WO2022092386A1 - 반도체 공정 진단 센서 장치 - Google Patents

반도체 공정 진단 센서 장치 Download PDF

Info

Publication number
WO2022092386A1
WO2022092386A1 PCT/KR2020/015689 KR2020015689W WO2022092386A1 WO 2022092386 A1 WO2022092386 A1 WO 2022092386A1 KR 2020015689 W KR2020015689 W KR 2020015689W WO 2022092386 A1 WO2022092386 A1 WO 2022092386A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic components
sensor device
semiconductor process
seating groove
height
Prior art date
Application number
PCT/KR2020/015689
Other languages
English (en)
French (fr)
Inventor
전호승
조문성
황성주
장래원
Original Assignee
주식회사 이큐셀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200143580A external-priority patent/KR102505963B1/ko
Priority claimed from KR1020200143579A external-priority patent/KR102505962B1/ko
Application filed by 주식회사 이큐셀 filed Critical 주식회사 이큐셀
Priority to US17/255,436 priority Critical patent/US20230046603A1/en
Publication of WO2022092386A1 publication Critical patent/WO2022092386A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]
    • H05K2201/052Branched
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09027Non-rectangular flat PCB, e.g. circular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor

Definitions

  • Semiconductor manufacturing typically involves a number of processes such as optics, deposition and growth, and etching processes.
  • SOW mounts a plurality of sensors and electronic components between two test wafers, and directly senses semiconductor manufacturing process conditions in the chamber using the mounted sensors.
  • a plurality of sensors and electronic components have different heights, all of them form cavities in the wafer to have the same depth, and a plurality of sensors and electronic components are mounted in the cavities.
  • the conventional SOW consists of two wafers combined.
  • the total thickness of the SOW becomes 1500 ⁇ m.
  • the thickness of the wafer is 1200 ⁇ m or more, a problem occurs in that it is recognized as two wafers.
  • An object of the present invention is to provide a semiconductor process diagnostic sensor device capable of preventing warpage of the sensor device when the temperature rises by improving durability of the sensor device.
  • the plurality of electronic components includes a plurality of first electronic components having a height higher than the reference height and a plurality of second electronic components having a height lower than the reference height.
  • lower portions of the plurality of electronic components are located inside the seating grooves, and upper portions of the plurality of electronic components are located inside the plurality of insertion grooves.
  • the thickness of the lower case is thinner than the thickness of the upper case.
  • the sensing probe further includes a contact hole formed at an end of the wiring and a conductive pattern passing through the contact hole to connect the pair of probe pads and the end of the wiring.
  • the density and uniformity of the plasma are sensed based on the capacitance between a pair of probe pads that change according to the density of the external plasma without exposing the sensing probe to the outside.
  • 5A and 5B are diagrams illustrating a circuit board seated in the lower case of FIGS. 3A and 3B .
  • 6A is a cross-sectional view of a semiconductor process diagnostic sensor device according to an embodiment of the present invention, and is a cross-sectional view taken along line VI-VI of FIG. 5A.
  • 6B is a cross-sectional view of a semiconductor process diagnostic sensor device according to an embodiment of the present invention, and is a cross-sectional view taken along lines VII-VII of FIG. 5B.
  • FIG. 8A to 8I are flowcharts of a method of manufacturing a semiconductor process diagnostic sensor device according to an exemplary embodiment of the present invention based on FIG. 6B .
  • circuit board 200 is a printed circuit board (PCB), and wiring is printed so that the sensor 241, the IC chip 243, and the battery (245 in FIGS. 5A and 5B) are electrically connected.
  • PCB printed circuit board
  • the sensing probe 400 is provided in plurality, and is provided at a predetermined sensing position of the plasma sensor device for diagnosing a semiconductor process.
  • the communication IC chip wirelessly transmits sensing information sensed by the sensor 241 as a configuration for wireless communication with the outside, and wirelessly receives control information for controlling the operation of the sensor 241 .
  • control information may include a process in which the semiconductor process diagnostic sensor device is to be used and conditions required for the process.
  • control information may define a process in which the semiconductor process diagnostic sensor device is used and include set values for a sensing temperature, a sensing time, and a sensing method in the defined process.
  • the control IC chip may control the operation of the sensor 241 using the control information. That is, the control IC chip may control the sensor 241 to operate based on a set value included in the control information.
  • the circuit board 200 may include a battery terminal 245a on which a battery ( 245 in FIGS. 5A and 5B ) is mounted.
  • the battery ( 245 in FIGS. 5A and 5B ) supplies power for driving components included in the semiconductor process diagnostic sensor device, including the sensor 241 and the IC chip 243 .
  • FIGS. 3A and 3B are plan views of a lower case of a semiconductor process diagnostic sensor device according to an embodiment of the present invention
  • FIGS. 4A and 4B are plan views of an upper case of the semiconductor process diagnostic sensor device according to an embodiment of the present invention
  • 5A and 5B are diagrams illustrating a circuit board seated in the lower case of FIGS. 3A and 3B .
  • the upper case 300 has a plurality of insertion grooves 310 into which the electronic component 240 is inserted into a shape corresponding to the plurality of electronic components 240 .
  • the insertion groove 310 may be formed in a shape corresponding to the upper surface of the electronic component 240 at a position where the electronic component 240 is mounted on the circuit board 200 .
  • the above-described seating groove 110 and insertion groove 310 are preferably formed by a wet etching technique, but are not limited thereto.
  • FIG. 6A is a cross-sectional view of a semiconductor process diagnostic sensor device according to an embodiment of the present invention, a cross-sectional view taken along lines VI-VI of FIG. 5A
  • FIG. 6B is a cross-sectional view of a semiconductor process diagnostic sensor device according to an embodiment of the present invention , is a cross-sectional view taken along VII-VII of FIG. 5B.
  • a semiconductor process diagnostic sensor device includes a lower case 100 , a circuit board 200 , an upper case 300 , and a first adhesive layer 121 . can be configured.
  • the lower case 100 has a seating groove (110 in FIGS. 3A and 3B) is formed, and an electronic component 240, for example, a sensor 241 and an IC chip 243, is mounted in the seating groove 110 on a circuit board. (200) is placed.
  • the electronic component 240 is soldered to the wiring of the circuit board 200 , and the circuit board 200 may be attached to the seating groove 110 of the lower case 100 by an adhesive.
  • the upper case 300 is formed with a plurality of insertion grooves 310 having different depths, and is joined to the lower case 100 so that the electronic component 240 is inserted into the plurality of insertion grooves 310 .
  • the first adhesive layer 121 is disposed inside the seating groove 110 and the plurality of insertion grooves 310 .
  • the first adhesive layer 121 may be made of a Si-based material having a hardness of shore A40 or less and an elongation of 30% or more.
  • the plurality of insertion grooves 310 have different depths according to the heights of the plurality of electronic components 240 . Accordingly, the plurality of electronic components 240 can be in close contact with the respective insertion grooves 310 , thereby improving the durability of the sensor device and preventing the sensor device from bending when the temperature rises.
  • the first adhesive layer 121 is completely filled in the seating groove 110 and the insertion groove 310 to surround the electronic component 240 , so that the lower case It is characterized in that the pores are not included in the seating groove 110 and the insertion groove 310 in a state in which the 100 and the upper case 300 are joined together.
  • the semiconductor process diagnostic sensor device by disposing the first adhesive layer 121 so that pores are not included in the seating groove 110 and the insertion groove 310, pore expansion due to temperature rise It is possible to prevent warpage of the sensor device caused by this.
  • the first adhesive layer 121 is characterized in that the coefficient of thermal expansion is smaller than that of the lower case 100 and the upper case 300 or the same as that of the lower case 100 and the upper case 300 .
  • the first adhesive layer 121 having a relatively small coefficient of thermal expansion is disposed between the seating groove 110 and the insertion groove 310, so that the first It is possible to prevent warpage of the sensor device caused by the expansion of the adhesive layer 121 .
  • the semiconductor process diagnostic sensor device may further include a second adhesive layer 122 disposed in a region where the electronic component 240 is mounted, that is, a soldering region.
  • the soldering area includes an empty space between the circuit board 200 and the electronic component 240, and the second adhesive layer 122 is formed by filling this empty space with an adhesive through an underfill process, By performing a role of firmly fixing the electronic component 240 to the substrate 200 , it is possible to prevent peeling of the electronic component 240 caused by bending of the sensor device.
  • the second adhesive layer 122 may be made of a contact epoxy material having a hardness of shore D50 or more and an elongation of 5% or less.
  • the semiconductor process diagnostic sensor device is characterized in that the thermal conductivity of the first adhesive layer 121 is higher than that of the second adhesive layer 122 .
  • the thermal conductivity of the first adhesive layer 121 may be 0.8 W/m*K or more.
  • the first adhesive layer 121 may include a separate thermally conductive material, and the thermally conductive material is preferably a non-conductive material in order to prevent a short circuit of the electronic component 240 . .
  • the plurality of insertion grooves 310 may be formed to have a depth corresponding to the heights of the plurality of electronic components 240 .
  • the depth h1 of the insertion groove 310 into which the IC chip 243 is inserted can be formed relatively deep to correspond to the height of the IC chip 243, and the insertion groove into which the sensor 241 is inserted (
  • the depth h2 of the 310 may be formed to be relatively shallow corresponding to the height of the sensor 241 .
  • the plurality of electronic components 240 may include a plurality of first electronic components having a height higher than the reference height and a plurality of second electronic components having a height lower than the reference height.
  • the plurality of insertion grooves 310 include a first insertion groove formed to a depth corresponding to the height of the electronic component 240 having the highest height among the plurality of first electronic components, and the highest among the plurality of second electronic components. It may include a second insertion groove formed to a depth corresponding to the height of the electronic component 240 having a high height.
  • the manufacturing cost can be reduced by reducing the manufacturing process compared to forming the insertion grooves 310 differently for each depth of the electronic component 240 .
  • the lower portion of the electronic component 240 is located inside the seating groove 110 of the lower case 100
  • the upper portion of the electronic component 240 is the upper portion. It may be located inside the insertion groove 310 of the case 300 .
  • the portion on which the lower portions of the plurality of electronic components 240 are seated may be formed to have a greater depth than the other portions.
  • the circuit board 200 corresponding to the lower edge of the plurality of electronic components 240 is also stepped ( abrupt bending) occurs, resulting in an increase in resistance.
  • the seating groove 110 has an inclined surface corresponding to the lower edge of the plurality of electronic components 240 as shown in FIG. 6A .
  • the circuit board 200 corresponding to the lower edge of the plurality of electronic components 240 along the inclined surface formed in the seating groove 110 is also gently bent to reduce resistance.
  • the semiconductor process diagnostic sensor device is configured in a state in which the upper case 300 and the lower case 100 are coupled.
  • the semiconductor process diagnostic sensor device The total thickness is 1500 ⁇ m.
  • the thickness of the wafer is 1200 ⁇ m or more, a problem occurs in that it is recognized as two wafers.
  • the thickness T1 of the lower case 100 is thinner than the thickness T2 of the upper case 300 .
  • the above problems can be solved by making the total thickness of the plasma sensor device to be 1200 ⁇ m or less.
  • the sensor 241 may be a plasma sensor 241
  • the sensing probe 400 includes a pair of probe pads 410 disposed in the seating groove 110 and includes a circuit board ( It is connected to the plasma sensor 241 through the wiring formed on the 200 .
  • the pair of probe pads 410 may be formed of a conductive material and formed to have a predetermined thickness by depositing in the seating groove 110 .
  • the plasma sensor 241 senses the density and uniformity of plasma based on the capacitance between the pair of probe pads 410 .
  • the sensing probe 400 includes a contact hole 132 formed in the wiring end 131 and a conductive pattern ( 420) may be included.
  • the contact holes 132 are respectively formed at positions corresponding to the pair of probe pads 410 .
  • the conductive pattern 420 may be formed of silver dots formed through Ag paste, but is not limited thereto and may be formed of various conductive materials formed by various forming methods.
  • a sensing probe is directly exposed to the outside to sense the density of plasma.
  • a conventional plasma sensor device has a problem of contaminating the inside of the chamber due to the exposed sensing probe.
  • the sensing probe 400 is not exposed to the outside, unlike the conventional one, and a pair of probe pads ( 410), it is characterized in that the density and uniformity of the plasma are sensed based on the capacitance.
  • FIG. 7A to 7E are flowcharts of a method of manufacturing a semiconductor process diagnostic sensor device according to an embodiment of the present invention based on FIG. 6A .
  • a plurality of insertion grooves 310 having different depths in a shape corresponding to the plurality of electronic components 240 are formed in the upper case 300 .
  • the insertion groove 310 may be formed by a wet etching technique.
  • the plurality of insertion grooves 310 are formed to have different depths according to the heights of the plurality of electronic components 240 . Accordingly, the plurality of electronic components 240 can be in close contact with the respective insertion grooves 310 , thereby improving the durability of the sensor device and preventing the sensor device from bending when the temperature rises.
  • the plurality of insertion grooves 310 may be formed to have a depth corresponding to the heights of the plurality of electronic components 240 .
  • the plurality of electronic components 240 may include a plurality of first electronic components having a height higher than the reference height and a plurality of second electronic components having a height lower than the reference height.
  • the plurality of insertion grooves 310 include a first insertion groove formed to a depth corresponding to the height of the electronic component 240 having the highest height among the plurality of first electronic components, and the highest among the plurality of second electronic components. It may include a second insertion groove formed to a depth corresponding to the height of the electronic component 240 having a high height.
  • the manufacturing cost can be reduced by reducing the manufacturing process compared to forming the insertion grooves 310 differently for each depth of the electronic component 240 .
  • a first adhesive 121a is applied to the plurality of insertion grooves 310 formed in the upper case 300 , and a plurality of electronic components 240 are formed in the plurality of insertion grooves 310 . is inserted and the first adhesive 121a is cured.
  • a seating groove 110 is formed in the lower case 100 in a shape corresponding to the circuit board 200 .
  • the seating groove 110 may be formed by a wet etching technique.
  • the portion on which the lower portions of the plurality of electronic components 240 are seated may be formed to have a greater depth than the other portions.
  • the first adhesive 121a is applied to the seating groove 110 , and the lower case 100 and the upper case 300 are mounted on the circuit board 200 in the seating groove 110 . ) are cemented.
  • the seating groove 110 of the lower case 100 faces upward, and the insertion groove 310 of the upper case 300 faces downward to attach the lower case 100 and the upper case 300 to each other. do. This is to prevent this because, when the seating groove 110 of the lower case 100 is directed downward and the first adhesive 121a, which has not yet been cured, flows down due to gravity during the bonding process, it is .
  • the seating groove 110 has an inclined surface corresponding to the lower edge of the plurality of electronic components 240 .
  • the circuit board 200 corresponding to the lower edge of the plurality of electronic components 240 along the inclined surface formed in the seating groove 110 is also gently bent to reduce resistance.
  • the first adhesive 121a applied to the seating groove 110 due to the circuit board 200 is attached to the lower case 100 and the upper case 300 .
  • the first adhesive 121a spreads to the surface and spreads to the bonding surface is cured, the lower case 100 and the upper case 300 are bonded, and the first adhesive layer 121 is formed to surround the electronic component 240 . do.
  • FIG. 8A to 8I are flowcharts of a method of manufacturing a semiconductor process diagnostic sensor device according to an exemplary embodiment of the present invention based on FIG. 6B .
  • a seating groove 110 is formed in the lower case 100 .
  • the lower case 100 is formed to be thinner than the thickness of the upper case 300 .
  • a pair of probe pads 410 are formed in the seating groove 110 .
  • the pair of probe pads 410 may be formed by depositing a conductive material in the seating groove 110 .
  • the circuit board 200 is mounted in the seating groove 110 of the lower case 100 .
  • a contact hole 132 is formed in the wiring end 131 printed on the circuit board 200 , and the contact hole 132 is positioned to correspond to the pair of conductive pads 410 .
  • the conductive pattern 420 is passed through the contact hole 132 to connect the pair of probe pads 410 and the wiring end 131 .
  • the conductive pattern 420 may be formed of silver dots formed through Ag paste, but is not limited thereto and may be formed of various conductive materials formed by various forming methods.
  • the pair of probe pads 410 and the conductive pattern 420 formed in this way constitute the sensing probe 400 .
  • an adhesive 121a is applied to the seating groove 110 in which the circuit board 200 is seated, and the adhesive 121a is cured. Accordingly, the first adhesive layer 121 is formed inside the seating groove 110 in which the sensing probe 400 , the plasma sensor 241 and the IC chip 243 are seated.
  • an insertion groove 310 is formed in a shape corresponding to the plasma sensor 241 and the IC chip 243 on one surface of the upper case 300 .
  • the first adhesive 121a is applied to the insertion groove 310 formed in the upper case 300, and the insertion groove 310 before the first adhesive 121a is cured.
  • the lower case 100 and the upper case 300 are attached to each other so that the plasma sensor 241 and the IC chip 243 are inserted therein.
  • the insertion groove 310 of the upper case 300 is directed upward, and the seating groove 110 of the lower case 100 is downward facing the lower case 100. And the upper case 300 is bonded.
  • the thickness of the lower case 100 is formed thinner than the thickness of the upper case 300, so that the plasma sensor device is recognized as two wafers.
  • the sensing probe 400 is not exposed to the outside, but between a pair of probe pads 410 that is changed according to the external plasma density. By sensing the density and uniformity of the plasma based on the capacitance, it is possible to solve the problem of contamination inside the chamber.
  • the semiconductor process diagnostic sensor device can be used in various fields in semiconductor manufacturing, such as a field for directly measuring a process condition in a chamber or a state of a wafer loaded into the chamber.

Abstract

본 발명은 안착홈이 형성되는 하부 케이스와, 높이가 다른 복수의 전자 부품을 실장하며 안착홈에 배치되는 회로 기판과, 깊이가 다른 복수의 삽입홈이 형성되며 복수의 삽입홈에 복수의 전자 부품이 삽입되도록 하부 케이스와 합착되는 상부 케이스와, 안착홈 및 복수의 삽입홈 사이에 배치되는 접착층을 포함하고, 삽입홈은 복수의 전자 부품의 높이에 따라 그 깊이가 다르게 형성되는 반도체 공정 진단 센서 장치를 제공한다.

Description

반도체 공정 진단 센서 장치
본 발명은 반도체 공정 진단 센서 장치에 관한 것이다.
반도체 제조에는 일반적으로 광학, 증착과 성장 및 식각 공정 등 다수의 공정을 거친다.
반도체 제조 공정에는 각 공정에서 공정 조건과 장비의 작동 상태를 주의 깊게 모니터링해야 한다. 예를 들면, 챔버나 웨이퍼의 온도, 가스 주입 상태, 압력 상태 또는 플라스마 밀도나 노출 거리 등을 제어하면서 최적의 반도체 수율을 위해 정밀한 모니터링이 필수적이다.
온도, 플라즈마, 압력, 유량 및 가스 등과 관련된 공정 조건에 오차가 발생하거나 장비가 오동작 하는 경우에는 불량이 다수 발생하여 전체 수율에 치명적이다.
한편, 종래 기술에서는 반도체 제조에서 챔버 내의 공정 조건을 간접적으로 측정하였으나 반도체 수율 향상을 위해 챔버의 내부 조건이나 그 챔버에 로딩된 웨이퍼의 상태 등을 직접 측정하기 위한 연구가 개발되고 있다. 그 중 하나가 웨이퍼의 온도 센싱 기술로서 SOW(Sensor On Wafer)가 개발 되었다.
일반적으로 SOW는 테스트용 웨이퍼 2 장 사이에 복수의 센서 및 전자 부품을 장착하고, 장착된 센서를 이용하여 반도체 제조 공정 조건을 챔버 내에서 직접 센싱한다.
그러나, 종래의 SOW는 복수의 센서 및 전자 부품의 높이가 각기 다름에도 불구하고, 모두 동일한 깊이로 웨이퍼에 캐비티를 형성하고, 이 캐비티에 복수의 센서 및 전자 부품을 실장하였다.
이와 같은 종래의 SOW에 따르면, 복수의 센서 및 전자 부품이 웨이퍼 내에서 밀착 접촉되지 않아 내구성이 떨어질 뿐 만 아니라 온도 상승 시 센서 장치의 휨 현상이 발생하는 문제점이 있다.
또한, 종래의 SOW는 2장의 웨이퍼가 결합된 상태로 구성되는데, 이들 웨이퍼가 750㎛의 동일한 두께로 형성되면 SOW의 두께는 총 1500㎛가 된다. 그러나, 웨이퍼의 두께가 1200㎛ 이상이 되면 웨이퍼 2장으로 인식되는 문제점이 발생한다.
종래의 SOW는 센싱 프로브가 외부에 직접적으로 노출되어 플라즈마의 밀도를 센싱하였다. 그러나, 이와 같은 방식은 노출된 센싱 프로브로 인해 챔버 내부를 오염시키는 문제점이 발생한다.
본 발명은, 센서 장치의 내구성을 향상시켜 온도 상승 시 센서 장치의 휨 현상을 방지할 수 있는 반도체 공정 진단 센서 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은, 플라즈마 센서 장치가 웨이퍼 2장으로 인식되는 문제점과 센싱 프로브가 챔버 내부를 오염시키는 문제점을 해결할 수 있는 반도체 공정 진단을 위한 플라즈마 센서 장치 및 이의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명은 전술한 목적을 달성하기 위하여, 본 발명은 안착홈이 형성되는 하부 케이스와, 높이가 다른 복수의 전자 부품을 실장하며 안착홈에 배치되는 회로 기판과, 깊이가 다른 복수의 삽입홈이 형성되며 복수의 삽입홈에 복수의 전자 부품이 삽입되도록 하부 케이스와 합착되는 상부 케이스와, 안착홈 및 복수의 삽입홈 사이에 배치되는 접착층을 포함하고, 삽입홈은 복수의 전자 부품의 높이에 따라 그 깊이가 다르게 형성되는 반도체 공정 진단 센서 장치를 제공한다.
여기서, 복수의 삽입홈은, 복수의 전자 부품의 높이에 대응하는 깊이로 형성된다.
또한, 복수의 전자 부품은, 기준 높이 보다 높은 높이를 갖는 복수의 제1 전자 부품과, 기준 높이 보다 낮은 높이를 갖는 복수의 제2 전자 부품을 포함한다.
또한, 복수의 삽입홈은, 복수의 제1 전자 부품 중 가장 높은 높이를 갖는 전자 부품의 높이에 대응하는 깊이로 형성되는 제1 삽입홈과, 복수의 제2 전자 부품 중 가장 높은 높이를 갖는 전자 부품의 높이에 대응하는 깊이로 형성되는 제2 삽입홈을 포함한다.
또한, 복수의 전자 부품의 하부는 안착홈 내부에 위치하고, 복수의 전자 부품의 상부는 복수의 삽입홈 내부에 위치한다.
또한, 안착홈은 복수의 전자 부품의 하부가 안착되는 부분이 그 이외의 부분 보다 깊이가 더 깊다.
또한, 안착홈은 복수의 전자 부품의 하부 가장자리에 대응하여 경사면이 형된다. 또한, 안착홈은 회로 기판과 대응하는 형상으로 형성되고, 복수의 삽입홈은 복수의 전자 부품과 대응하는 형상으로 형성된다.
또한, 복수의 전자 부품은 플라즈마 센서를 포함한다.
또한, 본 발명의 반도체 공정 진단 센서 장치는, 안착홈에 배치되는 한 쌍의 프로브 패드를 포함하며 회로 기판에 형성된 배선을 통해 플라즈마 센서와 연결되는 센싱 프로브를 더 포함하고, 플라즈마 센서는 한 쌍의 프로브 패드 사이의 정전 용량을 기초로 플라즈마를 센싱한다.
또한, 하부 케이스의 두께는 상부 케이스의 두께 보다 얇다.
또한, 센싱 프로브는, 배선 단부에 형성되는 콘택홀과, 콘택홀을 통과하여 한 쌍의 프로브 패드 및 배선 단부를 연결하는 도전성 패턴을 더 포함한다.
또한, 콘택홀은, 한 쌍의 프로브 패드와 대응하는 위치에 각각 형성된다.
본 발명에 따르면, 복수의 전자 부품이 삽입되는 복수의 삽입홈의 깊이를 복수의 전자 부품의 높이에 따라 다르게 형성하여, 복수의 전자 부품이 각각의 삽입홈에 밀착 접촉할 수 있어 센서 장치의 내구성이 향상되어 온도 상승 시 센서 장치의 휨 현상을 방지할 수 있다.
또한, 본 발명에 따르면, 회로 기판이 안착되는 안착홈에 복수의 전자 부품의 하부 가장자리에 대응하여 경사면을 형성하여, 이 경사면을 따라 복수의 전자 부품의 하부 가장자리에 대응한 회로 기판도 완만히 구부러져 저항을 감소시킬 수 있다.
본 발명에 따르면, 하부 케이스의 두께가 상부 케이스의 두께 보다 얇게 형성함으로써 플라즈마 센서 장치가 웨이퍼 2장으로 인식되는 문제점을 해소할 수 있다.
또한, 본 발명에 따르면, 기존과 달리 센싱 프로브가 외부로 노출하지 않고 외부의 플라즈마 밀도에 따라 변화되는 한 쌍의 프로브 패드 사이의 정전 용량을 기초로 플라즈마의 밀도 및 균일도를 센싱함으로써 챔버 내부 오염 문제를 해소할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치의 사시도이다.
도 2a 및 도 2b는 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치에 구비된 회로 기판의 평면도이다.
도 3a 및 도 3b는 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치의 하부 케이스의 평면도이다.
도 4a 및 도 4b는 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치의 상부 케이스의 평면도이다.
도 5a 및 도 5b는 도 3a 및 도 3b의 하부 케이스에 안착된 회로 기판을 도시한 도면이다.
도 6a는 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치의 단면도로서, 도 5a의 Ⅵ-Ⅵ을 따라 절단한 단면도이다.
도 6b는 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치의 단면도로서, 도 5b의 Ⅶ-Ⅶ을 따라 절단한 단면도이다.
도 7a 내지 도 7e는 도 6a를 기준으로 한 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치 제조 방법의 순서도이다.
도 8a 내지 도 8i는 도 6b를 기준으로 한 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치 제조 방법의 순서도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략할 수 있고, 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 참조 부호를 사용할 수 있다.
본 발명의 일 실시 예에서, “또는”, “적어도 하나” 등의 표현은 함께 나열된 단어들 중 하나를 나타내거나, 또는 둘 이상의 조합을 나타낼 수 있다. 예를 들어, “A 또는 B”, “A 및 B 중 적어도 하나”는 A 또는 B 중 하나만을 포함할 수 있고, A와 B를 모두 포함할 수도 있다.
도 1은 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치의 사시도이고, 도 2a 및 도 2b는 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치에 구비된 회로 기판의 평면도이다.
도 1, 도 2a 및 도 2b를 참조하면, 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치는 하부 케이스(100), 회로 기판(200) 및 상부 케이스(300)을 포함하여 구성할 수 있다.
하부 케이스(100) 및 상부 케이스(300)는 원판형으로 형성될 수 있으며, 동일한 재질로 이루어질 수 있다. 특히, 하부 케이스(100) 및 상부 케이스(300)는 전기적 특성이 우수한 재질로서 고농도로 도핑된 실리콘(Si) 및 갈륨 아세나이드(GaAs) 등을 포함할 수 있다.
회로 기판(200)은, 높이가 다른 복수의 전자 부품(240)을 실장하며, 하부 케이스(100) 및 상부 케이스(300) 사이에 배치된다. 여기서, 전자 부품(240)은 전자 회로의 구성품으로서, 센서(241), IC(Integrated Circuit) 칩(243) 및 배터리(도 5a 및 도 5b의 245) 중 적어도 하나를 포함할 수 있다.
또한, 회로 기판(200)은, PCB(Printed Circuit Board)로서, 센서(241), IC칩(243) 및 배터리(도 5a 및 도 5b의 245)가 전기적으로 연결되도록 배선이 인쇄되어 있다.
또한, 도 2b를 참조하면, 센서(241)는 플라즈마 센서(241)일 있으며, 복수 개로 구비되어 반도체 공정 진단 센서 장치의 정해진 센싱 위치에 내장되어 해당 위치에서 반도체 공정 모니터링을 위한 센싱을 수행한다. 구체적으로, 플라즈마 센서(241)는, 배선을 통해 센싱 프로브(400)와 연결되며 반도체 공정 환경에서의 플라즈마의 밀도 및 균일도를 센싱할 수 있다.
여기서, 하나의 플라즈마 센서(241)에 복수의 센싱 프로브(400)를 연결하여 소비 전력을 최소화할 수 있다.
센싱 프로브(400)는, 복수 개로 구비되며, 반도체 공정 진단을 위한 플라즈마 센서 장치의 정해진 센싱 위치에 구비된다.
IC(Integrated Circuit)칩(243)은 제어 IC칩, 통신 IC칩 및 메모리를 포함하여 구성될 수 있다.
통신 IC칩은 외부와의 무선 통신을 위한 구성으로 센서(241)에 의해 센싱된 센싱 정보를 무선으로 송신하고, 센서(241)의 동작을 제어하기 위한 제어 정보를 무선으로 수신한다.
여기서, 제어 정보는 반도체 공정 진단 센서 장치가 사용될 공정과 그 공정에 요구되는 조건을 포함할 수 있다. 예를 들어, 제어 정보는 반도체 공정 진단 센서 장치가 어느 공정에 사용되는지를 정의하고, 그 정의된 공정에서의 센싱 온도, 센싱 시간 및 센싱 방식 등에 대한 설정 값을 포함할 수 있다.
제어 IC칩은 제어 정보를 이용하여 센서(241)의 동작을 제어할 수 있다. 즉, 제어 IC칩은 제어 정보에 포함된 설정 값에 기반하여 센서(241)가 동작하도록 제어할 수 있다.
통신 IC칩은 외부와 무선 통신을 수행하기 위해 통신 안테나(230)에 연결된다. 여기서, 통신 안테나(230)는 나선 루프의 코일 형태로 이루어지며 회로 기판(200)의 중앙에 고리 형상으로 형성될 수 있으나 이에 한정되는 것은 아니다.
회로 기판(200)은 배터리(도 5a 및 도 5b의 245)가 장착되는 배터리 단자(245a)를 구비할 수 있다. 여기서, 배터리(도 5a 및 도 5b의 245)는, 센서(241), IC칩(243)을 포함하여 반도체 공정 진단 센서 장치에 구비되는 구성 요소들의 구동을 위한 전원을 공급한다.
메모리는 센서(241)의 동작을 제어하기 위한 제어 정보를 저장하고, 센서(241)에 의해 센싱된 센싱 정보를 저장할 수 있다. 또한, 메모리는 반도체 공정 진단 센서 장치가 사용된 공정을 기록한 로그 데이터를 저장할 수 있다.
여기서, 로그 데이터는 반도체 공정 진단 센서 장치가 어떤 공정에서 어떤 조건으로 사용되었는지에 대한 정보를 포함할 수 있다.
도 3a 및 도 3b는 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치의 하부 케이스의 평면도이고, 도 4a 및 도 4b는 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치의 상부 케이스의 평면도이고, 도 5a 및 도 5b는 도 3a 및 도 3b의 하부 케이스에 안착된 회로 기판을 도시한 도면이다.
도 3a 및 도 3b와 도 5a 및 도 5b를 참조하면, 하부 케이스(100)는, 회로 기판(200)이 안착되는 안착홈(110)이 회로 기판(200)과 대응하는 형상으로 형성된다.
도 4a 및 도 4b와 도 5a 및 도 5b를 참조하면, 상부 케이스(300)는, 전자 부품(240)이 삽입되는 복수의 삽입홈(310)이 복수의 전자 부품(240)과 대응하는 형상으로 형성된다. 구체적으로, 삽입홈(310)은 회로 기판(200)에 전자 부품(240)이 실장된 위치에 전자 부품(240) 상부면과 대응하는 형상으로 형성될 수 있다.
전술한 안착홈(110) 및 삽입홈(310)은 웻 에칭(Wet etching) 기법으로 형성되는 것이 바람직하지만, 이에 한정되는 것은 아니다.
도 6a는 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치의 단면도로서, 도 5a의 Ⅵ-Ⅵ을 따라 절단한 단면도이고, 도 6b는 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치의 단면도로서, 도 5b의 Ⅶ-Ⅶ을 따라 절단한 단면도이다.
도 6a 및 도 6b를 참조하면, 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치는, 하부 케이스(100), 회로 기판(200), 상부 케이스(300) 및 제1 접착층(121)을 포함하여 구성될 수 있다.
하부 케이스(100)는 안착홈(도 3a 및 도 3b의 110)이 형성되며, 이 안착홈(110)에 전자 부품(240) 예컨대, 센서(241) 및 IC칩(243)을 실장한 회로 기판(200)이 배치된다. 여기서, 전자 부품(240)은 회로 기판(200)의 배선에 솔더링(Soldering)되고, 회로 기판(200)은 접착제에 의해 하부 케이스(100)의 안착홈(110)에 부착될 수 있다.
상부 케이스(300)는, 깊이가 다른 복수의 삽입홈(310)이 형성되며, 이 복수의 삽입홈(310)에 전자 부품(240)이 삽입되도록 하부 케이스(100)와 합착된다. 그리고, 제1 접착층(121)은 안착홈(110) 및 복수의 삽입홈(310) 내부에 배치된다. 여기서, 제1 접착층(121)은 경도가 shore A40 이하이고, 연신률이 30% 이상인 Si 계열 물질로 이루어질 수 있다.
도 6a에 도시한 바와 같이, 복수의 삽입홈(310)은 복수의 전자 부품(240)의 높이에 따라 그 깊이가 다르게 형성된다. 이에 따라, 복수의 전자 부품(240)이 각각의 삽입홈(310)에 밀착 접촉할 수 있어 센서 장치의 내구성이 향상되어 온도 상승 시 센서 장치의 휨 현상을 방지할 수 있다.
하부 케이스(100) 및 상부 케이스(300)가 합착되면, 제1 접착층(121)은 안착홈(110) 및 삽입홈(310)에 완전히 채워져 전자 부품(240)을 감싸는 형태로 배치됨으로써, 하부 케이스(100)와 상부 케이스(300)가 합착된 상태에서, 안착홈(110) 및 삽입홈(310) 내부에 기공이 포함되지 않도록 하는 것을 특징으로 한다.
이와 같이, 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치는 안착홈(110) 및 삽입홈(310) 내부에 기공이 포함되지 않도록 제1 접착층(121)을 배치함으로써, 온도 상승에 따른 기공 팽창으로 인해 발생하는 센서 장치 휨(Warpage) 현상을 방지할 수 있다.
또한, 제1 접착층(121)은 열팽창계수가 하부 케이스(100) 및 상부 케이스(300) 보다 작거나 하부 케이스(100) 및 상부 케이스(300)와 동일한 것을 특징으로 한다.
이와 같이, 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치는 열팽창계수가 비교적 작은 제1 접착층(121)을 안착홈(110) 및 삽입홈(310) 사이에 배치함으로써, 온도 상승에 따른 제1 접착층(121) 팽창으로 인해 발생하는 센서 장치 휨(Warpage) 현상을 방지할 수 있다.
본 발명의 실시예에 따른 반도체 공정 진단 센서 장치는, 전자 부품(240)이 실장된 영역 즉, 솔더링 영역에 배치되는 제2 접착층(122)을 더 포함하여 구성될 수 있다. 여기서, 솔더링 영역은 회로 기판(200)과 전자 부품(240) 사이의 빈 공간을 포함하게 되는데, 제2 접착층(122)은 이 빈 공간에 접착제를 언더필(Underfill) 공정으로 채워 넣어 형성된 것으로, 회로 기판(200)에 전자 부품(240)을 견고하게 고정하는 역할을 수행함으로써, 센서 장치 휨 현상으로 인해 발생되는 전자 부품(240)의 박리를 방지할 수 있다.
제2 접착층(122)은 경도 shore D50 이상이고, 연신률이 5% 이하인 접촉 에폭시 물질로 이루어질 수 있다.
본 발명의 실시예에 따른 반도체 공정 진단 센서 장치는 제1 접착층(121)의 열전도도가 제2 접착층(122) 보다 더 높은 것을 특징으로 한다. 예를 들어, 제1 접착층(121)의 열전도도는 0.8W/m*K 이상일 수 있다. 이를 위해, 제1 접착층(121)은 별도의 열전도성 물질을 포함할 수 있다, 그리고, 이 열전도성 물질은 전자 부품(240)의 쇼트(Short)를 방지하기 위해 도전성이 없는 물질인 것이 바람직하다.
도 6a에 도시한 바와 같이, 복수의 삽입홈(310)은 복수의 전자 부품(240)의 높이에 대응하는 깊이로 형성될 수 있다. 예를 들어, IC칩(243)이 삽입되는 삽입홈(310)의 깊이(h1)는 IC칩(243)의 높이에 대응하여 비교적 깊게 형성할 수 있고, 센서(241)가 삽입되는 삽입홈(310)의 깊이(h2)는 센서(241)의 높이에 대응하여 비교적 얕게 형성할 수 있다.
복수의 전자 부품(240)은, 기준 높이 보다 높은 높이를 갖는 복수의 제1 전자 부품과, 기준 높이 보다 낮은 높이를 갖는 복수의 제2 전자 부품을 포함할 수 있다.
여기서, 복수의 삽입홈(310)은 복수의 제1 전자 부품 중 가장 높은 높이를 갖는 전자 부품(240)의 높이에 대응하는 깊이로 형성되는 제1 삽입홈과, 복수의 제2 전자 부품 중 가장 높은 높이를 갖는 전자 부품(240)의 높이에 대응하는 깊이로 형성되는 제2 삽입홈을 포함할 수 있다.
이와 같이, 기준 높이를 기준으로 높이가 다른 2개의 삽입홈(310)을 형성함에 따라 전자 부품(240)의 깊이 마다 삽입홈(310)을 다르게 형성하는 것 대비 제조 공정을 줄여 제조 비용을 절감할 수 있다.
하부 케이스(100)와 상부 케이스(200)가 합착되고 나면, 전자 부품(240)의 하부는 하부 케이스(100)의 안착홈(110) 내부에 위치하게 되고, 전자 부품(240)의 상부는 상부 케이스(300)의 삽입홈(310) 내부에 위치할 수 있다.
안착홈(110)은 복수의 전자 부품(240)의 하부가 안착되는 부분이 그 이외의 부분 보다 깊이가 더 깊게 형성될 수 있다. 여기서, 안착홈(110)의 깊이 차이로 인해 단차가 발생하면 상부 케이스(300) 및 하부 케이스(100) 합착 시 복수의 전자 부품(240)의 하부 가장자리에 대응한 회로 기판(200)도 단차(급격한 구부러짐)가 발생하여 저항이 증가하는 문제점이 발생한다.
이와 같은 문제점을 해소하기 위해, 안착홈(110)은, 도 6a에 도시한 바와 같이, 복수의 전자 부품(240)의 하부 가장자리에 대응하여 경사면이 형성되는 것이 바람직하다.
이에 따라, 안착홈(110)에 형성된 경사면을 따라 복수의 전자 부품(240)의 하부 가장자리에 대응한 회로 기판(200)도 완만히 구부러져 저항을 감소시키게 된다.
반도체 공정 진단 센서 장치는 상부 케이스(300) 및 하부 케이스(100)가 결합된 상태로 구성되는데, 상부 케이스(300) 및 하부 케이스(100)가 750㎛의 동일한 두께로 형성되면 반도체 공정 진단 센서 장치의 두께는 총 1500㎛가 된다. 그러나, 웨이퍼의 두께가 1200㎛ 이상이 되면 웨이퍼 2장으로 인식되는 문제점이 발생한다.
이와 같은 문제점을 해결하기 위해, 상부 케이스(300) 및 하부 케이스(100)의 두께를 동시에 줄이게 되면 공정이 복잡해지고, 제조 비용이 증가되는 문제점이 있다. 또한, 상부 케이스(300) 및 하부 케이스(100) 중 상부 케이스(300)의 두께를 줄이게 되면, 상부 케이스(300)에 삽입된 전자 부품(243) 등의 지지 문제가 발생할 수 있다.
이에 따라, 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치는, 도 6b에 도시한 바와 같이, 하부 케이스(100)의 두께(T1)가 상부 케이스(300)의 두께(T2) 보다 얇게 형성하여 플라즈마 센서 장치의 총 두께를 1200㎛ 이하가 되도록 함으로써 상기와 같은 문제점을 해소할 수 있다.
도 6b를 참조하면, 센서(241)는 플라즈마 센서(241)일 수 있으며, 센싱 프로부(400)는, 안착홈(110)에 배치되는 한 쌍의 프로브 패드(410)를 포함하며 회로 기판(200)에 형성된 배선을 통해 플라즈마 센서(241)와 연결된다. 여기서, 한 쌍의 프로브 패드(410)는 도전성 물질로 이루어지며 안착홈(110)에 증착하여 일정 두께로 형성될 수 있다.
플라즈마 센서(241)는 한 쌍의 프로브 패드(410) 사이의 정전 용량을 기초로 플라즈마의 밀도 및 균일도를 센싱한다.
센싱 프로브(400)는, 배선 단부(131)에 형성되는 콘택홀(132)과, 콘택홀(132)을 통과하여 한 쌍의 프로브 패드(410) 및 배선 단부(131)를 연결하는 도전성 패턴(420)을 포함할 수 있다.
여기서, 콘택홀(132)은 한 쌍의 프로브 패드(410)와 대응하는 위치에 각각 형성된다. 그리고, 도전성 패턴(420)은 은 페이스트(Ag Paste)를 통해 형성된 은 도트(Ag Dot)로 이루어질 수 있으나, 이에 한정되는 것은 아니며 다양한 형성 방법으로 형성된 다양한 도전성 재료로 이루어질 수 있다.
종래의 반도체 공정 진단 센서 장치는 센싱 프로브가 외부에 직접적으로 노출되어 플라즈마의 밀도를 센싱하였다. 그러나, 이와 같은 종래의 플라즈마 센서 장치는 노출된 센싱 프로브로 인해 챔버 내부를 오염시키는 문제점이 발생한다.
이와 같은 문제점을 해결하기 위해, 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치는, 기존과 달리 센싱 프로브(400)가 외부로 노출하지 않고 외부의 플라즈마 밀도에 따라 변화되는 한 쌍의 프로브 패드(410) 사이의 정전 용량을 기초로 플라즈마의 밀도 및 균일도를 센싱하는 것을 특징으로 한다.
도 7a 내지 도 7e는 도 6a를 기준으로 한 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치 제조 방법의 순서도이다.
먼저, 도 7a에 도시한 바와 같이, 상부 케이스(300)에 복수의 전자 부품(240)과 대응하는 형상으로 깊이가 다른 복수의 삽입홈(310)을 형성한다. 이 때, 삽입홈(310)은 웻 에칭(Wet etching) 기법으로 형성될 수 있다.
여기서, 복수의 삽입홈(310)은 복수의 전자 부품(240)의 높이에 따라 그 깊이가 다르게 형성된다. 이에 따라, 복수의 전자 부품(240)이 각각의 삽입홈(310)에 밀착 접촉할 수 있어 센서 장치의 내구성이 향상되어 온도 상승 시 센서 장치의 휨 현상을 방지할 수 있다.
또한, 복수의 삽입홈(310)은 복수의 전자 부품(240)의 높이에 대응하는 깊이로 형성될 수 있다.
또한, 복수의 전자 부품(240)은, 기준 높이 보다 높은 높이를 갖는 복수의 제1 전자 부품과, 기준 높이 보다 낮은 높이를 갖는 복수의 제2 전자 부품을 포함할 수 있다.
여기서, 복수의 삽입홈(310)은 복수의 제1 전자 부품 중 가장 높은 높이를 갖는 전자 부품(240)의 높이에 대응하는 깊이로 형성되는 제1 삽입홈과, 복수의 제2 전자 부품 중 가장 높은 높이를 갖는 전자 부품(240)의 높이에 대응하는 깊이로 형성되는 제2 삽입홈을 포함할 수 있다.
이와 같이, 기준 높이를 기준으로 높이가 다른 2개의 삽입홈(310)을 형성함에 따라 전자 부품(240)의 깊이 마다 삽입홈(310)을 다르게 형성하는 것 대비 제조 공정을 줄여 제조 비용을 절감할 수 있다.
다음, 도 7b에 도시한 바와 같이, 상부 케이스(300)에 형성된 복수의 삽입홈(310)에 제1 접착제(121a)를 도포하고, 복수의 삽입홈(310)에 복수의 전자 부품(240)을 삽입하고 제1 접착제(121a)를 경화한다.
다음, 도 7c에 도시한 바와 같이, 하부 케이스(100)에 회로 기판(200)과 대응하는 형상으로 안착홈(110)을 형성한다. 이 때, 안착홈(110)은 웻 에칭(Wet etching) 기법으로 형성될 수 있다.
여기서, 안착홈(110)은 복수의 전자 부품(240)의 하부가 안착되는 부분이 그 이외의 부분 보다 깊이가 더 깊게 형성될 수 있다.
다음, 도 7d에 도시한 바와 같이, 안착홈(110)에 제1 접착제(121a)를 도포하고, 안착홈(110)에 회로 기판(200)이 안착되도록 하부 케이스(100) 및 상부 케이스(300)를 합착한다.
여기서, 하부 케이스(100)의 안착홈(110)은 위를 향하도록 하고, 상부 케이스(300)의 삽입홈(310)은 아래를 향하도록 하여 하부 케이스(100) 및 상부 케이스(300)를 합착한다. 이는, 하부 케이스(100)의 안착홈(110)을 아래로 향하도록 하여 합착하게 되면, 합착 과정에서 아직 경화되지 않은 제1 접착제(121a)가 중력에 의해 아래로 흘러 내리기 때문에 이를 방지하기 위함이다.
전술한 바와 같이, 안착홈(110)의 깊이 차이로 인해 단차가 발생하면 상부 케이스(300) 및 하부 케이스(100) 합착 시 복수의 전자 부품(240)의 하부 가장자리에 대응한 회로 기판(200)도 단차(급격한 구부러짐)가 발생하여 저항이 증가하는 문제점이 발생한다.
이와 같은 문제점을 해소하기 위해, 안착홈(110)은 복수의 전자 부품(240)의 하부 가장자리에 대응하여 경사면이 형성되는 것이 바람직하다.
이에 따라, 안착홈(110)에 형성된 경사면을 따라 복수의 전자 부품(240)의 하부 가장자리에 대응한 회로 기판(200)도 완만히 구부러져 저항을 감소시키게 된다.
다음, 도 7e에 도시한 바와 같이, 전술한 합착 과정에서 회로 기판(200)으로 인해 안착홈(110)에 도포된 제1 접착제(121a)가 하부 케이스(100) 및 상부 케이스(300)의 합착면으로 퍼지게 되고, 합착면으로 퍼진 제1 접착제(121a)를 경화하면 하부 케이스(100) 및 상부 케이스(300)는 합착되고, 제1 접착층(121)이 전자 부품(240)을 감싸는 형태로 형성된다.
도 8a 내지 도 8i는 도 6b를 기준으로 한 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치 제조 방법의 순서도이다.
이하, 도 7a 내지 도 7i에서 설명한 부분과 동일한 내용은 생략하겠다.
먼저, 도 8a에 도시한 바와 같이, 하부 케이스(100)에 안착홈(110)을 형성한다. 이 때, 하부 케이스(100)는 상부 케이스(300)의 두께 보다 얇게 형성한다.
다음, 도 8b에 도시한 바와 같이, 안착홈(110)에 한 쌍의 프로브 패드(410)를 형성한다. 이 때, 한 쌍의 프로브 패드(410)는 안착홈(110)에 도전성 물질을 증착하여 형성될 수 있다.
다음, 도 8c에 도시한 바와 같이, 하부 케이스(100)의 안착홈(110)에 회로 기판(200)을 안착한다. 이 때, 회로 기판(200)에 인쇄된 배선 단부(131)에 콘택홀(132)이 형성되며, 이 콘택홀(132)은 한 쌍의 도전 패드(410)에 대응하여 위치하게 된다.
다음, 도 8d에 도시한 바와 같이, 도전성 패턴(420)을 콘택홀(132)로 통과시켜 한 쌍의 프로브 패드(410) 및 배선 단부(131)를 연결한다. 이 때, 도전성 패턴(420)은 은 페이스트(Ag Paste)를 통해 형성된 은 도트(Ag Dot)로 이루어질 수 있으나, 이에 한정되는 것은 아니며 다양한 형성 방법으로 형성된 다양한 도전성 재료로 이루어질 수 있다. 이와 같이 형성된 한 쌍의 프로브 패드(410) 및 도전성 패턴(420)은 센싱 프로브(400)를 구성하게 된다.
다음, 도 8e에 도시한 바와 같이, 회로 기판(200)이 안착된 안착홈(110)에 접착제(121a)를 도포하고 이를 경화한다. 이에 따라, 제1 접착층(121)은 센싱 프로브(400), 플라즈마 센서(241) 및 IC칩(243)이 안착된 안착홈(110) 내부에 형성된다.
다음, 도 7f에 도시한 바와 같이, 상부 케이스(300) 일면에 플라즈마 센서(241) 및 IC칩(243)과 대응하는 형상으로 삽입홈(310)을 형성한다.
다음, 도 8g 내지 도 8i에 도시한 바와 같이 상부 케이스(300)에 형성된 삽입홈(310)에 제1 접착제(121a)를 도포하고, 제1 접착제(121a)가 경화되기 전 삽입홈(310)에 플라즈마 센서(241) 및 IC칩(243)이 삽입되도록 하부 케이스(100) 및 상부 케이스(300)를 합착한다.
여기서, 도 8h에 도시한 바와 같이, 상부 케이스(300)의 삽입홈(310)은 위를 향하도록 하고, 하부 케이스(100)의 안착홈(110)은 아래를 향하도록 하여 하부 케이스(100) 및 상부 케이스(300)를 합착한다.
이와 같이, 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치 제조 방법은, 하부 케이스(100)의 두께가 상부 케이스(300)의 두께 보다 얇게 형성함으로써 플라즈마 센서 장치가 웨이퍼 2장으로 인식되는 문제점을 해소할 수 있다.
또한, 본 발명의 실시예에 따른 반도체 공정 진단 센서 장치 제조 방법은, 기존과 달리 센싱 프로브(400)가 외부로 노출하지 않고 외부의 플라즈마 밀도에 따라 변화되는 한 쌍의 프로브 패드(410) 사이의 정전 용량을 기초로 플라즈마의 밀도 및 균일도를 센싱함으로써 챔버 내부 오염 문제를 해소할 수 있다.
지금까지 본 발명의 바람직한 실시 예에 대해 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성을 벗어나지 않는 범위 내에서 변형된 형태로 구현할 수 있을 것이다.
본 명세서와 도면에 개시된 본 발명의 실시 예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 따라서 본 발명의 범위는 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명에 따른 반도체 공정 진단 센서 장치는 반도체 제조에서 챔버 내의 공정 조건이나 챔버에 로딩된 웨이퍼의 상태를 직접 측정하는 분야 등 다양한 분야에 이용될 수 있다.

Claims (12)

  1. 안착홈이 형성되는 하부 케이스;
    높이가 다른 복수의 전자 부품을 실장하며 상기 안착홈에 배치되는 회로 기판;
    깊이가 다른 복수의 삽입홈이 형성되며 상기 복수의 삽입홈에 상기 복수의 전자 부품이 삽입되도록 상기 하부 케이스와 합착되는 상부 케이스; 및
    상기 안착홈 및 상기 복수의 삽입홈 사이에 배치되는 접착층을 포함하고,
    상기 삽입홈은
    상기 복수의 전자 부품의 높이에 따라 그 깊이가 다르게 형성되는
    반도체 공정 진단 센서 장치.
  2. 제 1 항에 있어서,
    상기 복수의 삽입홈은
    상기 복수의 전자 부품의 높이에 대응하는 깊이로 형성되는
    반도체 공정 진단 센서 장치.
  3. 제 1 항에 있어서,
    상기 복수의 전자 부품은
    기준 높이 보다 높은 높이를 갖는 복수의 제1 전자 부품; 및
    상기 기준 높이 보다 낮은 높이를 갖는 복수의 제2 전자 부품
    을 포함하는 반도체 공정 진단 센서 장치.
  4. 제 3 항에 있어서,
    상기 복수의 삽입홈은
    상기 복수의 제1 전자 부품 중 가장 높은 높이를 갖는 전자 부품의 높이에 대응하는 깊이로 형성되는 제1 삽입홈; 및
    상기 복수의 제2 전자 부품 중 가장 높은 높이를 갖는 전자 부품의 높이에 대응하는 깊이로 형성되는 제2 삽입홈
    을 포함하는 반도체 공정 진단 센서 장치.
  5. 제 1 항에 있어서,
    상기 복수의 전자 부품의 하부는 상기 안착홈 내부에 위치하고,
    상기 복수의 전자 부품의 상부는 상기 복수의 삽입홈 내부에 위치하는
    반도체 공정 진단 센서 장치.
  6. 제 5 항에 있어서,
    상기 안착홈은
    상기 복수의 전자 부품의 하부가 안착되는 부분이 그 이외의 부분 보다 깊이가 더 깊은
    반도체 공정 진단 센서 장치.
  7. 제 6 항에 있어서,
    상기 안착홈은
    상기 복수의 전자 부품의 하부 가장자리에 대응하여 경사면이 형성되는
    반도체 공정 진단 센서 장치.
  8. 제 1 항에 있어서,
    상기 복수의 전자 부품은
    플라즈마 센서를 포함하는
    반도체 공정 진단 센서 장치.
  9. 제 8 항에 있어서,
    상기 안착홈에 배치되는 한 쌍의 프로브 패드를 포함하며 상기 회로 기판에 형성된 배선을 통해 상기 플라즈마 센서와 연결되는 센싱 프로브를 더 포함하고,
    상기 플라즈마 센서는
    상기 한 쌍의 프로브 패드 사이의 정전 용량을 기초로 플라즈마를 센싱하는
    반도체 공정 진단 센서 장치.
  10. 제 9 항에 있어서,
    상기 하부 케이스의 두께는
    상기 상부 케이스의 두께 보다 얇은
    반도체 공정 진단 센서 장치.
  11. 제 9 항에 있어서,
    상기 센싱 프로브는
    상기 배선 단부에 형성되는 콘택홀; 및
    상기 콘택홀을 통과하여 상기 한 쌍의 프로브 패드 및 상기 배선 단부를 연결하는 도전성 패턴
    을 더 포함하는 반도체 공정 진단 센서 장치.
  12. 제 11 항에 있어서,
    상기 콘택홀은
    상기 한 쌍의 프로브 패드와 대응하는 위치에 각각 형성되는
    반도체 공정 진단을 위한 플라즈마 센서 장치.
PCT/KR2020/015689 2020-10-30 2020-11-10 반도체 공정 진단 센서 장치 WO2022092386A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/255,436 US20230046603A1 (en) 2020-10-30 2020-11-10 Sensor mounted wafer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0143580 2020-10-30
KR10-2020-0143579 2020-10-30
KR1020200143580A KR102505963B1 (ko) 2020-10-30 2020-10-30 반도체 공정 진단을 위한 플라즈마 센서 장치 및 이의 제조 방법
KR1020200143579A KR102505962B1 (ko) 2020-10-30 2020-10-30 반도체 공정 진단 센서 장치 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2022092386A1 true WO2022092386A1 (ko) 2022-05-05

Family

ID=81384104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015689 WO2022092386A1 (ko) 2020-10-30 2020-11-10 반도체 공정 진단 센서 장치

Country Status (2)

Country Link
US (1) US20230046603A1 (ko)
WO (1) WO2022092386A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060009885A (ko) * 2003-05-19 2006-02-01 다이니폰 인사츠 가부시키가이샤 양면 배선기판과, 양면 배선기판 제조방법 및 다층배선기판
US20110233546A1 (en) * 2010-03-23 2011-09-29 Tokyo Electron Limited Wafer-type temperature sensor and manufacturing method thereof
KR20180033572A (ko) * 2016-04-27 2018-04-03 오므론 가부시키가이샤 전자 장치 및 그 제조 방법
KR20190066193A (ko) * 2017-12-05 2019-06-13 (주)에스엔텍 Rf 노이즈 방지가 가능한 웨이퍼 센서
KR20200038440A (ko) * 2020-03-30 2020-04-13 주식회사 에스엔텍비엠 플라즈마 측정용 웨이퍼

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070113652A1 (en) * 2005-10-07 2007-05-24 Renken Wayne G Wireless Position Sensing Wafer
EP3403279A4 (en) * 2016-01-11 2019-09-11 INTEL Corporation MULTICHIP HOUSING WITH MULTIPLE THERMAL INTERMEDIATES
EP3486623B1 (en) * 2017-11-17 2019-10-30 Melexis Technologies NV Low-drift infrared detector
US10991638B2 (en) * 2018-05-14 2021-04-27 Samsung Electronics Co., Ltd. Semiconductor package system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060009885A (ko) * 2003-05-19 2006-02-01 다이니폰 인사츠 가부시키가이샤 양면 배선기판과, 양면 배선기판 제조방법 및 다층배선기판
US20110233546A1 (en) * 2010-03-23 2011-09-29 Tokyo Electron Limited Wafer-type temperature sensor and manufacturing method thereof
KR20180033572A (ko) * 2016-04-27 2018-04-03 오므론 가부시키가이샤 전자 장치 및 그 제조 방법
KR20190066193A (ko) * 2017-12-05 2019-06-13 (주)에스엔텍 Rf 노이즈 방지가 가능한 웨이퍼 센서
KR20200038440A (ko) * 2020-03-30 2020-04-13 주식회사 에스엔텍비엠 플라즈마 측정용 웨이퍼

Also Published As

Publication number Publication date
US20230046603A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
US5986459A (en) Semiconductor device testing carrier and method of fixing semiconductor device to testing carrier
US6323663B1 (en) Semiconductor wafer package, method and apparatus for connecting testing IC terminals of semiconductor wafer and probe terminals, testing method of a semiconductor integrated circuit, probe card and its manufacturing method
EP1045438B1 (en) Probe card for testing semiconductor device, and semiconductor device test method
US7372286B2 (en) Modular probe card
US5828224A (en) Test carrier for semiconductor integrated circuit and method of testing semiconductor integrated circuit
WO2019017670A1 (en) APPARATUS AND METHOD FOR MANUFACTURING LED MODULE
WO2021091249A1 (ko) 반도체 공정 진단 센서 장치
WO2019093609A1 (ko) 척 플레이트, 상기 척 플레이트를 갖는 척 구조물 및 척 구조물을 갖는 본딩 장치
WO2020022745A1 (ko) 검사용 도전 시트
WO2019177337A1 (ko) 발광다이오드 칩을 전사하는 전사 장치 및 방법
WO2020204394A1 (ko) 미소 소자 흡착 픽커
WO2019004620A1 (ko) 본딩 헤드 및 이를 갖는 본딩 장치
WO2016013904A1 (ko) 인쇄회로기판
WO2022092386A1 (ko) 반도체 공정 진단 센서 장치
US7546941B2 (en) Ball attaching apparatus for correcting warpage of substrate and method of attaching solder balls using the same
WO2013085229A1 (en) Printed circuit board and method of manufacturing the same
US6057168A (en) Method for forming bumps using dummy wafer
JPH10319087A (ja) ダイ検査法およびその装置
WO2012011628A1 (ko) 프로브 카드 및 그 제조방법
WO2023167479A1 (ko) 전기 전도성 접촉핀, 정렬 플레이트 및 이를 구비하는 검사장치
WO2022169196A1 (ko) 전기 전도성 접촉핀
WO2017196110A1 (ko) 반도체소자 캐리어 및 이를 포함하는 소자핸들러
WO2021215786A1 (en) Probe card
KR102505963B1 (ko) 반도체 공정 진단을 위한 플라즈마 센서 장치 및 이의 제조 방법
WO2018199601A1 (ko) 센서 탑재 웨이퍼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960003

Country of ref document: EP

Kind code of ref document: A1