KR20070101716A - Process for preparing 1,3-propenesultone - Google Patents

Process for preparing 1,3-propenesultone Download PDF

Info

Publication number
KR20070101716A
KR20070101716A KR1020060033221A KR20060033221A KR20070101716A KR 20070101716 A KR20070101716 A KR 20070101716A KR 1020060033221 A KR1020060033221 A KR 1020060033221A KR 20060033221 A KR20060033221 A KR 20060033221A KR 20070101716 A KR20070101716 A KR 20070101716A
Authority
KR
South Korea
Prior art keywords
propanesultone
propenesultone
reaction
halogen
substituted
Prior art date
Application number
KR1020060033221A
Other languages
Korean (ko)
Other versions
KR100895191B1 (en
Inventor
안정애
하용준
정현민
이철행
박진현
임영민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020060033221A priority Critical patent/KR100895191B1/en
Publication of KR20070101716A publication Critical patent/KR20070101716A/en
Application granted granted Critical
Publication of KR100895191B1 publication Critical patent/KR100895191B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/04Five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/39Heterocyclic compounds having sulfur as a ring hetero atom having oxygen in the same ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B39/00Halogenation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

A process for preparing 1,3-propenesultone is provided to simplify the reaction device and preparation procedures, and improve selectivity and yield of preparation being available industrially by performing the process under mild conditions, making no unstable intermediates and eliminating high temperature and high vacuum processes. A process for preparing 1,3-propenesultone represented by the formula(1) comprises the steps of: (i) performing halogenation of 1,3-propanesultone by using a radical initiator and a halogenization reagent to prepare halogen-substituted 1,3-propanesultone; and (ii) performing dehydrohalogenation of the halogen-substituted 1,3-propanesultone with a base, wherein the radical initiator is azo-based compound or peroxide; the halogenation reagent is fluorine, chlorine, bromine, iodide, sulfuryl chloride(SO2Cl2), thionyl chloride, oxalyl chloride, sulfuryl fluoride, thionyl bromide or oxalyl bromide; and the base is NR^1R^2R^3 or pyridine in which R^1 to R^3 are each independently C1-12 aliphatic hydrocarbon or H.

Description

1,3-프로펜설톤의 제조방법 {Process for preparing 1,3-propenesultone}Process for preparing 1,3-propenesultone {Process for preparing 1,3-propenesultone}

본 발명은 1,3-프로펜설톤(1,3-propenesultone)의 제조방법에 관한 것으로서, 상세하게는 1,3-프로판설톤(1,3-propanesultone)을 할로겐화하고, 이어서 할로겐수소 제거 반응을 수행하여, 온화한(mild) 반응 조건과 간단한 공정을 통해 1,3-프로펜설톤을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing 1,3-propenesultone, and specifically, halogenates 1,3-propanesultone, and then removes a halogenated reaction. And to a process for producing 1,3-propenesultone through mild reaction conditions and a simple process.

1,3-프로펜설톤은 의약품의 중간체, 리튬이온 이차전지의 전해액용 첨가제 등으로 사용되는 공지된 화합물이다. 1,3-propenesultone is a known compound used as an intermediate for pharmaceuticals, an additive for an electrolyte solution of a lithium ion secondary battery, and the like.

Chem. Commun. 1997, 611 및 Tetrahedron, 1999, 2245 (W. H. Lee 등)에는 1,3-프로펜설톤을 allyl bromide 화합물로부터 설폰화 반응, 브롬화 반응, 그리고 고리화 반응을 통해 2-bromo-1,3-propanesultone을 합성하고, 이로부터 1,3-프로펜설톤을 합성하는 방법이 제시되어 있다. Chem. Commun. 1997, 611 and Tetrahedron, 1999, 2245 (WH Lee et al.) Reported the use of 1,3-propenesultone from allyl bromide compounds for 2-bromo-1,3-propanesultone through sulfonation, bromination, and cyclization. A method of synthesizing and synthesizing 1,3-propenesultone is shown.

상기 방법에 의하면, 1,3-프로펜설톤을 합성하기 위해서는 중간 물질 2,3-dibromosulfonic acid를 합성하고 이를 고리화 반응시켜 2-bromo-1,3-propanesultone을 생성해야 한다. 이 반응 단계에서는 2mmHg 이하의 감압에서 130℃ 이상의 온도가 필요하나, 이 조건에서 2,3-dibromosulfonic acid 및 생성물인 2-bromo-1,3-propanesultone은 분해 반응이 함께 나타나서 수율의 저하가 심하게 된다. 특히, 반응물의 양이 증가함에 따라 장시간 가열 조건이 심화되어 sulfonester 형태로 연결된 올리고머 및 고분자 물질이 함께 생성되는 것으로 보이며, 이로부터 원하는 생성물인 2-bromo-1,3-propanesultone의 감압 증류 분리는 더욱 어려워지는 경향을 보인다. 따라서 이 방법을 공업적으로 이용하기에 어려운 문제점이 있다..According to the above method, in order to synthesize 1,3-propenesultone, intermediate 2,3-dibromosulfonic acid should be synthesized and cyclized to produce 2-bromo-1,3-propanesultone. In this reaction step, a temperature of 130 ° C. or higher is required at a reduced pressure of 2 mmHg or less, but under these conditions, 2,3-dibromosulfonic acid and the product 2-bromo-1,3-propanesultone are decomposed together, resulting in a severe decrease in yield. . In particular, as the amount of reactants increases, the heating conditions intensify for a long time, and thus oligomers and polymers linked together in the form of sulfonesters appear to be produced together. From this, vacuum distillation of 2-bromo-1,3-propanesultone, a desired product It tends to be difficult. Therefore, there is a problem that this method is difficult to use industrially.

또한, Synlett, 2002, 2019 (Peter Metz 등)에는 vinyl 중간체로부터 ring closing metathesis를 이용하는 합성법이 제시되어 있으나, vinyl 중간체의 합성 자체가 매우 용이하지 않아서 공업적으로 이용하기 어렵다. In addition, Synlett, 2002, 2019 (Peter Metz et al.) Proposes a synthesis method using ring closing metathesis from vinyl intermediates, but the synthesis of vinyl intermediates is not very easy and thus difficult to use industrially.

따라서, 온화한(mild) 반응 조건과 간단한 공정을 통해 1,3-프로펜설톤을 공업적으로 용이하게 제조할 수 있는 새로운 방법이 요구된다.Therefore, there is a need for a new method for industrially producing 1,3-propenesultone easily through mild reaction conditions and simple processes.

한편, 1,3-프로판설톤은 1.3-프로펜설톤에 비해 훨씬 제조가 용이하다. Chem. Ber. 952, 85, 160 (Manecke 등)에 의하면 상기 1,3-프로판설톤은 3-hydroxypropanesulfonic acid로부터 150 ℃에서 고리화 반응을 통해 합성된다. 상기 고리화 반응에서, 반응 전후 물질이 할로겐 치환체를 갖지 않고, 고온에서 분해가 진행되지 않으며, 고리화 후에 끓는점이 낮은 생성물이 얻어지는 점으로 인해 1,3-프로판설톤을 높은 수율로 얻을 수 있다.On the other hand, 1,3-propanesultone is much easier to manufacture than 1.3-propenesultone. Chem. Ber. According to 952, 85, 160 (Manecke et al.), The 1,3-propanesultone is synthesized from a 3-hydroxypropanesulfonic acid through a cyclization reaction at 150 ℃. In the cyclization reaction, 1,3-propanesultone can be obtained in high yield due to the fact that the material before and after the reaction does not have a halogen substituent, no decomposition proceeds at high temperature, and a low boiling point product is obtained after cyclization.

본 발명은 1,3-프로판설톤을 출발물질로 하고, 이의 할로겐화 반응 및 할로겐수소 제거 반응과 같이 온화한(mild) 반응 조건과 간단한 합성 공정을 통해, 1,3-프로펜설톤을 공업적으로 이용 가능한 수율로 용이하게 제조할 수 있는 방법을 제공하고자 한다.The present invention uses 1,3-propanesultone as a starting material, and industrially utilizes 1,3-propenesultone through mild reaction conditions and simple synthesis processes such as its halogenation reaction and hydrogen halide removal reaction. It is intended to provide a method which can be easily produced in possible yields.

본 발명은 i) 1,3-프로판설톤(1,3-propanesultone)에 할로겐화(halogenation) 반응을 진행하여 할로겐-치환된 1,3-프로판설톤을 준비하는 제1단계; 및 The present invention comprises the following steps: i) preparing a halogen-substituted 1,3-propanesultone by carrying out a halogenation reaction on 1,3-propanesultone; And

ii) 상기 할로겐-치환된 1,3-프로판설톤에 할로겐수소 제거(dehydrohalogenation) 반응을 진행하는 제2단계를 포함하는 하기 화학식 1의 1,3-프로펜설톤(1,3-propenesultone)의 제조방법을 제공한다.ii) Preparation of 1,3-propenesultone of Formula 1 comprising a second step of proceeding a dehydrohalogenation reaction to the halogen-substituted 1,3-propanesultone Provide a method.

Figure 112006025371503-PAT00002
Figure 112006025371503-PAT00002

또한, 본 발명은 상기 방법에 의해 제조된 1,3-프로펜설톤을 제공한다.The present invention also provides 1,3-propenesultone prepared by the above method.

이하, 본 발명을 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명의 제조방법은 1,3-프로판설톤을 출발물질로 하고, 할로겐화 반응 및 할로겐수소 제거 반응을 순차적으로 진행하여 1,3-프로펜설톤을 제조할 수 있다.In the production method of the present invention, 1,3-propanesultone may be used as a starting material, and 1,3-propenesultone may be prepared by sequentially performing a halogenation reaction and a hydrogen halide reaction.

본 발명의 제조방법에서 제1단계는 본 발명이 목적하는 최종 생성물인 1,3-프로펜설톤을 얻기 위한 중간물질로서 할로겐-치환된 1,3-프로판설톤을 얻는 단계로, 출발물질인 1,3-프로판설톤의 할로겐화 반응을 통해 이루어진다. 상기 할로겐- 치환된 1,3-프로판설톤은 1,3-프로판설톤의 2번 위치에 할로겐이 치환된 2-할로겐-1,3-프로판설톤이 바람직하고, 예를 들면, 2-클로로-1,3-프로판설톤 등이 있다.In the preparation method of the present invention, the first step is to obtain a halogen-substituted 1,3-propanesultone as an intermediate for obtaining 1,3-propenesultone, which is the final product of the present invention, and the starting material 1 Through the halogenation of, 3-propanesultone. The halogen-substituted 1,3-propanesultone is preferably 2-halogen-1,3-propanesultone substituted with halogen at position 2 of 1,3-propanesultone, for example, 2-chloro-1 , 3-propanesultone and the like.

이때, 상기 할로겐화 반응은 라디칼 개시제 및 할로겐화 시약을 사용하여 진행할 수 있다.In this case, the halogenation reaction may proceed using a radical initiator and a halogenation reagent.

상기 할로겐화 시약은, 예를 들면, 불소, 염소, 브롬, 요오드, 설푸릴 클로라이드(sulfuryl chloride, SO2Cl2), 티오닐 클로라이드(thionyl chloride), 옥사릴 클로라이드(oxalyl chloride), 설푸릴 플루오라이드(sulfuryl fluoride), 티오닐 브로마이드(thionyl bromide), 옥사릴 브로마이드(oxalyl bromide) 등을 사용할 수 있으며, 이들은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 바람직하게는 설푸릴 클로라이드(SO2Cl2)를 사용할 수 있다.The halogenating reagent may be, for example, fluorine, chlorine, bromine, iodine, sulfuryl chloride (SO 2 Cl 2 ), thionyl chloride, oxalyl chloride, sulfuryl fluoride (sulfuryl fluoride), thionyl bromide, and oxalyl bromide may be used, and these may be used alone or in combination of two or more thereof. Preferably sulfuryl chloride (SO 2 Cl 2 ) can be used.

상기 라디칼 개시제는 아조계 화합물, 과산화물 등을 사용할 수 있다.As the radical initiator, an azo compound, a peroxide, or the like can be used.

상기 아조계 화합물의 비제한적인 예로는 2,2'-아조비스이소부티로니트릴(2,2'-azobis(isobutyronitrile)), 2,2'-아조비스(2-메틸부티로니트릴) (2,2'-azobis(2-methylbutyronitrile)), 2,2'-아조비스(2-메틸발레로니트릴) (2,2'-azobis(2-methylvaleronitrile)), 2,2'-아조비스(2,3-디메틸부티로니트릴) (2,2'-azobis(2,3-dimethylbutyronitrile), 2,2'-아조비스(2-메틸카프로니트릴) (2,2'-azobis(2-methylcapronitrile)), 2,2'-아조비스(2,4-디메틸발레로니트릴) (2,2'-azobis(2,4-dimethylvaleronitrile)) 등이 있고, 상기 과산화물의 비제한적인 예로는 벤조일 퍼옥사이드(benzoyl peroxide), 아세틸 퍼옥사이드(acetyl peroxide), 다이-t-부틸 퍼옥사이드(di-tert-butyl peroxide), 하이드로전 퍼옥사이드(hydrogen peroxide) 등이 있으며, 이들은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 바람직하게는 2,2'-아조비스이소부티로니트릴(AIBN)을 사용할 수 있다.Non-limiting examples of the azo compound include 2,2'-azobisisobutyronitrile (2,2'-azobis (isobutyronitrile)), 2,2'-azobis (2-methylbutyronitrile) (2 , 2'-azobis (2-methylbutyronitrile)), 2,2'-azobis (2-methylvaleronitrile) (2,2'-azobis (2-methylvaleronitrile)), 2,2'-azobis (2 , 3-dimethylbutyronitrile) (2,2'-azobis (2,3-dimethylbutyronitrile), 2,2'-azobis (2-methylcapronitrile) (2,2'-azobis (2-methylcapronitrile)) , 2,2'-azobis (2,4-dimethylvaleronitrile) (2,2'-azobis (2,4-dimethylvaleronitrile)), and the like, and a non-limiting example of the peroxide is benzoyl peroxide (benzoyl peroxide, acetyl peroxide, di-tert-butyl peroxide, hydrogen peroxide, etc., which may be used alone or in combination of two or more thereof. Preferably 2,2'- azobisisobutyronitrile (AIBN) Can.

상기 할로겐화 반응의 반응 온도는 40℃ 내지 150℃ 범위가 적용될 수 있는데, 반응 온도가 너무 낮은 경우에는 할로겐화 반응에 많은 시간이 소요되거나 수율이 매우 낮을 수 있으며, 반대로 너무 높은 경우에는 반응의 부생성물이 급격히 증가하는 문제가 있어 바람직하지 못하다. 보다 바람직하게는, 안정적인 반응을 위하여 라디칼 개시제의 분해 온도 이상, 예를 들어, 라디칼 개시제로서 2,2'-아조비스이소부티로니트릴(AIBN)을 사용하는 경우에는 70℃ 이상으로 반응 온도를 조절할 수 있다.The reaction temperature of the halogenation reaction may be applied in the range of 40 ℃ to 150 ℃, if the reaction temperature is too low, the halogenation reaction may take a lot of time or the yield is very low, on the contrary if too high by-products of the reaction There is a problem that increases rapidly, which is undesirable. More preferably, the reaction temperature is adjusted to 70 ° C. or higher when using a 2,2′-azobisisobutyronitrile (AIBN) above the decomposition temperature of the radical initiator for stable reaction. Can be.

예를 들어, 상기 할로겐화 반응 중 염소화 반응은, 설정 반응 온도인 80℃에서 1,3-프로판설톤이 액상이므로, 별도의 용매 없이 1,3-프로판설톤을 교반하면서 라디칼 개시제인 2,2'-아조비스이소부티로니트릴 (0.3 mol%)과 설푸릴 클로라이드(SO2Cl2)를 적가하여 진행할 수 있다. 이때, SO2Cl2의 비반응성 분해를 최소화하기 위해서는 적가 속도를 느리게 할수록 수율의 증가에 유리하지만, 라디칼 반응이 연속적으로 진행되도록 유지하기 위해서는 1 volume%/min 정도의 적가 속도가 바람직하다.For example, the chlorination reaction in the halogenation reaction, since 1,3-propanesultone is a liquid phase at a set reaction temperature of 80 ℃, 2,2'- which is a radical initiator while stirring 1,3-propanesultone without a separate solvent Azobisisobutyronitrile (0.3 mol%) and sulfuryl chloride (SO 2 Cl 2 ) can be added dropwise. In this case, in order to minimize the non-reactive decomposition of SO 2 Cl 2 , the slower the dropping rate is advantageous in increasing the yield, but the dropping rate of about 1 volume% / min is preferable in order to maintain the radical reaction continuously.

할로겐화 반응의 종료는 출발물질인 1,3-프로판설톤이 사라지는 정도를 기준 으로 하는 바, 이는 가스 크로마토그래피(GC)에서 그 잔류량을 확인할 수 있다. 80℃에서 3 시간의 적가 및 교반을 행하는 경우, GC상 70% ~ 90%의 전환률로 전환이 진행된다. 1,3-프로판설톤 대비 SO2Cl2를 1.5 당량으로 과량 적가하면 100% 전환률로 반응을 진행시킬 수 있다.The termination of the halogenation reaction is based on the disappearance of the starting material 1,3-propanesultone, which can be confirmed by gas chromatography (GC). In the case of dropwise addition and stirring at 80 ° C. for 3 hours, the conversion proceeds at a conversion rate of 70% to 90% in the GC phase. When the amount of SO 2 Cl 2 is excessively added dropwise to 1.5 equivalents of 1,3-propanesultone, the reaction can proceed at 100% conversion.

상기 할로겐화 반응의 생성물은 1H-NMR 및 GC 등을 통해 확인할 수 있고, 1.3-프로판설톤의 2번, 또는 3번 위치에 할로겐-치환된 1,3-프로판설톤을 얻을 수 있다. 예를 들어, 상기 할로겐화 반응 중 염소화 반응의 생성물은 1.3-프로판설톤의 2번, 또는 3번 위치에 Cl이 치환된 2-클로로-1,3-프로판설톤과 3-클로로-1,3-프로판설톤이 2:5에서 3:4의 몰비로 생성될 수 있다. The product of the halogenation reaction can be confirmed through 1 H-NMR and GC, etc., to obtain a halogen-substituted 1,3-propanesultone at position 2 or 3 of 1.3-propanesultone. For example, the product of the chlorination reaction in the halogenation reaction is 2-chloro-1,3-propanesultone and 3-chloro-1,3-propane substituted with Cl at position 2 or 3 of 1.3-propanesultone. Sultones can be produced in a molar ratio of 2: 5 to 3: 4.

상기 1.3-프로판설톤의 3번 위치에 할로겐이 치환된 3-할로겐-1,3-프로판설톤은 2번 위치 proton (H)의 acidity가 매우 낮아서 아민과 같은 염기에 의한 할로겐수소 제거(dehydrohalogenation) 반응의 반응성이 극히 낮아지는 경향을 보이므로, 다음 단계인 제거 반응 (elimination reaction)에서 반응하지 않고 계속 잔류하게 된다. 따라서, 원하는 중간 생성물인 2-할로겐-1,3-프로판설톤, 예를 들면 염소화 반응의 생성물들 중 2-클로로-1,3-프로판설톤 만을 따로 분리하여 제2단계의 반응에 사용할 수도 있고, 별도의 분리, 정제 과정 없이 제2단계의 제거 반응에 사용할 수도 있다.The halogen-substituted 3-halogen-1,3-propanesultone at position 3 of 1.3-propanesultone has a very low acidity at position 2 of proton (H), thus dehydrohalogenation by a base such as an amine. Since the reactivity of s tends to be extremely low, it does not react in the next step of elimination reaction and remains. Thus, the desired intermediate product, 2-halogen-1,3-propanesultone, for example, only 2-chloro-1,3-propanesultone among the products of the chlorination reaction may be separated and used for the second step reaction, It can be used for the removal reaction of the second step without separate separation and purification.

위와 같이 별도의 분리, 정제 과정 없이 제2단계에 사용하여 할로겐수소 제거 반응을 진행할 경우, 제1단계의 할로겐화 반응으로 생성된 2종의 위치 이성질체 들, 예를 들어, 2-클로로-1,3-프로판설톤과 3-클로로-1,3-프로판설톤의 혼합물은 감압하여 반응 혼합물에 용해된 산(예: HCl) 및 SO2 기체들을 대부분 제거한 다음, 추가적인 분리 공정 없이 염기(base)에 의한 할로겐수소 제거(dehydrohalogenation) 반응을 진행할 수 있다.When the hydrogen halide reaction is performed in the second step without a separate separation and purification as described above, two positional isomers generated by the first halogenation reaction, for example, 2-chloro-1,3 The mixture of propanesultone and 3-chloro-1,3-propanesultone is depressurized to remove most of the acid (e.g. HCl) and SO 2 gases dissolved in the reaction mixture, then halogenated by base without further separation. The dehydrohalogenation reaction can proceed.

예를 들어, 제2단계의 염화수소 제거(dehydrochlorination) 반응은 제1단계의 염소화 반응으로부터 생성된 2-클로로-1,3-프로판설톤을 아민과 같은 염기(base)와 반응시켜 1,3-프로펜설톤을 합성할 수 있다.For example, the second stage of dehydrochlorination reaction involves reacting 2-chloro-1,3-propanesultone generated from the first stage of chlorination with a base such as an amine to give 1,3-pro Pensultone can be synthesized.

제2단계의 할로겐수소 제거 반응에 사용하는 염기(base)는 약염기를 사용하는 것이 바람직하다. 강염기를 사용할 경우, 생성된 1,3-프로펜설톤의 고리 열림 반응(ring opening reaction)이 일어날 수 있으므로 바람직하지 않다.It is preferable to use a weak base as the base used in the second step of removing hydrogen. If a strong base is used, it is not preferable because a ring opening reaction of the produced 1,3-propenesultone may occur.

상기 염기(base)의 비제한적인 예로는 NR1R2R3 (이때, R1 내지 R3는 각각 독립적으로 탄소수 1~12의 지방족 탄화수소, 또는 H)과 같은 1차 아민, 2차 아민, 3차 아민 및 피리딘(pyridine) 등이 있고, 이들은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 상기 2차 아민의 일예로는 디이소프로필아민(diisopropylamine)이 있고, 3차 아민의 일예로는 트리에틸아민(triethylamine)이 있다.Non-limiting examples of the base include NR 1 R 2 R 3 Wherein R 1 to R 3 are each independently an aliphatic hydrocarbon having 1 to 12 carbon atoms, or H), a secondary amine, a tertiary amine, pyridine, and the like, and these are alone or 2 It can mix and use species. One example of the secondary amine is diisopropylamine, and one example of the tertiary amine is triethylamine.

염기에 의한 할로겐-치환된 1,3-프로판설톤의 할로겐수소 제거 반응은 용매에 용해된 할로겐-치환된 1,3-프로판설톤에 아민과 같은 염기를 상온에서 적가하여 이루어질 수 있다. 이때, 염기를 적가하면 즉시 할로겐수소 제거 반응이 진행되며, 가스 크로마토그래피(GC)로 반응의 진행 여부를 확인할 수 있는데, 적가 후 상온에 서 1시간 정도이면 2-할로겐-1,3-프로판설톤이 완전히 없어지는 것을 확인할 수 있다.The dehydrohalation reaction of halogen-substituted 1,3-propanesultone with a base can be accomplished by dropwise addition of a base such as an amine to halogen-substituted 1,3-propanesultone dissolved in a solvent at room temperature. At this time, when the base is added dropwise, the hydrogen dehydrogenation reaction proceeds immediately, and the reaction can be confirmed by gas chromatography (GC). If the reaction is performed at room temperature for about 1 hour, 2-halogen-1,3-propanesultone You can see that this disappears completely.

상기 할로겐수소 제거 반응에서 반응물의 양이 증가될 경우에는 적절한 냉각 장치를 사용하여 상온(25℃) 이하를 유지하는 것이 바람직하다. 상온 이상의 온도에서는 부반응으로서 염기와 sulfonyl기와의 반응에 의한 고리 열림 반응이 진행될 수 있다. When the amount of reactants is increased in the hydrogen halide removal reaction, it is preferable to maintain the room temperature (25 ° C.) or less using an appropriate cooling device. At a temperature above room temperature, the ring opening reaction may be performed by reaction between a base and a sulfonyl group as a side reaction.

상기 할로겐수소 제거 반응의 용매로는 방향족 화합물, 에테르, 에스테르 등을 사용할 수 있다. 방향족 화합물의 비제한적인 예로는 벤젠, 톨루엔 등이 있고, 에테르의 예로는 디에틸에테르, 테트라히드로퓨란(THF) 등이 있고, 에스테르의 예로는 에틸 아세테이트, 디메틸 카보네이트 등이 있으며, 이들은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.An aromatic compound, an ether, an ester, etc. can be used as a solvent of the said hydrogen halide removal reaction. Non-limiting examples of aromatic compounds include benzene, toluene, and the like. Examples of ethers include diethyl ether and tetrahydrofuran (THF). Examples of esters include ethyl acetate, dimethyl carbonate, and the like. Two or more kinds can be mixed and used.

그러나 에탄올 등의 알코올은 2-할로겐-1,3-프로판설톤과 반응을 일으킬 수 있으므로 용매로 사용할 수 없으며, chloroform, dichloromethane, 1,2-dichloroethane 등의 알킬 할로겐화 용매들은 염기와 서서히 반응하여 alkylammonium chloride의 부산물을 생성하므로 적당하지 않다.However, alcohols such as ethanol can react with 2-halogen-1,3-propanesultone, so they cannot be used as solvents. Alkyl halide solvents such as chloroform, dichloromethane and 1,2-dichloroethane react slowly with bases to form alkylammonium chloride. It is not suitable because it produces by-products.

할로겐수소 제거 반응 후 반응 혼합물에는 1,3-프로펜설톤, 미반응 3-할로겐-1,3-프로판설톤, 1,3-프로판설톤, 알킬암모늄 부산물과 여분의 염기(base)가 포함될 수 있다. 반응에서 생성된 염화 알킬암모늄과 같은 염은 여과를 통해 제거하고 여과액을 농축한 후, ethyl acetate에 녹여 불용 성분을 여과로 제거하고 다시 농축한 후, 이를 chloroform에서 재결정하면 흰색 고체로서 1,3-프로펜설톤을 얻을 수 있다. 통상적으로 1,3-프로판설톤 대비 35~40% 수율로 얻을 수 있고, 상기 정제 과정을 2회 반복하면 99.5% 이상의 순도(GC)로 정제된 1,3-프로펜설톤을 얻을 수 있다.After the dehydrohalation reaction, the reaction mixture may include 1,3-propenesultone, unreacted 3-halogen-1,3-propanesultone, 1,3-propanesultone, alkylammonium by-products and extra bases. . Salts such as alkylammonium chloride produced in the reaction are removed by filtration, the filtrate is concentrated, dissolved in ethyl acetate, the insoluble components are removed by filtration and concentrated again, and then recrystallized from chloroform as a white solid. -You can get propenesultone. Typically can be obtained in 35 ~ 40% yield compared to 1,3-propanesultone, and repeating the purification process twice can obtain 1,3-propenesultone purified with a purity (GC) of at least 99.5%.

[실시예]EXAMPLE

이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples. However, the following examples are merely to illustrate the present invention and the present invention is not limited by the following examples.

각 성분의 함량은 가스 크로마토그래프(Agilient Technologies, 6890N, column : J&W Scientific HP-5)의 검출기(detector, FID) 상의 피크의 면적%로 나타내었다.The content of each component is expressed as the area% of the peak on the detector (FID) of the gas chromatograph (Agilient Technologies, 6890N, column: J & W Scientific HP-5).

(실시예 1: 1,3-프로펜설톤의 제조)Example 1: Preparation of 1,3-propenesultone

Figure 112006025371503-PAT00003
Figure 112006025371503-PAT00003

교반기 및 콘덴서가 장치된 4L 반응기에 1,3-프로판설톤 2kg을 넣고 80 ℃에서 약 30분간 질소로 purge 하였다. 반응기 헤드에 장치된 dropping funnel에 SO2Cl2 1710 mL를 넣었다. 2,2'-azobis(isobutyronitrile)(AIBN) 8g을 80 mL dichloromethane에 녹여 최초 7ml를 투입하였고, 5분 동안 반응 혼합물을 교반한 후, SO2Cl2를 1v/v%/min 의 속도로 천천히 적가하였다. 또한, 30분마다 AIBN 용액 7mL씩을 투입하였다. 2 kg of 1,3-propanesultone was placed in a 4L reactor equipped with a stirrer and a condenser, and purged with nitrogen at 80 ° C. for about 30 minutes. 1710 mL of SO 2 Cl 2 was added to a dropping funnel mounted on the reactor head. 8 g of 2,2'-azobis (isobutyronitrile) (AIBN) was dissolved in 80 mL dichloromethane, and the first 7 ml were added. After stirring the reaction mixture for 5 minutes, SO 2 Cl 2 was slowly added at a rate of 1v / v% / min. Added dropwise. In addition, 7 mL of AIBN solution was added every 30 minutes.

반응에서 발생하는 HCl 기체는 콘덴서에 연결된 포화 NaOH 수용액이 담긴 base trap에서 중화시켰다. 적가가 끝난 후 반응 온도를 80℃로 하여 1시간 동안 교반하였다. 1시간의 교반을 유지한 뒤 반응기의 온도를 상온으로 내린 후, 12시간 동안 질소를 반응 혼합물 중에 purge 하였다.The HCl gas generated in the reaction was neutralized in a base trap containing saturated aqueous NaOH solution connected to a condenser. After the addition was completed, the reaction temperature was stirred at 80 ° C. for 1 hour. After maintaining the stirring for 1 hour, the temperature of the reactor was lowered to room temperature, and nitrogen was purge in the reaction mixture for 12 hours.

얻어진 클로로-1,3-프로판설톤 혼합물을 1.5L 벤젠에 녹이고 triethylamine 852g을 상온에서 천천히 적가한 후 1시간 동안 교반시켰다. 반응 완료 후 반응 혼합물에 포함된 고체 염(triethylammonium chloride)은 여과지를 통하여 여과하였고, 여과액은 회전 증발기(rotory evaporator)를 이용하여 벤젠과 triethylamine을 제거하였다. 이어서, 반응 혼합물을 클로로포름에 녹인 후, 4 ℃ 조건에서 재결정을 하여 백색 고체의 1,3-프로펜설톤을 얻었다. 재결정을 2회 반복하여 760g (38% 수율), 99.5% (GC peak area) 순도로 1,3-프로펜설톤을 얻었다. The resulting chloro-1,3-propanesultone mixture was dissolved in 1.5L benzene, and 852 g of triethylamine was slowly added dropwise at room temperature, followed by stirring for 1 hour. After completion of the reaction, the solid salt (triethylammonium chloride) included in the reaction mixture was filtered through a filter paper, and the filtrate was removed by benzene and triethylamine by using a rotary evaporator. Subsequently, the reaction mixture was dissolved in chloroform and recrystallized at 4 ° C. to give 1,3-propenesultone as a white solid. Recrystallization was repeated twice to obtain 1,3-propenesultone with 760 g (38% yield) and 99.5% (GC peak area) purity.

1,3-프로펜설톤 및 중간체인 2-클로로-1,3-프로판설톤은 NMR 및 Mass Spectroscopy로 확인하였다. 1,3-propenesultone and the intermediate 2-chloro-1,3-propanesultone were confirmed by NMR and Mass Spectroscopy.

1,3-프로펜설톤1,3-propenesultone

1H NMR (400MHz, DMSO-d6): δ 7.45~7.43 (m, 1H), 7.40~7.38 (m, 1H), 5.25~5.24 (t, 2H). 1 H NMR (400 MHz, DMSO-d 6 ): δ 7.45-7.43 (m, 1H), 7.40-77.38 (m, 1H), 5.25-5.24 (t, 2H).

13C NMR (100MHz, DMSO-d6): δ 139.6, 123.2, 73.5. 13 C NMR (100 MHz, DMSO-d 6 ): δ 139.6, 123.2, 73.5.

MS (EI, 70eV) m/z (120, 101, 91, 86, 66, 58, 48, 39, 29, 27).MS (EI, 70 eV) m / z (120, 101, 91, 86, 66, 58, 48, 39, 29, 27).

2-클로로-1,3-프로판설톤2-chloro-1,3-propanesultone

1H NMR (400MHz, CDCl3): δ 4.91 (m. 1H), 4.78~4.74 (dd, 1H) , 4.52~4.48 (dd, 1H), 3.82~3.80 (dd, 1H), 3.59~3.57 (m, 1H). 1 H NMR (400 MHz, CDCl 3 ): δ 4.91 (m. 1H), 4.78 to 4.74 (dd, 1H), 4.52 to 4.48 (dd, 1H), 3.82 to 3.80 (dd, 1H), 3.59 to 3.57 (m , 1H).

MS (EI, 70eV) m/z (64, 62, 48, 39, 27).MS (EI, 70 eV) m / z (64, 62, 48, 39, 27).

본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 사상 및 범위 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이며, 본 발명은 전술한 예시적인 실시예로 제한되는 것으로 간주되어서는 안 된다. 또한, 본 발명은 알킬(alkyl)이 치환된 1,3-프로펜설톤 등과 같은 1,3-프로펜설톤 유도체의 제조에도 적용할 수 있는 것이므로, 본 발명의 방법에 따른 1,3-프로펜설톤 유도체의 제조도 본 발명의 범주에 포함된다.Those skilled in the art to which the present invention pertains will be able to perform various applications and modifications within the spirit and scope of the present invention based on the above contents, and the present invention is limited to the above-described exemplary embodiments. It should not be considered. In addition, the present invention is also applicable to the production of 1,3-propenesultone derivatives such as alkyl substituted 1,3-propenesultone, 1,3-propene according to the method of the present invention Preparation of sultone derivatives is also within the scope of the present invention.

이상 설명한 바와 같이, 본 발명에 따른 1,3-프로펜설톤의 제조방법은 온화한(mild) 반응 조건을 이용하고, 불안정한 중간체를 거치지 않으며, 고온 고진공의 공정이 없는 2단계의 반응을 통해 제조가 가능한 방법이다. 따라서, 반응장치 및 공정이 단순해지고, 높은 선택성 및 수율로 1,3-프로펜설톤을 얻을 수 있다. 또한, 본 발명의 제조방법은 리튬이온 이차전지의 전해액용 첨가제, 의약품의 중간체 등의 다양한 용도로 사용되는 1,3-프로펜설톤의 제조에 효과적으로 적용될 수 있다.As described above, the method for preparing 1,3-propenesultone according to the present invention utilizes mild reaction conditions, does not pass through an unstable intermediate, and is prepared through a two-step reaction without a high temperature, high vacuum process. This is possible. Thus, the reaction apparatus and the process are simplified, and 1,3-propenesultone can be obtained with high selectivity and yield. In addition, the manufacturing method of the present invention can be effectively applied to the production of 1,3-propenesultone used in various applications, such as additives for electrolytes of lithium ion secondary batteries, intermediates of pharmaceuticals.

Claims (12)

i) 1,3-프로판설톤(1,3-propanesultone)에 할로겐화(halogenation) 반응을 진행하여 할로겐-치환된 1,3-프로판설톤을 준비하는 제1단계; 및 i) preparing a halogen-substituted 1,3-propanesultone by carrying out a halogenation reaction on 1,3-propanesultone; And ii) 상기 할로겐-치환된 1,3-프로판설톤에 할로겐수소 제거(dehydrohalogenation) 반응을 진행하는 제2단계를 포함하는 하기 화학식 1의 1,3-프로펜설톤(1,3-propenesultone)의 제조방법.ii) Preparation of 1,3-propenesultone of Formula 1 comprising a second step of proceeding a dehydrohalogenation reaction to the halogen-substituted 1,3-propanesultone Way. [화학식 1][Formula 1]
Figure 112006025371503-PAT00004
Figure 112006025371503-PAT00004
제1항에 있어서, 상기 할로겐화 반응은 라디칼 개시제 및 할로겐화 시약을 사용하여 진행하는 것이 특징인 1,3-프로펜설톤의 제조방법.The method of claim 1, wherein the halogenation reaction is performed using a radical initiator and a halogenation reagent. 제2항에 있어서, 상기 할로겐화 시약은 불소, 염소, 브롬, 요오드, 설푸릴 클로라이드(sulfuryl chloride, SO2Cl2), 티오닐 클로라이드(thionyl chloride), 옥사릴 클로라이드(oxalyl chloride), 설푸릴 플루오라이드(sulfuryl fluoride), 티오닐 브로마이드(thionyl bromide), 옥사릴 브로마이드(oxalyl bromide)로 이루어진 군에서 선택된 1종 이상의 화합물인 것이 특징인 1,3-프로펜설톤의 제조방법.The method of claim 2, wherein the halogenating reagent is fluorine, chlorine, bromine, iodine, sulfuryl chloride (SO 2 Cl 2 ), thionyl chloride, oxalyl chloride, sulfuryl fluorine A method for producing 1,3-propenesultone, characterized in that it is at least one compound selected from the group consisting of sulfuryl fluoride, thionyl bromide, and oxalyl bromide. 제2항에 있어서, 상기 라디칼 개시제는 아조계 화합물, 과산화물로 이루어진 군에서 선택된 1종 이상의 화합물인 것이 특징인 1,3-프로펜설톤의 제조방법.The method of claim 2, wherein the radical initiator is at least one compound selected from the group consisting of azo compounds and peroxides. 제1항에 있어서, 상기 할로겐수소 제거 반응은 염기(base)를 사용하여 진행하는 것이 특징인 1,3-프로펜설톤의 제조방법.The method of claim 1, wherein the hydrogen halide removal reaction is performed using a base. 제5항에 있어서, 상기 염기(base)는 NR1R2R3 (이때, R1 내지 R3는 각각 독립적으로 탄소수 1~12의 지방족 탄화수소 또는 H) 및 피리딘(pyridine)으로 이루어진 군에서 선택된 1종 이상인 것이 특징인 1,3-프로펜설톤의 제조방법.The method of claim 5, wherein the base is NR 1 R 2 R 3 (Wherein R 1 to R 3 are each independently an aliphatic hydrocarbon having 1 to 12 carbon atoms or H) and a method for producing 1,3-propenesultone, characterized in that at least one member selected from the group consisting of pyridine. 제1항에 있어서, 상기 할로겐-치환된 1,3-프로판설톤은 1,3-프로판설톤의 2번 위치에 할로겐이 치환된 것이 특징인 1,3-프로펜설톤의 제조방법.The method of claim 1, wherein the halogen-substituted 1,3-propanesultone is substituted with halogen at position 2 of 1,3-propanesultone. 제1항에 있어서, 상기 제1단계의 반응 생성물은 정제하지 않고 상기 제2단계의 할로겐수소 제거 반응에 사용하는 것이 특징인 1,3-프로펜설톤의 제조방법.The method of claim 1, wherein the reaction product of the first step is used for the hydrogen elimination reaction of the second step without purification. 제1항에 있어서, 상기 제2단계는 용매로 방향족 화합물, 에테르, 에스테르로 이루어진 군에서 선택된 1종 이상을 사용하는 것이 특징인 1,3-프로펜설톤의 제조 방법.The method of claim 1, wherein the second step uses at least one selected from the group consisting of aromatic compounds, ethers, and esters as a solvent. 제1항 내지 제9항 중 어느 한 항의 방법에 의해 제조된 1,3-프로펜설톤.1,3-propenesultone prepared by the method of any one of claims 1 to 9. 제10항에 있어서, 부산물로 3-할로겐-1,3-프로판설톤을 포함하는 것이 특징인 1,3-프로펜설톤.The 1,3-propenesultone according to claim 10, which comprises 3-halogen-1,3-propanesultone as a by-product. 제10항에 있어서, 미반응물인 1,3-프로판설톤을 포함하는 것이 특징인 1,3-프로펜설톤.11. The 1,3-propenesultone of claim 10 comprising 1,3-propanesultone which is an unreacted material.
KR1020060033221A 2006-04-12 2006-04-12 Process for preparing 1,3-propenesultone KR100895191B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060033221A KR100895191B1 (en) 2006-04-12 2006-04-12 Process for preparing 1,3-propenesultone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060033221A KR100895191B1 (en) 2006-04-12 2006-04-12 Process for preparing 1,3-propenesultone

Publications (2)

Publication Number Publication Date
KR20070101716A true KR20070101716A (en) 2007-10-17
KR100895191B1 KR100895191B1 (en) 2009-04-24

Family

ID=38816917

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060033221A KR100895191B1 (en) 2006-04-12 2006-04-12 Process for preparing 1,3-propenesultone

Country Status (1)

Country Link
KR (1) KR100895191B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977626B1 (en) * 2008-01-09 2010-08-23 동부정밀화학 주식회사 Process for the preparation of 1,3-prop-1-ene sultone
KR101135088B1 (en) * 2008-04-14 2012-04-16 주식회사 엘지화학 Process for preparing 1,3-propenesultone
US8673963B2 (en) 2009-08-04 2014-03-18 Wako Pure Chemical Industries, Ltd. Method for producing cyclic sulfonic acid ester and intermediate thereof
CN106279097A (en) * 2016-07-15 2017-01-04 湖北吉和昌化工科技有限公司 A kind of preparation method of acrylic 1,3 sultones
CN113429378A (en) * 2021-06-16 2021-09-24 武汉松石科技股份有限公司 1, 3-propane sultone methyl fluoro derivative and preparation method and application thereof
WO2022092834A1 (en) * 2020-10-29 2022-05-05 솔브레인 주식회사 Method for preparing cyclic sulfonic acid ester compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102489550B1 (en) 2016-09-28 2023-01-17 주식회사 제이앤씨사이언스 Method for preparing cyclic 1,3-propene sultone

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2245354C (en) * 1997-08-22 2009-01-06 Ube Industries, Ltd. Lithium secondary battery and electrolyte thereof
KR100561654B1 (en) * 2003-07-22 2006-03-15 주식회사 엘지화학 The lithium secondary battery with the high temperature conservation-property improved
US20050283004A1 (en) * 2004-06-18 2005-12-22 Hopax Chemicals Manufacturing Co., Ltd. Alkylsulfonated polyaminosaccharides
KR100908570B1 (en) * 2005-08-23 2009-07-22 주식회사 엘지화학 Method for preparing 3-fluoro-1,3-propanesultone

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977626B1 (en) * 2008-01-09 2010-08-23 동부정밀화학 주식회사 Process for the preparation of 1,3-prop-1-ene sultone
KR101135088B1 (en) * 2008-04-14 2012-04-16 주식회사 엘지화학 Process for preparing 1,3-propenesultone
US8673963B2 (en) 2009-08-04 2014-03-18 Wako Pure Chemical Industries, Ltd. Method for producing cyclic sulfonic acid ester and intermediate thereof
EP2757102A1 (en) 2009-08-04 2014-07-23 Wako Pure Chemical Industries, Ltd. 1,3-propanesultone derivative useful in the preparation of a 1,3-propenesultone derivative
US8969591B2 (en) 2009-08-04 2015-03-03 Wako Pure Chemical Industries, Ltd. Method for producing cyclic sulfonic acid ester and intermediate thereof
CN106279097A (en) * 2016-07-15 2017-01-04 湖北吉和昌化工科技有限公司 A kind of preparation method of acrylic 1,3 sultones
WO2022092834A1 (en) * 2020-10-29 2022-05-05 솔브레인 주식회사 Method for preparing cyclic sulfonic acid ester compound
CN113429378A (en) * 2021-06-16 2021-09-24 武汉松石科技股份有限公司 1, 3-propane sultone methyl fluoro derivative and preparation method and application thereof

Also Published As

Publication number Publication date
KR100895191B1 (en) 2009-04-24

Similar Documents

Publication Publication Date Title
KR100895191B1 (en) Process for preparing 1,3-propenesultone
KR100908570B1 (en) Method for preparing 3-fluoro-1,3-propanesultone
JPH04230260A (en) Process for producing 2-chloro-5-methylpyridine
US6794519B2 (en) Process for the production of sulfonic esters
KR101135088B1 (en) Process for preparing 1,3-propenesultone
US10519085B2 (en) Process for preparing substituted 2-arylethanols
CN111032639A (en) Method for preparing cyclic carbonate
JP5001144B2 (en) Process for producing 2-isopropenyl-5-methyl-4-hexen-1-yl 3-methyl-2-butenoate
KR100486432B1 (en) Method for producing 5-aminomethyl-2-chloropyridines
KR101525493B1 (en) Process for preparation of high purity tamsulosin or salt thereof
JP4021663B2 (en) Method for producing triphenylene compound
KR100775326B1 (en) Preparation method of fluoroethylene carbonate
KR20090101234A (en) Method for producing tris(perfluoroalkanesulfonyl)methide acid salt
JP4968066B2 (en) Process for producing 4-amino-2-alkylthio-5-pyrimidinecarbaldehyde
JP4500983B2 (en) 6-alkoxy-2-naphthalenethiol and process for producing the same
JP5205971B2 (en) Method for producing tetrahydropyran compound
JP4356296B2 (en) Method for producing 2-naphthol derivative
WO2023048244A1 (en) Method for producing tetrafluorosulfanyl group-containing aryl compound
WO2023214552A1 (en) Trifluoromethane sulfonylation agent composition and method for producing trifluoromethanesulfonyloxy compound or trifluoromethane sulfonyl compound
JP2024045205A (en) Method for producing 2-hydroxy-2-(perfluoroalkyl)malonic acid ester derivatives, 2-(trimethylsilyloxy)-2-(perfluoroalkyl)malonic acid ester derivatives and 5-hydroxy-5-(perfluoroalkyl)pyrimidine-2,4,6(1H,3H,5H)-triones and methods for producing them
JP4364545B2 (en) Novel difluorotetrahydrothiophene 1,1-dioxide and process for producing the same
JPH07252205A (en) Method for producing oxyamine compounds
KR20220057179A (en) Method for preparing cyclic sulfonic ester compound
KR20240038029A (en) Method for producing (2,2,2-trifluoroethyl)sulfanylaniline derivatives
CN117916223A (en) Method for producing tetrafluorothio-containing aryl compound

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160418

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 11