice using dichloromethane, the organic layer was dried over MgSO 4 , filtered, and the filtrate obtained by filtration was concentrated under reduced pressure to form a colorless product 794 g was obtained in a yield of 82% by weight.
제조예 2Preparation 2
상기 제조예 1에서 합성한 프로프-2-엔-1-설포닐 클로라이드를 Sigma Aldrich로부터 구입하여 준비하였다. Prop-2-ene-1-sulfonyl chloride synthesized in Preparation Example 1 was purchased from Sigma Aldrich and prepared.
실시예 1Example 1
상기 제조예 1에서 수득한 무색 생성액(프로프-2-엔-1-설포닐 클로라이드)을 사용하여 상기 반응식 2 및 반응식 3에 따라 무촉매 고리화반응 및 탈할로겐화 반응을 연속적으로 수행하고 2-브로모-1,3-프로판 설톤 중간체를 거쳐 목적 화합물(상기 화학식 2로 나타내는 화합물)인 1,3-프로프-1-엔 설톤을 제조하였다. Using the colorless product (prop-2-ene-1-sulfonyl chloride) obtained in Preparation Example 1, the catalyst-free cyclization reaction and dehalogenation reaction were continuously performed according to Schemes 2 and 3, and 2 -Bromo-1,3-propane sultone 1,3-prop-1-ene sultone as the target compound (compound represented by Formula 2) was prepared through the intermediate.
반응식 2 관련하여, 구체적으로는 환류 시스템을 갖춘 500 mL 3구 플라스크를 사용하여 제조예 1에서 수득한 할로겐화 생성물 40.0g(284.5 mmol, 1eq), NBS 50.6g(284.5mmol, 1eq), 다이클로로메테인 280ml, 증류수 280ml를 투입하고 상온에서 4시간 교반하여 2-브로모-1,3-프로판 설톤 중간체(반응식 2의 우측, Y=브로모) 포함 용액을 수득하였다. With respect to Scheme 2, specifically 40.0 g (284.5 mmol, 1eq) of the halogenated product obtained in Preparation Example 1 using a 500 mL three-necked flask equipped with a reflux system, 50.6 g (284.5 mmol, 1eq) of NBS, dichloromethane 280 ml of phosphorus and 280 ml of distilled water were added and stirred at room temperature for 4 hours to obtain a solution containing 2-bromo-1,3-propane sultone intermediate (right side of Scheme 2, Y = bromo).
이어서 반응식 3 관련하여, 상기 2-브로모-1,3-프로판 설톤 중간체 포함 용액에 강염기로서 2M NaOH 수용액 327.2ml(654.4mmol, 2.3eq)를 0.5 시간 동안 적가한 다음 1시간 동안 교반하고 반응을 종료하였다. Then, with respect to Scheme 3, 327.2 ml (654.4 mmol, 2.3eq) of a 2M aqueous NaOH solution as a strong base was added dropwise to the solution containing the intermediate 2-bromo-1,3-propane sultone for 0.5 hour, followed by stirring for 1 hour and the reaction was carried out. ended.
그런 다음 디클로로메테인을 사용하여 2회 추출하고 유기층을 MgSO4로 건조한 다음 여과하여 수득된 여과액을 감압 농축하여 흰색 고체 화합물을 수득하였다. Then, the mixture was extracted twice with dichloromethane, and the organic layer was dried over MgSO 4 , filtered, and the resulting filtrate was concentrated under reduced pressure to obtain a white solid compound.
수득된 고체 화합물을 이소프로필알코올로 재결정하여 고체 화합물14g을 85 중량% 수율로 얻었다. Gas chromatography를 사용하여 확인한 결과, 1,3-프로프-1-엔 설톤이 99.7 중량% 순도인 것으로 확인되었다. The obtained solid compound was recrystallized from isopropyl alcohol to obtain 14 g of a solid compound in a yield of 85% by weight. As a result of verification using gas chromatography, it was confirmed that 1,3-prop-1-ene sultone was 99.7 wt% pure.
실시예 2Example 2
상기 실시예 1에서 사용한 제조예 1의 무색 생성액을 Sigma Aldrich사에서 구입한 제조예 2의 프로프-2-엔-1-설포닐 클로라이드 제품으로 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복한 결과, 목적 화합물에 대한 수율 80 중량% 및 순도 99.5 중량%를 확인하였다.The same as in Example 1, except that the colorless product of Preparation Example 1 used in Example 1 was replaced with the prop-2-ene-1-sulfonyl chloride product of Preparation Example 2 purchased from Sigma Aldrich. As a result of repeating the process, it was confirmed that a yield of 80% by weight and a purity of 99.5% by weight of the target compound were obtained.
비교예 1Comparative Example 1
상기 실시예 1의 반응식 2 관련 실험에서 NBS 단독 사용을 AIBN + NBS의 병용 사용(1:1 당량)으로 대체한 것을 제외하고 상기 실시예 1과 동일한 공정을 반복한 결과, 상기 화학식 2로 나타내는 화합물인 1,3-프로프-1-엔 설톤 에 대해서는 수율 60 중량% 및 순도 85 중량%인 것으로 확인되어 상기 반응식 2에 따른 반응이 목적 생성물까지 효과적으로 진행되지 않은 것을 확인하였다. As a result of repeating the same process as in Example 1 except that the use of NBS alone was replaced with the use of AIBN + NBS in combination (1:1 equivalent) in the experiment related to Scheme 2 of Example 1, the compound represented by Formula 2 With respect to phosphorus 1,3-prop-1-ene sultone, it was confirmed that the yield was 60% by weight and the purity was 85% by weight, so it was confirmed that the reaction according to Scheme 2 did not proceed effectively to the target product.
비교예 2Comparative Example 2
상기 실시예 1의 반응식 3 관련하여 강염기로 사용한 NaOH 수용액을 약염기인 탄산수소나트륨 수용액으로 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복한 결과, 상기 화학식 2로 나타내는 화합물인 1,3-프로프-1-엔 설톤에 대해서는 수율 40 중량% 및 순도 92 중량%인 것으로 확인되어 상기 반응식 2에 따른 반응이 목적 생성물까지 효과적으로 탈할로겐화 반응이 진행되지 않은 것을 확인하였다.In relation to Scheme 3 of Example 1, the same process as in Example 1 was repeated except that the aqueous NaOH solution used as a strong base was replaced with an aqueous solution of sodium hydrogen carbonate as a weak base. -Prop-1-enesultone was confirmed to have a yield of 40% by weight and a purity of 92% by weight, confirming that the reaction according to Scheme 2 did not effectively dehalogenate to the target product.
비교예 3Comparative Example 3
상기 실시예 1의 반응식 3 관련하여 강염기로 사용한 2M NaOH 수용액을 2.3 당량을 초과하는 5.0 당량으로 적가 투입한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복한 결과, 상기 화학식 2로 나타내는 화합물인 1,3-프로프-1-엔 설톤에 대해서는 수율 50 중량% 및 순도 95 중량%인 것으로 확인되어 상기 반응식 2에 따른 반응이 목적 생성물까지 수율 및 순도가 감소하여 효과적으로 진행되지 않은 것을 확인하였다.In relation to Scheme 3 of Example 1, as a result of repeating the same process as in Example 1, except that 5.0 equivalents exceeding 2.3 equivalents of 2M NaOH aqueous solution used as a strong base was added dropwise, the compound represented by Formula 2 With respect to 1,3-prop-1-ene sultone, it was confirmed that the yield was 50% by weight and the purity was 95% by weight, so it was confirmed that the reaction according to Scheme 2 did not proceed effectively due to the decrease in yield and purity to the target product.
참고예 1Reference Example 1
상기 실시예 1에서 반응식 2 및 반응식 3을 연속하여 진행하는 것 대신 반응식 2를 진행한 다음 다이클로로메테인으로 2회 추출하고 유기층을 황산마그네슘으로 건조 후 여과하고 수득된 여과액을 감압 농축한 다음 얻어진 고체 화합물을 사용하여 반응식 3을 수행한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복한 결과, 상기 화학식 2로 나타내는 화합물인 1,3-프로프-1-엔 설톤에 대해서는 수율 40 중량% 및 순도 98 중량%이었고, 상기 2-브로모-1,3-프로판 설톤 중간체에 대해서는 수율 70 중량% 및 순도 90 중량%인 것을 확인하였다.In Example 1, instead of proceeding with Reaction Scheme 2 and Scheme 3 continuously, Scheme 2 was performed, followed by extraction with dichloromethane twice, the organic layer was dried over magnesium sulfate, filtered, and the resulting filtrate was concentrated under reduced pressure. As a result of repeating the same process as in Example 1 except that Scheme 3 was carried out using the obtained solid compound, the yield of 1,3-prop-1-enesultone, which is the compound represented by Formula 2, was 40 wt. % and purity 98% by weight, and it was confirmed that the 2-bromo-1,3-propane sultone intermediate had a yield of 70% by weight and a purity of 90% by weight.
상기 실험 결과로부터 확인할 수 있듯이, 고리화제로서 NBS를 단독 사용한 실시예 1 내지 2의 경우, 생성물의 수율은 80 내지 85 중량%에 달하며, 순도 또한 99.5 내지 99.7 중량%인 것으로 확인되었다. As can be seen from the experimental results, in the case of Examples 1 and 2 in which NBS was used alone as a cyclizing agent, the yield of the product reached 80 to 85% by weight, and the purity was also confirmed to be 99.5 to 99.7% by weight.
한편, AIBN을 병용하여 무촉매 조건을 적용하지 않은 비교예 1의 경우 수율 및 순도가 저하되는 것을 확인할 수 있었다. On the other hand, in the case of Comparative Example 1 in which the non-catalytic condition was not applied by using AIBN in combination, it was confirmed that the yield and purity were lowered.
또한, 무촉매 고리화반응과 연속적으로 진행하는 탈할로겐화 반응에 투입되는 강염기를 약염기로 대체한 비교예 2의 경우 반응 진행이 더디어 목적화합물의 수율 및 순도가 저하되는 것을 확인할 수 있었다. In addition, in the case of Comparative Example 2, in which a weak base was replaced with a strong base for the dehalogenation reaction continuously proceeding with the non-catalytic cyclization reaction, it was confirmed that the reaction progressed slowly and the yield and purity of the target compound were lowered.
또한, 무촉매 고리화반응과 연속적으로 진행하는 탈할로겐화 반응에 투입되는 강염기를 과량으로 투입한 비교예 3의 경우, 수율이 저하되는 결과를 확인할 수 있었다. In addition, in the case of Comparative Example 3 in which an excessive amount of a strong base to be added to the dehalogenation reaction proceeding continuously with the non-catalytic cyclization reaction was added, it was confirmed that the yield decreased.
나아가, 무촉매 고리화반응과 탈할로겐화 반응을 순차 진행하는 참고예 1의 경우, 중간 과정에서의 물질 loss로 인한 수율이 감소가 되는 결과를 확인할 수 있었다.Furthermore, in the case of Reference Example 1 in which the non-catalytic cyclization reaction and the dehalogenation reaction are sequentially performed, it was confirmed that the yield was decreased due to material loss in the intermediate process.
결론적으로, 저가의 알칼리금속 프로프-2-엔-1-설포네이트 화합물을 출발 물질로 하여 출발물질로부터 목적하는 환상 설폰산 에스테르 화합물을 합성함에 있어 고리화제로서 N-브로모숙신이미드(NBS)를 단독으로 사용하고 무촉매 고리화단계 및 탈할로겐화단계를 연속적으로 수행하는 경우에 고순도 및 고수율로 대량 생산이 가능하면서 반응공정이 간단하고 경제적인 것을 확인할 수 있었다. In conclusion, N-bromosuccinimide (NBS) as a cyclizing agent in synthesizing a desired cyclic sulfonic acid ester compound from a low-cost alkali metal prop-2-ene-1-sulfonate compound as a starting material ) alone and the catalyst-free cyclization step and dehalogenation step are continuously performed, mass production with high purity and high yield is possible, and the reaction process is simple and economical.

Claims (15)

  1. 소수성 용매 하에, 하기 화학식 1로 표시되는 화합물의 일 말단을 할로겐화하는 할로겐화단계; a halogenation step of halogenating one end of the compound represented by the following formula (1) in a hydrophobic solvent;
    상기 할로겐화단계의 생성물을 물과 유기용매의 혼합 용매 하에, 고리화제와 반응시켜 고리화 화합물을 합성하는 고리화단계; 및 A cyclization step of synthesizing a cyclization compound by reacting the product of the halogenation step with a cyclizing agent in a mixed solvent of water and an organic solvent; and
    상기 고리화 화합물에 강염기를 적가하여 하기 화학식 2로 표시되는 화합물을 합성하는 탈할로겐화 단계를 포함하되, A dehalogenation step of synthesizing a compound represented by the following formula (2) by dropwise addition of a strong base to the cyclized compound,
    상기 무촉매 고리화단계 및 탈할로겐화 단계는 연속적으로 진행되는 것을 특징으로 하는 The non-catalytic cyclization step and the dehalogenation step are characterized in that continuously
    환상 설폰산 에스테르 화합물의 제조방법:Method for producing a cyclic sulfonic acid ester compound:
    [화학식 1][Formula 1]
    Figure PCTKR2021015275-appb-I000009
    Figure PCTKR2021015275-appb-I000009
    [화학식 2][Formula 2]
    Figure PCTKR2021015275-appb-I000010
    Figure PCTKR2021015275-appb-I000010
    (상기 화학식 1에서, X는 Li, Na 또는 K이다.) (In Formula 1, X is Li, Na, or K.)
  2. 제 1항에 있어서,The method of claim 1,
    상기 할로겐화단계는, 상기 소수성 용매 하에 상기 화학식 1로 나타내는 화합물 1 당량에 대하여 상기 할로겐화제 1 내지 1.5 당량을 투입하고 교반하여 일 말단이 할로겐으로 치환된 불포화 화합물을 수득하는 단계; 및 The halogenation step may include: adding 1 to 1.5 equivalents of the halogenating agent to 1 equivalent of the compound represented by Formula 1 in the hydrophobic solvent and stirring to obtain an unsaturated compound having one terminal substituted with a halogen; and
    잔류 할로겐화제 및 용매를 제거하는 단계를 포함하는 것을 특징으로 하는 and removing residual halogenating agent and solvent.
    환상 설폰산 에스테르 화합물의 제조방법.A method for producing a cyclic sulfonic acid ester compound.
  3. 제 1항에 있어서,The method of claim 1,
    상기 고리화제는 아조-프리(azo-free) 및/또는 과산화물-프리(peroxide-free) N-할로겐화 숙신이미드인 것을 특징으로 하는 The cyclizing agent is azo-free and / or peroxide-free (peroxide-free) N- halogenated succinimide, characterized in that
    환상 설폰산 에스테르 화합물의 제조방법. A method for producing a cyclic sulfonic acid ester compound.
  4. 제 1항에 있어서,The method of claim 1,
    상기 고리화제는 상기 할로겐화단계의 생성물 1당량에 대하여 0.8 내지 1.5 당량으로 투입되는 것을 특징으로 하는The cyclizing agent is characterized in that 0.8 to 1.5 equivalents are added with respect to 1 equivalent of the product of the halogenation step
    환상 설폰산 에스테르 화합물의 제조방법. A method for producing a cyclic sulfonic acid ester compound.
  5. 제 1항에 있어서,The method of claim 1,
    상기 무촉매 고리화단계에서 물과 유기용매는 상기 할로겐화단계의 생성물 1당량에 대하여 각각 1~2:0.5~2 당량비로 투입하는 것을 특징으로 하는In the non-catalytic cyclization step, water and the organic solvent are each added in an equivalent ratio of 1 to 2: 0.5 to 2 equivalents with respect to 1 equivalent of the product in the halogenation step.
    환상 설폰산 에스테르 화합물의 제조방법. A method for producing a cyclic sulfonic acid ester compound.
  6. 제 1항에 있어서,The method of claim 1,
    상기 강염기는 NaOH, KOH 또는 Ca(OH)2의 수용액인 것을 특징으로 하는 The strong base is NaOH, KOH or Ca(OH) 2 characterized in that the aqueous solution
    환상 설폰산 에스테르 화합물의 제조방법. A method for producing a cyclic sulfonic acid ester compound.
  7. 제 1항에 있어서,The method of claim 1,
    상기 강염기는 상기 할로겐화단계의 생성물 1당량에 대하여 2.0 내지 2.5 당량으로 투입되는 것을 특징으로 하는 The strong base is characterized in that 2.0 to 2.5 equivalents are added with respect to 1 equivalent of the product of the halogenation step.
    환상 설폰산 에스테르 화합물의 제조방법. A method for producing a cyclic sulfonic acid ester compound.
  8. 제 1항에 있어서,The method of claim 1,
    상기 강염기의 적가온도는 0 내지 40℃인 것을 특징으로 하는The dropwise addition temperature of the strong base is characterized in that 0 to 40 ℃
    환상 설폰산 에스테르 화합물의 제조방법. A method for producing a cyclic sulfonic acid ester compound.
  9. 제 1항에 있어서,The method of claim 1,
    상기 할로겐화단계, 상기 무촉매 고리화단계 및 상기 탈할로겐화단계는 각각 상온에서 수행되는 것을 특징으로 하는The halogenation step, the non-catalytic cyclization step and the dehalogenation step are each performed at room temperature, characterized in that
    환상 설폰산 에스테르 화합물의 제조방법. A method for producing a cyclic sulfonic acid ester compound.
  10. 제 1항에 있어서,The method of claim 1,
    상기 할로겐화단계는 1 내지 2시간, 상기 고리화단계는 3 내지 8시간, 그리고 상기 탈할로겐화단계는 1 내지 4시간 동안 수행되는 것을 특징으로 하는The halogenation step is performed for 1 to 2 hours, the cyclization step is 3 to 8 hours, and the dehalogenation step is performed for 1 to 4 hours.
    환상 설폰산 에스테르 화합물의 제조방법.A method for producing a cyclic sulfonic acid ester compound.
  11. 제 1항에 있어서,The method of claim 1,
    상기 탈할로겐화단계는 25 내지 35℃ 하에 수행되는 것을 특징으로 하는The dehalogenation step is characterized in that carried out at 25 to 35 ℃
    환상 설폰산 에스테르 화합물의 제조방법.A method for producing a cyclic sulfonic acid ester compound.
  12. 제 1항에 있어서,The method of claim 1,
    상기 화학식 1로 나타내는 화합물은 소듐 프로프-2-엔-1-설포네이트 또는 칼륨 프로프-2-엔-1-설포네이트이고,The compound represented by Formula 1 is sodium prop-2-ene-1-sulfonate or potassium prop-2-ene-1-sulfonate,
    상기 무촉매 고리화단계의 생성물은 프로프-2-엔-1-설포닐 할로겐화물이고, The product of the non-catalytic cyclization step is prop-2-ene-1-sulfonyl halide,
    상기 화학식 2로 나타내는 화합물은 1,3-프로프-1-엔 설톤인 것을 특징으로 하는The compound represented by Formula 2 is 1,3-prop-1-ene sultone, characterized in that
    환상 설폰산 에스테르 화합물의 제조방법. A method for producing a cyclic sulfonic acid ester compound.
  13. 제 1항에 있어서,The method of claim 1,
    상기 무촉매 고리화단계 및 상기 탈할로겐화 단계를 연속적으로 진행한 다음 감압 및 증류하여 휘발성 물질을 제거하는 감압증류 단계를 더 포함하는 것을 특징으로 하는After continuously performing the catalyst-free cyclization step and the dehalogenation step, the method further comprises a reduced pressure distillation step to remove volatiles by reduced pressure and distillation.
    환상 설폰산 에스테르 화합물의 제조방법.A method for producing a cyclic sulfonic acid ester compound.
  14. 제 13항에 있어서,14. The method of claim 13,
    상기 감압증류 단계 이후 재결정하여 정제하는 단계를 더 포함하는 것을 특징으로 하는After the vacuum distillation step, recrystallization further comprising the step of purifying
    환상 설폰산 에스테르 화합물의 제조방법.A method for producing a cyclic sulfonic acid ester compound.
    제조방법. manufacturing method.
  15. 제 1항에 있어서, The method of claim 1,
    상기 화학식 2로 나타내는 화합물의 수율이 80 중량% 이상이고 순도가 99 중량% 이상인 것을 특징으로 하는 Characterized in that the yield of the compound represented by Formula 2 is 80% by weight or more and the purity is 99% by weight or more
    환상 설폰산 에스테르 화합물의 제조방법. A method for producing a cyclic sulfonic acid ester compound.
PCT/KR2021/015275 2020-10-29 2021-10-28 Method for preparing cyclic sulfonic acid ester compound WO2022092834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200142167A KR20220057179A (en) 2020-10-29 2020-10-29 Method for preparing cyclic sulfonic ester compound
KR10-2020-0142167 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022092834A1 true WO2022092834A1 (en) 2022-05-05

Family

ID=81382863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015275 WO2022092834A1 (en) 2020-10-29 2021-10-28 Method for preparing cyclic sulfonic acid ester compound

Country Status (2)

Country Link
KR (1) KR20220057179A (en)
WO (1) WO2022092834A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070101716A (en) * 2006-04-12 2007-10-17 주식회사 엘지화학 Process for preparing 1,3-propenesultone
KR20090076617A (en) * 2008-01-09 2009-07-13 동부정밀화학 주식회사 Process for the preparation of 1,3-prop-1-ene sultone
WO2011016440A1 (en) * 2009-08-04 2011-02-10 和光純薬工業株式会社 Method for producing cyclic sulfonic acid ester and intermediate thereof
KR101135088B1 (en) * 2008-04-14 2012-04-16 주식회사 엘지화학 Process for preparing 1,3-propenesultone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070101716A (en) * 2006-04-12 2007-10-17 주식회사 엘지화학 Process for preparing 1,3-propenesultone
KR20090076617A (en) * 2008-01-09 2009-07-13 동부정밀화학 주식회사 Process for the preparation of 1,3-prop-1-ene sultone
KR101135088B1 (en) * 2008-04-14 2012-04-16 주식회사 엘지화학 Process for preparing 1,3-propenesultone
WO2011016440A1 (en) * 2009-08-04 2011-02-10 和光純薬工業株式会社 Method for producing cyclic sulfonic acid ester and intermediate thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG, L. S. ET AL.: "Synthesis and Diels-Alder reactions of prop-l-ene-1, 3-sultone, and chemical transformations of the Diels-Alder adducts", TETRAHEDRON, vol. 55, no. 8, 1999, pages 2245 - 2262, XP004157349, DOI: 10.1016/S0040-4020(99)00009-5 *

Also Published As

Publication number Publication date
KR20220057179A (en) 2022-05-09

Similar Documents

Publication Publication Date Title
WO2020145627A1 (en) Method for preparing glufosinate
WO2020145514A1 (en) Method of producing l-glufosinate
WO2010030132A9 (en) Purification method for adefovir dipivoxil
WO2009096668A2 (en) Improved process for preparing mycophenolate mofetil
WO2013141523A1 (en) Novel method for preparing 5-acetoxymethylfurfural using alkylammonium acetate
WO2017126847A1 (en) Method for preparing 3-((2s,5s)-4-methylene-5-(3-oxopropyl)tetrahydrofurane-2-yl) propanol derivative, and intermediate therefor
WO2012030106A2 (en) Production method of intermediate compound for synthesizing medicament
WO2022092834A1 (en) Method for preparing cyclic sulfonic acid ester compound
WO2019066467A1 (en) Novel method for preparing (2r)-2-(2-methoxyphenyl)-2-(oxane-4-yloxy)ethane-1-ol compound, and intermediate used therein
WO2021118003A1 (en) High-yield preparation method for novel vascular leakage blocker
WO2023243798A1 (en) Fluorinated alkyl glycerin derivative, preparation method therefor and use thereof
WO2022092833A1 (en) Method for in-situ preparation of organic sulfur compound
WO2021194244A1 (en) Novel method for preparing inotodiol
WO2022119070A1 (en) Selenium-based catalyst system for preparing carbonate derivative, and method for preparing carbonate derivative by using same
WO2014017797A1 (en) Novel method for preparing 1-oxacephalosporin derivative
WO2020190080A1 (en) Method for the synthesis of 2,5-furandicarboxylic acid
WO2023075263A1 (en) Method for preparing asymmetric phosphate-based compound
WO2011105649A1 (en) New method for manufacturing pitavastatin hemicalcium using new intermediate
WO2022092835A1 (en) Method for preparing phosphate-based symmetric compound
WO2013035899A1 (en) Method for preparing 5-hydroxy-1,3-dioxane and method for preparing branched glycerol trimers using 5-hydroxy-1,3-dioxane as a raw material
WO2014112688A1 (en) Catalytic manufacturing method for amine having no substituent group on the nitrogen, and use for the amine produced
WO2015053576A1 (en) Method for preparation of 3-alkylthio-2-bromopyridine
WO2023013973A1 (en) Novel method for preparing rucaparib
WO2019088800A2 (en) Polyethylene glycol derivative and preparation method thereof
WO2014098410A1 (en) Method for preparing bosentan monohydrate, novel intermediate used therefor, and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886828

Country of ref document: EP

Kind code of ref document: A1