JP4364545B2 - Novel difluorotetrahydrothiophene 1,1-dioxide and process for producing the same - Google Patents

Novel difluorotetrahydrothiophene 1,1-dioxide and process for producing the same Download PDF

Info

Publication number
JP4364545B2
JP4364545B2 JP2003105469A JP2003105469A JP4364545B2 JP 4364545 B2 JP4364545 B2 JP 4364545B2 JP 2003105469 A JP2003105469 A JP 2003105469A JP 2003105469 A JP2003105469 A JP 2003105469A JP 4364545 B2 JP4364545 B2 JP 4364545B2
Authority
JP
Japan
Prior art keywords
dioxide
tetrahydrothiophene
difluoro
reaction
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003105469A
Other languages
Japanese (ja)
Other versions
JP2004307422A (en
Inventor
政史 小林
公敬 大久保
理 大前
原 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd. filed Critical Kanto Denka Kyogyo Co.,Ltd.
Priority to JP2003105469A priority Critical patent/JP4364545B2/en
Publication of JP2004307422A publication Critical patent/JP2004307422A/en
Application granted granted Critical
Publication of JP4364545B2 publication Critical patent/JP4364545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池またはリチウムポリマー二次電池用の溶媒や添加剤の原料として、さらには医薬、農薬、高分子機能材料等の各種化合物の合成原料として多方面の用途に期待される、極めて有用且つ重要な化合物である、3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(別名、3,3−ジフルオロスルホラン)及びその製造方法に関するものである。
【0002】
【従来の技術】
含フッ素テトラヒドロチオフェン 1,1−ジオキシド(別名、含フッ素スルホラン)の製造は、2,5−ジヒドロチオフェン 1,1−ジオキシド(7)(尚、括弧付きの化合物の番号は、下記のスキーム1〜5中のものと対応する。以下同様)(別名、スルホレン)とフッ素ガスを反応させる方法(非特許文献1)(下記、スキーム1)、テトラヒドロチオフェン 1,1−ジオキシド(8)(別名、スルホラン)とフッ素ガスを反応させる方法(特許文献1及び特許文献2)(下記、スキーム2)が報告されている。前者の方法では、生成物としてシス−3,4−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(3)(別名、シス−3,4−ジフルオロスルホラン)、トランス−3,4−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(4)(別名、トランス−3,4−ジフルオロスルホラン)、3−フルオロ−2,3−ジヒドロチオフェン 1,1−ジオキシド(5)、及び3,4−エポキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(6)(別名、3,4−エポキシスルホラン)が得られるものの選択性は乏しかった。後者の方法の場合は、2−フルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(9)及び3−フルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(10)の混合物が得られる。
【0003】
しかし、これら両者の反応においては、本願の対象とする3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(1)は得られていなかった。さらに、これらの製造方法では、非常に高い反応性のために反応の制御が困難となるフッ素ガスを使用しており、危険な方法でもあった。
【0004】
そこで、フッ素ガス以外のフッ素化剤を使用する検討もなされており、その反応例としては、3,4−エポキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(6)と4フッ化硫黄との反応(非特許文献2)(下記、スキーム3)、ならびに3,4−エポキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(6)と3フッ化ジエチルアミノ硫黄との反応(非特許文献3)(下記、スキーム4)でシス−3,4−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(3)が得られたという報告がなされている。しかしながら、前者の手法では4日間という長い反応時間を必要とし、後者の手法では用いるフッ素化剤が非常に高価であった。なお、いずれの反応においても本願発明の3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(1)は得られていなかった。
【0005】
【化3】

Figure 0004364545
【0006】
【非特許文献1】
J.Fluorine Chem. 93 (1999) 27
【非特許文献2】
Zh. Org. Khim. 9[11] p2428-2429 (1973)
【非特許文献3】
J. Fluorine Chem. 36 (1987) 373
【特許文献1】
特開2002−47286号公報
【特許文献2】
特開2002−155074号公報
【0007】
【発明が解決しようとする課題】
本発明は、このような従来の製造方法による問題点を解決し、簡便な装置ないしは設備で、新規な3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(1)を製造する方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、3,4−ジヒドロキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(2)(別名、3,4−ジヒドロキシスルホラン)のフッ素化反応を鋭意検討していたところ、予期せずして3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(1)が、シス−3,4−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(3)、トランス−3,4−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(4)、3−フルオロ−2,3−ジヒドロチオフェン 1,1−ジオキシド(5)、及び3,4−エポキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(6)とともに生成することを発見した。
【0009】
即ち、上記の3,4−ジヒドロキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを原料に、4フッ化硫黄をフッ素化剤とするとともに、好ましくはフッ化水素存在下で反応させることにより、3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドが効率良く得られることを見出した。
【0010】
本発明の反応を下記スキーム5に示す。
【0011】
【化4】
Figure 0004364545
【0012】
即ち、本発明は、下式[1]:
【0013】
【化5】
Figure 0004364545
【0014】
で表される3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド、および
下式[2]:
【0015】
【化6】
Figure 0004364545
【0016】
で表される3,4−ジヒドロキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを4フッ化硫黄と、好ましくはフッ化水素の存在下に反応させることにより、上記3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを製造する方法である。
【0017】
より具体的には、3,4−ジヒドロキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを、フッ化水素に溶解させ、これに4フッ化硫黄を反応させた後、有機溶媒に抽出し蒸留精製することで3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを製造するという方法である。
【0018】
【発明の実施の形態】
以下、本発明について詳しく説明する。式(2)で示される3,4−ジヒドロキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドは、2,5−ジヒドロチオフェン 1,1−ジオキシドを酢酸溶媒中で過酸化水素により酸化することで容易に得ることができる(J. Chem.Soc.,Perkin Trans.1(1972) 1335)。また、3,4−ジヒドロキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドは、フッ化水素溶媒に溶解して使用するのが望ましい。その使用量は、好ましくは原料1gに対し1〜20mLである。なお、無溶媒、あるいはジクロロメタンまたはクロロホルム等の塩素系溶媒を使用してもよく、その場合、溶媒の使用量は、好ましくは原料1gに対し0〜20mLである。
【0019】
また、フッ素化剤である4フッ化硫黄の使用量は、好ましくは原料に対して2.0〜15.0倍モル量である。
【0020】
この反応は常圧下でも行えるが、加熱する場合は加圧下で行うのが望ましい。反応圧力は、0〜20MPaの範囲内で行うことができるが、好ましくは、0.5〜3.0MPaである。また、反応温度は、−40〜320℃の範囲内で行うことができるが、望ましくは、0〜150℃である。反応時間は、好ましくは2〜150時間である。反応終了後は、通常の後処理、精製を行うことにより、式(1)で示される3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを得ることができる。
【0021】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明の新規化合物の製造方法はこれらの実施例に限定されるものではない。
実施例1(3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドの製造)
100mLオートクレーブに、3,4−ジヒドロキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(5g,32.9mmol)を仕込み、オートクレーブ容器を−40℃に冷却した。その後、フッ化水素(26g,1.3mol)をオートクレーブ容器に導入した。引き続いて、4フッ化硫黄(18.4g,170mmol)を導入した。その後、オートクレーブ容器を密封し、攪拌機で撹拌させながら80℃で5時間反応させた。反応終了後、低沸点化合物を放棄し、容器内部を充分窒素置換した後、濃褐色粘性液体状の反応混合物をジクロロメタン(40mL)で抽出し、フッ化ナトリウムを加えて残存フッ化水素を除去した。抽出液をセライト濾過し溶媒を留去し、精製することで、3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを24%の収率で得た。
【0022】
その他の化合物として、シス−3,4−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド、トランス−3,4−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド、及び3−フルオロ−2,3−ジヒドロチオフェン 1,1−ジオキシドをそれぞれ、40%、6%及び9%の19F−NMR収率で得た。また、3,4−エポキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを11%の収率で得た。
【0023】
3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドの構造は核磁気共鳴分析及び質量分析等で確認した。核磁気共鳴分析装置は、バリアンジャパン(株)製Varian Gemini 200 NMR Spectrometerを使用し、質量分析装置は(株)島津製作所製GCMS-QP5050Aを使用した。
【0024】
そのスペクトルデータを次に示す。
Figure 0004364545
実施例2
100mLオートクレーブに、3,4−ジヒドロキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(5g,32.9mmol)、引き続きジクロロメタン(30mL)を仕込み、オートクレーブ容器を−40℃に冷却した。次に、4フッ化硫黄(11.2g,104mmol)を導入した。その後、オートクレーブ容器を密封し、攪拌機で撹拌させながら55℃で3時間反応させた。反応終了後、低沸点化合物を放棄し、容器内部を充分窒素置換した後、濃褐色粘性液体状の反応混合物をジクロロメタン(40mL)で抽出し、フッ化ナトリウムを加えて残存フッ化水素を除去した。抽出液をセライト濾過し溶媒を留去し、精製することで、3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを5%の収率で得た。
【0025】
その他の化合物として、シス−3,4−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド、トランス−3,4−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド、及び3−フルオロ−2,3−ジヒドロチオフェン 1,1−ジオキシドをそれぞれ、23%、15%及び16%の19F NMR収率で得た。また、3,4−エポキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを18%の収率で得た。
参考比較例1
撹拌子、温度計、ラバーセプタム、及び窒素シールを装備した100mLのガラス製三つ口フラスコに、3,4−ジヒドロキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド(0.76g,5mmol)を仕込み、引き続いてジクロロメタン(10mL)を加えた。その後、反応容器を−78℃まで冷却し、3フッ化ジエチルアミノ硫黄(1.6g,10mmol)を反応液の中に徐々に加えた。その後、反応温度を−78℃から室温まで昇温させながら反応を行った。反応混合物に20mLの水を加えて洗浄し、水相をジクロロメタンで抽出した。溶媒を減圧留去した後、粗生成物を精製すると、3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドの生成は確認できなかったが、3−フルオロ−2,3−ジヒドロチオフェン 1,1−ジオキシドを59%の収率で得た。[0001]
BACKGROUND OF THE INVENTION
The present invention is expected to be used in various fields as a raw material for solvents and additives for lithium ion secondary batteries or lithium polymer secondary batteries, and further as a raw material for synthesizing various compounds such as pharmaceuticals, agricultural chemicals and functional polymer materials. 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide (also known as 3,3-difluorosulfolane), which is a very useful and important compound, and a process for producing the same .
[0002]
[Prior art]
Production of fluorine-containing tetrahydrothiophene 1,1-dioxide (also known as fluorine-containing sulfolane) is 2,5-dihydrothiophene 1,1-dioxide (7). The same applies hereinafter (the same applies hereinafter) (also known as sulfolene) and a method of reacting fluorine gas (Non-patent Document 1) (below, Scheme 1), tetrahydrothiophene 1,1-dioxide (8) (also known as sulfolane) ) And fluorine gas (Patent Document 1 and Patent Document 2) (hereinafter, Scheme 2) have been reported. In the former method, as a product, cis-3,4-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide (3) (also known as cis-3,4-difluorosulfolane), trans-3 , 4-Difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide (4) (also known as trans-3,4-difluorosulfolane), 3-fluoro-2,3-dihydrothiophene 1,1- Dioxide (5) and 3,4-epoxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide (6) (also known as 3,4-epoxysulfolane) were obtained with poor selectivity. In the case of the latter method, 2-fluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide (9) and 3-fluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide ( A mixture of 10) is obtained.
[0003]
However, in both of these reactions, 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide (1) which is the subject of the present application has not been obtained. Furthermore, these manufacturing methods use fluorine gas, which makes it difficult to control the reaction due to its very high reactivity, which is also a dangerous method.
[0004]
Therefore, studies have been made to use a fluorinating agent other than fluorine gas. Examples of the reaction include 3,4-epoxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide (6) and 4 Reaction with sulfur fluoride (Non-Patent Document 2) (Scheme 3 below), 3,4-epoxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide (6) and diethylaminosulfur trifluoride It was reported that cis-3,4-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide (3) was obtained by the reaction with (Non-patent Document 3) (Scheme 4 below). ing. However, the former method requires a long reaction time of 4 days, and the latter method uses a very expensive fluorinating agent. In any reaction, 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide (1) of the present invention was not obtained.
[0005]
[Chemical 3]
Figure 0004364545
[0006]
[Non-Patent Document 1]
J. Fluorine Chem. 93 (1999) 27
[Non-Patent Document 2]
Zh. Org. Khim. 9 [11] p2428-2429 (1973)
[Non-Patent Document 3]
J. Fluorine Chem. 36 (1987) 373
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-47286 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-155074
[Problems to be solved by the invention]
The present invention solves the problems caused by the conventional production method, and uses a simple apparatus or facility to provide a novel 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide (1 ).
[0008]
[Means for Solving the Problems]
The present inventors have intensively studied the fluorination reaction of 3,4-dihydroxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide (2) (also known as 3,4-dihydroxysulfolane). However, unexpectedly, 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide (1) is converted to cis-3,4-difluoro-2,3,4,5-tetrahydro. Thiophene 1,1-dioxide (3), trans-3,4-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide (4), 3-fluoro-2,3-dihydrothiophene 1,1 It was found to form with -dioxide (5) and 3,4-epoxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide (6).
[0009]
That is, the above 3,4-dihydroxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide is used as a raw material, and sulfur tetrafluoride is used as a fluorinating agent, preferably in the presence of hydrogen fluoride. It has been found that 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide can be obtained efficiently by making it.
[0010]
The reaction of the present invention is shown in Scheme 5 below.
[0011]
[Formula 4]
Figure 0004364545
[0012]
That is, the present invention provides the following formula [1]:
[0013]
[Chemical formula 5]
Figure 0004364545
[0014]
3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide represented by the following formula [2]:
[0015]
[Chemical 6]
Figure 0004364545
[0016]
By reacting 3,4-dihydroxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide represented by the following formula with sulfur tetrafluoride, preferably in the presence of hydrogen fluoride, -A process for producing difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide.
[0017]
More specifically, 3,4-dihydroxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide is dissolved in hydrogen fluoride and reacted with sulfur tetrafluoride. This is a method in which 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide is produced by extraction and distillation purification.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. 3,4-dihydroxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide represented by the formula (2) is obtained by converting 2,5-dihydrothiophene 1,1-dioxide with hydrogen peroxide in an acetic acid solvent. It can be easily obtained by oxidation (J. Chem. Soc., Perkin Trans. 1 (1972) 1335). Further, 3,4-dihydroxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide is desirably used by dissolving in a hydrogen fluoride solvent. The amount used is preferably 1 to 20 mL per 1 g of raw material. In addition, you may use no solvent or chlorinated solvents, such as a dichloromethane or chloroform, In that case, the usage-amount of a solvent becomes like this. Preferably it is 0-20mL with respect to 1g of raw materials.
[0019]
Moreover, the usage-amount of sulfur tetrafluoride which is a fluorinating agent becomes like this. Preferably it is 2.0-15.0 times mole amount with respect to a raw material.
[0020]
Although this reaction can be carried out under normal pressure, it is desirable to carry out the reaction under pressure when heating. Although reaction pressure can be performed within the range of 0-20 MPa, Preferably, it is 0.5-3.0 MPa. Moreover, although reaction temperature can be performed within the range of -40-320 degreeC, It is 0-150 degreeC desirably. The reaction time is preferably 2 to 150 hours. After the completion of the reaction, 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide represented by the formula (1) can be obtained by performing usual post-treatment and purification.
[0021]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the manufacturing method of the novel compound of this invention is not limited to these Examples.
Example 1 (Production of 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide)
3,4-Dihydroxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide (5 g, 32.9 mmol) was charged into a 100 mL autoclave, and the autoclave vessel was cooled to -40 ° C. Thereafter, hydrogen fluoride (26 g, 1.3 mol) was introduced into the autoclave container. Subsequently, sulfur tetrafluoride (18.4 g, 170 mmol) was introduced. Then, the autoclave container was sealed and reacted at 80 ° C. for 5 hours while stirring with a stirrer. After completion of the reaction, the low boiling point compound was discarded, and the inside of the container was sufficiently purged with nitrogen. Then, the reaction mixture in the form of a dark brown viscous liquid was extracted with dichloromethane (40 mL), and sodium fluoride was added to remove residual hydrogen fluoride. . The extract was filtered through Celite, the solvent was distilled off, and purification was performed to obtain 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide in a yield of 24%.
[0022]
As other compounds, cis-3,4-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide, trans-3,4-difluoro-2,3,4,5-tetrahydrothiophene 1,1 -Dioxide and 3-fluoro-2,3-dihydrothiophene 1,1-dioxide were obtained in 19 F-NMR yields of 40%, 6% and 9%, respectively. In addition, 3,4-epoxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide was obtained in a yield of 11%.
[0023]
The structure of 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide was confirmed by nuclear magnetic resonance analysis and mass spectrometry. Varian Gemini 200 NMR Spectrometer manufactured by Varian Japan Co., Ltd. was used as the nuclear magnetic resonance analyzer, and GCMS-QP5050A manufactured by Shimadzu Corporation was used as the mass spectrometer.
[0024]
The spectrum data is shown below.
Figure 0004364545
Example 2
A 100 mL autoclave was charged with 3,4-dihydroxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide (5 g, 32.9 mmol), followed by dichloromethane (30 mL), and the autoclave vessel was cooled to -40 ° C. . Next, sulfur tetrafluoride (11.2 g, 104 mmol) was introduced. Then, the autoclave container was sealed and reacted at 55 ° C. for 3 hours while stirring with a stirrer. After completion of the reaction, the low boiling point compound was discarded, and the inside of the container was sufficiently purged with nitrogen. Then, the reaction mixture in the form of a dark brown viscous liquid was extracted with dichloromethane (40 mL), and sodium fluoride was added to remove residual hydrogen fluoride. . The extract was filtered through Celite, the solvent was distilled off, and purification was performed to obtain 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide in a yield of 5%.
[0025]
As other compounds, cis-3,4-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide, trans-3,4-difluoro-2,3,4,5-tetrahydrothiophene 1,1 -Dioxide and 3-fluoro-2,3-dihydrothiophene 1,1-dioxide were obtained in 19 F NMR yields of 23%, 15% and 16%, respectively. In addition, 3,4-epoxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide was obtained in a yield of 18%.
Reference Comparative Example 1
To a 100 mL glass three-necked flask equipped with a stir bar, thermometer, rubber septum, and nitrogen seal was added 3,4-dihydroxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide (0.76 g). , 5 mmol), followed by the addition of dichloromethane (10 mL). Thereafter, the reaction vessel was cooled to −78 ° C., and diethylaminosulfur trifluoride (1.6 g, 10 mmol) was gradually added into the reaction solution. Thereafter, the reaction was carried out while raising the reaction temperature from −78 ° C. to room temperature. The reaction mixture was washed by adding 20 mL of water, and the aqueous phase was extracted with dichloromethane. When the crude product was purified after distilling off the solvent under reduced pressure, the formation of 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide could not be confirmed, but 3-fluoro-2 , 3-Dihydrothiophene 1,1-dioxide was obtained in 59% yield.

Claims (3)

下式[1]:
Figure 0004364545
で表される3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシド。
The following formula [1]:
Figure 0004364545
3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide represented by
下式[2]:
Figure 0004364545
で表される3,4−ジヒドロキシ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを4フッ化硫黄と反応させることにより、請求項1記載の3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを製造する方法。
The following formula [2]:
Figure 0004364545
The 3,3-difluoro-2,3 of claim 1 by reacting 3,4-dihydroxy-2,3,4,5-tetrahydrothiophene 1,1-dioxide represented by , 4,5-tetrahydrothiophene 1,1-dioxide
フッ化水素の存在下で反応させることを特徴とする請求項2記載の3,3−ジフルオロ−2,3,4,5−テトラヒドロチオフェン 1,1−ジオキシドを製造する方法。The method for producing 3,3-difluoro-2,3,4,5-tetrahydrothiophene 1,1-dioxide according to claim 2, wherein the reaction is carried out in the presence of hydrogen fluoride.
JP2003105469A 2003-04-09 2003-04-09 Novel difluorotetrahydrothiophene 1,1-dioxide and process for producing the same Expired - Lifetime JP4364545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105469A JP4364545B2 (en) 2003-04-09 2003-04-09 Novel difluorotetrahydrothiophene 1,1-dioxide and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105469A JP4364545B2 (en) 2003-04-09 2003-04-09 Novel difluorotetrahydrothiophene 1,1-dioxide and process for producing the same

Publications (2)

Publication Number Publication Date
JP2004307422A JP2004307422A (en) 2004-11-04
JP4364545B2 true JP4364545B2 (en) 2009-11-18

Family

ID=33467972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105469A Expired - Lifetime JP4364545B2 (en) 2003-04-09 2003-04-09 Novel difluorotetrahydrothiophene 1,1-dioxide and process for producing the same

Country Status (1)

Country Link
JP (1) JP4364545B2 (en)

Also Published As

Publication number Publication date
JP2004307422A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP3357608B2 (en) Fluorination method with aminosulfur trifluoride
US11718524B2 (en) Method for manufacturing sulfur tetrafluoride
JP7166911B2 (en) Method for producing cyclobutene
KR100895191B1 (en) Process for preparing 1,3-propenesultone
US8937204B1 (en) Processes for isolating fluorinated products
WO2009122834A1 (en) Method for producing 4-perfluoroisopropylaniline
CN107540655B (en) Novel method for preparing S- (perfluoroalkyl) -dibenzothiophene trifluoromethanesulfonate
JP4364545B2 (en) Novel difluorotetrahydrothiophene 1,1-dioxide and process for producing the same
CN111548257B (en) Preparation method of (4-isopropoxy-2-methyl) phenyl isopropyl ketone
WO2021066155A1 (en) Method for producing perfluoro(2,4-dimethyl-2-fluoroformyl-1,3-dioxolane)
KR101098201B1 (en) Fluorinated pentacene derivatives and processes for producing these
JP2936044B2 (en) Trifluoropropylene carbonate and method for producing the same
NAGASHIMA et al. Syntheses and Reactions of Phenylthio-and Propylthioacetylenic Compounds
US7772443B2 (en) Iodine-containing fluoropolyether and process for producing the same
JP4801270B2 (en) Novel fluorine-containing anthracene compounds and methods for producing them
JP2788220B2 (en) Fluorinated biphenyl-based liquid crystal compound and method for producing the same
JP4284493B2 (en) Method for producing difluorohaloacetyl fluoride
EP1325906B1 (en) Alkyl esters of 2-(2-fluorosulphonyl)-perfluoroethylenoxy-3-halogen-propionic acid
CN115650919A (en) Method for preparing fipronil from trichloromethyl sulfinyl chloride
JPH0347144A (en) Production of m-phenoxybenzyl alcohol
JPH1112204A (en) 9,10-dichloroanthracene compounds and production of 9,10-dihaloanthracene compounds
JPH0327338A (en) Production of bis(2-hydroxyhexafluoro-2-propyl)-benzene derivative
JP2006001925A (en) Method for producing 3,4,5-trifluorobenzyl alcohol
JPS591693B2 (en) Method for producing 2-monosubstituted-2-cyclopentenones
JPH0410468B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4364545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term