WO2013035899A1 - Method for preparing 5-hydroxy-1,3-dioxane and method for preparing branched glycerol trimers using 5-hydroxy-1,3-dioxane as a raw material - Google Patents

Method for preparing 5-hydroxy-1,3-dioxane and method for preparing branched glycerol trimers using 5-hydroxy-1,3-dioxane as a raw material Download PDF

Info

Publication number
WO2013035899A1
WO2013035899A1 PCT/KR2011/006631 KR2011006631W WO2013035899A1 WO 2013035899 A1 WO2013035899 A1 WO 2013035899A1 KR 2011006631 W KR2011006631 W KR 2011006631W WO 2013035899 A1 WO2013035899 A1 WO 2013035899A1
Authority
WO
WIPO (PCT)
Prior art keywords
dioxane
hydroxy
glycerol
mixture
reaction
Prior art date
Application number
PCT/KR2011/006631
Other languages
French (fr)
Korean (ko)
Inventor
네모토히사오
하토리하츠히코
Original Assignee
주식회사 코리아테크노에이전시
토쿠시마 대학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코리아테크노에이전시, 토쿠시마 대학 filed Critical 주식회사 코리아테크노에이전시
Priority to PCT/KR2011/006631 priority Critical patent/WO2013035899A1/en
Publication of WO2013035899A1 publication Critical patent/WO2013035899A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings

Definitions

  • the present invention is a glycerol form which is a mixture of 5-hydroxy-1, 3-dioxane ( ⁇ , ⁇ -isomer) and 4-hydroxymethyl-1, 3-dioxolane ( ⁇ , ⁇ -isomer)
  • a method of producing 5-hydroxy-1,3-dioxane with high purity by using horses as a raw material, and preferably adding glycerol, and using 5-hydroxy-1,3-dioxane as raw materials A method for producing a branched glycerol trimer.
  • branched glycerol oligo glycerol
  • BGL branched oligo glycerol
  • the glycerol formal obtained from the glycerol and formaldehyde is a mixture of the ⁇ , ⁇ -isomer and 4-hydroxymethyl-1, 3-dioxolane which is the ⁇ , ⁇ -isomer represented by the following formula (2). .
  • glycerol formal available from Tokyo Chemical Industry Co., Ltd. is a mixture of ⁇ , ⁇ -isomers and ⁇ , ⁇ -isomers. Because the properties of the two isomers are similar, it is very difficult to separate and purify them.
  • Patent Document 1 International Publication No. 2004/029018
  • Patent Document 2 International Publication No. 2005/023844
  • Patent Document 3 International Publication No. 2008/093655
  • Non-Patent Document 1 Jean-Louis Gras, Robert Nouguier, Mohammed Mchich, Tetrahedron Letters 28 (52), 1987, P6601-6604
  • Non-Patent Document 2 Merck Index (14) 4485
  • Glycerol formal obtained from glycerol and formaldehyde is suitable as a raw material for branched glycerol because of its low cost, but ⁇ and ⁇ -isomers contained in glycerol formal cannot be used as raw materials for branched glycerol.
  • a mixture of ⁇ , ⁇ '-isomers and ⁇ , ⁇ -isomers of glycerol formal is used as a raw material to produce ⁇ , ⁇ '-isomers of high purity, and ⁇ , ⁇ '-isomers of the high purity are used as raw materials. It was mentioned as a subject to manufacture branched glycerol trimer as a subject.
  • the step of obtaining a mixture having a higher ratio of 5-hydroxy-1,3-dioxane than the starting material is characterized in that the addition of 0.1 to 5 moles of glycerol per 1 mole of the starting material mixture do.
  • the present invention provides a method for producing a formal group-protected branched glycerol trimer represented by the formula (3), characterized in that the 5-hydroxy-1, 3-dioxane as a raw material.
  • the present invention provides a formal group-protected branched glycerol trimer [Formula 3] prepared using the 5-hydroxy-1, 3-dioxane as a raw material.
  • the present invention provides a method for producing a branched glycerol trimer protected with acetonide group, characterized in that the formally protected branched glycerol trimer is used as a raw material.
  • the (alpha), (beta) -isomer contained in glycerol formal can be converted into the (alpha), (alpha)-isomer.
  • isomerization reaction is carried out by adding glycerol, it is possible to obtain high concentrations of the ⁇ and ⁇ '-isomers in high yield while suppressing the formation of by-products.
  • the ⁇ , ⁇ '-isomer, pivaloyl and trityl bodies can be separated by distillation or extraction. Therefore, it is possible to manufacture high purity ⁇ , ⁇ -isomers easily and inexpensively with high efficiency. It is also possible to produce branched glycerol trimers using the above high-purity ⁇ and ⁇ -isomers as raw materials.
  • FIG. 1 is a schematic diagram briefly showing a pibylation method.
  • FIG. 2 is a schematic diagram briefly showing a tritylation method.
  • FIG. 3 is a diagram showing 1 H-NMR results of a mixture of (a) a ratio of 1,3-mG and 1,2-mG of 99.8: 0.2, and (b) a trityl mixture.
  • available glycerol formals include 5-hydroxy-1, 3-dioxane ( ⁇ , ⁇ '-isomer) and 4-hydroxymethyl-1, 3-dioxolane ( ⁇ , ⁇ -Isomer) is contained at 55: 45-60: 40 (mass ratio).
  • the ⁇ , ⁇ -isomer and the ⁇ , ⁇ -isomer have a boiling point difference of 0.3 ° C. at normal pressure, for example, and it is difficult to separate them by distillation. Therefore, the present inventors performed some treatment operation
  • a mixture of 5-hydroxy-1, 3-dioxane, 4-hydroxymethyl-1, 3-dioxolane is used as a starting material, and concentrated sulfuric acid is added as an acid catalyst at 40 to 100 ° C. The process of heating is performed.
  • heating time is not specifically limited, Usually, they are several hours-about several ten hours. In the Example mentioned later, since the isomerization rate improved in order of 3 hours, 6 hours, and 18 hours, it is preferable to heat for 6 hours or more.
  • Concentrated sulfuric acid which is an acid catalyst, can be used in a concentration of 90% or more (mass). However, as described above, water may inhibit isomerization, and therefore, 98% of concentrated sulfuric acid having the highest concentration among the concentrated sulfuric acid on the market. Preference is given to using.
  • the amount of concentrated sulfuric acid is preferably about 0.01% to 8% of the raw material mass, and more preferably about 0.2% to 5%. After completion
  • glycerol formal i.e., a mixture of 5-hydroxy-1, 3-dioxane and 4-hydroxymethyl-1, 3-dioxolane as starting materials. You may use a mixture with commercially available glycerol formal.
  • 1,4-dioxane is hygroscopic, but in the reaction of the present invention, the presence of water is not preferable, and it was also confirmed in the experimental example described later that the dioxane dried was higher than the wet one, and therefore, the dioxane was dried. It is preferable to use oxane.
  • glycerol In the isomerization reaction of this invention, it is preferable to add glycerol.
  • glycerol When glycerol is added, it is because the present inventors discovered that the effect of raising the ratio of alpha, alpha -isomer is large and the yield is further improved. The reason for this is as follows.
  • the said problem was solved by adding an glycerol and performing an isomerization reaction, and succeeded in raising the yield of the (alpha), (alpha) '-isomer.
  • dilute sulfuric acid functions well as an acid, but as mentioned above, since the presence of water encourages unwanted side reactions, it cannot be said to be an acid suitable for the isomerization reaction in the present invention. If dilute sulfuric acid does not contain water, it can be said to be an acid suitable for the isomerization reaction in the present invention, but it does not exist in the world.
  • the isomerization reaction was performed in high yield in a novel concept of adding glycerol to the reaction system instead of water, rather than a chemical species of dilute sulfuric acid containing no water.
  • glycerol formal is ⁇ , ⁇ '-isomer and ⁇ , ⁇ -isomer can be assumed to be a mixture of 55:45 to 60:40 (mass ratio).
  • the reaction time is short, a large amount of formaldehyde and glycerin remain, and the long-term reaction can be expected to decrease the total chemical yield as a result of the side reaction.
  • a side reaction called multimerization in order to suppress the side reactions, the polyhydric alcohols constituting the ⁇ and ⁇ -isomers and What is necessary is just to add the same alcohol, and came to this invention. This technical idea is a technical idea which was not seen before.
  • the pivaloylated or tritylated ⁇ , ⁇ -isomer becomes insoluble in water due to the high fat solubility of pivaloyl group or trityl group, so that only the ⁇ , ⁇ -isomer is transferred to the aqueous layer by an extraction operation.
  • Monolithic or tritylated ⁇ , ⁇ -isomers are separated and purified by transition to an organic solvent (e.g., hexane, ether, and the like, more preferably a lower polar solvent, hexane, benzene, toluene, preferably hexane). It is also possible.
  • the compound which can be pivalylated and tritylation for example, pivaloyl chloride and trityl chloride (all three places) is used.
  • Pivaloyl chloride or trityl chloride (all two places) hardly reacts with the ⁇ and ⁇ -isomers and binds only to the hydroxyl groups of the ⁇ and ⁇ -isomers.
  • pivaloyl chloride or trityl chloride is added to a mixture of the ⁇ and ⁇ -isomers of the glycerol formal with the ⁇ and ⁇ -isomers.
  • the baloyl- ⁇ and ⁇ -isomers have a boiling point of about 110 ° C. at 8 mmHg (10.7 hPa). Therefore, by performing vacuum distillation after pivaloylation and tritylation, it becomes possible to isolate (alpha), (alpha)-isomer from a reaction product.
  • the pressure reduction degree at the time of vacuum distillation is not limited to the above, There is no restriction as long as it can isolate
  • an extraction operation using water and an organic solvent described above may be used.
  • Pivaloylation is halogenated, such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, chlorobenzene, and dichlorobenzene, in the presence of organic bases such as N-methylpiperidine, pyridine, 4-pyrrolidinopyridine and the like. Hydrocarbons can be performed as a solvent.
  • reaction temperature about -10 degreeC-about 30 degreeC are preferable, and reaction time is not specifically limited. After the reaction, it is preferable to neutralize the reaction product as appropriate.
  • Tritylation is necessary in the presence of an organic base such as N-methylpiperidine, pyridine, 4-pyrrolidinopyridine, 2, 4, 6-collidine, or an inorganic base such as sodium hydrogencarbonate in addition to these. Therefore, halogenated hydrocarbons, such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, chlorobenzene, and dichlorobenzene, can be performed as a solvent.
  • reaction temperature about -10 degreeC-about 30 degreeC are preferable, and reaction time is not specifically limited. After the reaction, it is preferable to neutralize the reaction product as appropriate.
  • the (alpha), (alpha)-isomer of this glycerol formal can be said to be a compound which protected glycerol with a formal group. Therefore, by using ⁇ and ⁇ -isomers of glycerol formal as raw materials and appropriately reacting with epihalohydrin such as epichlorohydrin, a branched glycerol trimer protected by a formal group can be produced.
  • This trimerization reaction can be performed, for example in presence of a base, such as potassium hydroxide, and a correlation transfer catalyst, such as tetrabutylammonium bromide.
  • the product is preferably purified by silica gel column chromatography or the like.
  • the branched glycerol trimer protected with the acetonide group can also be manufactured using the said branched glycerol trimer protected by the said formal group.
  • Acetonide by removing a formal protecting group of the branched glycerol trimer with, for example, an acid such as hydrochloric acid, and then neutralizing and reacting a known compound such as 2,2-dimethoxypropane for acetonitrile after neutralization.
  • Branched glycerol trimers protected with groups can be obtained.
  • acetonitrile may use a general acid catalyst, it is more preferable to carry out in presence of solid acid catalysts, such as "Amberlyst (R) 15" (made by Rohm and Haas). Of course, other protecting groups may be attached.
  • the said patent document 1-3 describes the synthesis method of BGL in detail, and the (alpha), (alpha) '-isomer of the said glycerol formal is suitable as a raw material of these BGL.
  • the isomerization reaction was performed by the same method as the above except having changed the mixing ratio of a solvent, glycerol amount, heating temperature, reaction time, and a raw material mixture as shown in Table 1. The results are shown in Table 1.
  • the ratios of ⁇ -pivaloyl- ⁇ , ⁇ '-isomers and ⁇ '-pivaloyl- ⁇ , ⁇ -isomers obtained in 17 were obtained by depivaloylation from a 9:91 mixture. , ⁇ -isomer ratio was prepared by mixing a 9:91 mixture and the commercially available 57:43 mixture.
  • glycerol formal (1 equivalent), glycerol (1 equivalent), and 1,4-dioxane (3-6 M) are added to the reaction vessel and installed in a mantle heater, equipped with a mechanical stirrer and a thermometer, and argon ( Ar) was replaced with gas and stirred at 200 rpm. Thereafter, the mixture was added dropwise with H 2 SO 4 (1-0.355 mol%), and the temperature was slowly increased until the internal temperature became 60 ° C, and the ratio of 1,3-mG and 1,2-mG was> 70: Stir at 500 rpm until ⁇ 30 (see Scheme 4 below). When the desired ratio was reached, the speed was lowered to 200 rpm and cooled to room temperature.
  • the aqueous layer was once more added hexane, separated into an aqueous layer and a hexane layer, and the hexane layer was combined with the hexane layer.
  • the combined hexane layer was dried over anhydrous MgSO 4 , filtered, and distilled under reduced pressure, and the remaining product was a mixture of Piv-1, 3-mG, Piv-1, 2-mG.
  • the water in the aqueous layer was added with ethanol and distilled under reduced pressure to obtain a residue.
  • the residue was diluted with dichloromethane, dried over anhydrous MgSO 4 , filtered, and the solvent was distilled off.
  • TrCl Of 10 equivalents of TrCl was added to the reaction, and the reaction was stopped by stirring until no CO 2 gas was generated.
  • the mixed solution was separated into an aqueous layer and a dichloromethane layer.
  • CH 2 Cl 2 of the organic layer was distilled off under reduced pressure, and the residue was added to the aqueous layer.
  • the aqueous layer was extracted by adding hexane, and separated into an aqueous layer and an organic layer A.
  • the aqueous layer is extracted once more with hexane and separated into aqueous layer and organic layer B.
  • Ethanol for azeotropic addition to the aqueous layer was added, and the residue was distilled under reduced pressure to obtain a residue.
  • the crude product was diluted with dichloromethane, dried over anhydrous MgSO 4 , filtered, and solvent distilled off to obtain residue A.
  • the water and ethanol recovered by the above-mentioned pressure distillation were distilled under reduced pressure again to obtain a residue B.
  • the residue A and the residue B were combined and subjected to simple distillation (66 ° C./8 mmHg) to obtain 1,3-mG having a purity> 99.5% or more.
  • the organic layer A and the organic layer B were combined, dried over anhydrous MgSO 4 , filtered, and distilled under reduced pressure, and the remaining product was a mixture of Tr-1, 3-mG, Tr-1, 2-mG (see Scheme 7 below).
  • the final product was analyzed using 1 H-NMR. The results are shown in FIG.
  • TrCl Of 10 equivalents of TrCl was added to the reaction and stirred until no CO 2 gas was generated.
  • the mixed solution was separated into an aqueous layer and a dichloromethane layer.
  • CH 2 Cl 2 of the organic layer was distilled off under reduced pressure, and the residue was added to the aqueous layer.
  • the aqueous layer was extracted by adding hexane, and separated into an aqueous layer and an organic layer A.
  • the aqueous layer was extracted once more with hexane, and separated into an aqueous layer and an organic layer B.
  • Ethanol for azeotropic addition to the aqueous layer was added and distillation under reduced pressure was carried out to obtain a residue.
  • the product was diluted with dichloromethane, dried over anhydrous MgSO 4 , filtered, and solvent distilled off to obtain residue A.
  • the water and ethanol recovered at reduced pressure were distilled off under reduced pressure again to obtain residue B.
  • the residue A and the residue B were combined and subjected to simple distillation (66 ° C./8 mmHg) to obtain 1,3-mG of purity> 99.5% or more.
  • the organic layer A and the organic layer B were combined, dried over anhydrous MgSO 4 , filtered, and distilled under reduced pressure, and the remaining product was a mixture of Tr-1, 3-mG, Tr-1, and 2-mG (see Scheme 8 below).
  • the 5-hydroxy-1, 3-dioxane ( ⁇ , ⁇ '-isomer) of glycerol formal obtained in the present invention is bound to a stability or water solubility improvement technique such as a physiologically active polypeptide, a biphilic substance or a hydrophobic substance. It is useful as a raw material of branched glycerol applicable to the technique used as a drug carrier, the technique which improves the water solubility of a fibrate type antihyperlipidemic compound, and makes it easy to use as a medicine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for preparing 5-hydroxy-1,3-dioxane (α, α'-isomer of glycerol formal) which is very suitable as a raw material for branched glycerol, and more particularly, to a method for preparing 5-hydroxy-1,3-dioxane, comprising the steps of: using, as a starting material, a mixture of 5-hydroxy-1,3-dioxane and 4-hydroxymethyl-1,3-dioxolane, preferably adding glycerol, and then heating the mixture at 40-100°C in the presence of a concentrated sulfuric acid as an acid catalyst to obtain a mixture in which the proportion of 5-hydroxy-1,3-dioxane is higher than that in the starting material; and allowing pivaloyl chloride and trityl chloride to react with the mixture having the increased proportion of 5-hydroxy-1,3-dioxane, thereby performing separation and purification of unreacted 5-hydroxy-1,3-dioxane through distillation or extraction.

Description

5-히드록시-1, 3-디옥산의 제조 방법 및 이를 원료로 한 분기형 글리세롤 3량체의 제조 방법Method for producing 5-hydroxy-1,3-dioxane and method for producing branched glycerol trimer using the same
본 발명은, 5-히드록시-1, 3-디옥산(α, α'-이성체)과 4-히드록시메틸-1, 3-디옥소란(α, β-이성체)과의 혼합물인 글리세롤포르말을 원료로 사용하여, 바람직하게는 글리세롤을 더함으로써, 5-히드록시-1, 3-디옥산을 고순도로 제조하는 방법, 및 상기 5-히드록시-1, 3-디옥산을 원료로 한 분기형 글리세롤 3량체의 제조 방법에 관한 것이다.The present invention is a glycerol form which is a mixture of 5-hydroxy-1, 3-dioxane (α, α-isomer) and 4-hydroxymethyl-1, 3-dioxolane (α, β-isomer) A method of producing 5-hydroxy-1,3-dioxane with high purity by using horses as a raw material, and preferably adding glycerol, and using 5-hydroxy-1,3-dioxane as raw materials A method for producing a branched glycerol trimer.
본 발명자들은, 이전부터 글리세롤 유도체에 대해 일련의 연구를 수행하고 있으며, 생리활성폴리펩티드 등의 안정성이나 수용성의 향상을 위한 분기형 올리고글리세롤(Branched Oligo Glycerol: 이하 “분기형 글리세롤” 또는 “BGL”이라고 한다)을 개발한 바 있다(특허문헌 1). 또한 본 발명자들은, 이 분기형 글리세롤을 양친매성 물질이나 소수성 물질에 결합시켜 약제 캐리어로 이용하는 기술도 개발하였으며(특허문헌 2), 피브레이트계 항고지혈증 화합물의 수용성을 향상시켜 의약품으로서 이용하기 쉽게 하는 기술도 개발해 왔다(특허문헌 3).The present inventors have previously conducted a series of studies on glycerol derivatives, and are referred to as branched oligo glycerol (hereinafter referred to as "branched glycerol" or "BGL") for improving the stability and water solubility of physiologically active polypeptides. Has been developed (Patent Document 1). In addition, the present inventors have also developed a technique in which the branched glycerol is bound to an amphiphilic substance or a hydrophobic substance and used as a drug carrier (Patent Document 2), which improves the water solubility of the fibrate-based antihyperlipidemic compound and makes it easier to use as a medicine. Technology has also been developed (Patent Document 3).
상기 특허문헌 1~3에 기재되어 있는 분기형 글리세롤을 제조하려면, 먼저, 에피클로로히드린 등과 같은 알코올 화합물, 또는 글리세롤과 같은 보호화 화합물을 반응시켜, 2개의 수산기가 보호된 화합물을 제조하는 것으로부터 시작할 필요가 있다. In order to produce the branched glycerol described in Patent Documents 1 to 3, first, an alcohol compound such as epichlorohydrin or the like or a protecting compound such as glycerol is reacted to produce a compound in which two hydroxyl groups are protected. You need to start with.
상기의 2개의 수산기가 보호된 화합물에는, 포르말 보호기를 가지는 하기 화학식 1로 나타나는 글리세롤포르말의 α, α'-이성체인 5-히드록시-1, 3-디옥산이 포함된다.Compounds in which the two hydroxyl groups are protected include 5-hydroxy-1 and 3-dioxane, which are α, α-isomers of glycerol formal represented by the following formula (1) having a formal protecting group.
[화학식 1][Formula 1]
Figure PCTKR2011006631-appb-I000001
Figure PCTKR2011006631-appb-I000001
상기 글리세롤포르말의 α, α'-이성체는, 글리세롤과 포름알데히드로 제조할 수 있는 것이 알려져 있다(비특허문헌 1, 2).It is known that the (alpha), (alpha)-isomer of the said glycerol formal can be manufactured with glycerol and formaldehyde (nonpatent literature 1, 2).
상기 글리세롤과 포름알데히드로부터 얻어지는 글리세롤포르말은, 상기 α, α'-이성체와, 하기 화학식 2로 나타나는 α, β-이성체인 4-히드록시메틸-1, 3-디옥소란과의 혼합물이 된다.The glycerol formal obtained from the glycerol and formaldehyde is a mixture of the α, α-isomer and 4-hydroxymethyl-1, 3-dioxolane which is the α, β-isomer represented by the following formula (2). .
[화학식 2][Formula 2]
Figure PCTKR2011006631-appb-I000002
Figure PCTKR2011006631-appb-I000002
상기 α, β-이성체는, 분기형 글리세롤 유도체의 원료로는 사용할 수 없는데, 예를 들면 도쿄화성공업주식회사로부터 입수 가능한 글리세롤포르말은 α, α'-이성체와 α, β-이성체의 혼합물이다. 두 이성체의 성질이 유사하여, 양자를 분리 정제하는 것이 매우 어렵기 때문이다.The α and β-isomers cannot be used as raw materials for branched glycerol derivatives. For example, glycerol formal available from Tokyo Chemical Industry Co., Ltd. is a mixture of α, α-isomers and α, β-isomers. Because the properties of the two isomers are similar, it is very difficult to separate and purify them.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
특허문헌 1: 국제 공개 제 2004/029018호Patent Document 1: International Publication No. 2004/029018
특허문헌 2: 국제 공개 제 2005/023844호Patent Document 2: International Publication No. 2005/023844
특허문헌 3: 국제 공개 제 2008/093655호Patent Document 3: International Publication No. 2008/093655
[비특허문헌][Non-Patent Documents]
비특허문헌 1: Jean-Louis Gras, Robert Nouguier, Mohammed Mchich, Tetrahedron Letters 28(52), 1987, P6601-6604[Non-Patent Document 1] Jean-Louis Gras, Robert Nouguier, Mohammed Mchich, Tetrahedron Letters 28 (52), 1987, P6601-6604
비특허문헌 2: Merck Index(14) 4485Non-Patent Document 2: Merck Index (14) 4485
상기 글리세롤과 포름알데히드로부터 얻어지는 글리세롤포르말은 저가이기 때문에 분기형 글리세롤의 원료로서 적합하지만, 글리세롤포르말에 함유되어 있는 α, β-이성체는 분기형 글리세롤의 원료로는 사용 할 수 없다.Glycerol formal obtained from glycerol and formaldehyde is suitable as a raw material for branched glycerol because of its low cost, but α and β-isomers contained in glycerol formal cannot be used as raw materials for branched glycerol.
따라서 본 발명에서는, 글리세롤포르말의 α, α'-이성체와 α, β-이성체의 혼합물을 원료로 하여 고순도의 α, α'-이성체를 제조하고, 상기 고순도의 α, α'-이성체를 원료로 하여 분기형 글리세롤 3량체를 제조하는 것을 과제로서 들었다.Therefore, in the present invention, a mixture of α, α'-isomers and α, β-isomers of glycerol formal is used as a raw material to produce α, α'-isomers of high purity, and α, α'-isomers of the high purity are used as raw materials. It was mentioned as a subject to manufacture branched glycerol trimer as a subject.
상기 과제를 해결하기 위하여, 본 발명에서는 5-히드록시-1, 3-디옥산과 4-히드록시메틸-1, 3-디옥소란의 혼합물을 출발 원료로 하여, 산촉매인 진한 황산을 첨가하고 40~100℃에서 가열하여, 출발 원료보다 5-히드록시-1, 3-디옥산의 비율이 높아진 혼합물을 얻는 단계; 및 상기 혼합물을 염화피발로일, 및 염화트리틸과 반응시키고, 미반응의 5-히드록시-1, 3-디옥산을 증류 혹은 추출조작에 의해 분리 정제하는 단계를 포함하는 5-히드록시-1, 3-디옥산의 제조 방법을 제공한다.In order to solve the above problems, in the present invention, using a mixture of 5-hydroxy-1, 3-dioxane and 4-hydroxymethyl-1, 3-dioxolane as starting materials, concentrated sulfuric acid as an acid catalyst is added Heating at 40 to 100 ° C. to obtain a mixture having a higher proportion of 5-hydroxy-1,3-dioxane than starting materials; And reacting the mixture with pivaloyl chloride and trityl chloride, and separating and purifying unreacted 5-hydroxy-1,3-dioxane by distillation or extraction. It provides a method for producing 1, 3-dioxane.
본 발명의 일구현예로, 상기 출발 원료보다 5-히드록시-1, 3-디옥산의 비율이 높아진 혼합물을 얻는 단계는 글리세롤을 출발 원료 혼합물 1몰에 대하여 0.1 내지 5몰 첨가하는 것을 특징으로 한다.In one embodiment of the present invention, the step of obtaining a mixture having a higher ratio of 5-hydroxy-1,3-dioxane than the starting material is characterized in that the addition of 0.1 to 5 moles of glycerol per 1 mole of the starting material mixture do.
또한 본 발명에서는, 상기 5-히드록시-1, 3-디옥산을 원료로 사용하는 것을 특징으로 하는 화학식 3으로 나타나는 포르말기로 보호된 분기형 글리세롤 3량체의 제조 방법을 제공한다.In another aspect, the present invention provides a method for producing a formal group-protected branched glycerol trimer represented by the formula (3), characterized in that the 5-hydroxy-1, 3-dioxane as a raw material.
[화학식 3][Formula 3]
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-26
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-26
또한 본 발명에서는, 상기 5-히드록시-1, 3-디옥산을 원료로 사용하여 제조된 포르말기로 보호된 분기형 글리세롤 3량체[화학식 3]를 제공한다.In addition, the present invention provides a formal group-protected branched glycerol trimer [Formula 3] prepared using the 5-hydroxy-1, 3-dioxane as a raw material.
또한 본 발명에서는, 상기 포르말기로 보호된 분기형 글리세롤 3량체를 원료로 사용하는 것을 특징으로 하는, 아세토나이드기로 보호된 분기형 글리세롤 3량체[화학식 4]의 제조 방법을 제공한다.In addition, the present invention provides a method for producing a branched glycerol trimer protected with acetonide group, characterized in that the formally protected branched glycerol trimer is used as a raw material.
[화학식 4][Formula 4]
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-30
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-30
본 발명의 제조 방법에 의하면, 글리세롤포르말에 함유되어 있는 α, β-이성체를 α, α'-이성체로 전환시킬 수 있다. 특히 글리세롤을 첨가하여 이성화 반응을 일으키면, 부생성물의 생성을 억제하면서, 높은 수율로 고농도의 α, α'-이성체를 얻을 수 있다. 또한 이성화되지 않은 α, β-이성체만을 선택적으로 피발로일화 및 트리틸화 함으로써, 증류 또는 추출에 의해 α, α'-이성체와 피발로일체 및 트리틸체를 분리할 수 있다. 따라서, 고순도의 α, α'-이성체를 고효율로 쉽고 저렴하게 제조하는 것이 가능하다. 또한 상기 고순도의 α, α'-이성체를 원료로 하여 분기형 글리세롤 3량체를 제조하는 것도 가능하다.According to the manufacturing method of this invention, the (alpha), (beta) -isomer contained in glycerol formal can be converted into the (alpha), (alpha)-isomer. In particular, when isomerization reaction is carried out by adding glycerol, it is possible to obtain high concentrations of the α and α'-isomers in high yield while suppressing the formation of by-products. In addition, by selectively pivalylating and tritylating only unisomerized α, β-isomers, the α, α'-isomer, pivaloyl and trityl bodies can be separated by distillation or extraction. Therefore, it is possible to manufacture high purity α, α-isomers easily and inexpensively with high efficiency. It is also possible to produce branched glycerol trimers using the above high-purity α and α-isomers as raw materials.
도 1 은 피블로일화 방법을 간략히 나타낸 모식도이다.1 is a schematic diagram briefly showing a pibylation method.
도 2 는 트리틸화 방법을 간략히 나타낸 모식도이다.2 is a schematic diagram briefly showing a tritylation method.
도 3 은 (a) 1,3-mG와 1,2-mG의 비가 99.8:0.2의 혼합물, (b) 트리틸체 혼합물의 1H-NMR 결과를 나타낸 도이다.FIG. 3 is a diagram showing 1 H-NMR results of a mixture of (a) a ratio of 1,3-mG and 1,2-mG of 99.8: 0.2, and (b) a trityl mixture.
본 발명자들이 확인한 바, 입수 가능한 글리세롤포르말은, 5-히드록시-1, 3-디옥산(α, α'-이성체)과 4-히드록시메틸-1, 3-디옥소란(α, β-이성체)이 55:45~60:40(질량비)으로 함유되어 있다. 그러나, α, α'-이성체와 α, β-이성체는, 예를 들면 상압에서는 비점차가 0.3℃로, 양자를 증류로 분리하는 것이 어렵다. 따라서 본 발명자들은, 상기 혼합물에 어떠한 처리 조작을 행하여, α, α'-이성체의 비율을 높이려고 시험하였다. 그 결과, 산촉매로서 진한 황산을 첨가하여 가열하는 것만으로도, α, β-이성체로부터 α, α'-이성체로의 전환이 일어나는 것을 확인하였다.As confirmed by the inventors, available glycerol formals include 5-hydroxy-1, 3-dioxane (α, α'-isomer) and 4-hydroxymethyl-1, 3-dioxolane (α, β -Isomer) is contained at 55: 45-60: 40 (mass ratio). However, the α, α-isomer and the α, β-isomer have a boiling point difference of 0.3 ° C. at normal pressure, for example, and it is difficult to separate them by distillation. Therefore, the present inventors performed some treatment operation | movement to the said mixture and tested in order to raise the ratio of the (alpha), (alpha) '-isomer. As a result, it was confirmed that the conversion from the α, β-isomer to the α, α'-isomer occurred only by heating with addition of concentrated sulfuric acid as the acid catalyst.
따라서, 본 발명에서는 5-히드록시-1, 3-디옥산과 4-히드록시메틸-1, 3-디옥소란의 혼합물을 출발 원료로 하여, 산촉매로서 진한 황산을 첨가하여 40~100℃에서 가열하는 공정을 행한다.Therefore, in the present invention, a mixture of 5-hydroxy-1, 3-dioxane, 4-hydroxymethyl-1, 3-dioxolane is used as a starting material, and concentrated sulfuric acid is added as an acid catalyst at 40 to 100 ° C. The process of heating is performed.
이러한 간단한 방법으로 이성화가 일어나는 것은, 물의 존재가 영향을 주고 있기 때문으로 예상된다. 즉, 진한 황산은 흡습력이 강하기 때문에, 진한 황산의 첨가에 의해 원료 혼합물 중의 물이 매우 미량이 됨으로써, 이성화가 진행되었다고 생각된다. 글리세롤포르말의 출발 원료인 글리세롤이나 포름알데히드는 흡습성이 있고, 제조 공정에서 물이 1당량 생성되는 것 등도 함께 생각하면, 물의 존재가 4-히드록시메틸-1, 3-디옥소란으로부터 5-히드록시-1, 3-디옥산으로의 이성화를 방해한다고 추측할 수 있다(자세한 것은 후술한다).Isomerization takes place in this simple way because of the presence of water. That is, since concentrated sulfuric acid has strong hygroscopicity, it is thought that isomerization advanced because the addition of concentrated sulfuric acid made the amount of water in a raw material mixture very small. Glycerol and formaldehyde, which are starting materials for glycerol formal, are hygroscopic, and when one equivalent of water is produced in the manufacturing process, the presence of water is 5-hydroxymethyl-1, 3-dioxolane, and 5-hydroxyl-1. It can be surmised that it interferes with the isomerization to hydroxy-1,3-dioxane (details will be described later).
이성화 반응에 있어서 가열 온도가 40℃ 미만이면 시간이 오래 걸린다. 또, 1000℃를 넘으면, 서서히 이성화 효율이 떨어진다. 가열 온도는, 50~95℃가 바람직하고, 50~75℃가 보다 바람직하고, 60~75℃가 더욱 바람직하다.In the isomerization reaction, it takes a long time when the heating temperature is less than 40 ° C. Moreover, when it exceeds 1000 degreeC, an isomerization efficiency will gradually fall. 50-95 degreeC is preferable, as for heating temperature, 50-75 degreeC is more preferable, and its 60-75 degreeC is still more preferable.
가열 시간은 특별히 한정되지 않지만, 통상, 수 시간~수 십 시간 정도이다. 후술하는 실시예에서는, 3시간, 6시간, 18시간의 순서로 이성화율이 향상되었으므로, 6시간 이상 가열하는 것이 바람직하다.Although heating time is not specifically limited, Usually, they are several hours-about several ten hours. In the Example mentioned later, since the isomerization rate improved in order of 3 hours, 6 hours, and 18 hours, it is preferable to heat for 6 hours or more.
산촉매인 진한 황산은, 농도가 90%(질량) 이상인 것을 이용할 수 있지만, 상기에 기재한 바와 같이 물은 이성화를 저해할 우려가 있으므로, 시판되고 있는 진한 황산 중에서 가장 농도가 높은 98%의 진한 황산을 사용하는 것이 바람직하다. 진한 황산의 양은, 원료 질량의 0. 001~8% 정도가 바람직하고, 0. 02~5% 정도가 보다 바람직하다. 반응 종료 후에는, 탄산나트륨 등의 알칼리로 진한 황산을 중화하는 것이 바람직하다.Concentrated sulfuric acid, which is an acid catalyst, can be used in a concentration of 90% or more (mass). However, as described above, water may inhibit isomerization, and therefore, 98% of concentrated sulfuric acid having the highest concentration among the concentrated sulfuric acid on the market. Preference is given to using. The amount of concentrated sulfuric acid is preferably about 0.01% to 8% of the raw material mass, and more preferably about 0.2% to 5%. After completion | finish of reaction, it is preferable to neutralize concentrated sulfuric acid with alkali, such as sodium carbonate.
본 발명에 있어서, 출발 원료로서 시판 중인 글리세롤포르말, 즉, 5-히드록시-1, 3-디옥산과 4-히드록시메틸-1, 3-디옥소란의 혼합물을 사용하는 것이 바람직하지만, 혼합 비율이 시판 중인 글리세롤포르말과 다른 혼합물을 사용해도 된다.In the present invention, it is preferable to use commercially available glycerol formal, i.e., a mixture of 5-hydroxy-1, 3-dioxane and 4-hydroxymethyl-1, 3-dioxolane as starting materials. You may use a mixture with commercially available glycerol formal.
또한, 5-히드록시-1, 3-디옥산이나 4-히드록시메틸-1, 3-디옥소란은 모두 상온에서 액체이므로, 이성화 반응은 무용매로 수행할 수 있다. 또한 용매의 존재 하에서 행해도 되고, 바람직한 용매로서는, 1, 4-디옥산, 시클로펜틸메틸에테르, 테트라히드로푸란 등의 에테르류를 들 수 있고, 용해도 등의 관점에서는 1, 4-디옥산이 가장 바람직하다. 다른 에테르류에서는 이성화는 일어나지만 수율이 낮고, 톨루엔 등은 이성화가 일어나기 어렵기 때문에 바람직하지 않다. 1, 4-디옥산은 흡습성이 있지만, 본 발명의 반응에 있어서는 물의 존재는 바람직하지 않고, 후술하는 실험예에서도 확인한 바, 젖은 것보다 건조된 디옥산이 이성화율이 높았기 때문에, 건조된 디옥산을 이용하는 것이 바람직하다.In addition, since 5-hydroxy-1, 3-dioxane or 4-hydroxymethyl-1, 3-dioxolane are all liquid at room temperature, the isomerization reaction can be carried out without solvent. Moreover, you may carry out in presence of a solvent, As a preferable solvent, ethers, such as 1, 4- dioxane, cyclopentyl methyl ether, and tetrahydrofuran, are mentioned, 1, 4- dioxane is most preferable from a viewpoint of solubility. desirable. Isomerization occurs in other ethers, but the yield is low, and toluene is not preferable because isomerization is unlikely to occur. 1,4-dioxane is hygroscopic, but in the reaction of the present invention, the presence of water is not preferable, and it was also confirmed in the experimental example described later that the dioxane dried was higher than the wet one, and therefore, the dioxane was dried. It is preferable to use oxane.
본 발명의 이성화 반응에 있어서는, 글리세롤을 첨가하는 것이 바람직하다. 글리세롤을 첨가하면, α, α'-이성체의 비율을 높이는 효과가 크고, 수율도 더욱 향상되는 것이, 본 발명자들에 의해 발견되었기 때문이다. 이하, 그 이유에 대해 설명한다.In the isomerization reaction of this invention, it is preferable to add glycerol. When glycerol is added, it is because the present inventors discovered that the effect of raising the ratio of alpha, alpha -isomer is large and the yield is further improved. The reason for this is as follows.
산촉매인 진한 황산 존재 하에서의 α, α'-이성체와 α, β-이성체의 사이의 이성화는, 평형 과정을 포함하는 여러 가지 반응 기구를 그릴 수 있지만, 전형적인 케이스를 나타내면, 하기 반응식 1로 나타난다.Isomerization between the α, α'-isomers and α, β-isomers in the presence of an acid catalyst, concentrated sulfuric acid, can draw various reaction mechanisms including an equilibrium process, but a typical case is shown by Scheme 1 below.
[반응식 1] Scheme 1
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-46
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-46
상기 반응식 1에 있어서 반응계에 물이 존재하면, 메틸렌아세탈 부위의 탈보호에 의해, 포름알데히드와 글리세롤이 부생된다.When water is present in the reaction system in the reaction scheme 1, formaldehyde and glycerol are by-produced by deprotection of the methylene acetal moiety.
부생된 포름알데히드는, 하기 반응식 2에 나타내는 바와 같은, 새로운 부반응을 일으킨다.The by-produced formaldehyde causes a new side reaction, as shown in Scheme 2 below.
[반응식 2]Scheme 2
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-50
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-50
상기 반응식 2에 나타나는 출발 원료의 2량체화나 다량체화 등의 부반응은 더욱 물 분자의 발생을 조장하기 때문에, 그 결과 포름알데히드가 계속 증가하여, 점점 부반응이 진행되어 버려, 본 발명에서 목적으로 하는 α, α'-이성체의 고농도화와는 상이한 방향으로의 부의 연쇄 반응이 계속되게 된다. 고도로 희석한 조건하에서 이성화 반응을 행하면, 상기 부반응의 억제는 가능할지도 모르지만, 작은 분자량의 화합물을 고도로 희석하여 반응시키는 것은 공업적으로 비경제적인 대책이며, 대량 합성에는 적합하지 않다.Since side reactions such as dimerization and multimerization of the starting raw materials shown in Scheme 2 further promote the generation of water molecules, as a result, formaldehyde continues to increase, and the side reactions proceed gradually. and negative chain reaction in a direction different from that of high concentration of the α'-isomer. If isomerization is carried out under highly diluted conditions, the side reaction may be suppressed. However, highly dilute and reacted small molecular weight compounds are industrially uneconomical measures and are not suitable for mass synthesis.
또한 과거에는 방대한 “아세탈의 보호·탈보호·가교의 이성화” 등의 화학 반응 공정이 보고되어 왔지만, 대부분의 경우에는, 비교적 분자량이 큰 화합물이 대상이며, 상기 반응식 2와 같은 2량체화 반응이나 그 이상의 다량체화 반응이 일어나기 어렵고, 또한 평형 반응에서 원하는 화합물로 되돌아오는 일도 있을 수 있기 때문에, 상기와 같은 부반응이 문제시 되는 역사적 경위가 존재하고 있지 않았다. 즉, 이탈된 보호기 유래의 화합물에 의해 목적 화합물의 2량체화나 다량체화가 진행되어, 그 결과, 목적 화합물의 수율을 크게 저하시켜 버린다는 문제는 지금까지 전혀 인식되어 있지 않았던 것이다.In the past, a large number of chemical reaction processes such as "protection, deprotection and crosslinking of acetal" have been reported, but in most cases, compounds having a relatively high molecular weight are subject to a dimerization reaction as shown in Scheme 2 above. Since further multimerization reactions are unlikely to occur and may return to the desired compound in the equilibrium reaction, there has been no historical context in which such side reactions are problematic. That is, the problem that the dimerization and multimerization of a target compound advance with the compound derived from the protecting group removed, As a result, the problem that the yield of a target compound will be greatly reduced was not recognized at all until now.
본 발명에서는, 상기 문제를 글리세롤을 첨가하여 이성화 반응을 행하는 것에 의해 해결하고, α, α'-이성체의 수율을 높이는 것에 성공했다.In this invention, the said problem was solved by adding an glycerol and performing an isomerization reaction, and succeeded in raising the yield of the (alpha), (alpha) '-isomer.
우선, 본 발명에서 원하는 반응을 행하려면, 물을 최대한 제거하면서 산을 작용시키는 것이 바람직하다. 그러나, 저가의 산의 대부분은 쌍이온인 X-가 구핵성을 가지고 있기 때문에, 목적 화합물에 X기가 도입되는 등의 부반응이 빈발한다(예를 들면 염산을 이용하면 Cl이 목적 화합물의 분자 내에 도입되어 버린다). 이에 반해, 황산(X-=HSO4-)은 염가의 산 중에서 X의 구핵성이 현저하게 낮기 때문에, 이러한 부반응의 걱정은 매우 낮다. 단, 물을 최대한 배제한 황산(진한 황산)은 탈수 반응이나 그 결과인 탄화 반응을 일으키는 탈수제로서의 기능이 현저화하여, 이미 산으로서의 기능은 약해지는 것이 주지의 사실로 되어 있다. 그 때문에, 상기 반응식 1에 나타낸 α, α'-이성체나 α, β-이성체의 산소의 고립 전자 쌍에 대한 공격은, 실제로는 매우 일어나기 어렵다.First, in order to carry out the desired reaction in the present invention, it is preferable to operate the acid while removing water as much as possible. However, since most of the inexpensive acids have a nucleophilicity, X , which is a pair of ions, frequently causes side reactions such as introduction of an X group into the target compound (for example, when hydrochloric acid is used, Cl is introduced into the molecule of the target compound). It becomes). On the other hand, sulfuric acid (X- = HSO 4- ) has a very low nucleophilicity of X in an inexpensive acid, so the worry of such side reactions is very low. However, it is well known that sulfuric acid (concentrated sulfuric acid) excluding water as much as possible deteriorates the function as a dehydrating agent causing the dehydration reaction and the resulting carbonization reaction, and the function as an acid is already weakened. Therefore, the attack of the α, α'-isomer and α, β-isomer of oxygen on the lone electron pair shown in Scheme 1 is very unlikely to occur.
한편, 묽은 황산은 산으로서 충분히 기능하지만, 상기 서술한 바와 같이 물의 존재는 원하지 않는 부반응을 조장하기 때문에, 본 발명에 있어서의 이성화 반응에 적합한 산이라고는 말할 수 없다. 물을 함유하지 않은 묽은 황산이 존재하면, 본 발명에 있어서의 이성화 반응에 적합한 산이라고 할 수 있지만, 세상에는 존재하지 않는다.On the other hand, dilute sulfuric acid functions well as an acid, but as mentioned above, since the presence of water encourages unwanted side reactions, it cannot be said to be an acid suitable for the isomerization reaction in the present invention. If dilute sulfuric acid does not contain water, it can be said to be an acid suitable for the isomerization reaction in the present invention, but it does not exist in the world.
그래서 본 발명에서는, 물을 함유하지 않은 묽은 황산이라고 하는 미존재의 화학종이 아닌, 물 대신에 반응계에 글리세롤을 더하는 신규 발상에서, 이성화 반응을 고수율로 행하는 것에 성공했다. 이것에 의해 하기 반응식 3에 나타나는 바와 같이, 산=H+가 될 수 있는 수소 원자가 반응계에 다량으로 존재할 수 있게 되어, 이성화를 촉진하는 반응의 속도를 크게 높일 수 있었다.Therefore, in the present invention, the isomerization reaction was performed in high yield in a novel concept of adding glycerol to the reaction system instead of water, rather than a chemical species of dilute sulfuric acid containing no water. As a result, as shown in Scheme 3 below, hydrogen atoms capable of acid = H + can be present in a large amount in the reaction system, thereby greatly increasing the speed of the reaction for promoting isomerization.
[반응식 3]Scheme 3
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-58
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-58
또한 반응계에 물은 거의 존재하고 있지 않기 때문에, 포름알데히드와 글리세롤의 부생 그 자체가 이론적으로 일어나지 않게 되어, 부반응을 억제할 수 있는 것으로부터, α, α'-이성체나 α, β-이성체의 수율(유지율)을 높일 수 있고, 상기 글리세롤의 존재에 의해 이성화 속도를 크게 할 수 있었던 결과, 고농도의 α, α'-이성체를 고수율로 얻는 것이 가능해졌다고 생각된다. 또한, 글리세롤을 과잉으로 더하기 때문에, 상기 반응식 3의 가장 오른쪽의 평형이 좌측으로 어긋난다고 하는 효과도 어우러져, 공업적인 레벨에서는 반응계로부터 완전히 물을 제거하는 것이 어려운 경우에서도, 상기와 같은 다량체 부생으로의 부의 연쇄 반응을 철저하게 억제할 수 있다. 또 물의 대체물로서 첨가되는 글리세롤은, α, α'-이성체나 α, β-이성체를 구성하는 다가 알코올 부분(글리세롤)과 동일한 화합물이 아니면 안되지만, 글리세롤은 저가인 점이나 리사이클 사용이 가능한 점 등, 상기 서술한 화학적인 이유 뿐만이 아니라, 비용적인 측면에서도 본 발명에 있어서는 사용이 권장된다.In addition, since almost no water is present in the reaction system, by-products of formaldehyde and glycerol do not occur theoretically, and the yield of α, α'-isomers, α, β-isomers can be suppressed since the side reactions can be suppressed. As a result of being able to increase the holding ratio and increasing the isomerization rate by the presence of the glycerol, it is considered that it is possible to obtain high concentrations of the α and α-isomers in high yield. In addition, since an excess of glycerol is added, the effect that the rightmost equilibrium of Scheme 3 is shifted to the left is also combined, and even in the case where it is difficult to completely remove water from the reaction system at the industrial level, the above-mentioned multimer byproducts The negative chain reaction of can be thoroughly suppressed. Glycerol added as a substitute for water should be the same compound as the polyhydric alcohol moiety (glycerol) constituting the α, α-isomer or α, β-isomer, but glycerol is inexpensive and can be recycled. In addition to the above-mentioned chemical reasons, in terms of cost, use is recommended in the present invention.
과거의 방대한 아세탈에 관한 화학(예를 들면 Roush, W. R. ; Coe, J. W. J. Org. Chem. 1989, 54, 915, Mukai, C. ; Miyakawa, M. ; Hanaoka, M. J. Chem. Soc., Perkin Trans. 1 1997, 913)에 있어서는, 2량체화나 다량체화가 관측되는 일이 없었던 것으로부터, 이러한 부반응의 억제는 검토 과제로서 주목받지 않은 상태였다고 생각된다. 이 때문에, 글리세롤포르말을 생산하고 있는 기업에서는, α, α'-이성체와 α, β-이성체와의 총 화학 수율이 최적인 단계에서 반응을 정지하고 있기 때문에, 시판되고 있는 글리세롤포르말은 α, α'-이성체와 α, β-이성체가 55:45~60:40(질량비)의 혼합물로 되어 있는 것으로 추측할 수 있다. 즉, 반응 시간이 짧으면, 대량의 포름알데히드와 글리세린을 잔존시키게 되고, 장시간의 반응은, 부반응의 결과, 총 화학 수율이 저하되어 버린다고 예상할 수 있다. 그러나, 본 발명에서는, α, α'-이성체의 혼합비를 높일 수 없는 것은, 다량화라고 하는 부반응인 것을 알아낸 후, 이 부반응을 억제하기 위해서는, α, α'-이성체를 구성하는 다가 알코올과 동일한 알코올을 첨가하면 되는 것을 찾아내어, 본 발명에 이른 것이다. 이러한 기술 사상은, 종래에는 볼 수 없었던 기술 사상이다.Chemistry of vast acetals in the past (e.g. Roush, WR; Coe, JWJ Org. Chem. 1989, 54, 915, Mukai, C .; Miyakawa, M .; Hanaoka, MJ Chem. Soc., Perkin Trans. 1 In 1997 and 913, dimerization and multimerization were not observed, and it is considered that the suppression of such side reactions was not attracted attention as a study subject. For this reason, in the companies producing glycerol formal, the reaction is stopped at a stage where the total chemical yield of the α, α-isomer and the α, β-isomer is optimal. Therefore, commercially available glycerol formal is α , α'-isomer and α, β-isomer can be assumed to be a mixture of 55:45 to 60:40 (mass ratio). In other words, if the reaction time is short, a large amount of formaldehyde and glycerin remain, and the long-term reaction can be expected to decrease the total chemical yield as a result of the side reaction. However, in the present invention, after finding that the mixing ratio of the α and α-isomers cannot be increased is a side reaction called multimerization, in order to suppress the side reactions, the polyhydric alcohols constituting the α and α-isomers and What is necessary is just to add the same alcohol, and came to this invention. This technical idea is a technical idea which was not seen before.
상기와 같은 이유로부터, 본 발명에 있어서는, 이하의 제조 방법이 가장 적합한 방법으로서 권장된다.From the above reasons, in the present invention, the following production method is recommended as the most suitable method.
(1) 글리세롤과 포름알데히드로부터, α, α'-이성체와 α, β-이성체와의 총 화학 수율이 가장 커지도록 반응을 행하고, 이들 혼합물로부터 물, 포름알데히드를 제거하여, α, α'-이성체와 α, β-이성체와의 혼합물을 분리 정제한다. 이 혼합물은, 상기한 바와 같이 시판되고 있어 입수 가능하고, 이 반응은 생략 가능하다.(1) From glycerol and formaldehyde, the reaction is carried out so that the total chemical yield of the α, α-isomer and the α, β-isomer is greatest, and water and formaldehyde are removed from these mixtures to form α, α-- The mixture of isomers and α, β-isomers is separated and purified. This mixture is commercially available as mentioned above and can be obtained, and this reaction can be skipped.
(2) α, α'-이성체와 α, β-이성체와의 혼합물에, 가능한 한 건조시킨(물을 배제한) 고순도의 글리세롤을 더하고, 촉매량의 진한 황산을 첨가하여, 상기 기재한 온도 범위에서 가열 교반한다. 글리세롤은, 원료 혼합물 1몰에 대해 0. 1~5몰 첨가하는 것이 바람직하고, 0. 5~2몰이 보다 바람직하고, 0. 5~1몰이 더욱 바람직하다. 용매로서는, 상기한 바와 같이 용해도의 관점에서 디옥산이 가장 바람직하다.(2) To the mixture of α, α-isomers and α, β-isomers, add glycerol of high purity dried (excluding water) as much as possible, add catalytic amount of concentrated sulfuric acid, and heat in the above-described temperature range. Stir. It is preferable to add 0.01-5 mol of glycerol with respect to 1 mol of raw material mixtures, 0.5-2 mol is more preferable, and 0.5-1 mol is more preferable. As the solvent, dioxane is most preferred from the viewpoint of solubility as described above.
(3) α, α'-이성체와 α, β-이성체와의 반응이 평형에 도달한 시점에서, 고형의 염기(탄산나트륨) 등을 더하여, 평형 반응을 정지시킨다.(3) When the reaction between the α, α-isomer and the α, β-isomer reaches equilibrium, a solid base (sodium carbonate) or the like is added to stop the equilibrium reaction.
(4) 얻어진 α, α'-이성체와 α, β-이성체의 혼합물은, 후술하는 바와 같이, α, β-이성체로의 선택적 피발로일화 및 트리틸화 반응을 행하여, α, α'-이성체와 α, β-이성체의 피발로일화체 및 트리틸화체와의 사이에 비점차를 형성함으로써, 고순도의 α, α'-이성체를 증류로 간단하게 얻을 수 있다.(4) The obtained mixture of α, α-isomers and α, β-isomers undergoes selective pivaloylation and tritylation reactions with α, β-isomers, and the α, α-isomer and By forming a boiling point difference between the pivaloylated body and the tritylated body of the α and β-isomers, high-purity α and α-isomers can be easily obtained by distillation.
상기 방법에 의해, 글리세롤포르말의 α, α'-이성체와 α, β-이성체의 혼합물을 출발 원료로 하여, α, α'-이성체의 비율이 출발 원료보다 높은 혼합물을 고수율로 얻을 수 있다.By the above method, a mixture of α, α-isomers and α, β-isomers of glycerol formal as starting materials can be obtained in high yield with a mixture having a higher ratio of α, α-isomers than the starting materials. .
다음으로, 이 혼합물로부터 α, α'-이성체를 고순도로 얻으려면, α, α'-이성체와는 반응하기 어렵고, α, β-이성체의 수산기에 선택적으로 결합하는 기를 가지는 화합물을 혼합물과 반응시키면 된다. 이 때, 상기 화합물이 α, β-이성체의 수산기에 선택적으로 결합하여 생성된 반응 생성물의 비점이 α, α'-이성체보다 상당히 높아져, α, α'-이성체만을 증류로 분리 정제하는 것이 가능해진다. 또는 피발로일화 또는 트리틸화된 α, β-이성체는 피발로일기 또는 트리틸기의 높은 지용성에 의해 물에 불용이 되기 때문에, α, α'-이성체만을 추출 조작에 의해 수층으로 이행시켜, 피발로일화 또는 트리틸화된 α, β-이성체는 유기용매(예를 들면, 헥산, 에테르 등 이고, 보다 저극성 용매인 헥산, 벤젠, 톨루엔이 바람직하고, 특히 헥산이 바람직하다.)에 이행시킴으로써 분리 정제하는 것도 가능하다.Next, in order to obtain α, α-isomer from the mixture with high purity, it is difficult to react with the α, α-isomer and react with the mixture a compound having a group that selectively binds to the hydroxyl group of the α, β-isomer. do. At this time, the boiling point of the reaction product produced by the selective binding of the compound to the hydroxyl groups of the α and β-isomers is considerably higher than the α and α'-isomers, so that only the α and α-isomers can be separated and purified by distillation. . Alternatively, the pivaloylated or tritylated α, β-isomer becomes insoluble in water due to the high fat solubility of pivaloyl group or trityl group, so that only the α, α-isomer is transferred to the aqueous layer by an extraction operation. Monolithic or tritylated α, β-isomers are separated and purified by transition to an organic solvent (e.g., hexane, ether, and the like, more preferably a lower polar solvent, hexane, benzene, toluene, preferably hexane). It is also possible.
이러한 화합물로서, 본 발명에서는, 피발로일화나 트리틸화(전부 2개소)가 가능한 화합물, 예를 들면, 염화피발로일이나 염화트리틸(전부 3개소)을 사용한다. 염화피발로일 혹은 염화트리틸은(전부 2개소), α, α'-이성체와는 반응하기 어렵고, 오로지 α, β-이성체의 수산기에 결합한다. 단, α, α'-이성체와 반응한 생성물도 제로(0)는 아니므로, 글리세롤포르말의 α, α'-이성체와 α, β-이성체와의 혼합물에 염화피발로일 또는 염화트리틸을 반응시키면, 글리세롤포르말의 α, α'-이성체(미반응물)와, 글리세롤포르말의 β-피발로일-α, α'-이성체와, 글리세롤포르말의 α'-피발로일-α, β-이성체와의 혼합물이 반응 생성물로서 얻어진다. 여기서, α, α'-이성체는, 예를 들면 8mmHg(10. 7hPa)에서는 비점이 약 65℃인데 비하여, 피발로일화 후에 얻어지는 β-피발로일-α, α'-이성체와 α'-피발로일-α, β-이성체는, 8mmHg(10. 7hPa)에서는 비점이 약 110℃이다. 따라서, 피발로일화 및 트리틸화 후에 감압 증류를 행함으로써, α, α'-이성체를 반응 생성물로부터 분리하는 것이 가능해진다. 또한, 감압 증류시의 감압도는 상기로 한정되는 것은 아니고, α, α'-이성체를 분리할 수 있는 조건이면 제한이 없다. 또한 증류 이외에도 상기에 기재한 물과 유기용매를 이용한 추출 조작을 이용해도 된다.As such a compound, in this invention, the compound which can be pivalylated and tritylation (all two places), for example, pivaloyl chloride and trityl chloride (all three places) is used. Pivaloyl chloride or trityl chloride (all two places) hardly reacts with the α and α-isomers and binds only to the hydroxyl groups of the α and β-isomers. However, since the product reacted with the α and α-isomers is not zero, pivaloyl chloride or trityl chloride is added to a mixture of the α and α-isomers of the glycerol formal with the α and β-isomers. When it reacts, (alpha), (alpha)-isomer of glycerol formal (unreactant), (beta) -pivaloyl- (alpha)-(alpha)-isomer of glycerol formal, (alpha)-(pivaloyl-alpha) of glycerol formal, Mixtures with β-isomers are obtained as reaction products. Here, the α, α'-isomers have a boiling point of about 65 ° C., for example, at 8 mmHg (10.7 hPa), whereas the β-pivaloyl-α, α'-isomers and α'-P obtained after pivaloylation. The baloyl-α and β-isomers have a boiling point of about 110 ° C. at 8 mmHg (10.7 hPa). Therefore, by performing vacuum distillation after pivaloylation and tritylation, it becomes possible to isolate (alpha), (alpha)-isomer from a reaction product. In addition, the pressure reduction degree at the time of vacuum distillation is not limited to the above, There is no restriction as long as it can isolate | separate (alpha), (alpha) '-isomer. In addition to distillation, an extraction operation using water and an organic solvent described above may be used.
피발로일화는, N-메틸피페리딘, 피리딘, 4-피롤리디노피리딘 등의 유기 염기의 존재하, 필요에 따라서, 디클로로메탄, 디클로로에탄, 클로로포름, 사염화탄소, 클로로벤젠, 디클로로벤젠 등의 할로겐화 탄화수소류를 용매로서 행할 수 있다. 반응 온도는 -10℃~30℃ 정도가 바람직하고, 반응 시간은 특별히 한정되지 않는다. 반응 후에는, 반응 생성물을 적당히 중화하는 것이 바람직하다. 트리틸화는, N-메틸피페리딘, 피리딘, 4-피롤리디노피리딘, 2, 4, 6-콜리딘 등의 유기 염기, 혹은 이들에 더하여 탄산수소나트륨 등의 무기 염기의 존재 하에, 필요에 따라서 디클로로메탄, 디클로로에탄, 클로로포름, 사염화탄소, 클로로벤젠, 디클로로벤젠 등의 할로겐화 탄화수소류를 용매로 하여 행할 수 있다. 반응 온도는 -10℃~30℃ 정도가 바람직하고, 반응 시간은 특별히 한정되지 않는다. 반응 후에는, 반응 생성물을 적당히 중화하는 것이 바람직하다.Pivaloylation is halogenated, such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, chlorobenzene, and dichlorobenzene, in the presence of organic bases such as N-methylpiperidine, pyridine, 4-pyrrolidinopyridine and the like. Hydrocarbons can be performed as a solvent. As for reaction temperature, about -10 degreeC-about 30 degreeC are preferable, and reaction time is not specifically limited. After the reaction, it is preferable to neutralize the reaction product as appropriate. Tritylation is necessary in the presence of an organic base such as N-methylpiperidine, pyridine, 4-pyrrolidinopyridine, 2, 4, 6-collidine, or an inorganic base such as sodium hydrogencarbonate in addition to these. Therefore, halogenated hydrocarbons, such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, chlorobenzene, and dichlorobenzene, can be performed as a solvent. As for reaction temperature, about -10 degreeC-about 30 degreeC are preferable, and reaction time is not specifically limited. After the reaction, it is preferable to neutralize the reaction product as appropriate.
그 후, 필요에 따라서 용매를 증류 제거하고 나서, 상기에 기재한 바와 같이 감압 증류를 행하고, α, α'-이성체를 반응 생성물로부터 분리한다.Thereafter, the solvent is distilled off as necessary, followed by distillation under reduced pressure as described above, and the α and α'-isomers are separated from the reaction product.
이 글리세롤포르말의 α, α'-이성체는, 글리세롤을 포르말기로 보호한 화합물이라고 할 수 있다. 따라서, 글리세롤포르말의 α, α'-이성체를 원료로 사용하여, 에피클로로히드린 등의 에피할로히드린과 적절히 반응시킴으로써, 포르말기로 보호된 분기형 글리세롤 3량체를 제조할 수 있다. 이 3량체화 반응은, 예를 들면 수산화칼륨 등의 염기와, 브롬화 테트라부틸암모늄 등의 상관 이동 촉매의 존재하에서, 행할 수 있다. 생성물은, 실리카 겔 칼럼 크로마토그래피 등으로 정제하는 것이 바람직하다.The (alpha), (alpha)-isomer of this glycerol formal can be said to be a compound which protected glycerol with a formal group. Therefore, by using α and α-isomers of glycerol formal as raw materials and appropriately reacting with epihalohydrin such as epichlorohydrin, a branched glycerol trimer protected by a formal group can be produced. This trimerization reaction can be performed, for example in presence of a base, such as potassium hydroxide, and a correlation transfer catalyst, such as tetrabutylammonium bromide. The product is preferably purified by silica gel column chromatography or the like.
또, 상기의 포르말기로 보호된 분기형 글리세롤 3량체를 원료로 하여, 아세토나이드기로 보호된 분기형 글리세롤 3량체를 제조할 수도 있다. 상기의 분기형 글리세롤 3량체의 포르말 보호기를, 예를 들면 염산 등의 산으로 떼어내, 중화 후에, 아세토나이드화를 위한 2, 2-디메톡시프로판 등의 공지의 화합물을 반응시킴으로써, 아세토나이드기로 보호된 분기형 글리세롤 3량체를 얻을 수 있다. 아세토나이드화는, 일반적인 산촉매를 이용해도 되지만, “Amberlyst(등록상표) 15”(롬 앤드 하스사 제조) 등의 고체산촉매 존재 하에서 행하는 것이 보다 바람직하다. 또한 물론 다른 보호기를 붙여도 된다.Moreover, the branched glycerol trimer protected with the acetonide group can also be manufactured using the said branched glycerol trimer protected by the said formal group. Acetonide by removing a formal protecting group of the branched glycerol trimer with, for example, an acid such as hydrochloric acid, and then neutralizing and reacting a known compound such as 2,2-dimethoxypropane for acetonitrile after neutralization. Branched glycerol trimers protected with groups can be obtained. Although acetonitrile may use a general acid catalyst, it is more preferable to carry out in presence of solid acid catalysts, such as "Amberlyst (R) 15" (made by Rohm and Haas). Of course, other protecting groups may be attached.
상기 특허문헌 1~3에는, BGL의 합성 방법이 상세하게 설명되어 있고, 상기 글리세롤포르말의 α, α'-이성체는, 이들 BGL의 원료로서 적합하다.The said patent document 1-3 describes the synthesis method of BGL in detail, and the (alpha), (alpha) '-isomer of the said glycerol formal is suitable as a raw material of these BGL.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
[실시예]EXAMPLE
실시예 1. 글리세롤 포르말의 이성화Example 1 Isomerization of Glycerol Formal
도쿄화성공업주식회사로부터 입수한 글리세롤포르말의 α, α'-이성체와 α, β-이성체가 57:43(질량비:1H-NMR로 확인)으로 혼합된 혼합물 520mg(5mmol)과 2.5mmol의 글리세롤이 용해되어 있는 디옥산 용액 2.5mL에, 진한 황산(98%)을 1방울 첨가하여 60℃에서 3시간, 교반하면서 가열하였다. 얻어진 반응 용액을 실온으로까지 방랭하고, 탄산나트륨 용액을 적당량 첨가하여 진한 황산을 중화했다. 세라이트에 의한 여과를 실시한 후, 디옥산을 감압 증류로 제거하였다. 얻어진 생성물에 대하여, 1H-NMR를 이용하여 α, α'-이성체와 α, β-이성체의 비율(질량비율, 이하 동일)과 회수율(몰%, 이하 동일)을 구했다. 그 결과를 표 1에 나타냈다.A mixture of 520 mg (5 mmol) and 2.5 mmol of glycerol obtained by mixing the α, α-isomer and α, β-isomer of glycerol formal obtained from Tokyo Chemical Co., Ltd. at 57:43 (mass ratio: 1H- NMR) Concentrated sulfuric acid (98%) was added to 2.5 mL of the dissolved dioxane solution, and it heated at 60 degreeC for 3 hours, stirring. The obtained reaction solution was left to cool to room temperature, and an appropriate amount of sodium carbonate solution was added to neutralize concentrated sulfuric acid. After filtration through celite, dioxane was removed by distillation under reduced pressure. About the obtained product, the ratio (mass ratio, below) and recovery (mol%, below) of the (alpha), (alpha)-isomer, and (alpha), (beta) -isomer were calculated | required using <1> H-NMR. The results are shown in Table 1.
용매, 글리세롤량, 가열 온도, 반응 시간, 원료 혼합물의 혼합비를 표 1에 나타낸 바와 같이 변경한 것 외에는 상기와 동일한 방법으로 이성화 반응을 행했다. 그 결과를 표 1에 나타냈다.The isomerization reaction was performed by the same method as the above except having changed the mixing ratio of a solvent, glycerol amount, heating temperature, reaction time, and a raw material mixture as shown in Table 1. The results are shown in Table 1.
[표 1]TABLE 1
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-82
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-82
No. 1~3의 대비로부터, 반응 시간은 길수록 이성화의 비율이 높아지고, 수율도 증대하는 것을 알 수 있다. 또한, 18시간에 거의 평형에 이르렀으므로, No. 4~15에서는, 반응 시간을 18시간으로 일정하게 했다.No. From the contrast of 1-3, it turns out that the ratio of isomerization becomes high and the yield also increases, so that reaction time is long. Moreover, since it reached nearly equilibrium in 18 hours, No. In 4-15, reaction time was made constant at 18 hours.
No. 4~6의 대비로부터, 반응 온도는 50~95℃ 어느 것에 있어서도 이성화가 일어나고 있고, 특히 60~75℃에서의 이성화율이 높았다.No. From the contrast of 4-6, isomerization is occurring also in any of 50-95 degreeC, and the isomerization rate in 60-75 degreeC was especially high.
No. 3 및 7~9의 대비로부터, 글리세롤을 첨가하지 않아도 이성화 반응은 일어나지만(No. 7), 글리세롤을 2. 5~10mmol 더함으로써 높은 이성화율을 얻을 수 있었다. 단, 글리세롤을 5. 0mmol 첨가한 No. 8에 비하여, 10mmol 첨가한 No. 9에서는, 이성화율 및 수율이 약간 저하했다.No. From the contrast of 3 and 7-9, the isomerization reaction occurs even if glycerol is not added (No. 7), but high isomerization rate was obtained by adding 2.10-10 mmol of glycerol. However, no. Compared to 8, No. 10 mmol added In 9, the isomerization rate and the yield fell slightly.
No. 3, 10, 11의 대비로부터, 용매로서의 디옥산이 없는 경우, 수율은 낮지만, 매우 높은 이성화율을 나타내는 것을 알 수 있었다. 또, 젖은 디옥산을 사용한 No. 11에서는, 18시간의 반응에서도 이성화가 거의 진행되지 않았기 때문에, 건조된 디옥산을 사용하는 것이 적합하다.No. From the contrast of 3, 10, and 11, when there was no dioxane as a solvent, it turned out that although yield is low, it shows very high isomerization rate. In addition, No. using wet dioxane In 11, since isomerization hardly proceeded even in reaction of 18 hours, it is suitable to use dried dioxane.
No. 12~15에서는, α, α'-이성체와 α, β-이성체와의 30:70 혼합물을 원료 혼합물로서 사용했다. No. 3, 7, 10, 11의 경우와 동일한 결과를 나타내고, α, β-이성체의 양이 많아도, α, α'-이성체로의 이성화가 진행되는 것을 알 수 있었다. 또한, 상기 30:70 혼합물은, 후술하는 실험 No. 17에서 얻어진 β-피발로일-α, α'-이성체와 α'-피발로일-α, β-이성체의 비율이 9:91 혼합물로부터 탈피발로일화에 의해 얻은 α, α'-이성체와 α, β-이성체의 비율이 9:91 혼합물과, 상기 시판 중인 57:43 혼합물을 혼합해 조제했다.No. In 12-15, the 30:70 mixture of the (alpha), (alpha)-isomer, and (alpha), (beta) -isomer was used as raw material mixture. No. The same result as in the case of 3, 7, 10, and 11 was shown, and even if there were many amounts of the (alpha), (beta) -isomer, it turned out that isomerization to (alpha), (alpha)-isomer is advanced. In addition, the said 30:70 mixture is experiment No. mentioned later. The ratios of β-pivaloyl-α, α'-isomers and α'-pivaloyl-α, β-isomers obtained in 17 were obtained by depivaloylation from a 9:91 mixture. , β-isomer ratio was prepared by mixing a 9:91 mixture and the commercially available 57:43 mixture.
실시예 2. 글리세롤 포르말의 이성화Example 2. Isomerization of Glycerol Formal
상기 실시예 1의 No. 8과 동일한 반응 조건에 의해, 글리세롤포르말의 α, α'-이성체와 α, β-이성체가 30:70(질량비)으로 혼합된 혼합물 10.4g(100mmol)과, 9.2g(100mmol)의 글리세롤이 용해되어 있는 디옥산 용액 20mL에, 진한 황산(98%)을 1방울 첨가하여, 오일욕에서 60℃에서 18시간 동안 교반하면서 가열하였다. 얻어진 반응 용액을 실온으로까지 방랭하고, 탄산나트륨 용액을 적당량 더하여 진한 황산을 중화했다. 세라이트에 의한 여과를 실시한 후, 디옥산을 감압 증류로 제거하고, 다시 얻어진 생성물을 감압 증류(8mmHg(10.7hPa), 65℃)로 정제했다. 무색 유상의 반응 생성물의 수량은 8.85g, 수율은 85.0%이며, 1H-NMR을 이용하여 구한 α, α'-이성체와 α, β-이성체의 비율은 70:30이었다. 첨가한 글리세롤은 감압 증류(8mmHg(10.7hPa), 150℃)로 회수했다. 글리세롤의 회수량은 8.70g, 회수율은 94.6%였다.No. of Example 1 Under the same reaction conditions, 10.4 g (100 mmol) and 9.2 g (100 mmol) of glycerol were mixed in a mixture of α, α-isomer and α, β-isomer of glycerol formal at 30:70 (mass ratio). One drop of concentrated sulfuric acid (98%) was added to 20 mL of the dissolved dioxane solution, and the mixture was heated with stirring at 60 ° C. for 18 hours in an oil bath. The obtained reaction solution was left to cool to room temperature, an appropriate amount of sodium carbonate solution was added, and concentrated sulfuric acid was neutralized. After filtration through celite, dioxane was removed by distillation under reduced pressure, and the obtained product was further purified by distillation under reduced pressure (8 mmHg (10.7 hPa), 65 ° C). Yield of a colorless oil. The reaction product was 8.85g, and the yield was 85.0%, and the ratio of α, α'- isomer and α, β- isomers obtained by using a 1 H-NMR was 70:30. The added glycerol was recovered by distillation under reduced pressure (8 mmHg (10.7 hPa), 150 ° C). The recovery amount of glycerol was 8.70 g and the recovery rate was 94.6%.
실시예 3. 글리세롤 포르말의 이성화Example 3. Isomerization of Glycerol Formal
실온에서 반응 용기에 글리세롤 포르말(1 당량), 글리세롤 (1 당량)과 1,4-디옥산(3-6M)을 첨가하고 맨틀 히터에 설치해, 매커니컬 스터러와 온도계를 장착, 아르곤(Ar) 가스로 치환한 후, 200 rpm로 교반하였다. 그 후, H2SO4(1-0.355 mol%)를 적하하면서 첨가한 후, 천천히 내부 온도가 60℃가 될 때까지 승온하여, 1,3-mG와 1,2-mG의 비가>70:<30이 될 때까지 500 rpm로 교반하였다(하기 반응식 4 참조). 목적의 비에 도달하면 회전수를 200 rpm으로 낮추고 실온까지 식혔다. 식힌 후, H2SO4의 10등량 분의 Na2CO3를 더하여 잘 교반하여 반응을 중단시켰다. 혼합 용액은 Celiteⓡ로 여과하고, 잔사는 CH2Cl2로 세정하고, 여과액의 1,4-디옥산과 CH2Cl2는 감압 증류로 제거하였다. 잔사는 감압 증류로 글리세롤 포르말(66℃/8mmHg)과 글리세롤(108℃/1.0mmHg)로 분리하였다. 최종 생성물은 1H-NMR을 이용하여 분석하였다. 그 결과는 하기와 같다.At room temperature, glycerol formal (1 equivalent), glycerol (1 equivalent), and 1,4-dioxane (3-6 M) are added to the reaction vessel and installed in a mantle heater, equipped with a mechanical stirrer and a thermometer, and argon ( Ar) was replaced with gas and stirred at 200 rpm. Thereafter, the mixture was added dropwise with H 2 SO 4 (1-0.355 mol%), and the temperature was slowly increased until the internal temperature became 60 ° C, and the ratio of 1,3-mG and 1,2-mG was> 70: Stir at 500 rpm until <30 (see Scheme 4 below). When the desired ratio was reached, the speed was lowered to 200 rpm and cooled to room temperature. After cooling, 10 equivalents of Na 2 CO 3 in H 2 SO 4 was added and stirred well to stop the reaction. Mixed solution was filtered through a Celiteⓡ, and the residue was washed with CH 2 Cl 2 and the filtrate 1,4-dioxane and CH 2 Cl 2 was removed by distillation under reduced pressure. The residue was separated by distillation under reduced pressure into glycerol formal (66 ° C./8 mmHg) and glycerol (108 ° C./1.0 mmHg). The final product was analyzed using 1 H-NMR. The result is as follows.
1, 3-mG1, 3-mG
1H NMR (400 MHz, CDCl3) δ 3.01 (d, J = 10 Hz, 1 H), 3.63 (dquin, J = 10, 3 Hz, 1 H), 3.88 (dd, J = 11, 3 Hz, 2 H), 3.93 (dd, J = 11, 3 Hz, 2 H), 4.77 (d, J = 6 Hz, 1 H), 4.94 (d, J = 6 Hz, 1 H), 13C NMR (75 MHz, CDCl3) · 64.2 (CH-OH), 71.7 (CH2×2), 94.1 (-O-CH2-O-). IR (neat) ν 3424, 2976, 2921, 2859, 1479, 1459, 1183, 1153, 1066, 1039, 1013, 980, 957, 914, 809. ESI-HRMS: m/z ([M+Na]+) Calcd for C4H8O3Na: 127.0366, Found: 127.0338. 1 H NMR (400 MHz, CDCl 3) δ 3.01 (d, J = 10 Hz, 1 H), 3.63 (dquin, J = 10, 3 Hz, 1 H), 3.88 (dd, J = 11, 3 Hz, 2 H), 3.93 (dd, J = 11, 3 Hz, 2 H), 4.77 (d, J = 6 Hz, 1 H), 4.94 (d, J = 6 Hz, 1 H), 13 C NMR (75 MHz, CDCl 3) 64.2 (CH-OH), 71.7 (CH 2 x 2), 94.1 (-O-CH 2 -O-). IR (neat) v 3424, 2976, 2921, 2859, 1479, 1459, 1183, 1153, 1066, 1039, 1013, 980, 957, 914, 809.ESI-HRMS: m / z ([M + Na] + ) Calcd for C 4 H 8 O 3 Na: 127.0366, Found: 127.0338.
[반응식 4]Scheme 4
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-97
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-97
실시예 4. 피발로일화 반응Example 4. Pivaloylation Reaction
아르곤 조건하에서 시판 중인 글리세롤포르말의 α, α'-이성체와 α, β-이성체가 57:43(질량비)으로 혼합된 혼합물 104g(1.00mol)이 용해된 디클로로메탄 용액 333mL에, 0℃에서 피리딘 54.5mL(0.675mol)와 염화피발로일 67.7mL(0.550mol)를 차례로 더하여, 0℃에서 30분, 그 후 실온에서 4시간 교반하여, 반응시켰다.Pyridine at 0 ° C. in 333 mL of a dichloromethane solution in which 104 g (1.00 mol) of a mixture of α, α-isomers and α, β-isomers of glycerol formal and commercially available α, β-isomers were mixed in a mass ratio of 57:43 under argon conditions. 54.5 mL (0.675 mol) and 67.7 mL (0.550 mol) of pivaloyl chloride were added sequentially, followed by stirring at 0 ° C. for 30 minutes and then at room temperature for 4 hours to react.
얻어진 반응 용액에, 실온에서 탄산나트륨을 적당량 더하여 중화하고, 세라이트에 의한 여과를 행한 후, 디클로로메탄을 감압 증류로 제거하였다. 얻어진 생성물은, 미반응의 α, α'-이성체, β-피발로일-α, α'-이성체 및 α'-피발로일-α, β-이성체의 혼합물이다(하기 반응식 5 참조). 이 생성물을 감압 증류(8mmHg(10.7hPa), 65℃)로 정제하였다. 감압 증류에 의해 얻어진 글리세롤포르말의 α, α'-이성체는, 무색 유상이며, 수득량은 52.2g, 수율 50.1%였다. 또한 글리세롤포르말의 β-피발로일 α, α'-이성체와 α'-피발로일-α, β-이성체의 비율이 9:91인 혼합물(무색 유상)이, 수량 85.1g(수율 45.2%)으로 얻어졌다.An appropriate amount of sodium carbonate was added to the obtained reaction solution at room temperature, neutralized, and filtered through celite, and then dichloromethane was removed by distillation under reduced pressure. The obtained product is a mixture of unreacted α, α-isomer, β-pivaloyl-α, α′-isomer, and α′-pivaloyl-α, β-isomer (see Scheme 5 below). This product was purified by distillation under reduced pressure (8 mmHg (10.7 hPa), 65 ° C). The (alpha), (alpha)-isomer of the glycerol formal obtained by vacuum distillation was colorless and oily, and the yield was 52.2g and yield 50.1%. In addition, a mixture (colorless oily) in which the ratio of β-pivaloyl α, α'-isomer, α'-pivaloyl-α, β-isomer of glycerol formal is 9:91 was yielded in 85.1 g (yield 45.2%). Was obtained.
[반응식 5]Scheme 5
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-103
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-103
실시예 5. 피발로일화 반응Example 5. Pivaloylation Reaction
실온에서 반응 용기에 70:30의 글리세롤 포르말(1,2-mG = 1 당량)을 더하고, 적하 깔때기와 온도계를 장착, 아르곤 가스로 치환을 행한 후, 디클로로메탄과 피리딘(1.33 당량)을 참가하였다. 얼음욕에 반응 용기를 설치하고, 내부 온도가 5~10℃까지 내려갔을 때, 적하 깔때기를 사용해 피발로일 클로리드(1.22 당량)를 5시간 동안 적하를 행하였다. 적하 종료 후, 천천히 실온까지 되돌려, 실온에서 6시간 교반을 행하고, 1,3-mG와 1,2-mG의 비가 92:8 이상이 될 때까지 교반을 행하였다. 그 후, 피발로일 클로리드의 10등량 분의 NaHCO3를 이산화탄소 가스가 발생하지 않게 될 때까지 천천히 더하여 잘 교반하여 반응을 중단시켰다. 혼합 용액은 Celiteⓡ로 여과되고, Celiteⓡ상의 잔사는 CH2Cl2로 세정하여, 여과액의 CH2Cl2는 감압 증류로 제거하였다. 잔사 안의 피리딘은 다이아프램 펌프로 증류 제거하였다. 그리고 상기 생성물을 1 wt% NaHCO3aq. 와 헥산의 혼합 용액에 부어, 분액 깔때기로 헥산층과 수층으로 분리하고 헥산층을 제거하였다. 수층은 한번 더 헥산을 첨가하여, 수층과 헥산층으로 분리하고, 헥산층은 상기 헥산층과 합하였다. 합한 헥산층을 무수 MgSO4로 건조, 여과, 감압 증류하고, 남은 생성물은 Piv-1, 3-mG와 Piv-1, 2-mG의 혼합물이었다. 그리고 수층 중의 물은 에탄올을 더하고, 감압 증류하여 잔사를 얻었다. 그 잔사는 디클로로메탄으로 희석하고, 무수 MgSO4로 건조, 여과, 용매 증류 제거하였다. 상기에서 감압 증류하여 회수한 물과 에탄올은 재차 감압 증류하여 추가 잔사를 얻었다. 상기 잔사를 합쳐 간이 증류(66℃/8mmHg)를 행하고, 1,3-mG가 주성분인 혼합물을 얻었다(하기 반응식 6 참조). 상기 실험에 대한 개략적인 모식도를 도 1에 나타내었다.70:30 glycerol formal (1,2-mG = 1 equivalent) was added to the reaction vessel at room temperature, and a dropping funnel and a thermometer were installed, and substituted with argon gas, followed by dichloromethane and pyridine (1.33 equivalents). It was. When the reaction vessel was installed in an ice bath and the internal temperature fell to 5-10 degreeC, pivaloyl chloride (1.22 equivalent) was dripped for 5 hours using the dropping funnel. After completion of the dropwise addition, the mixture was slowly returned to room temperature, stirred at room temperature for 6 hours, and stirred until the ratio of 1,3-mG and 1,2-mG became 92: 8 or more. Thereafter, 10 equivalents of NaHCO 3 equivalent of pivaloyl chloride was slowly added until the carbon dioxide gas was not generated and stirred well to stop the reaction. The mixed solution was filtered through Celite®, the residue on Celite® was washed with CH 2 Cl 2 , and CH 2 Cl 2 of the filtrate was removed by distillation under reduced pressure. Pyridine in the residue was distilled off with a diaphragm pump. And the product was replaced with 1 wt% NaHCO 3 aq . The mixture was poured into a mixed solution of hexane and separated into a hexane layer and an aqueous layer with a separating funnel, and the hexane layer was removed. The aqueous layer was once more added hexane, separated into an aqueous layer and a hexane layer, and the hexane layer was combined with the hexane layer. The combined hexane layer was dried over anhydrous MgSO 4 , filtered, and distilled under reduced pressure, and the remaining product was a mixture of Piv-1, 3-mG, Piv-1, 2-mG. The water in the aqueous layer was added with ethanol and distilled under reduced pressure to obtain a residue. The residue was diluted with dichloromethane, dried over anhydrous MgSO 4 , filtered, and the solvent was distilled off. The water and ethanol recovered by distillation under reduced pressure were distilled under reduced pressure again to obtain an additional residue. The residue was combined, and simple distillation (66 ° C./8 mmHg) was performed to obtain a mixture having 1,3-mG as a main component (see Scheme 6 below). A schematic diagram of the experiment is shown in FIG. 1.
[반응식 6]Scheme 6
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-108
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-108
실시예 6. 트리틸화 반응Example 6. Tritylation Reaction
실온에서 반응 용기에 1,3-mG와 1,2-mG의 비가 96:4의 혼합물(1 당량), 2,4,6-콜리딘(0.12 당량)과 디클로로메탄(1M)을 더하여 매커니컬 스터러와 적하 깔때기를 장착하여, 아르곤(Ar) 가스로 치환한 후, 500rpm로 교반하였다. 그 후, 적하 깔때기를 사용하여 TrCl(0.08 당량)의 디클로로메탄 용액을 6시간 동안 적하하며, 실온에서 회전수 500rpm로 교반하였다. 목적의 비에 도달하면 회전수를 200rpm까지 낮추고, TrCl의 10등량 분의 1wt% NaHCO3aq.를 더하여 CO2 가스가 발생하지 않게 될 때까지 교반하여 반응을 중단시켰다. 혼합 용액은 수층과 디크로로메탄층으로 분리하였다. 유기층의 CH2Cl2는 감압 증류하여 제거하고 잔사는 상기 수층에 첨가하였다. 상기 수층은 헥산을 더하여 추출하고, 수층과 유기층 A로 분리하였다. 수층을 한번 더 헥산으로 추출하고, 수층과 유기층 B로 분리한다. 수층에 공비시키기 위한 에탄올을 더하고, 감압 증류하여 잔사를 얻었다. 그 조생성물은 디클로로메탄으로 희석되고, 무수 MgSO4로 건조, 여과, 용매 증류 제거 되어, 잔사 A를 얻었다. 상기 간압 증류하여 회수한 물과 에탄올은 재차 감압 증류하여 잔사 B를 얻었다. 잔사 A와 잔사 B를 합하여 간이 증류 (66℃/8mmHg)를 행하여, 순도>99.5%이상의 1,3-mG를 얻었다. 유기층 A와 유기층 B는 합쳐져, 무수 MgSO4로 건조, 여과, 증류 감압하고 남은 생성물은 Tr-1, 3-mG와 Tr-1, 2-mG의 혼합물이었다(하기 반응식 7 참조). 최종 생성물은 1H-NMR을 이용하여 분석하였다. 그 결과는 도 3에 나타내었다.Add 1,3-mG and 1,2-mG mixture (1 equiv), 2,4,6-collidine (0.12 equiv) and dichloromethane (1 M) to the reaction vessel at room temperature A curler and a dropping funnel were attached, replaced with argon (Ar) gas, and stirred at 500 rpm. Thereafter, a dichloromethane solution of TrCl (0.08 equiv) was added dropwise for 6 hours using a dropping funnel, and stirred at a rotational speed of 500 rpm at room temperature. When the desired ratio was reached, the rotational speed was lowered to 200 rpm, and 1 wt% NaHCO 3 aq. Of 10 equivalents of TrCl was added to the reaction, and the reaction was stopped by stirring until no CO 2 gas was generated. The mixed solution was separated into an aqueous layer and a dichloromethane layer. CH 2 Cl 2 of the organic layer was distilled off under reduced pressure, and the residue was added to the aqueous layer. The aqueous layer was extracted by adding hexane, and separated into an aqueous layer and an organic layer A. The aqueous layer is extracted once more with hexane and separated into aqueous layer and organic layer B. Ethanol for azeotropic addition to the aqueous layer was added, and the residue was distilled under reduced pressure to obtain a residue. The crude product was diluted with dichloromethane, dried over anhydrous MgSO 4 , filtered, and solvent distilled off to obtain residue A. The water and ethanol recovered by the above-mentioned pressure distillation were distilled under reduced pressure again to obtain a residue B. The residue A and the residue B were combined and subjected to simple distillation (66 ° C./8 mmHg) to obtain 1,3-mG having a purity> 99.5% or more. The organic layer A and the organic layer B were combined, dried over anhydrous MgSO 4 , filtered, and distilled under reduced pressure, and the remaining product was a mixture of Tr-1, 3-mG, Tr-1, 2-mG (see Scheme 7 below). The final product was analyzed using 1 H-NMR. The results are shown in FIG.
[반응식 7]Scheme 7
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-113
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-113
실시예 7. BGL의 합성Example 7 Synthesis of BGL
실시예 4 또는 5의 방법으로 얻어진 글리세롤포르말의 β-피발로일-α, α'-이성체와 α'-피발로일-α, β-이성체의 9:91 혼합물과 상기 시판 중인 57:43 혼합물을 혼합하여 조제한 혼합 비율이 30:70인 혼합물 29.1g(155mmol)의 에탄올 용액 50ml에, 1M의 NaOH 수용액 233ml(233mmol)를 더하여, 실온에서 18시간 교반하여, 반응시켰다.9:91 mixture of β-pivaloyl-α, α'-isomers and α'-pivaloyl-α, β-isomers of glycerol formal obtained by the method of Example 4 or 5, and 57:43 233 ml (233 mmol) of 1 M aqueous NaOH solution was added to 50 ml of an ethanol solution of 29.1 g (155 mmol) having a mixture ratio of 30:70 by mixing the mixture, followed by stirring at room temperature for 18 hours to react.
얻어진 반응 용액에, 실온에서 1M의 염산을 더하여 pH7를 약간 넘게 조정한 후, 에탄올과 물을 감압 증류 제거했다. 얻어진 잔사로부터 피발산나트륨염을 세라이트 여과하고, 세라이트 패드를 에테르로 세정하여, 여과액으로부터 에테르를 감압하에서 증류 제거했다. 얻어진 조생성물을 감압 증류(8mmHg(10.7hPa), 65℃)로 정제했다. 글리세롤포르말의 α, α'-이성체와 α, β-이성체를 30:70의 비율로 가지는 혼합물(무색 유상, 수량 14.5g, 수율 89.8%)을 얻었다.1 M hydrochloric acid was added to the obtained reaction solution at room temperature, the pH was adjusted to slightly exceed 7, and ethanol and water were distilled off under reduced pressure. The sodium pivalate salt was filtered through celite from the obtained residue, the celite pad was washed with ether, and ether was distilled off from the filtrate under reduced pressure. The obtained crude product was purified by distillation under reduced pressure (8 mmHg (10.7 hPa), 65 ° C). A mixture (colorless oil, yield 14.5 g, yield 89.8%) having α, α-isomer and α, β-isomer of glycerol formal at a ratio of 30:70 was obtained.
실시예 8. BGL(fm)의 합성Example 8 Synthesis of BGL (fm)
실시예 4의 반응에서 얻어진 글리세롤포르말의 α, α'-이성체 2.21g(21.3mmol)에, 수산화 칼륨을 0.994g(17.7mmol) 함유하는 수용액 0.5mL와, 브롬화테트라-n-부틸암모늄 0.457g(1.42mmol)을 더한 후, 에피클로로히드린 0.354mL(7.09mmol)를 너무 발열하지 않도록 서서히 더하여, 실온에서 30분 교반한 후, 오일욕에서 60℃에서 48시간 교반하여, 반응시켰다.0.5 ml of an aqueous solution containing 0.994 g (17.7 mmol) of potassium hydroxide in 2.21 g (21.3 mmol) of the α and α-isomers of glycerol formal obtained in the reaction of Example 4, and 0.457 g of tetra-n-butylammonium bromide After adding (1.42 mmol), 0.354 mL (7.09 mmol) of epichlorohydrin was gradually added so as not to generate too much heat, stirred at room temperature for 30 minutes, and then stirred at 60 ° C. for 48 hours in an oil bath to react.
반응 용액에, 실온에서 1M의 염산을 pH가 7이 될 때까지 더하여 반응 용액을 중화하고, 물을 감압 증류 제거한 후, 얻어진 조생성물로부터 염화 칼륨을 세라이트 여과에 의해 분리했다. 세라이트 패드를 디옥산으로 세정 후, 여과액으로부터 디옥산을 감압하에서 증류 제거했다. 얻어진 잔사를 실리카 겔 크로마토그래피(디클로로메탄:아세톤=3:1(액량비))로 정제하여, BGL003(fm)(무색 유상, 수량 14.5g, 수율 89.8%)을 얻었다. 최종 생성물은 1H-NMR을 이용하여 분석하였다. 그 결과는 하기와 같다.To the reaction solution, 1 M hydrochloric acid was added at room temperature until the pH was 7, and the reaction solution was neutralized. After distilling off the water under reduced pressure, potassium chloride was separated from the obtained crude product by celite filtration. After washing a celite pad with dioxane, dioxane was distilled off from the filtrate under reduced pressure. The obtained residue was purified by silica gel chromatography (dichloromethane: acetone = 3: 1 (liquid ratio)) to obtain BGL003 (fm) (colorless oily phase, yield 14.5 g, yield 89.8%). The final product was analyzed using 1 H-NMR. The result is as follows.
1H-NMR(400MHz, CDCl3) 1 H-NMR (400 MHz, CDCl 3 )
δ/ppm 3. 41-3. 47(m, 2H), 3. 50-3. 65(m, 4H), 3. 71(dd, J=15, 8 Hz, 4H), 3. 85-3. 98(m, 1H), 4. 03(dd, J=15, 4 Hz, 4H), 4. 73(d, J=1 Hz, 2H), 4. 83(d, J=1 Hz, 2H)δ / ppm 3. 41-3. 47 (m, 2H), 3. 50-3. 65 (m, 4H), 3. 71 (dd, J = 15, 8 Hz, 4H), 3. 85-3. 98 (m, 1H), 4. 03 (dd, J = 15, 4 Hz, 4H), 4. 73 (d, J = 1 Hz, 2H), 4. 83 (d, J = 1 Hz, 2H)
13C-NMR(75MHz, CDCl3) 13 C-NMR (75 MHz, CDCl 3 )
δ/ppm 69. 0, 69. 5, 70. 0, 70. 4, 93. 4δ / ppm 69. 0, 69. 5, 70. 0, 70. 4, 93. 4
이러한 분석 결과로부터, 상기 생성물은 하기 화학식 3으로 나타나는 포르말기로 보호된 분기형 글리세롤 3량체:BGL003(fm)으로 동정되었다.From this analysis, the product was identified as a branched glycerol trimer: BGL003 (fm) protected with a formal group represented by the following formula (3).
[화학식 3][Formula 3]
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-128
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-128
실시예 9. BGL003(mtl)Example 9. BGL003 (mtl) 22 의 합성Synthesis of
실온에서 반응 용기에 1,3-mG와 1,2-mG의 비가 96:4의 혼합물(1 당량), 2,4,6-콜리딘(0.12 당량)과 디클로로메탄(1M)을 더하고, 교반자를 넣고, 적하 깔때기를 장착하여, 아르곤(Ar) 가스로 치환하였다. 적하 깔때기를 사용하여 TrCl (0.08 당량)의 디클로로메탄 용액을 6시간 동안 적하하고, 실온에서 회전수 500 rpm로 교반하였다. 목적의 비에 도달하면 회전수를 200rpm까지 낮추고, TrCl의 10등량 분의 1wt% NaHCO3aq.를 더하여 CO2 가스가 발생하지 않게 될 때까지 교반하여 반응을 중단시켰다. 혼합 용액은 수층과 디클로로메탄층으로 분리하였다. 유기층의 CH2Cl2는 감압 증류하여 제거하고, 잔사는 상기 수층에 첨가하였다. 수층은 헥산을 첨가하여 추출하여, 수층과 유기층 A로 분리하였다. 수층을 한번 더 헥산으로 추출하여, 수층과 유기층 B로 분리하였다. 상기 수층에 공비시키기 위한 에탄올을 더하여 감압 증류하여 잔사를 얻었다. 생성물은 디클로로메탄으로 희석하고, 무수 MgSO4로 건조, 여과, 용매 증류 제거되어 잔사 A를 얻었다. 감압 증류 시 회수한 물과 에탄올을 재차 감압 증류하여, 잔사 B를 얻었다. 잔사 A와 잔사 B를 합하여 간이 증류 (66℃/8mmHg)를 행하여, 순도>99.5% 이상의 1,3-mG를 얻었다. 유기층 A와 유기층 B는 합쳐져, 무수 MgSO4로 건조, 여과, 감압 증류하고 남은 생성물은 Tr-1, 3-mG와 Tr-1, 2-mG의 혼합물이었다(하기 반응식 8 참조). To the reaction vessel at room temperature, a mixture of 1,3-mG and 1,2-mG in a ratio of 96: 4 (1 equiv), 2,4,6-collidine (0.12 equiv) and dichloromethane (1 M) were added and stirred The ruler was put, the dropping funnel was attached, and it substituted by argon (Ar) gas. A dichloromethane solution of TrCl (0.08 equiv) was added dropwise for 6 hours using a dropping funnel and stirred at 500 rpm at room temperature. When the desired ratio was reached, the number of revolutions was lowered to 200 rpm, and 1 wt% NaHCO 3 aq. Of 10 equivalents of TrCl was added to the reaction and stirred until no CO 2 gas was generated. The mixed solution was separated into an aqueous layer and a dichloromethane layer. CH 2 Cl 2 of the organic layer was distilled off under reduced pressure, and the residue was added to the aqueous layer. The aqueous layer was extracted by adding hexane, and separated into an aqueous layer and an organic layer A. The aqueous layer was extracted once more with hexane, and separated into an aqueous layer and an organic layer B. Ethanol for azeotropic addition to the aqueous layer was added and distillation under reduced pressure was carried out to obtain a residue. The product was diluted with dichloromethane, dried over anhydrous MgSO 4 , filtered, and solvent distilled off to obtain residue A. The water and ethanol recovered at reduced pressure were distilled off under reduced pressure again to obtain residue B. The residue A and the residue B were combined and subjected to simple distillation (66 ° C./8 mmHg) to obtain 1,3-mG of purity> 99.5% or more. The organic layer A and the organic layer B were combined, dried over anhydrous MgSO 4 , filtered, and distilled under reduced pressure, and the remaining product was a mixture of Tr-1, 3-mG, Tr-1, and 2-mG (see Scheme 8 below).
[반응식 8]Scheme 8
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-133
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-133
실시예 10. 보호기의 교환Example 10 Replacement of Protectors
실시예 8을 통해 얻은 BGL003(fm) 528mg(2.00mmol), 1M의 염산 2mL(2.00mmol) 및 1 방울의 진한 황산을 함유한 메탄올 용액 2mL를 오일욕에서, 100℃에서 12시간 교반하여, 반응시켜, 포르말기를 떼어냈다.BGL003 (fm) 528 mg (2.00 mmol) obtained in Example 8, 2 mL (2.00 mmol) of 1 M hydrochloric acid and 2 mL of a methanol solution containing 1 drop of concentrated sulfuric acid were stirred in an oil bath at 100 ° C. for 12 hours to react. The formal group was removed.
얻어진 반응 용액에, 실온에서 고체 염기 “Amberlite(등록상표) IRA-96”(롬 앤드 하스사 제조의 이온교환 수지) 11g(10mmol)을 더하여, 실온에서 1시간 교반함으로써 중화하여, 고체 염기를 여과에 의해 분리했다. 메탄올과 물을 감압 증류 제거한 후, 얻어진 조생성물로부터 염화나트륨과 황산나트륨을 없애기 위해서 세라이트 여과를 실시하고, 세라이트 패드를 디옥산으로 세정한 후, 여과액으로부터 디옥산을 감압 증류 제거했다.11 g (10 mmol) of solid base "Amberlite (R) IRA-96" (ion exchange resin manufactured by Rohm and Haas) was added to the obtained reaction solution, and the mixture was neutralized by stirring at room temperature for 1 hour, and the solid base was filtered. Separated by. After methanol and water were distilled off under reduced pressure, celite filtration was carried out to remove sodium chloride and sodium sulfate from the crude product obtained, and after washing the celite pad with dioxane, dioxane was distilled off under reduced pressure from the filtrate.
얻어진 잔사와 2, 2-디메톡시메탄(아세톤디메틸아세탈;아세토나이드화 화합물) 0.738ml(6.00mmol)를 포함한 N, N'-디메틸포름알데히드 용액 2mL에, 실온에서 고체산촉매 “Amberlyst(등록상표) 15”(롬 앤드 하스사 제조의 촉매용 이온 교환 수지)를 39.5mg(0.2mmol) 더하고, 24시간 교반하여 반응시켰다.To 2 mL of N, N'-dimethylformaldehyde solution containing 0.738 ml (6.00 mmol) of the obtained residue and 2,2-dimethoxymethane (acetone dimethylacetal; acetonated compound) at room temperature, the solid acid catalyst "Amberlyst (registered trademark)" 39.5 mg (0.2 mmol) of 15 ”(the catalyst ion exchange resin manufactured by Rohm and Haas Co., Ltd.) were added, and it stirred for 24 hours and made it react.
얻어진 반응 용액으로부터 여과에 의해 고체산촉매를 분리했다. N, N'-디메틸포름알데히드를 감압 증류 제거하여, 얻어진 잔사를 실리카 겔 컬럼 크로마토그래피(디클로로메탄:아세톤=5:1(액량비))로 정제하고, 하기 화학식 4에 나타나는 아세토나이드기로 보호된 분기형 글리세롤 3량체:BGL003(Atn)(백색 고체, 수량 487mg, 수율 76.0%)을 얻었다.The solid acid catalyst was separated from the obtained reaction solution by filtration. N, N'-dimethylformaldehyde was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography (dichloromethane: acetone = 5: 1 (liquid ratio)) and protected with an acetonide group represented by the following formula (4). Branched glycerol trimer: BGL003 (Atn) (white solid, yield 487 mg, yield 76.0%) was obtained.
[화학식 4][Formula 4]
[규칙 제91조에 의한 정정 10.11.2011] 
Figure WO-DOC-MATHS-141
[Correction under Article 91 of the Rule 10.11.2011]
Figure WO-DOC-MATHS-141
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.The above description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
본 발명으로 얻어지는 글리세롤포르말의 5-히드록시-1, 3-디옥산(α, α'-이성체)은, 생리 활성 폴리펩티드 등의 안정성이나 수용성의 향상 기술, 양 친매성 물질이나 소수성 물질에 결합시켜 약제 캐리어로서 이용하는 기술, 피브레이트계 항고지혈증 화합물의 수용성을 향상시켜 의약으로서 이용하기 쉽게 하는 기술 등에 적용 가능한 분기형 글리세롤의 원료로서 유용하다. 또, 글리세롤포르말의 α, α'-이성체로부터는, 포르말기로 보호된 분기형 글리세롤 3량체나 아세토나이드기로 보호된 분기형 글리세롤 3량체를 합성하는 것도 가능하다.The 5-hydroxy-1, 3-dioxane (α, α'-isomer) of glycerol formal obtained in the present invention is bound to a stability or water solubility improvement technique such as a physiologically active polypeptide, a biphilic substance or a hydrophobic substance. It is useful as a raw material of branched glycerol applicable to the technique used as a drug carrier, the technique which improves the water solubility of a fibrate type antihyperlipidemic compound, and makes it easy to use as a medicine. In addition, it is also possible to synthesize the branched glycerol trimer protected by a formal group or the branched glycerol trimer protected by an acetonide group from the alpha and alpha -isomers of glycerol formal.

Claims (5)

  1. (a) 5-히드록시-1, 3-디옥산과 4-히드록시메틸-1, 3-디옥소란의 혼합물을 출발 원료로 하여, 산촉매인 진한 황산을 첨가하고 40~100℃에서 가열하여, 출발 원료보다 5-히드록시-1, 3-디옥산의 비율이 높아진 혼합물을 얻는 단계; 및(a) Using a mixture of 5-hydroxy-1, 3-dioxane and 4-hydroxymethyl-1, 3-dioxolane as starting materials, concentrated sulfuric acid as an acid catalyst is added and heated at 40-100 캜. Obtaining a mixture having a higher ratio of 5-hydroxy-1 and 3-dioxane than starting materials; And
    (b) 상기 혼합물을 염화피발로일 및 염화트리틸과 반응시키고, 미반응의 5-히드록시-1, 3-디옥산을 증류 혹은 추출조작에 의해 분리 정제하는 단계를 포함하는 5-히드록시-1, 3-디옥산의 제조 방법.(b) reacting the mixture with pivaloyl chloride and trityl chloride, and separating and purifying the unreacted 5-hydroxy-1,3-dioxane by distillation or extraction. -1, 3-dioxane manufacturing method.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 출발 원료보다 5-히드록시-1, 3-디옥산의 비율이 높아진 혼합물을 얻는 단계는 글리세롤을 출발 원료 혼합물 1몰에 대하여 0.1 내지 5몰 첨가하는 것을 특징으로 하는, 제조 방법.Obtaining a mixture having a higher ratio of 5-hydroxy-1 and 3-dioxane than the starting raw material is characterized in that the addition of 0.1 to 5 moles of glycerol per 1 mole of the starting raw material mixture.
  3. [규칙 제91조에 의한 정정 10.11.2011]
    제 1 항의 5-히드록시-1, 3-디옥산을 원료로 사용하는 것을 특징으로 하는 화학식 3으로 나타나는 포르말기로 보호된 분기형 글리세롤 3량체의 제조 방법.
    [화학식 3]
    Figure WO-DOC-MATHS-3
    [Correction under Article 91 of the Rule 10.11.2011]
    A method for producing a formal group-protected branched glycerol trimer represented by the formula (3), characterized by using the 5-hydroxy-1, 3-dioxane of claim 1 as a raw material.
    [Formula 3]
    Figure WO-DOC-MATHS-3
  4. [규칙 제91조에 의한 정정 10.11.2011]
    제 1 항의 5-히드록시-1, 3-디옥산을 원료로 사용하여 제조된 포르말기로 보호된 분기형 글리세롤 3량체[화학식 3].
    [화학식 3]
    Figure WO-DOC-MATHS-4
    [Correction under Article 91 of the Rule 10.11.2011]
    A formal group-protected branched glycerol trimer prepared by using 5-hydroxy-1 and 3-dioxane according to claim 1 [Formula 3].
    [Formula 3]
    Figure WO-DOC-MATHS-4
  5. [규칙 제91조에 의한 정정 10.11.2011]
    제 4 항의 포르말기로 보호된 분기형 글리세롤 3량체를 원료로 사용하는 것을 특징으로 하는, 아세토나이드기로 보호된 분기형 글리세롤 3량체[화학식 4]의 제조 방법.
    [화학식 4]
    Figure WO-DOC-MATHS-5
    [Correction under Article 91 of the Rule 10.11.2011]
    The method for producing a branched glycerol trimer protected with an acetonide group, wherein the branched glycerol trimer protected with the formal group of claim 4 is used as a raw material.
    [Formula 4]
    Figure WO-DOC-MATHS-5
PCT/KR2011/006631 2011-09-07 2011-09-07 Method for preparing 5-hydroxy-1,3-dioxane and method for preparing branched glycerol trimers using 5-hydroxy-1,3-dioxane as a raw material WO2013035899A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/006631 WO2013035899A1 (en) 2011-09-07 2011-09-07 Method for preparing 5-hydroxy-1,3-dioxane and method for preparing branched glycerol trimers using 5-hydroxy-1,3-dioxane as a raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/006631 WO2013035899A1 (en) 2011-09-07 2011-09-07 Method for preparing 5-hydroxy-1,3-dioxane and method for preparing branched glycerol trimers using 5-hydroxy-1,3-dioxane as a raw material

Publications (1)

Publication Number Publication Date
WO2013035899A1 true WO2013035899A1 (en) 2013-03-14

Family

ID=47832326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006631 WO2013035899A1 (en) 2011-09-07 2011-09-07 Method for preparing 5-hydroxy-1,3-dioxane and method for preparing branched glycerol trimers using 5-hydroxy-1,3-dioxane as a raw material

Country Status (1)

Country Link
WO (1) WO2013035899A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105473347A (en) * 2013-09-09 2016-04-06 住友橡胶工业株式会社 Pneumatic tire
WO2020255741A1 (en) * 2019-06-17 2020-12-24 有限会社ケミカル電子 Hydrophilic metal-surface treatment agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666486A1 (en) * 2003-09-03 2006-06-07 Kyowa Hakko Kogyo Co., Ltd Compound modified with glycerol derivative
WO2008093655A1 (en) * 2007-01-30 2008-08-07 The University Of Tokushima Polyalcohol compound and pharmaceutical agent
WO2010022263A2 (en) * 2008-08-20 2010-02-25 Futurefuel Chemical Company Process for the preparation of glycerol formal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666486A1 (en) * 2003-09-03 2006-06-07 Kyowa Hakko Kogyo Co., Ltd Compound modified with glycerol derivative
WO2008093655A1 (en) * 2007-01-30 2008-08-07 The University Of Tokushima Polyalcohol compound and pharmaceutical agent
WO2010022263A2 (en) * 2008-08-20 2010-02-25 Futurefuel Chemical Company Process for the preparation of glycerol formal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HISAO NEMOTO ET AL.: "An efficient and practical method for the preparation of a brached oligoglycerol with acetonide protection groups", CHEMISTRY LETTERS, vol. 39, no. 8, 2010, pages 856 - 857 *
HISAO NEMOTO ET AL.: "Synthesis of Branched Heptaglycerol Bearing Eight Hydroxyl Groups with Four Cyclic Protecting Groups", SYNLETT, no. 13, 2007, pages 2091 - 2095 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105473347A (en) * 2013-09-09 2016-04-06 住友橡胶工业株式会社 Pneumatic tire
WO2020255741A1 (en) * 2019-06-17 2020-12-24 有限会社ケミカル電子 Hydrophilic metal-surface treatment agent
JP2020204076A (en) * 2019-06-17 2020-12-24 有限会社ケミカル電子 Hydrophilic metal surface treatment agent
TWI728843B (en) * 2019-06-17 2021-05-21 日商化學電子有限公司 Hydrophilic metal surface treatment agent, method of treating metal surface, protecting branched glycerin derivative, and method for manufacturing protected branched glycerin derivative
US11124881B2 (en) 2019-06-17 2021-09-21 Chemical Denshi Co., Ltd. Hydrophilic metal surface treatment agent

Similar Documents

Publication Publication Date Title
KR100695964B1 (en) A process for preparing 2-amino malonic acid derivatives
JP4725976B2 (en) Method for producing anticonvulsant derivatives of topiramate
US20070197807A1 (en) Derivatives of unsaturated, cyclic organic acids
CN117164597B (en) SMTP-0 synthesis method
KR100687820B1 (en) Process for the preparation of naproxene nitroxyalkylesters
EP3543229B1 (en) Method for preparing optically pure (r)-4-n-propyl-dihydrofuran-2(3h)-one
WO2013035899A1 (en) Method for preparing 5-hydroxy-1,3-dioxane and method for preparing branched glycerol trimers using 5-hydroxy-1,3-dioxane as a raw material
EP2852583A1 (en) Sulfilimine and sulphoxide methods for producing festinavir
US5130472A (en) Total synthesis of erbstatin analogs
Nemoto et al. An efficient and practical method for the preparation of a branched oligoglycerol with acetonide protection groups
KR20120091971A (en) Preparation method for entecavir
US20100217033A1 (en) Method for Producing Polymerizable Hydroxydiamantyl Ester Compound
KR20080079833A (en) Methods for the stereoselective preparation and separation of tri-o-acetyl-5-deoxy-beta;-d-ribofuranose
KR100365020B1 (en) Preparation method of arbutin intermediats
EP1167365B1 (en) Method of producing sesamol formic acid ester and sesamol
EP3114112B1 (en) Crystalline derivatives of (s)-1-((2r,3r,4s,5s)-5-allyl-3-methoxy-4-(tosylmethyl)tetrahydrofuran-2-yl)-3-aminopropan-2-ol
JP5636692B2 (en) Method for producing 5-hydroxy-1,3-dioxane and method for producing branched glycerol trimer using 5-hydroxy-1,3-dioxane obtained by the method as a raw material
KR101071440B1 (en) USAGE OF POLY-3-HYDROXYBUTYRATES IN PREPARATION OF β-LACTAM COMPOUNDS
US20040192958A1 (en) Process for preparing derivatives of 4-halobutyraldehyde
KR930005987B1 (en) Preparation of glucose derivative
JP3904270B2 (en) Production method of etoposides
WO2012018235A2 (en) Method for preparing decitabine with improved yield and purity
FI78075B (en) FOERFARANDE OCH MELLANPRODUKT FOER FRAMSTAELLNING AV 2-HYDROXIMETYL-3-HYDROXI-6- (1-HYDROXI-2-TERT.-BUTYLAMINOETHYL) PYRIDIN ELLER PIRBUTEROL.
CN110343117A (en) The preparation method of artemisinin derivative
US5189185A (en) Process for preparing furan compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/06/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11871961

Country of ref document: EP

Kind code of ref document: A1