WO2022092496A1 - 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법 - Google Patents

유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법 Download PDF

Info

Publication number
WO2022092496A1
WO2022092496A1 PCT/KR2021/009430 KR2021009430W WO2022092496A1 WO 2022092496 A1 WO2022092496 A1 WO 2022092496A1 KR 2021009430 W KR2021009430 W KR 2021009430W WO 2022092496 A1 WO2022092496 A1 WO 2022092496A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction motor
current
component current
turn
detection unit
Prior art date
Application number
PCT/KR2021/009430
Other languages
English (en)
French (fr)
Inventor
구본관
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to US17/536,430 priority Critical patent/US11988715B2/en
Publication of WO2022092496A1 publication Critical patent/WO2022092496A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/56Testing of electric apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an apparatus and method for diagnosing a turn short fault of an induction motor.
  • induction motors are being used in many industrial fields because of their strong mechanical properties, low price, and the advantages of being able to operate at constant speed without an inverter.
  • An induction motor is composed of various mechanical parts such as coils, rotor bars, and bearings, and each part has the potential to cause failure. In particular, among these components, the most frequent failure occurs in the wound coil.
  • a coil coated with an insulator on the outer circumferential surface of the copper wire is wound a plurality of times.
  • the insulator coated on the coil easily loses its insulating properties due to various factors such as heat and vibration generated when the motor is driven.
  • a coil that has lost insulation properties contacts an adjacent coil to form a closed circuit network, and induced electromotive force is generated by the magnetic flux linkage induced in the formed closed circuit. Such a fault is called a turn-short fault.
  • MCSA Motor Current Signal Analysis
  • SFSA Stary Flux Signature Analysis
  • the motor current signal analysis method is a method of diagnosing a failure through the abnormal component of the current flowing in the induction motor stator, and a large amount of pre-experimental data is required for failure diagnosis.
  • the magnetic flux-based signal analysis method is a method of diagnosing a failure by monitoring the magnetic flux generated from an induction motor using a magnetic flux sensor, and a large amount of pre-experimental data is required.
  • the conventional fault diagnosis method of an induction motor causes an artificial failure in the induction motor for a preliminary experiment, accumulates data through the preliminary experiment, and determines whether the induction motor is faulty based on the accumulated data.
  • the present invention can provide an apparatus and method for diagnosing a turn short fault of an induction motor that does not require prior experimental data.
  • An apparatus for diagnosing a turn short circuit fault of an induction motor includes an induction motor and a fault detection unit configured to determine whether the induction motor is faulty by detecting a current flowing on a supply line for supplying power to an input terminal of the induction motor, , the failure detection unit may determine whether the induction motor has failed by applying a dynamic model.
  • the failure detection unit determines whether the induction motor is faulty by comparing the first reverse-phase component current obtained by reverse-phase conversion of the current provided to the induction motor with the component current obtained by applying the dynamic model.
  • the failure detection unit may diagnose the failure of the induction motor when the first reverse-phase component current and the component current are the same.
  • the failure detection unit may increase the degree of failure of the component current until the first anti-phase component current and the component current become the same. .
  • the dynamic model may be defined through the following equation.
  • the fault detection unit includes a current detection unit for detecting the current flowing on the supply line, a conversion unit for converting the current detected by the current detection unit into the first reverse-phase component current, and the component current It may include a calculation unit that calculates, and a determination unit that compares the first reverse-phase component current and the component current to determine whether the induction motor is faulty.
  • the dynamic model may be applied to the calculation unit of the failure detection unit.
  • the component current may represent a failure caused by a virtual induction motor.
  • Disclosed is a method for diagnosing a turn short fault of an induction motor according to the present invention.
  • a turn-short fault diagnosis method of an induction motor includes the steps of detecting a current supplied to the induction motor; converting the current detected from the induction motor into a first reverse-phase component current; calculating component currents from the virtual induction motor; The method may include comparing the first reverse-phase component current with the component current to determine whether the induction motor is faulty.
  • the determining of whether the induction motor is faulty may include diagnosing a turn-short fault in the induction motor when the first reverse-phase component current and the component current are the same. .
  • the method may further include increasing the degree of failure of the component current until the first anti-phase component current and the component current are equal. there is.
  • the component current is obtained through a dynamic model
  • the dynamic model may include the following equation.
  • the present invention may provide an apparatus and method for diagnosing a turn short failure of an induction motor capable of determining whether a failure has occurred without prior experimental data.
  • 1 is a diagram visually illustrating a turn short failure.
  • FIG. 2 is a block diagram of an apparatus for diagnosing a turn short failure of an induction motor and a failure diagnosis apparatus of the method according to the present invention.
  • FIG. 3 is a diagram illustrating a failure detection unit of FIG. 2 .
  • FIG. 4 is a view showing the axis of the rotor of the induction motor used in the turn-short fault diagnosis apparatus and method of the induction motor according to the present invention.
  • FIG. 5 is a diagram illustrating an apparatus for diagnosing a turn short fault of an induction motor and a fault diagnosis algorithm according to the method according to the present invention.
  • FIG. 6 is a diagram illustrating a signal processing process of a reverse-phase component current of an apparatus and method for diagnosing a turn short fault of an induction motor according to the present invention.
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • ' ⁇ unit' and ' ⁇ module' are units that process at least one function or operation, and may refer to, for example, hardware components such as software, FPGA, or ASIC. However, ' ⁇ part' and ' ⁇ module' are not meant to be limited to software or hardware. ' ⁇ unit' and ' ⁇ module' may be configured to reside on an addressable storage medium or configured to regenerate one or more processors.
  • ' ⁇ part' and ' ⁇ module' refer to components such as software components, object-oriented software components, class components and task components, processes, functions, properties, may include procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays and variables.
  • a component and a function provided by ' ⁇ unit' and ' ⁇ module' may be performed separately by a plurality of components and ' ⁇ unit' and ' ⁇ module', or may be integrated with other additional components. .
  • the device for diagnosing a turn short fault of an induction motor according to the present invention may be a fault diagnosis device used for an induction motor.
  • the device for diagnosing a turn short fault of an induction motor according to the present invention may be a fault diagnosis device used in an industrial drive system, an industrial motor, and the like.
  • the apparatus for diagnosing a turn short failure of an induction motor according to the present invention may be a failure diagnosis apparatus used in automobiles, electric vehicles, and eco-friendly vehicles.
  • the induction motor according to the present invention may be a failure diagnosis device used in a turn-short vehicle electric motor, an electric vehicle electric motor, an eco-friendly electric vehicle electric motor, and the like.
  • the present invention is not limited thereto, and may be applied to various fields in which an induction motor is used.
  • the turn-short fault diagnosis apparatus for an induction motor will be described by taking as an example a turn-short fault occurring in a three-phase induction motor.
  • the present invention is not limited thereto, and may be applied to an electric motor operating in alternating current.
  • it can be applied to an induction motor.
  • it may be applied to at least one of a single-phase induction motor, a squirrel cage induction motor, and a winding type induction motor.
  • 1 is a diagram visually illustrating a turn short failure.
  • the induction motor includes a shaft (not shown), a rotor 10 coupled to the shaft and rotating together with a shaft, a stator 20 disposed on the outside of the rotor 10, and a stator 20 ) may include a plurality of coils 30 wound in the slot.
  • the rotor 10 may be referred to as a rotor
  • the stator 20 may be referred to as a stator.
  • the coil 30 of the induction motor may be formed of a copper wire coated with a thin insulator.
  • the coil 30 of the induction motor easily loses its insulating properties due to causes such as vibration caused by driving of the motor, high voltage flowing through the coil 30, stress due to high current, and aging of an insulator. In this case, a short circuit may occur between the adjacent coils 30, which is referred to as a turn short fault (F).
  • F turn short fault
  • a closed circuit is formed between the windings by the shorted coil 30, and an induced electromotive force is generated by the change in magnetic flux linkage in the formed closed circuit.
  • the formed closed circuit has low resistance so that a high current flows inside, and heat is generated inside the induction motor due to the high current.
  • the heat generated in the closed circuit of the induction motor weakens the insulator of the adjacent coil 30, so that the turn short fault (F) is expanded. Therefore, it is necessary to diagnose and respond to the turn short fault F at an early stage.
  • online fault diagnosis is required to reduce idle costs and prevent fires.
  • the turn short fault diagnosis apparatus and method for an induction motor according to the present invention can diagnose turn short faults without prior data accumulation.
  • FIG. 2 is a block diagram of an apparatus for diagnosing a turn short fault of an induction motor according to the present invention and a failure diagnosis apparatus of the method
  • FIG. 3 is a diagram showing the failure detection unit of FIG. 2
  • FIG. 4 is an induction motor according to the present invention It is a view showing the axis of the rotor of an induction motor used in the turn short fault diagnosis apparatus and method of 6 is a diagram illustrating a signal processing process of a reverse-phase component current of an apparatus and method for diagnosing a turn short fault of an induction motor according to the present invention.
  • the apparatus and method for diagnosing a turn short fault of an induction motor according to the present invention may include an induction motor 100 , a power supply unit 200 , and a fault detection unit 300 .
  • the present invention is not limited thereto, and may be implemented except for some of these configurations.
  • the induction motor 100 will be described using a three-phase induction motor as an example. Here, three phases are defined and described as a phase, b phase, and c phase.
  • the induction motor 100 may receive power from the power supply unit 200 .
  • the induction motor 100 may be supplied with three AC powers having different phases.
  • the induction motor 100 may include an input terminal 120 receiving power from the power supply 200 .
  • the input terminal 120 may include a plurality of input terminals.
  • the plurality of input terminals will be described as including three input terminals. This is because a three-phase induction motor will be described as an example, and in the case of a single-phase induction motor, the induction stage may include one input stage.
  • the number of input terminals 120 may be changed according to the type of the induction motor 100 .
  • the plurality of input terminals 122 , 124 , and 126 may include a first input terminal 122 , a second input terminal 124 , and a third input terminal 126 .
  • the induction motor 100 may be supplied with phase a power through a supply line connected to the first input terminal 122 .
  • the induction motor 100 may receive the b-phase power through a supply line connected to the second input terminal 124 .
  • the induction motor 100 may receive c-phase power through a supply line connected to the third input terminal 126 .
  • a rotating magnetic field may be formed in the stator of the induction motor 100 .
  • the rotor of the induction motor 100 may receive a rotating magnetic field to form an induced electromotive force. At this time, the rotor receives an electromotive force and a current flows, and a magnetic force may be formed in the rotor with this current.
  • the induction motor 100 may be driven by generating torque due to an interaction between the magnetic force of the rotor and the magnetic field of the stator.
  • the power supply unit 200 may supply power to the induction motor 100 .
  • the power supply 200 may be a three-phase voltage source. This is because the induction motor 100 is described as a three-phase induction motor, and may include a suitable voltage source according to the type of the induction motor 100 .
  • the power supply 200 may include an output terminal 220 .
  • the output terminal 220 may correspond to the number of input terminals 120 of the induction motor 100 .
  • the output terminal 220 of the power supply 220 may include a plurality of output terminals 220 .
  • the plurality of output terminals 220 may include first to third output terminals 222 , 224 , and 226 .
  • the power supply unit 200 may supply a-phase power to the induction motor 100 through the first output terminal 222 .
  • the power supply unit 200 may supply b-phase power to the induction motor 100 through the second output terminal 224 .
  • the power supply unit 200 may supply the c-phase power to the induction motor 100 through the third output terminal 226 .
  • the first output terminal 222 may be connected to the first input terminal 122 by a supply line.
  • the second output terminal 224 may be connected to the second input terminal 124 by a supply line.
  • the third output terminal 226 may be connected to the third input terminal 126 by a supply line.
  • the failure detection unit 300 may detect whether the induction motor 100 has failed.
  • the failure detection unit 300 may be installed between the induction motor 100 and the power supply unit 200 .
  • the failure detection unit 300 may be installed on a supply line between the induction motor 100 and the power supply unit 200 .
  • the fault detection unit 300 is a three-phase current supplied to the induction motor 100 ( ) can be sensed in real time.
  • the fault detection unit 300 is a three-phase current supplied to the induction motor 100 ( ) can be sensed to determine whether the induction motor 100 is faulty.
  • the fault detection unit 300 detects a three-phase current ( ) is the opposite-phase component current of the two axes ( ) and converted antiphase component current ( ), it is possible to determine whether the induction motor 100 is faulty.
  • the two axes are referred to as a d-axis and a q-axis.
  • the failure detecting unit 300 may include a current detecting unit 320 , a converting unit 340 , a calculating unit 360 , and a determining unit 380 . However, it may be implemented except for some of these configurations.
  • the current detection unit 320 may be connected on a supply line between the induction motor 100 and the power supply unit 200 .
  • the current detection unit 320 is connected to each of the three supply lines between the induction motor 100 and the power supply unit 200, so that the three-phase current ( ) can be sensed.
  • the current detection unit 320 may apply various current detection probes such as a current transformer to the detection terminal for detecting the current flowing in the supply line.
  • the conversion unit 340 is a three-phase current sensed by the current detection unit 320 ( ) can be inversely transformed.
  • the conversion unit 340 is a three-phase current sensed by the current detection unit 320 ( ) to the reversed-phase component current ( ) can be converted to
  • the three-phase current sensed by the current detector 320 ( ) transformed from the reversed-phase component current ( ) is called the first reverse-phase component current.
  • 6 is a three-phase current in the converter 340 ( ) to the first reverse-phase component current is shown.
  • the sensed three-phase current ( ) is first converted to the d, q-axis coordinate system, and the two-axis current ( ) is converted to Converted biaxial current ( ) is converted to the antiphase coordinate system and then passes through a low pass filter (LPF) to filter components other than the inverse phase component.
  • LPF low pass filter
  • the reversed-phase coordinate system current passed through the low-pass filter ( ) is converted to a stationary coordinate system and the first antiphase component current ( ) is converted to
  • the present invention provides a converted first anti-phase component current ( ) can be used to diagnose whether the induction motor 100 is faulty.
  • the calculator 360 applies the dynamic model to the component current can create
  • the calculator 360 drives the virtual induction motor to generate component current can be calculated.
  • the calculator 360 applies the dynamic model to the Runge kutta 4 th method to generate virtual component currents in real time. can be calculated.
  • the calculator 360 may be, for example, a CPU.
  • the dynamic model may be, for example, a program or software. That is, the calculation unit 360, which is the CPU, drives the virtual induction motor, and the current value provided from the virtual induction motor is used as a component current through a dynamic model. can be calculated as At this time, the calculation unit 360 applies the dynamic model to the Runge kutta 4 th method to component current can be calculated.
  • the dynamic model can be defined by the following equation.
  • the dynamic model according to the present invention will be described as an example of a 4-pole induction motor.
  • 4 is a diagram in which the d and q axes of the rotor according to the 4-pole induction motor are divided in proportion to the number of poles.
  • the influence of the failure in the rotor may vary depending on the position of the faulty winding and each axis of the rotor. Therefore, in the dynamic model according to the present invention, as shown in FIG. 4 , the d and q axes of the rotor according to the induction motor are divided in proportion to the number of poles, and the dynamic model is set based on the divided components of each axis.
  • Each is the d-axis and q-axis voltage supplied to the stator, is the fault circuit voltage, , , , , , , , , Each is a d and q axis current applied to the rotor. is the resistance of each coil, is the inductance of each coil.
  • V ITFmodel and I ITFmodel are as follows, respectively.
  • the determination unit 380 may determine whether the induction motor 100 has a turn-short failure by comparing the first reverse-phase component current provided from the converter 340 and the component current provided from the calculator 360 . Referring to FIG. 5 , the determination unit 380 diagnoses a turn-short failure of the induction motor 100 when the first reverse-phase component current and the component current are the same or almost similar. In the case of a three-phase induction motor, each axis is balanced, and when a turn short failure occurs, the balance between the defective axis and the rest of the axes is broken. That is, a high current flows through the faulty axis, and a low current flows through the two axes where the fault does not occur, thereby generating a reverse-phase component.
  • a reference value for determining that a turn short failure has occurred is required.
  • the failure is determined through comparison with data accumulated through a prior experiment.
  • the criterion for diagnosing a failure is approached mathematically, it is possible to immediately determine whether a failure occurs without prior experimental data.
  • the determination unit 380 increases the failure degree of the component current until the first anti-phase component current and the component current become equal ( 360) can be transmitted.
  • the calculation unit 360 may increase the degree of failure of the virtual induction motor according to the signal of the determination unit 380 .
  • the calculator 360 may calculate a component current with an increased degree of failure based on a current received from the virtual induction motor with an increased degree of failure.
  • the determination unit 380 does not increase the failure level any longer when the component current with the increased failure level is the same as the first reverse-phase component current, and finally detects the failure state at this time to cause the induction motor 100 to turn short failure. can be diagnosed
  • a turn-short fault diagnosis method of an induction motor includes the steps of detecting a current supplied to the induction motor 100 ; converting the current detected from the induction motor 100 into a first reverse-phase component current; calculating component currents from the virtual induction motor; Comparing the first reverse-phase component current and the component current may include determining whether the induction motor 100 is faulty. In the step of determining whether the induction motor 100 is faulty, when the first reverse-phase component current and the component current are the same, a turn-short fault in the induction motor may be diagnosed. The method may further include, when the first anti-phase component current is greater than the component current, increasing the failure degree of the component current until the first anti-phase component current and the component current become equal. The component current may be obtained through the above-described dynamic model.
  • the present invention may provide an apparatus and method for diagnosing a turn short failure of an induction motor capable of determining whether a failure has occurred without prior experimental data.
  • the apparatus and method for diagnosing a turn-short fault of an induction motor according to the present invention Since the standard of is approached mathematically, it is possible to determine whether there is a failure right away without prior experimental data.
  • the apparatus and method for diagnosing a turn short failure of an induction motor according to the present invention diagnoses a turn short failure that may occur in an induction motor. can do. Through this, it is possible to diagnose and respond to a turn short failure at an early stage, thereby preventing fire, motor damage, and financial damage.
  • the device described above may be implemented as a hardware component, a software component, and/or a combination of the hardware component and the software component.
  • devices and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable array (FPA), It may be implemented using one or more general purpose or special purpose computers, such as a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions.
  • the processing device may execute an operating system (OS) and one or more software applications running on the operating system.
  • a processing device may also access, store, manipulate, process, and generate data in response to execution of the software.
  • the processing device includes a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that can include For example, the processing device may include a plurality of processors or one processor and one controller. Other processing configurations are also possible, such as parallel processors.
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the medium may be specially designed and configured for the embodiment, or may be known and available to those skilled in the art of computer software.
  • Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic such as floppy disks.
  • - includes magneto-optical media, and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

본 발명은 유도 전동기와, 상기 유도 전동기의 입력단으로 전원을 공급하는 공급 라인 상에 흐르는 전류를 검출하여 상기 유도 전동기의 고장 여부를 판단하는 고장 검출부를 포함하고, 상기 고장 검출부는 다이나믹 모델을 적용하여 상기 유동 전동기의 고장 여부를 판단할 수 있는 유도 전동기의 턴 쇼트 고장 진단 장치 및 방법에 관한 것이다.

Description

유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법
본 발명은 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법에 관한 것이다.
현재 유도 전동기는 기계적인 강인한 특성, 저렴한 가격, 그리고 인버터 없이 등속 운전이 가능한 장점 때문에 많은 산업 분야에서 사용되고 잇다. 유도 전동기는 코일, 회전자 바, 베어링 등 각종 기계 부품으로 구성되어 있으며, 각 부품들은 고장을 야기할 가능성을 가지고 잇다. 특히, 이러한 부품 중에서 권선된 코일에서 가장 빈번하게 고장이 발생된다.
고정자에는 구리선의 외주면에 절연체가 코팅된 코일이 복수 회 권선된다. 코일에 코팅된 절연체는 모터의 구동 시 발생되는 열, 진동 등 여러 가지 요인에 의해 쉽게 절연 특성을 잃는다. 절연 특성을 잃은 코일은 인접한 코일과 접촉하여 폐회로망을 형성하며, 형성된 폐회로에 유기된 쇄교된 자속에 의해 유도기 전력이 발생된다. 이러한 고장을 턴 쇼트 고장(turn-short fault)이라 한다.
턴 쇼트 고장에 의해 형성된 폐회로는 임피던스가 매우 작기 때문에 낮은 유도기 전력이 발생하더라도 정격전류보다 큰 고장 전류가 폐회로 내부에 흐르게 된다. 유기된 큰 고장 전류는 유도 전동기 내부에 극심한 발열을 발생시키고, 이로 인해 고장 코일 주변에 권선된 코일의 절연성을 약화시켜 턴 쇼트 고장의 확대를 야기하게 된다.
이와 같은 턴 쇼트 고장을 초기에 진단하여 대응하지 못하면 코일에서 발생될 수 있는 화재에 따른 위험, 모터 손상에 의한 추가적인 위험, 금전적인 피해가 발생되는 문제가 있다.
유도 전동기의 고장 진단을 위해 모터 전류 신호 분석법(Motor Current Signal Analysis, MCSA)과, 자속 기반 신호 분석법(Stary Flux Signature Analysis, SFSA)이 제안된 바 있다.
모터 전류 신호 분석법은 유도 전동기 고정자에 흐르는 전류의 이상 성분을 통해 고장을 진단하는 방식으로, 고장 진단을 위해 많은 양의 사전 실험 데이터가 요구된다. 자속 기반 신호 분석법은 유도 전동기에서 발생되는 자속을 자속 센서를 이용하여 모니터링하는 것을 통해 고장을 진단하는 방식으로, 많은 양의 사전 실험 데이터가 요구된다.
즉, 기존에 사용되는 유도 전동기의 고장 진단 방식은 사전 실험을 위해 유도 전동기에 인위적인 고장을 발생시키고, 사전 실험을 통한 데이터를 축적하여 축적된 데이터를 기준으로 유도 전동기의 고장 여부를 판별한다.
그러나, 사전 실험 데이터가 요구되는 유도 전동기의 고장 진단 방식의 경우 추가적인 사전 실험 데이터 축적에 드는 시간 및 비용이 막대한 문제가 있고, 실험에 의해 축적된 데이터가 유도 전동기에서 발생 가능한 다양한 고장 현상을 모두 포함할 수 없는 문제가 있다. 이 경우, 턴 쇼트 고장을 초기에 진단 및 대응하지 못하는 문제와, 이에 따른 화재 위험, 모터 손상 위험, 금전 피해가 발생되는 문제가 있다.
본 발명은 사전 실험 데이터가 요구되지 않는 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법을 제공할 수 있다.
본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치가 개시된다.
본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치는 유도 전동기와, 상기 유도 전동기의 입력단으로 전원을 공급하는 공급 라인 상에 흐르는 전류를 검출하여 상기 유도 전동기의 고장 여부를 판단하는 고장 검출부를 포함하고, 상기 고장 검출부는 다이나믹 모델을 적용하여 상기 유동 전동기의 고장 여부를 판단할 수 있다.
일 실시 예에 의하면, 상기 고장 검출부는 상기 유도 전동기로 제공되는 전류를 역상 변환한 제1역상 성분 전류와, 상기 다이나믹 모델을 적용하여 획득되는 성분 전류를 비교하여 상기 유도 전동기의 고장 여부를 판단할 수 있다.
일 실시 예에 의하면, 상기 고장 검출부는 상기 제1역상 성분 전류와 상기 성분 전류가 동일할 경우 상기 유도 전동기의 고장을 진단할 수 있다.
일 실시 예에 의하면, 상기 고장 검출부는 상기 제1역상 성분 전류가 상기 성분 전류보다 클 경우, 상기 제1역상 성분 전류와 상기 성분 전류가 같아질 때까지 상기 성분 전류의 고장 정도를 증가시킬 수 있다.
일 실시 예에 의하면, 상기 다이나믹 모델은 아래의 수식을 통해 정의될 수 있다.
<수식>
Figure PCTKR2021009430-appb-img-000001
일 실시 예에 의하면, 상기 고장 검출부는 상기 공급 라인 상에 흐르는 상기 전류를 검출하는 전류 검출부와, 상기 전류 검출부에서 검출된 전류를 상기 제1역상 성분 전류로 변환하는 변환부와, 상기 성분 전류를 산출하는 산출부와, 상기 제1역상 성분 전류와 상기 성분 전류를 비교하여 상기 유도 상기 유도 전동기의 고장 여부를 판단하는 판단부를 포함할 수 있다.
일 실시 예에 의하면, 상기 다이나믹 모델은 상기 고장 검출부의 상기 산출부에 적용될 수 있다.
일 실시 예에 의하면, 상기 성분 전류는 가상의 유도 전동기에 의해 발생되는 고장을 나타낼 수 있다.
본 발명에 다른 유도 전동기의 턴 쇼트 고장 진단 방법이 개시된다.
본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 방법은 유도 전동기로 제공되는 전류를 검출하는 단계; 상기 유도 전동기로부터 검출된 상기 전류를 제1역상 성분 전류로 변환하는 단계; 가상의 유도 전동기로부터 성분 전류를 산출하는 단계; 상기 제1역상 성분 전류와 상기 성분 전류를 비교하여 상기 유도 전동기의 고장 여부를 판단하는 단계를 포함할 수 있다.
일 실시 예에 의하면, 상기 유도 전동기의 고장 여부를 판단하는 단계는, 상기 제1역상 성분 전류와 상기 성분 전류가 동일할 경우 상기 유도 전동기에 턴 쇼트 고장(turn-short fault)을 진단할 수 있다.
일 실시 예에 의하면, 상기 제1역상 성분 전류가 상기 성분 전류보다 클 경우, 상기 제1역상 성분 전류와 상기 성분 전류가 같아질 때까지 상기 성분 전류의 고장 정도를 증가시키는 단계를 더 포함할 수 있다.
일 실시 예에 의하면, 상기 성분 전류는 다이나믹 모델을 통해 획득되고, 상기 다이나믹 모델은 아래의 수식을 포함할 수 있다.
<수식>
Figure PCTKR2021009430-appb-img-000002
본 발명은 사전 실험 데이터 없이 고장 여부를 판단할 수 있는 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법을 제공할 수 있다.
도 1은 턴 쇼트 고장을 시각적으로 도시한 도면이다.
도 2는 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법의 고장 진단 장치의 구성도이다.
도 3은 도 2의 고장 검출부는 도시한 도면이다.
도 4는 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법에 사용되는 유도 전동기의 회전자의 축을 도시한 도면이다.
도 5는 본 발명의 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법에 따른 고장 진단 알고리즘을 도시한 도면이다.
도 6은 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법의 역상 성분 전류의 신호 처리 과정을 도시한 도면이다.
본 명세서에서 사용되는 용어와 첨부된 도면은 본 발명을 용이하게 설명하기 위한 것이므로, 본 발명이 용어와 도면에 의해 한정되는 것은 아니다.
본 발명에 이용되는 기술 중 본 발명의 사상과 밀접한 관련이 없는 공지의 기술에 관한 자세한 설명은 생략한다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 또한, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.
어떤 구성요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 구체적으로, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1구성요소는 제2구성요소로 명명될 수 있고, 유사하게 제2구성요소도 제1구성요소로 명명될 수 있다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 도면에서 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
본 명세서 전체에서 사용되는 '~부' 및 '~모듈' 은 적어도 하나의 기능이나 동작을 처리하는 단위로서, 예를 들어 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미할 수 있다. 그렇지만 '~부' 및 '~모듈'이 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부' 및 '~모듈'은 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다.
일 예로서 '~부' 및 '~모듈'은 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함할 수 있다. 구성요소와 '~부' 및 '~모듈'에서 제공하는 기능은 복수의 구성요소 및 '~부' 및 '~모듈'들에 의해 분리되어 수행될 수도 있고, 다른 추가적인 구성요소와 통합될 수도 있다.
본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치는 유도 전동기에 사용되는 고장 진단 장치일 수 있다. 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치는 산업용 구동 시스템, 산업용 전동기 등에 사용되는 고장 진단 장치일 수 있다. 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치는 자동차, 전기 자동차, 친환경 자동차 등에 사용되는 고장 진단 장치일 수 있다. 본 발명에 따른 유도 전동기의 턴 쇼트 차량용 전동기, 전기 차동차용 전동기, 친환경 자동차용 전동기 등에 사용되는 고장 진단 장치일 수 있다. 다만, 이에 한정되는 것은 아니며, 유도 전동기가 사용되는 다양한 분야에 적용될 수 있다.
본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치는 3상 유도 전동기(three phase induction motor)에서 발생되는 턴 쇼트 고장(turn-short fault)을 일 예로 들어 설명한다. 다만, 이에 제한되는 것은 아니며, 교류로 동작하는 전동기에 적용될 수 있다. 예를 들어, 유도 전동기에 적용될 수 있다. 예를 들어, 단상 유도 전동기, 농형 유도 전동기, 권선형 유도 전동기 중 적어도 하나의 유도 전동기에 적용될 수 있다.
도 1은 턴 쇼트 고장을 시각적으로 도시한 도면이다.
도 1을 참고하면, 유도 전동기는 샤프트(미도시), 샤프트에 결합되어 샤프와 함께 회전되는 로터(rotor, 10), 로터(10)의 외측에 배치되는 스테이터(stator, 20), 스테이터(20)의 슬롯에 권선되는 복수의 코일(30)을 포함할 수 있다. 로터(10)는 회전자로 호칭되고, 스테이터(20)는 고정자로 호칭될 수 있다.
유도 전동기의 코일(30)은 얇은 절연체로 코팅된 구리선으로 형성될 수 있다. 유도 전동기의 코일(30)은 전동기의 구동에 따른 진동, 코일(30)을 흐르는 고전압, 고전류로 인한 스트레스, 절연체의 노화 등의 원인으로 인해 절연 특성을 쉽게 잃어버리게 된다. 이 경우, 인접한 코일(30) 사이에 단락이 발생될 수 있는데, 이를 턴 쇼트 고장(F)이라 한다.
턴 쇼트 고장(F)이 발생될 경우, 단락된 코일(30)에 의해 권선 간에 폐회로가 형성되고, 형성된 폐회로에 쇄교된 자속의 변화량에 의하여 유도기전력이 발생된다. 형성된 폐회로는 저항이 낮아 내부에 고전류가 흐르게 되며, 고전류로 인해 유도 전동기 내부에 발열이 발생된다. 유도 전동기의 폐회로에 발생된 발열은, 인접한 코일(30)의 절연체를 약화시켜 턴 쇼트 고장(F)이 확대된다. 따라서, 턴 쇼트 고장(F)을 초기에 진단하여 대응하는 것이 필요하다. 또한, 유휴 비용 감소 및 화재 방지를 위해 온라인 고장 진단이 필요하다.
본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법은 앞서 상술한 문제를 해결하기 위해, 사전 데이터 축적 없이도 턴 쇼트 고장 진단이 가능할 수 있다.
이하에서는 도면을 참고하며 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법에 대해 상세히 설명한다.
도 2는 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법의 고장 진단 장치의 구성도이고, 도 3은 도 2의 고장 검출부는 도시한 도면이고, 도 4는 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법에 사용되는 유도 전동기의 회전자의 축을 도시한 도면이고, 도 5는 본 발명의 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법에 따른 고장 진단 알고리즘을 도시한 도면이고, 도 6은 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법의 역상 성분 전류의 신호 처리 과정을 도시한 도면이다.
도 2 및 도 3을 참조하면, 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법은 유도 전동기(100), 전원 공급부(200), 및 고장 검출부(300)를 포함할 수 있다. 다만, 이를 제한하는 것은 아니며, 이 중 일부 구성을 제외하고 실시될 수 있다.
유도 전동기(100)는 3상 유도 전동기를 일 예로 들어 설명한다. 여기에서, 3상은 a상, b상 c상으로 정의하여 설명한다. 유도 전동기(100)는 전원 공급부(200)로부터 전원을 공급받을 수 있다. 유도 전동기(100)는 서로 다른 위상을 갖는 3개의 교류 전원을 공급받을 수 있다. 유도 전동기(100)는 전원 공급부(200)로부터 전원을 제공받는 입력단(120)을 포함할 수 있다. 입력단(120)는 복수의 입력단을 포함할 수 있다. 이하에서는, 복수의 입력단을 3개의 입력단을 포함하는 것으로 설명한다. 이는 3상 유도 전동기를 일 예로 설명하기 때문이며, 단상 유도 전동기일 경우 인렵단은 1개의 입력단을 포함할 수 있다. 즉, 입력단(120)의 수는 유도 전동기(100)의 종류에 다라 변경될 수 있다. 복수의 입력단(122, 124, 126)은 제1입력단(122), 제2입력단(124), 제3입력단(126)을 포함할 수 있다. 유도 전동기(100)는 제1입력단(122)과 연결되는 공급 라인을 통해 a상의 전원을 공급받을 수 있다. 유도 전동기(100)는 제2입력단(124)과 연결되는 공급 라인을 통해 b상의 전원을 공급받을 수 있다. 유도 전동기(100)는 제3입력단(126)과 연결되는 공급 라인을 통해 c상의 전원을 공급받을 수 있다. 유도 전동기(100)가 교류 전원을 공급받을 경우, 유도 전동기(100)의 스테이터에는 회전 자기장이 형성될 수 있다. 유도 전동기(100)의 로터는 회전 자기장을 받아 유도기전력이 형성될 수 있다. 이때, 로터는 기전력을 받아 전류가 흐르게 되며, 이 전류로 로터에 자기력이 형성될 수 있다. 유도 전동기(100)는 로터의 자기력과 스테이터의 자기장 사이의 상호 작용으로 토크가 발생되어 구동될 수 있다.
전원 공급부(200)는 유도 전동기(100)로 전원을 공급할 수 잇다. 전원 공급부(200)는 3상 전압원일 수 있다. 이는, 유도 전동기(100)가 3상 유도 전동기인 것으로 설명하고 있기 때문이며, 유도 전동기(100)의 종류에 따라 적합한 전압원을 포함할 수 있다. 전원 공급부(200)는 출력단(220)을 포함할 수 있다. 출력단(220)은 유도 전동기(100)의 입력단(120)의 수와 대응될 수 있다. 전원 공급부(220)의 출력단(220)은 복수의 출력단(220)을 포함할 수 있다. 복수의 출력단(220)은 제1 내지 제3출력단(222, 224, 226)을 포함할 수 있다. 전원 공급부(200)는 제1출력단(222)을 통해 a상 전원을 유도 전동기(100)로 공급할 수 있다. 전원 공급부(200)는 제2출력단(224)을 통해 b상 전원을 유도 전동기(100)로 공급할 수 있다. 전원 공급부(200)는 제3출력단(226)을 통해 c상 전원을 유도 전동기(100)로 공급할 수 있다. 제1출력단(222)는 제1입력단(122)와 공급 라인에 의해 연결될 수 있다. 제2출력단(224)는 제2입력단(124)와 공급 라인에 의해 연결될 수 있다. 제3출력단(226)는 제3입력단(126)와 공급 라인에 의해 연결될 수 있다.
고장 검출부(300)는 유도 전동기(100)의 고장 여부를 검출할 수 있다. 고장 검출부(300)는 유도 전동기(100)와 전원 공급부(200) 사이에 설치될 수 잇다. 고장 검출부(300)는 유도 전동기(100)와 전원 공급부(200) 사이의 공급 라인 상에 설치될 수 있다. 고장 검출부(300)는 유도 전동기(100)로 공급되는 3상 전류(
Figure PCTKR2021009430-appb-img-000003
)를 실시간으로 센싱할 수 있다. 고장 검출부(300)는 유도 전동기(100)로 공급되는 3상 전류(
Figure PCTKR2021009430-appb-img-000004
)를 센싱하여 유도 전동기(100)의 고장 여부를 판단할 수 있다. 고장 검출부(300)는 센싱된 3상 전류(
Figure PCTKR2021009430-appb-img-000005
)를 2축의 역상 성분 전류(
Figure PCTKR2021009430-appb-img-000006
)로 변환하고, 변환된 역상 성분 전류(
Figure PCTKR2021009430-appb-img-000007
)를 통해 유도 전동기(100)의 고장 여부를 판단할 수 있다. 이하에서, 2축은 d축과 q축으로 호칭한다.
도 3을 참고하면, 고장 검출부(300)는 전류 검출부(320), 변환부(340), 산출부(360), 판단부(380)을 포함할 수 있다. 다만, 이 중 일부 구성을 제외하고 실시될 수 있다.
전류 검출부(320)는 유도 전동기(100)와 전원 공급부(200) 사이의 공급 라인 상에 접속될 수 있다. 전류 검출부(320)는 유도 전동기(100)와 전원 공급부(200) 사이의 3개의 공급 라인 상에 각각 접속되어 3상 전류(
Figure PCTKR2021009430-appb-img-000008
)를 센싱할 수 있다. 전류 검출부(320)는 공급 라인에 흐르는 전류를 검출하기 위한 검출단은 커런트 트랜스 포머 등의 다양한 전류 검출 프로브를 적용할 수 있다.
변환부(340)는 전류 검출부(320)에서 센싱된 3상 전류(
Figure PCTKR2021009430-appb-img-000009
)를 역상 변환할 수 있다. 변환부(340)는 전류 검출부(320)에서 센싱된 3상 전류(
Figure PCTKR2021009430-appb-img-000010
)를 역상 성분 전류(
Figure PCTKR2021009430-appb-img-000011
)로 변환할 수 있다. 이하에서는, 전류 검출부(320)에서 센싱된 3상 전류(
Figure PCTKR2021009430-appb-img-000012
)로부터 변환된 역상 성분 전류(
Figure PCTKR2021009430-appb-img-000013
)를 제1역상 성분 전류로 호칭한다.
도 6은 변환부(340)에서 3상 전류(
Figure PCTKR2021009430-appb-img-000014
)를 제1역상 성분 전류로 변환하는 과정을 나타낸다. 도 6을 참고하면, 센싱된 3상 전류(
Figure PCTKR2021009430-appb-img-000015
)는 먼저 d, q축 좌표계로 변환되어 2축 전류(
Figure PCTKR2021009430-appb-img-000016
)로 변환된다. 변환된 2축 전류(
Figure PCTKR2021009430-appb-img-000017
)는 역상 좌표계로 변환된 후 역상 성분 이외의 성분을 필터링하기 위해 저역 필터(Low Pass Filter, LPF)를 통과한다. 저역 필터를 통과한 역상 좌표계 전류(
Figure PCTKR2021009430-appb-img-000018
)는 정지 좌표계로 변환되어 제1역상 성분 전류(
Figure PCTKR2021009430-appb-img-000019
)로 변환된다. 본 발명은 변환된 제1역상 성분 전류(
Figure PCTKR2021009430-appb-img-000020
)을 이용하여 유도 전동기(100)의 고장 여부를 진단할 수 있다.
산출부(360)는 다이나믹 모델을 적용하여 성분 전류
Figure PCTKR2021009430-appb-img-000021
를 생성할 수 있다. 산출부(360)은 가상의 유도 전동기를 구동시켜 성분 전류
Figure PCTKR2021009430-appb-img-000022
를 산출할 수 있다. 산출부(360)는 다이나믹 모델을 Runge kutta 4th method에 적용하여 실시간으로 가상의 성분 전류
Figure PCTKR2021009430-appb-img-000023
를 산출할 수 있다. 산출부(360)는, 예를 들면, CPU일 수 있다. 다이나믹 모델은, 예를 들면, 프로그램 또는 소프트웨어일 수 있다. 즉, CPU인 산출부(360)에서 가상의 유도 전동기를 구동시키고, 가상의 유도 전동기로부터 제공받는 전류값을 다이나믹 모델을 통해 성분 전류
Figure PCTKR2021009430-appb-img-000024
로 산출할 수 있다. 이때, 산출부(360)은 다이나믹 모델을 Runge kutta 4th method에 적용하여 성분 전류
Figure PCTKR2021009430-appb-img-000025
를 계산할 수 있다.
다이나믹 모델은 아래의 수식으로 정의될 수 있다. 본 발명에 따른 다이나믹 모델은 4극 유도 전동기를 일 예로 설명한다. 도 4는 4극 유도 전동기에 따른 로터의 d, q축을 극 수에 비례하도록 분할 표현한 도면이다. 스테이터 권선에서 턴 쇼트 고장이 발생될 경우, 고장 권선과 로터 각각의 축의 위치에 따라 로터에서 받는 고장에 대한 영향이 달라질 수 있다. 따라서, 본 발명에 따른 다이나믹 모델은, 도 4에 도시된 바와 같이, 유도 전동기에 따른 로터의 d, q축을 극 수에 비례하도록 분할하고, 분할된 각 축의 성분을 기반으로 다이나믹 모델을 설정하였다.
<수식>
Figure PCTKR2021009430-appb-img-000026
여기에서,
Figure PCTKR2021009430-appb-img-000027
,
Figure PCTKR2021009430-appb-img-000028
각각은 스테이터에 공급되는 d축, q축 전압이고,
Figure PCTKR2021009430-appb-img-000029
는 고장 회로 전압이고,
Figure PCTKR2021009430-appb-img-000030
,
Figure PCTKR2021009430-appb-img-000031
,
Figure PCTKR2021009430-appb-img-000032
,
Figure PCTKR2021009430-appb-img-000033
,
Figure PCTKR2021009430-appb-img-000034
,
Figure PCTKR2021009430-appb-img-000035
,
Figure PCTKR2021009430-appb-img-000036
,
Figure PCTKR2021009430-appb-img-000037
각각은 로터에 인가되는 d, q축 전류이다.
Figure PCTKR2021009430-appb-img-000038
은 각 코일들의 저항값이고,
Figure PCTKR2021009430-appb-img-000039
은 각 코일들의 인덕턴스이다. VITFmodel과 IITFmodel은 각각 다음과 같다.
Figure PCTKR2021009430-appb-img-000040
,
Figure PCTKR2021009430-appb-img-000041
은 유한 요소 해석법을 통해 계산될 수 있다.
판단부(380)는 변환부(340)로부터 제공받은 제1역상 성분 전류와 산출부(360)로부터 제공받은 성분 전류를 비교하여 유도 전동기(100)의 턴 쇼트 고장 여부를 판단할 수 있다. 도 5를 참고하면, 판단부(380)는 제1역상 성분 전류와 성분 전류가 동일하거나 거의 비슷할 경우, 유도 전동기(100)의 턴 쇼트 고장을 진단한다. 3상 유도 전동기의 경우, 각 축의 균형이 맞춰져 있는데, 턴 쇼트 고장이 발생되게 되면 고장이 발생된 축과 나머지 축 사이의 균형이 깨지게 된다. 즉, 고장이 발생된 축은 고전류가 흐르고, 고장이 발생되지 않은 2개의 축에는 저전류가 흐르면서 역상 성분이 발생된다. 이때, 턴 쇼트 고장이 발생된 것으로 판단하기 위한 기준 값이 요구되는데, 종래의 고장 진단 방식에 경우 사전 실험을 통한 축적 데이터와의 비교 판단을 통해 고장 판단을 하게된다. 반면, 본 발명에 따르면, 고장 진단의 기준을 수식적으로 접근하므로 사전 실험 데이터 없이 바로 고장 여부는 판단할 수 있다.
다시 도 5를 참고하면, 판단부(380)는 제1역상 성분 전류가 성분 전류보다 클 경우, 제1역상 성분 전류와 성분 전류가 같아질 때까지 성분 전류의 고장 정도를 증가시키도록 산출부(360)에 신호를 전송할 수 있다. 산출부(360)는 판단부(380)의 신호에 따라, 가상의 유도 전동기의 고장 정도를 증가시킬 수 있다. 산출부(360)는 고장 정도가 증가된 가상의 유도 전동기로부터 받은 전류를 기초로 고장 정도가 증가된 성분 전류를 산출할 수 있다. 판단부(380)는 고장 정도가 증가된 성분 전류가 제1역상 성분 전류가 동일할 경우 더이상 고장 정도를 증가시키지 않고, 이 때의 고장 상태를 최종 검출하여 유도 전동기(100)가 턴 쇼트 고장을 진단할 수 있다.
이하에서는, 본 발명에 다른 유도 전동기의 턴 쇼트 고장 진단 방법에 대해 설명한다.
유도 전동기의 턴 쇼트 고장 진단 방법은 유도 전동기(100)로 제공되는 전류를 검출하는 단계; 유도 전동기(100)로부터 검출된 전류를 제1역상 성분 전류로 변환하는 단계; 가상의 유도 전동기로부터 성분 전류를 산출하는 단계; 제1역상 성분 전류와 성분 전류를 비교하여 유도 전동기(100)의 고장 여부를 판단하는 단계를 포함할 수 있다. 유도 전동기(100)의 고장 여부를 판단하는 단계는, 제1역상 성분 전류와 성분 전류가 동일할 경우 유도 전동기에 턴 쇼트 고장(turn-short fault)을 진단할 수 있다. 제1역상 성분 전류가 성분 전류보다 클 경우, 제1역상 성분 전류와 성분 전류가 같아질 때까지 성분 전류의 고장 정도를 증가시키는 단계를 더 포함할 수 있다. 성분 전류는 앞서 상술한 다이나믹 모델을 통해 획득될 수 잇다.
본 발명은 사전 실험 데이터 없이 고장 여부를 판단할 수 있는 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법을 제공할 수 있다.
또한, 사전 실험 데이터가 요구되는 유도 전동기의 고장 진단 방식의 경우 추가적인 사전 실험 데이터 축적에 드는 시간 및 비용이 막대한 문제가 있는 반면, 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치 및 방법은 고장 진단의 기준을 수식적으로 접근하므로 사전 실험 데이터 없이 바로 고장 여부는 판단할 수 있다. 또한, 실험에 의해 축적된 데이터가 유도 전동기에서 발생 가능한 다양한 고장 현상을 모두 포함할 수 없는 반면, 본 발명에 따른 유도 전동기의 턴 쇼트 고장 진단 장치 및 방법은 유도 전동기에서 발생 가능한 턴 쇼트 고장을 진단할 수 있다. 이를 통해, 턴 쇼트 고장을 초기에 진단 및 대응할 수 있고, 이에 따라 화재 방지, 모터 손상 방지, 금전 피해 방지할 수 있다.
이상의 실시 예들은 본 발명의 이해를 돕기 위하여 제시된 것으로, 본 발명의 범위를 제한하지 않으며, 이로부터 다양한 변형 가능한 실시 예들도 본 발명의 범위에 속하는 것임을 이해하여야 한다. 본 발명의 기술적 보호범위는 특허청구범위의 기술적 사상에 의해 정해져야 할 것이며, 본 발명의 기술적 보호범위는 특허청구범위의 문언적 기재 그 자체로 한정되는 것이 아니라 실질적으로는 기술적 가치가 균등한 범주의 발명까지 미치는 것임을 이해하여야 한다.
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (12)

  1. 유도 전동기와, 상기 유도 전동기의 입력단으로 전원을 공급하는 공급 라인 상에 흐르는 전류를 검출하여 상기 유도 전동기의 고장 여부를 진단하는 고장 검출부를 포함하고,
    상기 고장 검출부는 다이나믹 모델을 적용하여 상기 유동 전동기의 고장 여부를 진단하는 유도 전동기의 턴 쇼트 고장 진단 장치.
  2. 제1항에 있어서,
    상기 고장 검출부는 상기 유도 전동기로 제공되는 전류를 역상 변환한 제1역상 성분 전류와, 상기 다이나믹 모델을 적용하여 획득되는 성분 전류를 비교하여 상기 유도 전동기의 고장 여부를 진단하는 유도 전동기의 턴 쇼트 고장 진단 장치.
  3. 제2항에 있어서,
    상기 고장 검출부는 상기 제1역상 성분 전류와 상기 성분 전류가 동일할 경우 상기 유도 전동기의 고장을 진단하는 유도 전동기의 턴 쇼트 고장 진단 장치.
  4. 제2항에 있어서,
    상기 고장 검출부는 상기 제1역상 성분 전류가 상기 성분 전류보다 클 경우, 상기 제1역상 성분 전류와 상기 성분 전류가 같아질 때까지 상기 성분 전류의 고장 정도를 증가시키는 유도 전동기의 턴 쇼트 고장 진단 장치.
  5. 제1항에 있어서,
    상기 다이나믹 모델은 아래의 수식을 통해 정의되는 유도 전동기의 턴 쇼트 고장 진단 장치.
    <수식>
    Figure PCTKR2021009430-appb-img-000042
  6. 제2항에 있어서,
    상기 고장 검출부는 상기 공급 라인 상에 흐르는 상기 전류를 검출하는 전류 검출부와,
    상기 전류 검출부에서 검출된 전류를 상기 제1역상 성분 전류로 변환하는 변환부와,
    상기 성분 전류를 산출하는 산출부와,
    상기 제1역상 성분 전류와 상기 성분 전류를 비교하여 상기 유도 상기 유도 전동기의 고장 여부를 진단하는 판단부를 포함하는 유도 전동기의 턴 쇼트 고장 진단 장치.
  7. 제6항에 있어서,
    상기 다이나믹 모델은 상기 고장 검출부의 상기 산출부에 적용되는 유도 전동기의 턴 쇼트 고장 진단 장치.
  8. 제2항에 있어서,
    상기 성분 전류는 가상의 유도 전동기에 의해 발생되는 고장을 나타내는 유도 전동기의 턴 쇼트 고장 진단 장치.
  9. 유도 전동기로 제공되는 전류를 검출하는 단계;
    상기 유도 전동기로부터 검출된 상기 전류를 제1역상 성분 전류로 변환하는 단계;
    가상의 유도 전동기로부터 성분 전류를 산출하는 단계;
    상기 제1역상 성분 전류와 상기 성분 전류를 비교하여 상기 유도 전동기의 고장 여부를 판단하는 단계를 포함하는 유도 전동기의 턴 쇼트 고장 진단 방법.
  10. 제9항에 있어서,
    상기 유도 전동기의 고장 여부를 판단하는 단계는,
    상기 제1역상 성분 전류와 상기 성분 전류가 동일할 경우 상기 유도 전동기에 턴 쇼트 고장(turn-short fault)을 진단하는 유도 전동기의 턴 쇼트 고장 진단 방법.
  11. 제10항에 있어서,
    상기 제1역상 성분 전류가 상기 성분 전류보다 클 경우, 상기 제1역상 성분 전류와 상기 성분 전류가 같아질 때까지 상기 성분 전류의 고장 정도를 증가시키는 단계를 더 포함하는 유도 전동기의 턴 쇼트 고장 진단 방법.
  12. 제9항에 있어서,
    상기 성분 전류는 다이나믹 모델을 통해 획득되고,
    상기 다이나믹 모델은 아래의 수식을 포함하는 유도 전동기의 턴 쇼트 고장 진단 방법.
    <수식>
    Figure PCTKR2021009430-appb-img-000043
PCT/KR2021/009430 2020-10-29 2021-07-21 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법 WO2022092496A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/536,430 US11988715B2 (en) 2020-10-29 2021-11-29 Device for diagnosing turn-short fault of induction motor and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0142285 2020-10-29
KR1020200142285A KR102488028B1 (ko) 2020-10-29 2020-10-29 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/536,430 Continuation US11988715B2 (en) 2020-10-29 2021-11-29 Device for diagnosing turn-short fault of induction motor and method thereof

Publications (1)

Publication Number Publication Date
WO2022092496A1 true WO2022092496A1 (ko) 2022-05-05

Family

ID=81382834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009430 WO2022092496A1 (ko) 2020-10-29 2021-07-21 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법

Country Status (2)

Country Link
KR (1) KR102488028B1 (ko)
WO (1) WO2022092496A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925148B1 (ko) * 2007-11-28 2009-11-05 고려대학교 산학협력단 3상 교류 전동기의 고장 진단 장치, 방법, 및 상기 방법을실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한매체
KR101169797B1 (ko) * 2011-02-14 2012-07-30 양철오 3상 유도전동기의 고정자 권선 고장 진단시스템
JP2019176649A (ja) * 2018-03-29 2019-10-10 オムロン株式会社 モータ制御装置
KR102040397B1 (ko) * 2018-04-10 2019-11-04 서울과학기술대학교 산학협력단 인버터 입력 전류 분석을 이용한 유도전동기 고장 진단 방법 및 시스템

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542893B1 (ko) * 2003-12-22 2006-01-11 재단법인 포항산업과학연구원 유도 전동기 이상 상태 진단장치
JP2008011622A (ja) * 2006-06-28 2008-01-17 Yaskawa Electric Corp インバータ装置とその交流電動機診断、及び診断結果表示方法
DE102011003573A1 (de) * 2011-02-03 2012-08-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung eines Fehlverhaltens einer Elektromaschine
KR101348635B1 (ko) * 2012-07-04 2014-01-08 한국전기연구원 유도전동기 회전자의 고장 진단 장치 및 방법
KR101357828B1 (ko) * 2012-12-07 2014-02-05 전자부품연구원 직렬 코일형 영구자석 모터의 고장 검출 방법 및 시스템
EP3783376B1 (en) * 2018-04-17 2022-04-27 Mitsubishi Electric Corporation Electric motor diagnosing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925148B1 (ko) * 2007-11-28 2009-11-05 고려대학교 산학협력단 3상 교류 전동기의 고장 진단 장치, 방법, 및 상기 방법을실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한매체
KR101169797B1 (ko) * 2011-02-14 2012-07-30 양철오 3상 유도전동기의 고정자 권선 고장 진단시스템
JP2019176649A (ja) * 2018-03-29 2019-10-10 オムロン株式会社 モータ制御装置
KR102040397B1 (ko) * 2018-04-10 2019-11-04 서울과학기술대학교 산학협력단 인버터 입력 전류 분석을 이용한 유도전동기 고장 진단 방법 및 시스템

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IM SEONG-HWAN, GU BON-GWAN: "Study of Dynamic Model of Induction Motor with Inter-turn Short Fault", TRANSACTIONS OF THE KOREAN INSTITUTE OF ELECTRICAL ENGINEERS, KOREA, vol. 69, no. 8, 31 August 2020 (2020-08-31), KOREA , pages 1193 - 1199, XP055925337, ISSN: 1975-8359, DOI: 10.5370/KIEE.2020.69.8.1193 *
WOO KYUNGIL, JOO DAESUK, PARK SANGHOON, PARK HANSEOK: "Analysis of 3-phase Squirrel Cage Induction Motor with Mixed Fault", PROCEEDINGS OF KIEE CONFERENCE, 1 July 2009 (2009-07-01), XP055925335 *

Also Published As

Publication number Publication date
KR20220057233A (ko) 2022-05-09
KR102488028B1 (ko) 2023-01-13

Similar Documents

Publication Publication Date Title
Jung et al. Online diagnosis of induction motors using MCSA
Hajary et al. Detection and localization of open-phase fault in three-phase induction motor drives using second order rotational park transformation
US7944160B2 (en) Redundant DC bus discharge for an electric motor system
US8559143B2 (en) Vehicle control system
WO2013108971A1 (ko) 유도 전동기의 회전자 결함 진단 장치, 방법 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 매체
KR20090055156A (ko) 3상 교류 전동기의 고장 진단 장치, 방법, 및 상기 방법을실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한매체
CN107664991A (zh) 电机控制器下线检测装置及检测方法
JP2010016982A (ja) モータ制御装置およびモータ地絡検出方法
WO2022092496A1 (ko) 유도 전동기의 턴 쇼트 고장 진단 장치 및 그 방법
JP4899891B2 (ja) 真空ポンプ装置
Pietrzak et al. Stator phase current STFT analysis for the PMSM stator winding fault diagnosis
KR101878810B1 (ko) 모터의 고장 진단 방법
JP6454034B2 (ja) 直流電流センサ、交流電流センサ及びこれらを有するインバータ
CN113484793A (zh) 一种基于相电流分析的永磁容错电机绕组匝间短路故障诊断方法
WO2023042961A1 (ko) 모터 다이나모미터 및 모터 특성 곡선 생성 방법
CN108445340B (zh) 五相永磁同步电机逆变器开路故障的检测方法
WO2022177194A1 (ko) 전원 공급 장치, 전자 장치, 및 그 제어 방법
US20220137138A1 (en) Device for diagnosing turn-short fault of induction motor and method thereof
Zhou et al. A Fast Open-Switch Fault and Open-Winding Fault Distinguish Method Based on Voltage Reference Modification
Kouchih et al. Modeling and diagnosis of induction machines operating under open-phase fault
EP4199346A1 (en) Motor winding fault diagnosis
CN115102465B (zh) 六相永磁电机的控制方法、装置、设备及存储介质
Majumdar et al. State-space model based induction motor stator winding inter-turn fault detection technique
CN214959340U (zh) 电机采样控制电路、驱动器和电机
CN113777485B (zh) 基于价值函数误差的永磁同步电机开路故障诊断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886495

Country of ref document: EP

Kind code of ref document: A1