WO2022092179A1 - Method for arraying chips of thermoelectric conversion material - Google Patents

Method for arraying chips of thermoelectric conversion material Download PDF

Info

Publication number
WO2022092179A1
WO2022092179A1 PCT/JP2021/039752 JP2021039752W WO2022092179A1 WO 2022092179 A1 WO2022092179 A1 WO 2022092179A1 JP 2021039752 W JP2021039752 W JP 2021039752W WO 2022092179 A1 WO2022092179 A1 WO 2022092179A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion material
type thermoelectric
fixed layer
chip
Prior art date
Application number
PCT/JP2021/039752
Other languages
French (fr)
Japanese (ja)
Inventor
佑太 関
邦久 加藤
亘 森田
克彦 堀米
睦 升本
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2022559217A priority Critical patent/JPWO2022092179A1/ja
Publication of WO2022092179A1 publication Critical patent/WO2022092179A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Definitions

  • the present invention relates to a method of arranging chips of a thermoelectric conversion material.
  • thermoelectric conversion module that uses a thermoelectric conversion material having a thermoelectric effect such as the Seebeck effect and the Pelche effect to convert between thermal energy and electrical energy.
  • thermoelectric conversion module the use of a so-called ⁇ -type thermoelectric conversion element is known.
  • the ⁇ -type thermoelectric conversion element is provided with a pair of electrodes separated from each other on the substrate, for example, the lower surface of the P-type thermoelectric element is provided on one of the electrodes, and the lower surface of the N-type thermoelectric element is placed on the other electrode.
  • the basic unit is a configuration in which the upper surfaces of both types of thermoelectric elements are connected to electrodes on opposite substrates, and usually, a plurality of the basic units are electrically connected in series in both substrates.
  • thermoelectric conversion element P-type thermoelectric elements and N-type thermoelectric elements are alternately provided in the in-plane direction of the substrate. It is configured by connecting in series with.
  • Patent Document 1 discloses a method of arranging rectangular parallelepiped P-type semiconductor elements and N-type semiconductor elements constituting a ⁇ -type Pelche module so as to be alternately connected via electrodes. Has been done.
  • both ends of the P-type thermoelectric conversion element and the N-type thermoelectric conversion element in the aspect of a square material in the longitudinal direction are attached to each lattice window of a pair of lattice-shaped jigs.
  • a resin material is filled in the gap between the P-type thermoelectric conversion element and the N-type thermoelectric conversion element by a predetermined method.
  • a method is disclosed in which a plurality of pairs of P-type thermoelectric conversion elements and N-type thermoelectric conversion elements are arranged by forming a block in which the whole is integrated and cutting them to a predetermined thickness using a cutting machine. ..
  • Patent Document 1 it is necessary to individually manufacture a plurality of pairs of rectangular P-type semiconductor elements and N-type semiconductor elements in advance, and to arrange them one by one alternately on an electrode, which is complicated and time-consuming. It was not productive.
  • Patent Document 2 in the final step, P-type thermoelectric conversion elements and N-type thermoelectric conversion elements arranged alternately are collectively obtained by cutting an integrated block molded body, but P-type thermoelectric in the form of a square jig. It is necessary to individually manufacture multiple pairs of conversion elements and N-type thermoelectric conversion elements in advance, and insert P-type thermoelectric conversion elements and N-type thermoelectric conversion elements one by one into a grid-like jig so as to be arranged alternately. There are many complicated and time-consuming processes, which was not sufficient from the viewpoint of productivity.
  • the present inventors have separated the P-type thermoelectric conversion material layer on the fixed layer on the first support into a plurality of pieces, and chipped the P-type thermoelectric conversion material.
  • the adhesive strength of the fixed layer in the region where the chips of some P-type thermoelectric conversion materials are attached is reduced, and only the chips of some P-type thermoelectric conversion materials are selectively placed on the second support.
  • the method of transferring onto the fixed layer and the same operation are applied to the N-type thermoelectric conversion material layer on the fixed layer on the third support, and only some N-type thermoelectric conversion material chips are selected.
  • each support having a chip of a separated P-type thermoelectric conversion material or a chip of a separated N-type thermoelectric conversion material obtained by the method.
  • the chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material are used with the respective supports having the chips of the separated P-type thermoelectric conversion material or the chips of the separated N-type thermoelectric conversion material.
  • a method of arranging chips of a thermoelectric conversion material wherein the chip of the thermoelectric conversion material includes a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material.
  • a step of attaching a P-type thermoelectric conversion material layer to a fixed layer on a first support (B) The P-type thermoelectric conversion material layer attached to the fixed layer on the first support is individualized into P-type thermoelectric conversion material chips to obtain a plurality of P-type thermoelectric conversion material chips.
  • Process (C) A step of reducing the adhesive force between the chip of some P-type thermoelectric conversion materials and the fixed layer among the chips of a plurality of P-type thermoelectric conversion materials.
  • the surface of the N-type thermoelectric conversion material whose adhesive strength was maintained opposite to the attachment surface of the chip was attached to the fixing layer on the second support obtained in the step (D).
  • the fixed layer is a fixed layer capable of absorbing laser light
  • the step (C) and the step (G) are, in this order, a chip of a part of the P-type thermoelectric conversion material, the above-mentioned one.
  • thermoelectric conversion material which is performed by irradiating at least a part of the fixed layer of each region to which the N-type thermoelectric conversion material chip is attached.
  • Arrangement method [3] The method for arranging chips of a thermoelectric conversion material according to the above [1] or [2], wherein the fixed layer includes an adhesive layer.
  • the fixed layer capable of absorbing the laser beam comprises a pressure-sensitive adhesive layer containing a colorant or a metal filler.
  • thermoelectric conversion material [6] The method for arranging chips of a thermoelectric conversion material according to the above [1], wherein a heat-expandable base material is used as the support in one or both of the step (C) and the step (G).
  • a heat-expandable base material is used as the support in one or both of the step (C) and the step (G).
  • the chips of the thermoelectric conversion material are made of a thermoelectric semiconductor composition, and the thermoelectric semiconductor composition contains one or both of a thermoelectric semiconductor material, a resin, and an ionic liquid and an inorganic ionic compound. 7] The method for arranging chips of a thermoelectric conversion material according to any one of.
  • thermoelectric conversion module including a chip of a thermoelectric conversion material, which comprises the step of carrying out the method according to any one of the above [1] to [8].
  • thermoelectric conversion material a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material in a batch of supports.
  • the method of arranging the chips of the thermoelectric conversion material of the present invention is a method of arranging the chips of the thermoelectric conversion material, and the chip of the thermoelectric conversion material includes a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material.
  • a step of attaching a P-type thermoelectric conversion material layer to a fixed layer on a first support (B) The P-type thermoelectric conversion material layer attached to the fixed layer on the first support is individualized into P-type thermoelectric conversion material chips to obtain a plurality of P-type thermoelectric conversion material chips.
  • (E) A step of attaching the N-type thermoelectric conversion material layer to the fixed layer on the third support
  • (F) The N-type thermoelectric conversion material layer attached to the fixed layer on the third support is individualized into N-type thermoelectric conversion material chips to obtain a plurality of N-type thermoelectric conversion material chips.
  • Process, (G) A step of reducing the adhesive force between the chip of some N-type thermoelectric conversion materials and the fixed layer among the chips of a plurality of N-type thermoelectric conversion materials.
  • (H) The chip of the part of the N-type thermoelectric conversion material having a reduced adhesive force with the fixed layer is peeled off from the fixed layer on the third support, and the chip of the part of the N-type thermoelectric conversion material is peeled off.
  • a step of attaching to a fixed layer between chips of some of the P-type thermoelectric conversion materials is characterized by including.
  • the P-type thermoelectric conversion material layer on the fixed layer on the substrate is separated into a plurality of pieces to form a chip of the P-type thermoelectric conversion material, and a part of the P-type thermoelectric conversion material is used.
  • the chips of some P-type thermoelectric conversion materials are selectively transferred onto the fixed layer on other substrates, and so on.
  • the operation is independently applied to the N-type thermoelectric conversion material layer on the fixed layer on another substrate, and only some N-type thermoelectric conversion material chips are selectively applied to the fixed layer on yet another substrate. Transfer onto and in addition, use a substrate having the resulting isolated P-type thermoelectric conversion material chip or N-type thermoelectric conversion material chip, respectively, and use them as a P-type thermoelectric conversion material chip and an N-type thermoelectric conversion material chip, respectively.
  • the chips of the conversion material are bonded together so as to be arranged alternately, for example.
  • thermoelectric conversion material chips and N-type thermoelectric conversion material chips can be alternately arranged in a batch of supports, and ⁇ -type thermoelectric conversion elements and inplane type thermoelectric conversion elements can be easily arranged. It can be produced in large quantities. This leads to shortening of takt time and improvement of yield by simplifying the manufacturing process, and cost reduction can be expected.
  • Chip transfer process of type thermoelectric conversion material "(E) N-type thermoelectric conversion material layer attachment process”, “(F) Chip formation process of N-type thermoelectric conversion material”, “(G) Adhesive strength reduction process”, It may also be referred to as “(H) chip transfer process of N-type thermoelectric conversion material”, “(I) chip bonding process of thermoelectric conversion material”, and “(J) chip bonding process of thermoelectric conversion material”.
  • the "chip of P-type thermoelectric conversion material and chip of N-type thermoelectric conversion material” may be simply referred to as "chip of thermoelectric conversion material”.
  • FIG. 1 is a schematic cross-sectional view showing one aspect of the process of arranging chips of the thermoelectric conversion material according to one aspect of the present invention.
  • A is a cross-sectional view after the P-type thermoelectric conversion material layer 3p is attached onto the fixed layer 2 on the first support 1a.
  • B is a cross-sectional view after the P-type thermoelectric conversion material layer 3p is fragmented into the chips 3pt of the P-type thermoelectric conversion material to form a plurality of chips 3pt of the P-type thermoelectric conversion material.
  • (C) shows an aspect after reducing the adhesive force between a part of the P-type thermoelectric semiconductor chip 3pt and the fixed layer 2 among the chips 3pt of the plurality of P-type thermoelectric conversion materials formed in (b). It is a cross-sectional view (the space between the fixed layer 2 and the chip 3pt of the P-type thermoelectric conversion material is exaggerated).
  • (d) a part of the P-type thermoelectric semiconductor chip 3pt having a reduced adhesive force with the fixed layer 2 is peeled off from the fixed layer 2 on the second support 1b, and the part of the P-type thermoelectric semiconductor chip 3pt is peeled off.
  • (e) is a cross-sectional view after the N-type thermoelectric conversion material layer 3n is attached onto the fixed layer 2 on the third support 1c.
  • (F) is a cross-sectional view after the N-type thermoelectric conversion material layer 3n is fragmented into N-type thermoelectric conversion material chips 3nt to form a plurality of N-type thermoelectric conversion material chips 3nt.
  • (G) shows an aspect after reducing the adhesive force between a part of the N-type thermoelectric semiconductor chip 3nt and the fixed layer 2 among the chips 3nt of the plurality of N-type thermoelectric conversion materials formed in (f).
  • thermoelectric conversion material layer attachment step In the method of arranging the chips of the thermoelectric conversion material of the present invention, (A) P-type thermoelectric conversion material layer attachment step and (E) N-type thermoelectric conversion material layer attachment step are performed.
  • the thermoelectric conversion material layer attachment step is a step of attaching the thermoelectric conversion material layer to the fixed layer on the support, for example, in FIG. 1A, on the fixed layer 2 on the first support 1a. This is a step of attaching the P-type thermoelectric conversion material layer 3p [(A) step].
  • FIG. 1 (e) it is a step of attaching the N-type thermoelectric conversion material layer 3n onto the fixed layer 2 on the third support 1c [(E) step].
  • the support used in the present invention is not particularly limited, and examples thereof include resin, glass, ceramics, and silicon.
  • a resin film having light transmittance and having a resin-based material as a main material is preferable.
  • the resin film include polyethylene films such as low density polyethylene (LDPE) film, linear low density polyethylene (LLDPE) film, and high density polyethylene (HDPE) film, polypropylene film, polybutene film, polybutadiene film, and polymethyl.
  • Polyethylene films such as penten films, ethylene-norbornene copolymer films, and norbornene resin films; ethylene-vinyl acetate copolymer films, ethylene- (meth) acrylic acid copolymer films, and ethylene- (meth) acrylic acids.
  • Ethylene-based copolymer films such as ester copolymer films; polyvinyl chloride-based films such as polyvinyl chloride films and vinyl chloride copolymer films; polyester-based films such as polyethylene terephthalate films and polybutylene terephthalate films; polyurethane films; polyimides Examples thereof include film; polystyrene film; polycarbonate film; fluororesin film and the like. Further, modified films such as these crosslinked films and ionomer films may be used. As the support, one of these resin films may be used alone, or a laminated film in which two or more of these resin films are used in combination may be used.
  • the resin film is a low-density polyethylene (from the viewpoint of versatility, relatively high strength and easy to prevent warpage, heat resistance, and improvement of laser light transmittance described later).
  • LDPE linear low density polyethylene
  • HDPE high density polyethylene
  • the resin film is preferably a single-layer film having one or more layers selected from the group consisting of a polyethylene film, a polyester-based film, and a polypropylene film, or a laminated film in which two or more layers are laminated.
  • the Ra is preferably 0.01 ⁇ m to 0.80 ⁇ m.
  • the arithmetic average roughness Ra is a value measured in accordance with JIS B 0601: 1994.
  • the support may contain a colorant, but when laser light is used in the adhesive force lowering steps of the steps (C) and (G) described later, the support is made to be more excellent in laser light transmission.
  • the content of components such as a colorant that absorbs the laser beam is small.
  • the content of the colorant that absorbs the laser light is preferably less than 0.1% by mass, more preferably less than 0.01% by mass, still more preferably 0.001% by mass based on the total amount of the support. %, More preferably, it does not contain a component that absorbs the wavelength of the laser light used.
  • the support for example, in one or both of the step (C) and the step (G) described later, which is a step of reducing the adhesive strength described later, the pressure-sensitive adhesive layer and the thermoelectric conversion material described later are used.
  • the adhesive force with the chip it is preferable to use a heat-expandable base material.
  • the heat-expandable base material is a non-adhesive base material containing a resin and heat-expandable particles.
  • the resin include acrylic urethane-based resins and olefin-based resins.
  • the heat-expandable particles are microencapsulated foaming agents composed of an outer shell made of a thermoplastic resin and an inner shell component contained in the outer shell and vaporized when heated to a predetermined temperature. It is preferable to have.
  • thermoplastic resin constituting the outer shell of the microencapsulated foaming agent examples include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethylmethacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone. ..
  • the contained component contained in the outer shell examples include propane, butane, pentane, hexane, heptane, octane, nonane, decane, and isobutane. These inclusion components may be used alone or in combination of two or more.
  • the average particle size of the heat-expandable particles before expansion at 23 ° C. is preferably 3 to 100 ⁇ m, more preferably 4 to 70 ⁇ m, still more preferably 6 to 60 ⁇ m, still more preferably 10 to 50 ⁇ m.
  • the average particle size of the heat-expandable particles before expansion is the volume medium particle size (D50), and a laser diffraction type particle size distribution measuring device (for example, manufactured by Malvern, product name “Mastersizer 3000”) is used.
  • D50 volume medium particle size
  • a laser diffraction type particle size distribution measuring device for example, manufactured by Malvern, product name “Mastersizer 3000”
  • the particle distribution of the heat-expandable particles before expansion measured using the particle size it means the particle size corresponding to the cumulative volume frequency of 50% calculated from the smaller particle size of the heat-expandable particles before expansion.
  • the thickness of the support is not particularly limited, but is preferably in the range of 20 ⁇ m to 450 ⁇ m, more preferably 25 ⁇ m to 400 ⁇ m.
  • the fixed layer used in the present invention adheres the support to the chip of the thermoelectric conversion material layer or the thermoelectric conversion material layer, and is a part of the chips of a plurality of thermoelectric conversion materials due to the physicochemical action described later.
  • a material having a function of selectively reducing the adhesive force of the thermoelectric conversion material with the chip is used.
  • the fixed layer a layer containing a thermosetting resin, a photocurable resin, or the like can be used as long as the above conditions are satisfied.
  • a pressure-sensitive adhesive layer containing a colorant or a metal filler from the viewpoint of adhesiveness and light absorption.
  • thermoelectric conversion material from the viewpoint of chip retention and transferability of the thermoelectric conversion material, it is preferable to use a pressure-sensitive adhesive layer containing an energy ray-curable pressure-sensitive adhesive resin having a polymerizable functional group introduced in the side chain. .. Furthermore, as another aspect, from the viewpoint of easy peeling of the chip of the thermoelectric conversion material, it is preferable that the pressure-sensitive adhesive layer contains the heat-expandable particles.
  • the pressure-sensitive adhesive layer may contain any pressure-sensitive adhesive resin, and may contain additives for pressure-sensitive adhesive such as a cross-linking agent, a pressure-sensitive adhesive, a polymerizable compound, and a polymerization initiator, if necessary.
  • the pressure-sensitive adhesive layer can be formed from a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive resin.
  • each component contained in the pressure-sensitive adhesive composition which is a material for forming the pressure-sensitive adhesive layer, will be described.
  • the adhesive resin is preferably a polymer having adhesiveness by itself and having a mass average molecular weight (Mw) of 10,000 or more.
  • the mass average molecular weight (Mw) of the adhesive resin is more preferably 10,000 to 2,000,000, still more preferably 20,000 to 1.5 million, and even more preferably 30,000 to 1,000,000 from the viewpoint of improving the adhesive strength. ..
  • the glass transition temperature (Tg) of the adhesive resin is preferably ⁇ 60 ° C. to ⁇ 10 ° C., more preferably ⁇ 50 ° C. to ⁇ 20 ° C.
  • the adhesive resin examples include rubber resins such as acrylic resins, urethane resins and polyisobutylene resins, polyester resins, olefin resins, silicone resins, polyvinyl ether resins and the like. These adhesive resins may be used alone or in combination of two or more. Further, when these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and the block copolymer, the random copolymer, and the graft can be used together. It may be any of the polymers.
  • the adhesive resin may be an energy ray-curable adhesive resin in which a polymerizable functional group is introduced into the side chain.
  • a photopolymerization initiator described later.
  • the polymerizable functional group include (meth) acryloyl group and vinyl group.
  • the energy ray include ultraviolet rays and electron beams.
  • the step (C) or the step (G) which is a step of reducing the adhesive force described later, the adhesive layer and the chip of the thermoelectric conversion material are bonded to each other.
  • ultraviolet rays As one embodiment.
  • the content of the pressure-sensitive adhesive resin is preferably 30 to 99.99% by mass, more preferably 40 to 99.95% by mass, still more preferably, based on the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition. It is 50 to 99.90% by mass, more preferably 55 to 99.80% by mass, and even more preferably 60 to 99.50% by mass.
  • the content of each component with respect to the total amount of the active ingredient of the pressure-sensitive adhesive composition is "the content of each component in the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition”. Is synonymous with.
  • the adhesive resin preferably contains an acrylic resin.
  • the content ratio of the acrylic resin in the pressure-sensitive adhesive resin is preferably 30 to 100% by mass, more preferably 50 to 100% by mass, based on the total amount (100% by mass) of the pressure-sensitive adhesive resin contained in the pressure-sensitive adhesive composition. %, More preferably 70 to 100% by mass, still more preferably 85 to 100% by mass.
  • Acrylic resins that can be used as adhesive resins include, for example, a polymer containing a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, and a (meth) acrylate having a cyclic structure. Examples thereof include a polymer containing a structural unit thereof.
  • the mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, and even more preferably 350,000 to 1,200,000.
  • the acrylic resin includes a structural unit (a1) derived from an alkyl (meth) acrylate (a1') (hereinafter, also referred to as “monomer (a1')”) and a functional group-containing monomer (a2') (hereinafter, “monomer”).
  • (A2') ”) an acrylic copolymer (A1) having a structural unit (a2) is more preferable.
  • the number of carbon atoms of the alkyl group of the monomer (a1') is preferably 1 to 24, more preferably 1 to 12, still more preferably 2 to 10, and even more preferably 4 to 8 from the viewpoint of improving the adhesive properties.
  • the alkyl group of the monomer (a1') may be a linear alkyl group or a branched chain alkyl group.
  • Examples of the monomer (a1') include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, and tridecyl (). Examples thereof include meth) acrylate and stearyl (meth) acrylate. These monomers (a1') may be used alone or in combination of two or more.
  • the monomer (a1') one or more selected from methyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate are preferable, and from methyl (meth) acrylate and butyl (meth) acrylate. One or more selected are more preferable.
  • the content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 70 to 97.0% by mass, still more preferably 80 to 95.0% by mass.
  • Examples of the functional group of the monomer (a2') include a hydroxyl group, a carboxy group, an amino group, an epoxy group and the like. That is, examples of the monomer (a2') include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer. These monomers (a2') may be used alone or in combination of two or more. Among these, as the monomer (a2'), a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable, and a hydroxyl group-containing monomer is more preferable.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl (meth).
  • Acrylate and hydroxyalkyl (meth) acrylates such as 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol can be mentioned.
  • 2-hydroxyethyl (meth) acrylate is preferable.
  • carboxy group-containing monomer examples include ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid, and citraconic acid and their anhydrides.
  • monocarboxylic acids such as (meth) acrylic acid and crotonic acid
  • dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid, and citraconic acid and their anhydrides.
  • 2- (acryloyloxy) ethyl succinate, 2-carboxyethyl (meth) acrylate and the like examples include 2- (acryloyloxy) ethyl succinate, 2-carboxyethyl (meth) acrylate and the like.
  • the content of the structural unit (a2) is preferably 0.1 to 40% by mass, more preferably 0.5 to 35% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 1.0 to 30% by mass, still more preferably 3.0 to 25% by mass.
  • the acrylic copolymer (A1) may further have a structural unit (a3) derived from a monomer (a3') other than the monomers (a1') and (a2').
  • the content of the structural units (a1) and (a2) is preferably 70 with respect to the total structural units (100% by mass) of the acrylic copolymer (A1). It is -100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, still more preferably 95 to 100% by mass.
  • Examples of the monomer (a3') include olefins such as ethylene, propylene, and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene monomers such as butadiene, isoprene, and chloroprene; cyclohexyl (meth). Cyclic such as acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and imide (meth) acrylate.
  • olefins such as ethylene, propylene, and isobutylene
  • halogenated olefins such as vinyl chloride and vinylidene chloride
  • diene monomers such as butadiene, isoprene, and chloro
  • Structural (meth) acrylates styrene, ⁇ -methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, (meth) acrylamide, (meth) acrylonitrile, (meth) acryloylmorpholine, N-vinylpyrrolidone and the like. Be done.
  • the acrylic copolymer (A1) may be an energy ray-curable acrylic copolymer having a polymerizable functional group introduced in the side chain.
  • the polymerizable functional group include (meth) acryloyl group and vinyl group.
  • the energy ray include ultraviolet rays and electron beams, but ultraviolet rays are preferable.
  • the polymerizable functional group is a substituent capable of binding to the acrylic copolymer having the above-mentioned structural units (a1) and (a2) and the functional group having the structural unit (a2) of the acrylic copolymer. It can be introduced by reacting with a compound having a polymerizable functional group. Examples of the compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, and glycidyl (meth) acrylate.
  • the pressure-sensitive adhesive composition preferably further contains a cross-linking agent.
  • the cross-linking agent like the above-mentioned acrylic copolymer (A1), reacts with a pressure-sensitive adhesive resin having a functional group and cross-links the pressure-sensitive resins with the functional group as a starting point for cross-linking.
  • cross-linking agent examples include an isocyanate-based cross-linking agent, an epoxy-based cross-linking agent, an aziridine-based cross-linking agent, a metal chelate-based cross-linking agent, and the like. These cross-linking agents may be used alone or in combination of two or more. Among these cross-linking agents, isocyanate-based cross-linking agents are preferable from the viewpoint of increasing the cohesive force to improve the adhesive force and the availability.
  • the content of the cross-linking agent is appropriately adjusted depending on the number of functional groups of the adhesive resin, and is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having functional groups. It is more preferably 0.03 to 7 parts by mass, and further preferably 0.05 to 5 parts by mass.
  • the pressure-sensitive adhesive composition may further contain a pressure-sensitive adhesive from the viewpoint of further improving the pressure-sensitive adhesive strength.
  • a pressure-sensitive adhesive refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000, which is a component that supplementarily improves the adhesive strength of the above-mentioned adhesive resin, and refers to the above-mentioned adhesion. It is distinguished from the sex resin.
  • the mass average molecular weight (Mw) of the tackifier is preferably 400 to less than 10000, more preferably 500 to 8000, and even more preferably 800 to 5000.
  • C5 distillates such as rosin-based resin, terpene-based resin, styrene-based resin, pentene, isoprene, piperin, and 1,3-pentadiene produced by thermal decomposition of petroleum naphtha are copolymerized.
  • Examples thereof include a C5 petroleum resin obtained, a C9 petroleum resin obtained by copolymerizing a C9 distillate such as inden and vinyl toluene produced by thermal decomposition of petroleum naphtha, and a hydride resin obtained by hydrogenating these.
  • the softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and even more preferably 70 to 150 ° C.
  • the "softening point" of the tackifier means a value measured according to JIS K 2531.
  • the tackifier one type may be used alone, or two or more types having different softening points, structures, etc. may be used in combination.
  • the weighted average of the softening points of the plurality of tackifiers belongs to the above range.
  • the content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.05 to 55% by mass, still more preferably, based on the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition. It is 0.1 to 50% by mass, more preferably 0.5 to 45% by mass, and even more preferably 1.0 to 40% by mass.
  • the pressure-sensitive adhesive composition contains an energy ray-curable pressure-sensitive adhesive resin as the pressure-sensitive adhesive resin
  • the pressure-sensitive adhesive composition further contains a photopolymerization initiator.
  • the curing reaction can be sufficiently advanced even by irradiation with relatively low energy energy rays.
  • photopolymerization initiator examples include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthium monosulfide, and azobisisobutyrol. Examples thereof include nitrile, dibenzyl, diacetyl, 8-chloranthraquinone and the like. These photopolymerization initiators may be used alone or in combination of two or more.
  • the content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and further preferably 0. It is 05 to 2 parts by mass.
  • the pressure-sensitive adhesive layer may contain a colorant that absorbs laser light of a specific wavelength and generates heat.
  • the colorant include one or more selected from pigments and dyes.
  • the pigment may be an organic pigment or an inorganic pigment.
  • the dye include basic dyes, acid dyes, disperse dyes, direct dyes and the like.
  • the black pigment include carbon black, copper oxide, iron tetraoxide, manganese dioxide, aniline black, activated carbon and the like.
  • yellow pigment examples include chrome yellow, zinc yellow, cadmium yellow, yellow iron oxide, mineral fast yellow, nickel titanium yellow, nables ero, naphthol ero S, hansa ero, benzine ero G, benzine ero GR, quinoline ero lake, and the like. Permanent yellow NCG, tartrazine lake and the like can be mentioned.
  • orange pigment examples include red chrome yellow, molybdenum orange, permanent orange GTR, pyrazolone orange, vulcan orange, induthren brilliant orange RK, benzidine orange G, and induslen brilliant orange GKM.
  • red pigments include red iron oxide, cadmium red, lead tan, mercury sulfide, cadmium, permanent red 4R, resole red, pyrozolone red, watching red, calcium salt, lake red D, brilliant carmine 6B, eosin lake, and rhodamine. Examples thereof include Lake B, Alizarin Lake, Brilliant Carmine 3B and the like. Examples of the purple pigment include manganese purple, fast violet B, methyl violet lake and the like. Examples of the blue pigment include dark blue, cobalt blue, alkaline blue lake, Victoria blue lake, phthalocyanine blue, metal-free phthalocyanine blue, phthalocyanine blue partially chlorinated, first sky blue, and induslen blue BC.
  • green pigment examples include chrome green, chromium oxide, pigment green B, malachite green lake, final yellow green G and the like.
  • dye examples include niglocin, methylene blue, rose bengal, quinoline yellow, ultramarine blue and the like.
  • the content of the colorant can be appropriately adjusted depending on the wavelength, output, irradiation time, etc. of the laser beam, but is usually preferably 0.01 to 10% by mass, more preferably 0.01 to 10% by mass, based on the total amount of the pressure-sensitive adhesive composition. It is 0.05 to 7% by mass, more preferably 0.1 to 5% by mass.
  • the adhesive layer may contain a metal filler or the like that absorbs laser light of a specific wavelength and generates heat. good.
  • the metal filler is not particularly limited, and examples thereof include a metal filler made of copper, silver, gold, zinc, nickel, or palladium.
  • the content of the metal filler can be appropriately adjusted depending on the wavelength, output, irradiation time, etc. of the laser beam, but is usually preferably 0.01 to 10% by mass, more preferably 0.01 to 10% by mass, based on the total amount of the pressure-sensitive adhesive composition. It is 0.05 to 5% by mass, more preferably 0.1 to 3% by mass.
  • the colorant and the metal filler may be used in combination.
  • thermoelectric conversion material layer used in the present invention (hereinafter, may be referred to as “thin film of thermoelectric conversion material layer” or “chip of thermoelectric conversion material”) is not particularly limited and is made of a thermoelectric semiconductor material. It may also be a thin film made of a thermoelectric semiconductor composition. From the viewpoint of flexibility and thinness, it is composed of a thin film made of a thermoelectric semiconductor composition containing one or both of a thermoelectric semiconductor material (hereinafter, may be referred to as "thermoelectric semiconductor particles”), a resin, an ionic liquid and an inorganic ionic compound. Is preferable.
  • thermoelectric semiconductor material used for the thermoelectric conversion material layer is preferably pulverized to a predetermined size by, for example, a fine pulverizer or the like, and used as thermoelectric semiconductor particles (hereinafter, the thermoelectric semiconductor material is referred to as "thermoelectric semiconductor particles". be.).
  • the particle size of the thermoelectric semiconductor particles is preferably 10 nm to 100 ⁇ m, more preferably 20 nm to 50 ⁇ m, and even more preferably 30 nm to 30 ⁇ m.
  • the average particle size of the thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction type particle size analyzer (Mastersizer 3000 manufactured by Malvern), and was used as the median value of the particle size distribution.
  • thermoelectric semiconductor material constituting the P-type thermoelectric conversion material layer and the N-type conversion material layer is a material capable of generating thermoelectromotive force by imparting a temperature difference.
  • the present invention is not particularly limited, and for example, a bismuth-tellu-based thermoelectric semiconductor material such as P-type bismasterlide and N-type bismasterlide; a telluride-based thermoelectric semiconductor material such as GeTe and PbTe; an antimony-tellu-based thermoelectric semiconductor material; ZnSb, Zn.
  • Zinc-antimony thermoelectric semiconductor materials such as 3 Sb 2, Zn 4 Sb 3 ; silicon-germanium thermoelectric semiconductor materials such as SiGe; bismus selenide thermoelectric semiconductor materials such as Bi 2 Se 3 ; ⁇ -FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si and the like, silicide-based thermoelectric semiconductor materials; oxide-based thermoelectric semiconductor materials; FeVAL, FeVALSi, FeVTiAl and the like, whisler materials, TiS 2 and the like, sulfide-based thermoelectric semiconductor materials and the like are used.
  • thermoelectric semiconductor material used in the present invention is preferably a bismuth-tellurium-based thermoelectric semiconductor material such as P-type bismuthellide or N-type bismuthellide.
  • P-type bismuth telluride one having a hole as a carrier and a positive Seebeck coefficient, for example, represented by Bi X Te 3 Sb 2-X is preferably used.
  • X is preferably 0 ⁇ X ⁇ 0.8, more preferably 0.4 ⁇ X ⁇ 0.6.
  • X is larger than 0 and 0.8 or less, the Seebeck coefficient and the electric conductivity become large, and the characteristics as a P-type thermoelectric conversion material are maintained, which is preferable.
  • N-type bismuth telluride one having an electron carrier and a negative Seebeck coefficient, for example, represented by Bi 2 Te 3-Y Se Y is preferably used.
  • the Seebeck coefficient and the electric conductivity become large, and the characteristics as an N-type thermoelectric conversion material are maintained, which is preferable.
  • the content of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. It is more preferably 50 to 96% by mass, and even more preferably 70 to 95% by mass.
  • the Seebeck coefficient absolute value of the Perche coefficient
  • the decrease in the electric conductivity is suppressed, and only the thermal conductivity is decreased, so that high thermoelectric performance is exhibited.
  • a film having sufficient film strength and flexibility can be obtained, which is preferable.
  • thermoelectric semiconductor particles are annealed (hereinafter, may be referred to as "annealing treatment A").
  • annealing treatment A By performing the annealing treatment A, the crystallinity of the thermoelectric semiconductor particles is improved, and further, the surface oxide film of the thermoelectric semiconductor particles is removed, so that the Seebeck coefficient (absolute value of the Perche coefficient) of the thermoelectric conversion material is increased. , The thermoelectric performance index can be further improved.
  • the resin used in the present invention has a function of physically bonding thermoelectric semiconductor materials (thermoelectric semiconductor particles), can enhance the flexibility of the thermoelectric conversion module, and facilitates the formation of a thin film by coating or the like. ..
  • a heat-resistant resin or a binder resin is preferable.
  • the heat-resistant resin is maintained without impairing various physical properties such as mechanical strength and thermal conductivity as the resin when the thin film made of the thermoelectric semiconductor composition is subjected to crystal growth such as annealing treatment.
  • the heat-resistant resin is preferably a polyamide resin, a polyamideimide resin, a polyimide resin, or an epoxy resin, and has excellent flexibility, because it has higher heat resistance and does not adversely affect the crystal growth of thermoelectric semiconductor particles in the thin film. From this point of view, polyamide resin, polyamideimide resin, and polyimide resin are more preferable.
  • the heat-resistant resin preferably has a decomposition temperature of 300 ° C. or higher. As long as the decomposition temperature is within the above range, the flexibility can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
  • the heat-resistant resin preferably has a mass reduction rate of 10% or less, more preferably 5% or less, and further preferably 1% or less at 300 ° C. by thermogravimetric analysis (TG). ..
  • TG thermogravimetric analysis
  • the content of the heat-resistant resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, still more preferably 2 to 15. It is mass%.
  • the content of the heat-resistant resin is within the above range, it functions as a binder for the thermoelectric semiconductor material, facilitates the formation of a thin film, and obtains a film having both high thermoelectric performance and film strength, and thermoelectric conversion.
  • the binder resin can be easily peeled off from the base material such as glass, alumina, silicon, etc. used for manufacturing chips of thermoelectric conversion materials after firing (annealing) treatment (corresponding to "annealing treatment B" described later, the same applies hereinafter).
  • annealing treatment B thermoelectric conversion materials after firing
  • the binder resin refers to a resin that decomposes in an amount of 90% by mass or more at a firing (annealing) temperature or higher, more preferably a resin that decomposes in an amount of 95% by mass or more, and a resin that decomposes in an amount of 99% by mass or more. Is particularly preferable. Further, when a coating film (thin film) made of a thermoelectric semiconductor composition is subjected to crystal growth such as firing (annealing) treatment, a resin that maintains various physical properties such as mechanical strength and thermal conductivity without being impaired. More preferred.
  • a resin that decomposes by 90% by mass or more at a firing (annealing) temperature or higher that is, a resin that decomposes at a lower temperature than the heat-resistant resin described above. Since the content of the binder resin, which is an insulating component contained therein, is reduced and the crystal growth of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is promoted, the voids in the thermoelectric conversion material layer are reduced and the filling rate is increased. Can be improved.
  • Whether or not the resin decomposes at a predetermined value (for example, 90% by mass) or more at the firing (annealing) temperature or higher is determined by the mass reduction rate (before decomposition) at the firing (annealing) temperature by thermogravimetric analysis (TG). Judgment is made by measuring (the value obtained by dividing the mass after decomposition by the mass).
  • a predetermined value for example, 90% by mass
  • TG thermogravimetric analysis
  • thermoplastic resin examples include polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polymethylpentene; polycarbonate; thermoplastic polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polystyrene, acrylonitrile-styrene copolymer, and polyacetic acid.
  • Examples thereof include polyvinyl polymers such as vinyl, ethylene-vinyl acetate copolymers, vinyl chloride, polyvinylpyridine, polyvinyl alcohol, and polyvinylpyrrolidone; polyurethanes; cellulose derivatives such as ethyl cellulose; and the like.
  • the curable resin include thermosetting resins and photocurable resins.
  • examples of the thermosetting resin include epoxy resin and phenol resin.
  • Examples of the photocurable resin include a photocurable acrylic resin, a photocurable urethane resin, and a photocurable epoxy resin. These may be used alone or in combination of two or more.
  • thermoplastic resin a thermoplastic resin is preferable, a cellulose derivative such as polycarbonate and ethyl cellulose is more preferable, and polycarbonate is particularly preferable.
  • the binder resin is appropriately selected according to the temperature of the firing (annealing) treatment of the thermoelectric semiconductor material in the firing (annealing) treatment step. It is preferable to perform the firing (annealing) treatment at a temperature equal to or higher than the final decomposition temperature of the binder resin from the viewpoint of the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer.
  • the "final decomposition temperature” is a temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetric analysis (TG) is 100% (the mass after decomposition is 0% of the mass before decomposition).
  • the final decomposition temperature of the binder resin is usually 150 to 600 ° C, preferably 200 to 560 ° C, more preferably 220 to 460 ° C, and particularly preferably 240 to 360 ° C. If a binder resin having a final decomposition temperature in this range is used, it functions as a binder for the thermoelectric semiconductor material, and it becomes easy to form a thin film at the time of printing.
  • the content of the binder resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, and particularly preferably 0.5 to 5%. It is mass%.
  • the content of the binder resin is within the above range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
  • the content of the binder resin in the thermoelectric conversion material is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and particularly preferably 0 to 1% by mass.
  • the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
  • the ionic liquid that can be contained in the thermoelectric semiconductor composition is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range of ⁇ 50 ° C. or higher and lower than 400 ° C.
  • the ionic liquid is an ionic compound having a melting point in the range of ⁇ 50 ° C. or higher and lower than 400 ° C.
  • the melting point of the ionic liquid is preferably ⁇ 25 ° C. or higher and 200 ° C. or lower, and more preferably 0 ° C. or higher and 150 ° C. or lower.
  • the ionic liquid has features such as extremely low vapor pressure, non-volatileity, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, as a conductive auxiliary agent, it is possible to effectively suppress the reduction of the electrical conductivity between the thermoelectric semiconductor materials. Further, since the ionic liquid exhibits high polarity based on the aprotic ionic structure and has excellent compatibility with the heat-resistant resin, the electric conductivity of the thermoelectric conversion material can be made uniform.
  • the ionic liquid a known or commercially available one can be used.
  • nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine-based cations and their derivatives; phosphonium, trialkylsulfonium, tetraalkylphosphonium and the like.
  • Phosphonic cations and their derivatives Phosphonic cations and their derivatives; cation components such as lithium cations and their derivatives, Cl- , Br- , I- , AlCl 4- , Al 2 Cl 7- , BF 4- , PF 6- , ClO 4- , NO 3- , CH 3 COO- , CF 3 COO- , CH 3 SO 3- , CF 3 SO 3- , (FSO 2 ) 2 N- , (CF 3 SO 2 ) 2 N- , (CF 3 SO 2 ) 3 C- , AsF 6- , SbF 6- , NbF 6- , TaF 6- , F (HF) n- , (CN) 2 N- , C 4 F 9 SO 3- , (C 2 F 5 SO 2 ) Examples thereof include those composed of anionic components such as 2 N ⁇ , C 3 F 7 COO ⁇ , and (CF 3 SO 2 ) (CF 3 CO) N ⁇ .
  • the cation component of the ionic liquid is a pyridinium cation and its derivatives from the viewpoints of high temperature stability, compatibility with thermoelectric semiconductor materials and resins, and suppression of decrease in electrical conductivity between thermoelectric semiconductor material gaps.
  • 1-butyl-4-methylpyridinium bromide, 1-butylpyridinium bromide, and 1-butyl-4-methylpyridinium hexafluorophosphart are preferable.
  • the cation component is [1-butyl-3- (2-hydroxyethyl) imidazolium bromide], [1-butyl-3- (2-hydroxyethyl) imidazole].
  • Rium tetrafluoroborate] is preferred.
  • the above-mentioned ionic liquid preferably has a decomposition temperature of 300 ° C. or higher. As long as the decomposition temperature is within the above range, the effect as a conductive auxiliary agent can be maintained even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
  • the content of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass.
  • the content of the ionic liquid is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
  • thermoelectric semiconductor composition (Inorganic ionic compound)
  • the inorganic ionic compound that can be contained in the thermoelectric semiconductor composition is a compound composed of at least cations and anions.
  • Inorganic ionic compounds exist as solids in a wide temperature range of 400 to 900 ° C. and have characteristics such as high ionic conductivity. Therefore, as a conductive auxiliary agent, the electrical conductivity between thermoelectric semiconductor materials is reduced. Can be suppressed.
  • the content of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 10% by mass.
  • the content of the inorganic ionic compound is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
  • the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably. Is 0.5 to 30% by mass, more preferably 1.0 to 10% by mass.
  • thermoelectric conversion material layer is formed by being attached to a fixed layer on a support.
  • a thermoelectric conversion material layer prepared on a pre-peelable substrate is used. From the viewpoint of thermoelectric performance, when the annealing treatment B described later is performed, it is preferable to perform the annealing treatment B before the attachment.
  • the thermoelectric semiconductor composition is formed by applying the thermoelectric semiconductor composition on a known substrate such as glass or silicon and drying it. Can be done. By forming in this way, a large number of thermoelectric conversion material layers can be easily obtained at low cost.
  • thermoelectric semiconductor composition As a method of applying a thermoelectric semiconductor composition to obtain a thermoelectric conversion material layer, a screen printing method, a flexographic printing method, a gravure printing method, a spin coating method, a dip coating method, a die coating method, a spray coating method, a bar coating method, and a doctor Known methods such as the blade method can be mentioned, and the present invention is not particularly limited. Then, the obtained coating film is dried to form a thermoelectric conversion material layer.
  • the thickness of the thermoelectric conversion material layer is not particularly limited, and is preferably 100 nm to 1000 ⁇ m, more preferably 300 nm to 600 ⁇ m, and further preferably 5 to 400 ⁇ m from the viewpoint of thermoelectric performance and film strength.
  • the P-type thermoelectric conversion material layer and the N-type thermoelectric conversion material layer as a thin film made of the thermoelectric semiconductor composition are further subjected to an annealing treatment (hereinafter, may be referred to as "annealing treatment B").
  • annealing treatment B By performing the annealing treatment B, the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thin film can be crystal-grown, so that the thermoelectric performance can be further improved.
  • the annealing treatment B is not particularly limited, but is usually carried out under an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere, or a vacuum condition in which the gas flow rate is controlled, and the thermoelectric semiconductor composition and the group to be used are used. Although it depends on the heat-resistant temperature of the material, it is carried out at 100 to 500 ° C. for several minutes to several tens of hours.
  • thermoelectric conversion material In the method of arranging chips of thermoelectric conversion material of the present invention, (B) chip forming step of P-type thermoelectric conversion material and (F) chip forming step of N-type thermoelectric conversion material are performed.
  • the chip forming step of the thermoelectric conversion material is a step of individualizing the thermoelectric conversion material layer to obtain a chip of the thermoelectric conversion material.
  • the P-type thermoelectric conversion material layer 3p is individualized. This is a step of obtaining a chip 3pt of a P-type thermoelectric conversion material [step (B)].
  • the N-type thermoelectric conversion material layer 3n is fragmented to obtain a chip 3nt of the N-type thermoelectric conversion material [(F) step].
  • the method for individualizing the thermoelectric conversion material layer is not particularly limited, and a known method can be used.
  • a dicing method can be mentioned.
  • the dicing method is not particularly limited, but known methods such as blade dicing and laser dicing can be adopted.
  • the dicing method is performed by providing a notch so as to penetrate the thermoelectric conversion material layer.
  • the adhesive strength reducing step relating to the chip of the P-type thermoelectric conversion material and (G) relating to the chip of the N-type thermoelectric conversion material.
  • the adhesive strength lowering step is a step of lowering the adhesive strength between the fixed layer and the chip of the thermoelectric conversion material.
  • a part of the P-type thermoelectric conversion material chip 3pt is attached.
  • This is a step of reducing the adhesive strength of the fixed layer 2 in the region [(C) step].
  • FIG. 1 (g) it is a step of reducing the adhesive force of the fixed layer 2 in the region to which the chip 3nt of a part of the N-type thermoelectric conversion material is attached [(G) step].
  • the fixed layer is made into a fixed layer capable of absorbing laser light, and the step (C) and the step (G) are, in this order, a part of the P-type thermoelectric. It is preferably performed by irradiating at least a part of the fixed layer of each region to which the chip of the conversion material and the chip of the part of the N-type thermoelectric conversion material are attached with the laser beam.
  • FIG. 2 is a schematic cross-sectional view showing one aspect of the adhesive force reducing step in the present invention, and is among the chips 3pt of a plurality of P-type thermoelectric conversion materials attached to the fixed layer 2 on the first support 1a.
  • a mode in which the adhesive force between the chip 3pt of some P-type thermoelectric conversion materials and the fixed layer 2 is reduced is schematically shown.
  • the adhesive force between the fixed layer and the chip of the thermoelectric conversion material is reduced by irradiation with laser light in the step (C) or the step (G), for example, with the chip 3pt of the P-type thermoelectric conversion material of the fixed layer 2.
  • laser light 4 is applied to at least a part of the fixed layer 2 in the region where the chip 3pt of a part of the P-type thermoelectric conversion material is attached from the surface opposite to the attachment surface of the above.
  • a part of the fixed layer 2 is ablated to generate sublimation gas 6, and the contact area between the chip 3pt of a part of the P-type thermoelectric conversion material and the fixed layer 2 around the irradiated portion of the laser beam 4 is generated. Decreases.
  • the fixed layer 2 is ablated over a wide range to generate sublimation gas, and a part of the P-type thermoelectric is generated.
  • the adhesive force between the chip 3pt of some P-type thermoelectric conversion materials and the fixed layer 2 is further reduced. Even if the sublimation gas 6 leaks around the chip 3pt of the P-type thermoelectric conversion material, the leaked sublimation gas 6 is released from the gap 7 between the chips 3pt of the P-type thermoelectric conversion material.
  • the lasers are multi-arrayed and collectively performed according to the arrangement and number of chips of some thermoelectric conversion materials.
  • thermoelectric conversion material it is preferable to reduce the adhesive force between the fixed layer and the chip of the thermoelectric conversion material by irradiation with ultraviolet rays.
  • all the chips of the thermoelectric conversion material that do not want to reduce the adhesive strength are masked together with the support from the surface opposite to the surface on which the fixed layer is attached to the chip of the thermoelectric conversion material.
  • the fixed layer and some thermoelectrics are applied.
  • Adhesion to all of the conversion material chips can be reduced, and all of the thermoelectric conversion material chips of some of the plurality of thermoelectric conversion material chips can be selectively and easily peeled off at once on the support. Can be done.
  • the masking material is not particularly limited as long as it is a material that does not transmit ultraviolet rays and has a small temperature rise, and a metal plate having high thermal conductivity such as aluminum can be used.
  • the support is made of the above-mentioned heat-expandable base material, and a part of the corresponding P-type thermoelectrics is used in one or both of the steps (C) and the step (G).
  • the chip of the corresponding N-type thermoelectric conversion material is attached. It is preferable to be carried out by.
  • the heat-expandable base material By heating a part of the heat-expandable base material to a temperature higher than the temperature at which the heat-expandable particles expand, the heat-expandable base material follows the volume expansion of the heat-expandable particles at a temperature at which the heat-expandable particles are expanded.
  • the chips of some thermoelectric conversion materials among the chips of a plurality of thermoelectric conversion materials are selectively selected. It can be easily peeled off.
  • the means for heating the heat-expandable base material as a support is not particularly limited as long as it can selectively heat the heat-expandable particles in the heat-expandable base material to a temperature higher than the temperature at which the heat-expandable particles expand.
  • Heating by electromagnetic waves such as near-infrared rays, mid-infrared rays, and far-infrared rays can be used as appropriate.
  • the heating method may be either a direct heating method or an indirect heating method.
  • a chip of a part of the corresponding P-type thermoelectric conversion material and a part of the corresponding N-type thermoelectric conversion is preferably carried out by selectively heating at least a part of the heat-expandable particles of the fixed layer of the fixed layer to which the chip of the material is attached.
  • the step (C) and the step (G) a fixed layer (adhesive layer) containing heat-expandable particles and a heat-expandable base material as a support may be used in combination.
  • thermoelectric conversion material In the method of arranging chips of thermoelectric conversion material of the present invention, (D) chip transfer step of P-type thermoelectric conversion material and (H) chip transfer step of N-type thermoelectric conversion material are performed.
  • the chip transfer step of the thermoelectric conversion material is a step of selectively transferring and adhering only a part of the chips of the thermoelectric conversion material having reduced adhesive strength onto a fixed layer on another support, for example, FIG. 1.
  • (d) only the chip 3pt of a part of the P-type thermoelectric conversion material is selectively peeled from the fixed layer 2 on the first support 1a and transferred to the fixed layer 2 on the second support 1b. It is a step of sticking [(D) step].
  • thermoelectric conversion material only the chip 3nt of a part of the N-type thermoelectric conversion material is selectively peeled from the fixing layer 2 on the third support 1c and fixed on the fourth support 1d. It is a step of transferring and sticking to the layer 2 [step (H)].
  • the method of transferring the chip of the thermoelectric conversion material from the fixed layer having reduced adhesive strength onto the fixed layer on another support is not particularly limited, and a known method can be used.
  • the chip arranging method of the thermoelectric conversion material of the present invention includes (I) a chip bonding step of the thermoelectric conversion material and (J) a chip bonding step of the thermoelectric conversion material.
  • the chip bonding step of the thermoelectric conversion material is a chip of a separated P-type thermoelectric conversion material (or an N-type thermoelectric conversion material) attached to a fixed layer on a support obtained in the chip transfer step of the thermoelectric conversion material. Thermoelectric conversion on both supports so that the chip) and the chip of the N-type thermoelectric conversion material (or the chip of the P-type thermoelectric conversion material) separated on the fixed layer on the other support have a predetermined arrangement.
  • the method of laminating the chips of the N-type thermoelectric conversion material (or the chips of the P-type thermoelectric conversion material) separated on the layer so as to have a predetermined arrangement is not particularly limited, and is performed by a known method. Can be done.
  • the separated N-type thermoelectric conversion material chips 3nt transferred to the fixed layer 2 on the fourth support 1d obtained in the transfer step and the separated Ps on the fixed layer 2 on the first support 1a.
  • the chip 3pt of the type thermoelectric conversion material When the chip 3pt of the type thermoelectric conversion material is bonded, the chip 3pt of the separated P-type thermoelectric conversion material on the fixed layer 2 on the first support 1a is attached to the fixed layer 2 on the fourth support 1d.
  • Alignment marks are provided in advance on the first support and the second support in order to accurately place them at predetermined positions between the chips 3nt of the separated N-type thermoelectric conversion material transferred to the above, and with a microscope or the like. Align and bond by a known method.
  • the method for arranging chips of a thermoelectric conversion material of the present invention further includes a step of peeling one of the supports having a fixed layer from the chips of the thermoelectric conversion material.
  • the N-type thermoelectric conversion material chips 3nt and the P-type thermoelectric conversion material chips 3pt alternately arranged on the fixed layer 2 on the fourth support 1d are the first. This is a step of peeling off the fixed layer on the support 1a of 1.
  • a chip of a thermoelectric conversion material whose adhesive strength is not reduced by the same method as in step (C) or step (G) [for example, FIG. 1 (i').
  • the adhesive force of the fixed layer on one support to be peeled off (for example, the adhesive force of the pressure-sensitive adhesive layer) is fixed on the other support which is not the object to be peeled off. It is preferable that the adhesive strength of the layer is lower than that of the adhesive layer (for example, the adhesive strength of the pressure-sensitive adhesive layer).
  • the method for producing a chip array of a thermoelectric conversion material of the present invention is a step of arranging chips of the thermoelectric conversion material of the present invention including steps (A) to (J) or a step of carrying out an arrangement method of one aspect of the present invention. including.
  • the method for producing a chip array of a thermoelectric conversion material of the present invention is a step of carrying out a method of arranging chips of a thermoelectric conversion material according to one aspect of the present invention, which includes steps (A) to (J) in this order.
  • thermoelectric conversion module The method for manufacturing a thermoelectric conversion module of the present invention includes a step of arranging chips of the thermoelectric conversion material of the present invention including steps (A) to (J) or a step of carrying out an arrangement method of one aspect of the present invention. Therefore, all of the chips of the plurality of P-type and N-type thermoelectric conversion materials arranged alternately in the support batch can be used in the process of assembling the thermoelectric conversion module. Specifically, all of the chips of a plurality of P-type and N-type thermoelectric conversion materials arranged alternately in a support can be used in the process of assembling the thermoelectric conversion module, and the yield of the thermoelectric conversion module can be improved. Contributes to improving productivity.
  • the chips of the P-type conversion material and the chips of the N-type thermoelectric conversion material can be efficiently and alternately arranged in a support. Therefore, by using this in the process of assembling the thermoelectric conversion module, it is possible to improve the productivity of the thermoelectric conversion module.
  • thermoelectric conversion material which comprises a step of arranging the chip of the thermoelectric conversion material of the present invention
  • a plurality of P-type and N-type thermoelectric conversion material chips arranged alternately in a support batch are used. All of them can be used in the process of assembling the thermoelectric conversion module, which leads to the improvement of productivity including the improvement of the yield of the thermoelectric conversion module. Therefore, it can be expected to provide a large amount of inexpensive thermoelectric conversion modules.

Abstract

Provided is a method for efficiently arraying a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material collectively on a support. A method for arraying chips of a thermoelectric conversion material is provided, in which the chips of the thermoelectric conversion material include a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material, the method comprising steps (A) to (J) (see the Description).

Description

熱電変換材料のチップの配列方法How to arrange chips of thermoelectric conversion material
 本発明は、熱電変換材料のチップの配列方法に関する。 The present invention relates to a method of arranging chips of a thermoelectric conversion material.
 従来から、ゼーベック効果やペルチェ効果などの熱電効果を有する熱電変換材料を用い、熱エネルギーと電気エネルギーとを相互変換するようにした熱電変換モジュールがある。
 前記熱電変換モジュールとして、いわゆるπ型の熱電変換素子の使用が知られている。π型の熱電変換素子は、互いに離間するー対の電極を基板上に設け、例えば、―方の電極の上にP型熱電素子の下面を、他方の電極の上にN型熱電素子の下面を、同じく互いに離間して設け、両型の熱電素子の上面同士を対向する基板上の電極に接続する構成を基本単位とし、通常、当該基本単位を両基板内で複数、電気的に直列接続になるように構成されている。また、いわゆるインプレーン型の熱電変換素子の使用が知られている。インプレーン型の熱電変換素子は、P型熱電素子とN型熱電素子とが基板の面内方向に交互に設けられ、例えば、両熱電素子間の接合部の下部を、電極を介在し電気的に直列に接続することで構成されている。
Conventionally, there is a thermoelectric conversion module that uses a thermoelectric conversion material having a thermoelectric effect such as the Seebeck effect and the Pelche effect to convert between thermal energy and electrical energy.
As the thermoelectric conversion module, the use of a so-called π-type thermoelectric conversion element is known. The π-type thermoelectric conversion element is provided with a pair of electrodes separated from each other on the substrate, for example, the lower surface of the P-type thermoelectric element is provided on one of the electrodes, and the lower surface of the N-type thermoelectric element is placed on the other electrode. The basic unit is a configuration in which the upper surfaces of both types of thermoelectric elements are connected to electrodes on opposite substrates, and usually, a plurality of the basic units are electrically connected in series in both substrates. It is configured to be. Further, the use of a so-called in-plane type thermoelectric conversion element is known. In the inplane type thermoelectric conversion element, P-type thermoelectric elements and N-type thermoelectric elements are alternately provided in the in-plane direction of the substrate. It is configured by connecting in series with.
 このように、π型の熱電変換素子及びインプレーン型の熱電変換素子を構成する際には、P型熱電素子とN型熱電素子とを交互に所定の態様に配列させる必要がある。
 これらの要求を満たすために、特許文献1では、π型のペルチェモジュールを構成する直方体のP型半導体素子及びN型半導体素子を、電極を介在し交互に接続されるように配列する方法が開示されている。
 特許文献2では、π型の熱電変換モジュールの製造方法において、角材の態様のP型熱電変換素子及びN型熱電変換素子の長手方向の両端部を、一対の格子状治具の各格子窓にP型熱電変換素子及びN型熱電変換素子が交互になるようにそれぞれ挿入して配列させた後、所定の方法でP型熱電変換素子及びN型熱電変換素子の間隙に樹脂材料を充填し、全体が一体化されたブロックを成形し、それらを切断機を用いて所定の厚さに切断することでP型熱電変換素子及びN型熱電変換素子が複数対配列される方法が開示されている。
As described above, when the π-type thermoelectric conversion element and the inplane type thermoelectric conversion element are configured, it is necessary to alternately arrange the P-type thermoelectric element and the N-type thermoelectric element in a predetermined mode.
In order to satisfy these requirements, Patent Document 1 discloses a method of arranging rectangular parallelepiped P-type semiconductor elements and N-type semiconductor elements constituting a π-type Pelche module so as to be alternately connected via electrodes. Has been done.
In Patent Document 2, in the method of manufacturing a π-type thermoelectric conversion module, both ends of the P-type thermoelectric conversion element and the N-type thermoelectric conversion element in the aspect of a square material in the longitudinal direction are attached to each lattice window of a pair of lattice-shaped jigs. After inserting and arranging the P-type thermoelectric conversion element and the N-type thermoelectric conversion element alternately, a resin material is filled in the gap between the P-type thermoelectric conversion element and the N-type thermoelectric conversion element by a predetermined method. A method is disclosed in which a plurality of pairs of P-type thermoelectric conversion elements and N-type thermoelectric conversion elements are arranged by forming a block in which the whole is integrated and cutting them to a predetermined thickness using a cutting machine. ..
特開2003-031859号公報Japanese Patent Application Laid-Open No. 2003-031859 特開2010-161297号公報Japanese Unexamined Patent Publication No. 2010-161297
 しかしながら、特許文献1では、直方体のP型半導体素子及びN型半導体素子を複数対、あらかじめ個々に作製し、さらにそれらを一本ずつ電極上に交互に配列する必要があり、煩雑で時間がかかり生産性を有していなかった。特許文献2では、最終工程では交互に配列されたP型熱電変換素子及びN型熱電変換素子が、一体化されたブロック成形体を切断により一括して得られるものの、角材の態様のP型熱電変換素子及びN型熱電変換素子の複数対をあらかじめ個々に作製する必要があり、しかも格子状治具にP型熱電変換素子及びN型熱電変換素子を一本ずつ交互に配列されるように挿入する等、煩雑で時間がかかる工程が多く、生産性の観点から十分ではなかった。 However, in Patent Document 1, it is necessary to individually manufacture a plurality of pairs of rectangular P-type semiconductor elements and N-type semiconductor elements in advance, and to arrange them one by one alternately on an electrode, which is complicated and time-consuming. It was not productive. In Patent Document 2, in the final step, P-type thermoelectric conversion elements and N-type thermoelectric conversion elements arranged alternately are collectively obtained by cutting an integrated block molded body, but P-type thermoelectric in the form of a square jig. It is necessary to individually manufacture multiple pairs of conversion elements and N-type thermoelectric conversion elements in advance, and insert P-type thermoelectric conversion elements and N-type thermoelectric conversion elements one by one into a grid-like jig so as to be arranged alternately. There are many complicated and time-consuming processes, which was not sufficient from the viewpoint of productivity.
 本発明は、上記を鑑み、P型熱電変換材料のチップ及びN型熱電変換材料のチップを支持体一括で効率良く配列する方法を提供することを課題とする。 In view of the above, it is an object of the present invention to provide a method for efficiently arranging a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material in a batch of supports.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、第1の支持体上の固定層上のP型熱電変換材料層を複数に個片化し、P型熱電変換材料のチップとし、一部のP型熱電変換材料のチップが貼着している領域の固定層の接着力を低下させ、一部のP型熱電変換材料のチップのみを選択的に第2の支持体上の固定層上に転写する方法、及び、同様な操作を、第3の支持体上の固定層上のN型熱電変換材料層に適用し、一部のN型熱電変換材料のチップのみを選択的に、さらに第4の支持体上の固定層上に転写する方法、により、得られた離間したP型熱電変換材料のチップ又は離間したN型熱電変換材料のチップを有するそれぞれの支持体と、転写元の離間したP型熱電変換材料のチップ又は離間したN型熱電変換材料のチップを有するそれぞれの支持体とを用い、P型熱電変換材料のチップとN型熱電変換材料のチップとが同一面内上で交互に配列されるように貼り合わせることによって、上記課題を解決し得ることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[10]を提供するものである。
[1]熱電変換材料のチップの配列方法であって、前記熱電変換材料のチップが、P型熱電変換材料のチップ及びN型熱電変換材料のチップを含み、
(A)P型熱電変換材料層を第1の支持体上の固定層に貼着する工程、
(B)前記第1の支持体上の固定層に貼着されたP型熱電変換材料層を、P型熱電変換材料のチップに個片化して、複数のP型熱電変換材料のチップを得る工程、
(C)複数のP型熱電変換材料のチップのうち、一部のP型熱電変換材料のチップと固定層との接着力を低下させる工程、
(D)固定層との接着力が低下した前記一部のP型熱電変換材料のチップを前記第1の支持体上の固定層から剥離し、前記一部のP型熱電半導体チップの貼着面とは反対側の面を第2の支持体上の固定層に転写し貼着する工程、
(E)N型熱電変換材料層を第3の支持体上の固定層に貼着する工程、
(F)前記第3の支持体上の固定層に貼着されたN型熱電変換材料層を、N型熱電変換材料のチップに個片化して、複数のN型熱電変換材料のチップを得る工程、
(G)複数のN型熱電変換材料のチップのうち、一部のN型熱電変換材料のチップと固定層との接着力を低下させる工程、
(H)固定層との接着力が低下した前記一部のN型熱電変換材料のチップを前記第3の支持体上の固定層から剥離し、前記一部のN型熱電変換材料のチップの貼着面とは反対側の面を第4の支持体上の固定層に転写し貼着する工程、
(I)前記(D)の工程で固定層との接着力が維持されたP型熱電変換材料のチップの貼着面とは反対側の面を、前記(H)の工程で得られた前記第4の支持体上の固定層に貼着された前記一部のN型熱電変換材料のチップ間の固定層に貼着する工程、及び
(J)前記(H)の工程で固定層との接着力が維持されたN型熱電変換材料のチップの貼着面とは反対側の面を、前記(D)の工程で得られた前記第2の支持体上の固定層に貼着された前記一部のP型熱電変換材料のチップ間の固定層に貼着する工程、
を含む、熱電変換材料のチップの配列方法。
[2]前記固定層を、レーザー光を吸収可能な固定層とし、前記(C)の工程、前記(G)の工程が、この順に、前記一部のP型熱電変換材料のチップ、前記一部のN型熱電変換材料のチップ、が貼着しているそれぞれの領域の固定層の少なくとも一部に前記レーザー光を照射することにより行われる、上記[1]に記載の熱電変換材料のチップの配列方法。
[3]前記固定層が粘着剤層を含む、上記[1]又は[2]に記載の熱電変換材料のチップの配列方法。
[4]前記レーザー光を吸収可能な固定層が、着色剤又は金属フィラーを含む粘着剤層からなる、上記[2]に記載の熱電変換材料のチップの配列方法。
[5]前記支持体が樹脂フィルムからなる、上記[1]~[4]のいずれかに記載の熱電変換材料のチップの配列方法。
[6]前記(C)の工程及び前記(G)の工程の一方又は双方において、前記支持体として熱膨張性基材を用いる、上記[1]に記載の熱電変換材料のチップの配列方法。
[7]前記(C)の工程及び前記(G)の工程の一方又は双方において、前記固定層に熱膨張性粒子を含む、上記[1]に記載の熱電変換材料のチップの配列方法。
[8]前記熱電変換材料のチップが熱電半導体組成物からなり、該熱電半導体組成物が熱電半導体材料、樹脂、並びにイオン液体及び無機イオン性化合物の一方又は双方を含む、上記[1]~[7]のいずれかに記載の熱電変換材料のチップの配列方法。
[9]上記[1]~[8]のいずれかに記載の方法を実施する工程を含む、熱電変換材料のチップ配列体の製造方法。
[10]上記[1]~[8]のいずれかに記載の方法を実施する工程を含む、熱電変換材料のチップを含む熱電変換モジュールの製造方法。
As a result of diligent studies to solve the above problems, the present inventors have separated the P-type thermoelectric conversion material layer on the fixed layer on the first support into a plurality of pieces, and chipped the P-type thermoelectric conversion material. The adhesive strength of the fixed layer in the region where the chips of some P-type thermoelectric conversion materials are attached is reduced, and only the chips of some P-type thermoelectric conversion materials are selectively placed on the second support. The method of transferring onto the fixed layer and the same operation are applied to the N-type thermoelectric conversion material layer on the fixed layer on the third support, and only some N-type thermoelectric conversion material chips are selected. In addition, by the method of further transferring onto a fixed layer on the fourth support, with each support having a chip of a separated P-type thermoelectric conversion material or a chip of a separated N-type thermoelectric conversion material obtained by the method. , The chip of the P-type thermoelectric conversion material and the chip of the N-type thermoelectric conversion material are used with the respective supports having the chips of the separated P-type thermoelectric conversion material or the chips of the separated N-type thermoelectric conversion material. We have found that the above problems can be solved by laminating them so that they are arranged alternately on the same plane, and completed the present invention.
That is, the present invention provides the following [1] to [10].
[1] A method of arranging chips of a thermoelectric conversion material, wherein the chip of the thermoelectric conversion material includes a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material.
(A) A step of attaching a P-type thermoelectric conversion material layer to a fixed layer on a first support,
(B) The P-type thermoelectric conversion material layer attached to the fixed layer on the first support is individualized into P-type thermoelectric conversion material chips to obtain a plurality of P-type thermoelectric conversion material chips. Process,
(C) A step of reducing the adhesive force between the chip of some P-type thermoelectric conversion materials and the fixed layer among the chips of a plurality of P-type thermoelectric conversion materials.
(D) The chip of the part of the P-type thermoelectric conversion material having a reduced adhesive force with the fixed layer is peeled off from the fixed layer on the first support, and the part of the P-type thermoelectric semiconductor chip is attached. The step of transferring and attaching the surface opposite to the surface to the fixed layer on the second support.
(E) A step of attaching the N-type thermoelectric conversion material layer to the fixed layer on the third support,
(F) The N-type thermoelectric conversion material layer attached to the fixed layer on the third support is individualized into N-type thermoelectric conversion material chips to obtain a plurality of N-type thermoelectric conversion material chips. Process,
(G) A step of reducing the adhesive force between the chip of some N-type thermoelectric conversion materials and the fixed layer among the chips of a plurality of N-type thermoelectric conversion materials.
(H) The chip of the part of the N-type thermoelectric conversion material having a reduced adhesive force with the fixed layer is peeled off from the fixed layer on the third support, and the chip of the part of the N-type thermoelectric conversion material is peeled off. The process of transferring and attaching the surface opposite to the attachment surface to the fixed layer on the fourth support.
(I) The surface of the P-type thermoelectric conversion material whose adhesive strength with the fixed layer was maintained in the step (D) opposite to the attachment surface of the chip was obtained in the step (H). The step of sticking to the fixed layer between the chips of the part of the N-type thermoelectric conversion material stuck to the fixed layer on the fourth support, and (J) the step of sticking to the fixed layer in the step (H). The surface of the N-type thermoelectric conversion material whose adhesive strength was maintained opposite to the attachment surface of the chip was attached to the fixing layer on the second support obtained in the step (D). A step of attaching to a fixed layer between chips of some of the P-type thermoelectric conversion materials,
How to arrange chips of thermoelectric conversion material, including.
[2] The fixed layer is a fixed layer capable of absorbing laser light, and the step (C) and the step (G) are, in this order, a chip of a part of the P-type thermoelectric conversion material, the above-mentioned one. The chip of the thermoelectric conversion material according to the above [1], which is performed by irradiating at least a part of the fixed layer of each region to which the N-type thermoelectric conversion material chip is attached. Arrangement method.
[3] The method for arranging chips of a thermoelectric conversion material according to the above [1] or [2], wherein the fixed layer includes an adhesive layer.
[4] The method for arranging chips of a thermoelectric conversion material according to the above [2], wherein the fixed layer capable of absorbing the laser beam comprises a pressure-sensitive adhesive layer containing a colorant or a metal filler.
[5] The method for arranging chips of a thermoelectric conversion material according to any one of [1] to [4] above, wherein the support is made of a resin film.
[6] The method for arranging chips of a thermoelectric conversion material according to the above [1], wherein a heat-expandable base material is used as the support in one or both of the step (C) and the step (G).
[7] The method for arranging chips of a thermoelectric conversion material according to the above [1], wherein the fixed layer contains thermally expandable particles in one or both of the step (C) and the step (G).
[8] The chips of the thermoelectric conversion material are made of a thermoelectric semiconductor composition, and the thermoelectric semiconductor composition contains one or both of a thermoelectric semiconductor material, a resin, and an ionic liquid and an inorganic ionic compound. 7] The method for arranging chips of a thermoelectric conversion material according to any one of.
[9] A method for producing a chip array of a thermoelectric conversion material, which comprises the step of carrying out the method according to any one of the above [1] to [8].
[10] A method for manufacturing a thermoelectric conversion module including a chip of a thermoelectric conversion material, which comprises the step of carrying out the method according to any one of the above [1] to [8].
 本発明によれば、P型熱電変換材料のチップ及びN型熱電変換材料のチップを支持体一括で効率良く配列する方法を提供することができる。 According to the present invention, it is possible to provide a method for efficiently arranging a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material in a batch of supports.
本発明の一態様の熱電変換材料のチップの配列方法の工程の一態様を示す概略断面図である。It is the schematic sectional drawing which shows one aspect of the process of the process of the arrangement method of the chip of the thermoelectric conversion material of one aspect of this invention. 本発明における接着力低下工程の一態様を示す断面模式図である。It is sectional drawing which shows one aspect of the adhesive force lowering process in this invention.
[熱電変換材料のチップの配列方法]  
 本発明の熱電変換材料のチップの配列方法は、熱電変換材料のチップの配列方法であって、前記熱電変換材料のチップが、P型熱電変換材料のチップ及びN型熱電変換材料のチップを含み、
(A)P型熱電変換材料層を第1の支持体上の固定層に貼着する工程、
(B)前記第1の支持体上の固定層に貼着されたP型熱電変換材料層を、P型熱電変換材料のチップに個片化して、複数のP型熱電変換材料のチップを得る工程、
(C)複数のP型熱電変換材料のチップのうち、一部のP型熱電変換材料のチップと固定層との接着力を低下させる工程、
(D)固定層との接着力が低下した前記一部のP型熱電変換材料のチップを前記第1の支持体上の固定層から剥離し、前記一部のP型熱電半導体チップの貼着面とは反対側の面を第2の支持体上の固定層に転写し貼着する工程、
(E)N型熱電変換材料層を第3の支持体上の固定層に貼着する工程、
(F)前記第3の支持体上の固定層に貼着されたN型熱電変換材料層を、N型熱電変換材料のチップに個片化して、複数のN型熱電変換材料のチップを得る工程、
(G)複数のN型熱電変換材料のチップのうち、一部のN型熱電変換材料のチップと固定層との接着力を低下させる工程、
(H)固定層との接着力が低下した前記一部のN型熱電変換材料のチップを前記第3の支持体上の固定層から剥離し、前記一部のN型熱電変換材料のチップの貼着面とは反対側の面を第4の支持体上の固定層に転写し貼着する工程、
(I)前記(D)の工程で固定層との接着力が維持されたP型熱電変換材料のチップの貼着面とは反対側の面を、前記(H)の工程で得られた前記第4の支持体上の固定層に貼着された前記一部のN型熱電変換材料のチップ間の固定層に貼着する工程、及び
(J)前記(H)の工程で固定層との接着力が維持されたN型熱電変換材料のチップの貼着面とは反対側の面を、前記(D)の工程で得られた前記第2の支持体上の固定層に貼着された前記一部のP型熱電変換材料のチップ間の固定層に貼着する工程、
を含む、ことを特徴としている。
 本発明の熱電変換材料のチップの配列方法は、基板上の固定層上のP型熱電変換材料層を複数に個片化し、P型熱電変換材料のチップとし、一部のP型熱電変換材料のチップが貼着している領域の固定層の接着力を低下させた後、一部のP型熱電変換材料のチップのみを選択的に他の基板上の固定層上に転写し、また同様な操作を、独立して別の基板上の固定層上のN型熱電変換材料層に適用し、一部のN型熱電変換材料のチップのみを選択的に、さらに別の基板上の固定層上に転写し、加えて、結果として得られた離間したP型熱電変換材料のチップ又はN型熱電変換材料のチップを有する基板をそれぞれ用い、それらをP型熱電変換材料のチップとN型熱電変換材料のチップとが、例えば、交互に配列されるように貼り合わせるものである。これにより支持体一括で複数のP型熱電変換材料のチップとN型熱電変換材料のチップとを交互に配列させることができ、π型の熱電変換素子及びインプレーン型の熱電変換素子を容易に大量に作製することができる。このことにより、製造工程の簡略化によるタクトタイムの短縮、及び歩留まりの向上につながり、コストダウンが期待できる。
[Method of arranging chips of thermoelectric conversion material]
The method of arranging the chips of the thermoelectric conversion material of the present invention is a method of arranging the chips of the thermoelectric conversion material, and the chip of the thermoelectric conversion material includes a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material. ,
(A) A step of attaching a P-type thermoelectric conversion material layer to a fixed layer on a first support,
(B) The P-type thermoelectric conversion material layer attached to the fixed layer on the first support is individualized into P-type thermoelectric conversion material chips to obtain a plurality of P-type thermoelectric conversion material chips. Process,
(C) A step of reducing the adhesive force between the chip of some P-type thermoelectric conversion materials and the fixed layer among the chips of a plurality of P-type thermoelectric conversion materials.
(D) The chip of the part of the P-type thermoelectric conversion material having a reduced adhesive force with the fixed layer is peeled off from the fixed layer on the first support, and the part of the P-type thermoelectric semiconductor chip is attached. The step of transferring and attaching the surface opposite to the surface to the fixed layer on the second support.
(E) A step of attaching the N-type thermoelectric conversion material layer to the fixed layer on the third support,
(F) The N-type thermoelectric conversion material layer attached to the fixed layer on the third support is individualized into N-type thermoelectric conversion material chips to obtain a plurality of N-type thermoelectric conversion material chips. Process,
(G) A step of reducing the adhesive force between the chip of some N-type thermoelectric conversion materials and the fixed layer among the chips of a plurality of N-type thermoelectric conversion materials.
(H) The chip of the part of the N-type thermoelectric conversion material having a reduced adhesive force with the fixed layer is peeled off from the fixed layer on the third support, and the chip of the part of the N-type thermoelectric conversion material is peeled off. The process of transferring and attaching the surface opposite to the attachment surface to the fixed layer on the fourth support.
(I) The surface of the P-type thermoelectric conversion material whose adhesive strength with the fixed layer was maintained in the step (D) opposite to the attachment surface of the chip was obtained in the step (H). The step of sticking to the fixed layer between the chips of the part of the N-type thermoelectric conversion material stuck to the fixed layer on the fourth support, and (J) the step of sticking to the fixed layer in the step (H). The surface of the N-type thermoelectric conversion material whose adhesive strength was maintained opposite to the attachment surface of the chip was attached to the fixing layer on the second support obtained in the step (D). A step of attaching to a fixed layer between chips of some of the P-type thermoelectric conversion materials,
It is characterized by including.
In the method of arranging the chips of the thermoelectric conversion material of the present invention, the P-type thermoelectric conversion material layer on the fixed layer on the substrate is separated into a plurality of pieces to form a chip of the P-type thermoelectric conversion material, and a part of the P-type thermoelectric conversion material is used. After reducing the adhesive strength of the fixed layer in the area where the chips are attached, only the chips of some P-type thermoelectric conversion materials are selectively transferred onto the fixed layer on other substrates, and so on. The operation is independently applied to the N-type thermoelectric conversion material layer on the fixed layer on another substrate, and only some N-type thermoelectric conversion material chips are selectively applied to the fixed layer on yet another substrate. Transfer onto and in addition, use a substrate having the resulting isolated P-type thermoelectric conversion material chip or N-type thermoelectric conversion material chip, respectively, and use them as a P-type thermoelectric conversion material chip and an N-type thermoelectric conversion material chip, respectively. The chips of the conversion material are bonded together so as to be arranged alternately, for example. As a result, a plurality of P-type thermoelectric conversion material chips and N-type thermoelectric conversion material chips can be alternately arranged in a batch of supports, and π-type thermoelectric conversion elements and inplane type thermoelectric conversion elements can be easily arranged. It can be produced in large quantities. This leads to shortening of takt time and improvement of yield by simplifying the manufacturing process, and cost reduction can be expected.
 以降の説明では、(A)、(B)、(C)、(D)、(E)、(F)、(G)、(H)、(I)、及び(J)のそれぞれの各工程を、この順に、「(A)P型熱電変換材料層貼着工程」、「(B)P型熱電変換材料のチップ形成工程」、「(C)接着力低下工程」、「(D)P型熱電変換材料のチップ転写工程」、「(E)N型熱電変換材料層貼着工程」、「(F)N型熱電変換材料のチップ形成工程」、「(G)接着力低下工程」、「(H)N型熱電変換材料のチップ転写工程」、「(I)熱電変換材料のチップ貼り合わせ工程」、「(J)熱電変換材料のチップ貼り合わせ工程」ともいうことがある。また、単に「(A)工程」、「(B)工程」、「(C)工程」、「(D)工程」、「(E)工程」、「(F)工程」、「(G)工程」、「(H)工程」、「(I)工程」、「(J)工程」ともいうことがある。
さらに、「P型熱電変換材料のチップ及びN型熱電変換材料のチップ」を、単に「熱電変換材料のチップ」ともいうことがある。
In the following description, each step of (A), (B), (C), (D), (E), (F), (G), (H), (I), and (J) In this order, "(A) P-type thermoelectric conversion material layer attaching step", "(B) P-type thermoelectric conversion material chip forming step", "(C) adhesive strength reducing step", "(D) P". "Chip transfer process of type thermoelectric conversion material", "(E) N-type thermoelectric conversion material layer attachment process", "(F) Chip formation process of N-type thermoelectric conversion material", "(G) Adhesive strength reduction process", It may also be referred to as "(H) chip transfer process of N-type thermoelectric conversion material", "(I) chip bonding process of thermoelectric conversion material", and "(J) chip bonding process of thermoelectric conversion material". In addition, simply "(A) process", "(B) process", "(C) process", "(D) process", "(E) process", "(F) process", "(G) process" , "(H) process", "(I) process", "(J) process".
Further, the "chip of P-type thermoelectric conversion material and chip of N-type thermoelectric conversion material" may be simply referred to as "chip of thermoelectric conversion material".
 図1は、本発明の一態様の熱電変換材料のチップの配列方法の工程の一態様を示す概略断面図であり、
(a)は、第1の支持体1a上の固定層2上にP型熱電変換材料層3pを貼着した後の断面図であり、
(b)は、P型熱電変換材料層3pをP型熱電変換材料のチップ3ptに個片化して、複数のP型熱電変換材料のチップ3ptを形成した後の断面図であり、
(c)は、(b)で形成した複数のP型熱電変換材料のチップ3ptのうち、一部のP型熱電半導体チップ3ptと固定層2との接着力を低下させた後の態様を示す断面図であり(固定層2とP型熱電変換材料のチップ3ptとの間のスペースは誇張して示している)、
(d)は、固定層2との接着力が低下した一部のP型熱電半導体チップ3ptを第2の支持体1b上の固定層2から剥離し、一部のP型熱電半導体チップ3ptの貼着面とは反対側の面を第2の支持体1b上の固定層2に転写し貼着した後の断面図である。
また、(e)は、第3の支持体1c上の固定層2上にN型熱電変換材料層3nを貼着した後の断面図であり、
(f)は、N型熱電変換材料層3nをN型熱電変換材料のチップ3ntに個片化して、複数のN型熱電変換材料のチップ3ntを形成した後の断面図であり、
(g)は、(f)で形成した複数のN型熱電変換材料のチップ3ntのうち、一部のN型熱電半導体チップ3ntと固定層2との接着力を低下させた後の態様を示す断面図であり(固定層2とN型熱電変換材料のチップ3ntとの間のスペースは誇張して示している)、
(h)は、固定層2との接着力が低下した一部のN型熱電半導体チップ3ntを第3の支持体1c上の固定層2から剥離し、一部のN型熱電半導体チップ3ntの貼着面とは反対側の面を第4の支持体1d上の固定層2に転写し貼着した後の断面図である。
(i)は、(d)で固定層2との接着力が維持されたP型熱電変換材料のチップ3ptの貼着面とは反対側の面を、(h)で得られた第4の支持体1d上の固定層2に貼着された前記一部のN型熱電変換材料のチップ間の固定層2に貼着する態様を示す断面図であり、
(j)は、(h)で固定層2との接着力が維持されたN型熱電変換材料のチップ3ntの貼着面とは反対側の面を、(d)で得られた第2の支持体1b上の固定層に貼着された前記一部のP型熱電変換材料のチップ3pt間の固定層2に貼着する態様を示す断面図である。
(i’)は、(i)でN型熱電変換材料のチップ3ntとP型熱電変換材料のチップ3ptとを第4の支持体1d上の固定層2上に交互に配列させた後に、それらから第1の支持体1aを有する固定層2を剥離した後の態様を示す断面図である。
(j’)は、(j)でP型熱電変換材料のチップ3ptとN型熱電変換材料のチップ3ntとを第2の支持体1b上の固定層2上に交互に配列させた後に、それらから第3の支持体1cを有する固定層2を剥離した後の態様を示す断面図である。
FIG. 1 is a schematic cross-sectional view showing one aspect of the process of arranging chips of the thermoelectric conversion material according to one aspect of the present invention.
(A) is a cross-sectional view after the P-type thermoelectric conversion material layer 3p is attached onto the fixed layer 2 on the first support 1a.
(B) is a cross-sectional view after the P-type thermoelectric conversion material layer 3p is fragmented into the chips 3pt of the P-type thermoelectric conversion material to form a plurality of chips 3pt of the P-type thermoelectric conversion material.
(C) shows an aspect after reducing the adhesive force between a part of the P-type thermoelectric semiconductor chip 3pt and the fixed layer 2 among the chips 3pt of the plurality of P-type thermoelectric conversion materials formed in (b). It is a cross-sectional view (the space between the fixed layer 2 and the chip 3pt of the P-type thermoelectric conversion material is exaggerated).
In (d), a part of the P-type thermoelectric semiconductor chip 3pt having a reduced adhesive force with the fixed layer 2 is peeled off from the fixed layer 2 on the second support 1b, and the part of the P-type thermoelectric semiconductor chip 3pt is peeled off. It is sectional drawing after transferring and adhering the surface opposite to the adhering surface to the fixing layer 2 on the 2nd support 1b.
Further, (e) is a cross-sectional view after the N-type thermoelectric conversion material layer 3n is attached onto the fixed layer 2 on the third support 1c.
(F) is a cross-sectional view after the N-type thermoelectric conversion material layer 3n is fragmented into N-type thermoelectric conversion material chips 3nt to form a plurality of N-type thermoelectric conversion material chips 3nt.
(G) shows an aspect after reducing the adhesive force between a part of the N-type thermoelectric semiconductor chip 3nt and the fixed layer 2 among the chips 3nt of the plurality of N-type thermoelectric conversion materials formed in (f). It is a cross-sectional view (the space between the fixed layer 2 and the chip 3nt of the N-type thermoelectric conversion material is exaggerated).
In (h), a part of the N-type thermoelectric semiconductor chip 3nt having a reduced adhesive force with the fixed layer 2 is peeled off from the fixed layer 2 on the third support 1c, and the part of the N-type thermoelectric semiconductor chip 3nt is peeled off. It is sectional drawing after transferring and sticking the surface opposite to the sticking surface to the fixed layer 2 on the 4th support 1d.
In (i), the surface opposite to the attachment surface of the chip 3pt of the P-type thermoelectric conversion material in which the adhesive force with the fixed layer 2 was maintained in (d) was obtained in (h). It is sectional drawing which shows the aspect which is attached to the fixed layer 2 between the chips of the said partial N-type thermoelectric conversion material attached to the fixed layer 2 on the support 1d.
In (j), the surface opposite to the attachment surface of the chip 3nt of the N-type thermoelectric conversion material whose adhesive force with the fixed layer 2 was maintained in (h) was obtained in (d). It is sectional drawing which shows the aspect which is attached to the fixed layer 2 between the chips 3pt of the said partial P-type thermoelectric conversion material attached to the fixed layer on the support 1b.
In (i'), after the chips 3nt of the N-type thermoelectric conversion material and the chips 3pt of the P-type thermoelectric conversion material are alternately arranged on the fixed layer 2 on the fourth support 1d in (i), they are arranged. It is sectional drawing which shows the aspect after peeling off the fixed layer 2 which has a 1st support 1a.
In (j'), after the chips 3pt of the P-type thermoelectric conversion material and the chips 3nt of the N-type thermoelectric conversion material are alternately arranged on the fixed layer 2 on the second support 1b in (j), they are arranged. It is sectional drawing which shows the aspect after peeling off the fixed layer 2 which has a 3rd support 1c.
・熱電変換材料層貼着工程
 本発明の熱電変換材料のチップの配列方法においては、(A)P型熱電変換材料層貼着工程、及び、(E)N型熱電変換材料層貼着工程を含む。
 熱電変換材料層貼着工程は、支持体上の固定層に熱電変換材料層を貼着する工程であり、例えば、図1(a)において、第1の支持体1a上の固定層2上にP型熱電変換材料層3pを貼着する工程である[(A)工程]。同様に、例えば、図1(e)において、第3の支持体1c上の固定層2上にN型熱電変換材料層3nを貼着する工程である[(E)工程]。
Thermoelectric conversion material layer attachment step In the method of arranging the chips of the thermoelectric conversion material of the present invention, (A) P-type thermoelectric conversion material layer attachment step and (E) N-type thermoelectric conversion material layer attachment step are performed. include.
The thermoelectric conversion material layer attachment step is a step of attaching the thermoelectric conversion material layer to the fixed layer on the support, for example, in FIG. 1A, on the fixed layer 2 on the first support 1a. This is a step of attaching the P-type thermoelectric conversion material layer 3p [(A) step]. Similarly, for example, in FIG. 1 (e), it is a step of attaching the N-type thermoelectric conversion material layer 3n onto the fixed layer 2 on the third support 1c [(E) step].
<支持体>
 本発明に用いる支持体は、特に制限されないが、主材として、樹脂、ガラス、セラミックス、又はシリコン等が挙げられる。
 一態様として、樹脂系の材料を主材とする、光透過性を有する樹脂フィルムが好ましい。
 樹脂フィルムの具体例としては、低密度ポリエチレン(LDPE)フィルム、直鎖低密度ポリエチレン(LLDPE)フィルム、及び高密度ポリエチレン(HDPE)フィルム等のポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、エチレン-ノルボルネン共重合体フィルム、並びにノルボルネン樹脂フィルム等のポリオレフィン系フィルム;エチレン-酢酸ビニル共重合体フィルム、エチレン-(メタ)アクリル酸共重合体フィルム、及びエチレン-(メタ)アクリル酸エステル共重合体フィルム等のエチレン系共重合フィルム;ポリ塩化ビニルフィルム及び塩化ビニル共重合体フィルム等のポリ塩化ビニル系フィルム;ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルム等のポリエステル系フィルム;ポリウレタンフィルム;ポリイミドフィルム;ポリスチレンフィルム;ポリカーボネートフィルム;フッ素樹脂フィルム等が挙げられる。また、これらの架橋フィルム及びアイオノマーフィルムのような変性フィルムを用いてもよい。
 支持体は、これらの樹脂フィルムのうち1種を単独で用いてもよいし、2種以上を併用した積層フィルムを用いてもよい。
<Support>
The support used in the present invention is not particularly limited, and examples thereof include resin, glass, ceramics, and silicon.
As one aspect, a resin film having light transmittance and having a resin-based material as a main material is preferable.
Specific examples of the resin film include polyethylene films such as low density polyethylene (LDPE) film, linear low density polyethylene (LLDPE) film, and high density polyethylene (HDPE) film, polypropylene film, polybutene film, polybutadiene film, and polymethyl. Polyethylene films such as penten films, ethylene-norbornene copolymer films, and norbornene resin films; ethylene-vinyl acetate copolymer films, ethylene- (meth) acrylic acid copolymer films, and ethylene- (meth) acrylic acids. Ethylene-based copolymer films such as ester copolymer films; polyvinyl chloride-based films such as polyvinyl chloride films and vinyl chloride copolymer films; polyester-based films such as polyethylene terephthalate films and polybutylene terephthalate films; polyurethane films; polyimides Examples thereof include film; polystyrene film; polycarbonate film; fluororesin film and the like. Further, modified films such as these crosslinked films and ionomer films may be used.
As the support, one of these resin films may be used alone, or a laminated film in which two or more of these resin films are used in combination may be used.
 ここで、樹脂フィルムは、汎用性の観点、及び強度が比較的高く反りを防止しやすい観点、耐熱性の観点、及び後述するレーザー光透過性向上の観点から、樹脂フィルムは、低密度ポリエチレン(LDPE)フィルム、直鎖低密度ポリエチレン(LLDPE)フィルム、及び高密度ポリエチレン(HDPE)フィルム等のポリエチレンフィルム、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレート等のポリエステル系フィルム、並びにポリプロピレンフィルムが好ましい。具体的には、樹脂フィルムは、ポリエチレンフィルム、ポリエステル系フィルム、及びポリプロピレンフィルムからなる群から選択される1層以上を有する単層フィルム、又は2層以上を積層した積層フィルムであることが好ましい。
 なお、所望の波長の光に対する高い光線透過性を確保しやすくする観点から、支持体の、後述する固定層が形成される面側とは反対面における平滑性を高めることが好ましく、算術平均粗さRaが0.01μm~0.80μmであることが好ましい。なお、算術平均粗さRaは、JIS B 0601:1994に準拠して測定される値である。
Here, the resin film is a low-density polyethylene (from the viewpoint of versatility, relatively high strength and easy to prevent warpage, heat resistance, and improvement of laser light transmittance described later). LDPE) films, linear low density polyethylene (LLDPE) films, polyethylene films such as high density polyethylene (HDPE) films, polyester films such as polyethylene terephthalate films and polybutylene terephthalates, and polypropylene films are preferred. Specifically, the resin film is preferably a single-layer film having one or more layers selected from the group consisting of a polyethylene film, a polyester-based film, and a polypropylene film, or a laminated film in which two or more layers are laminated.
From the viewpoint of facilitating ensuring high light transmittance for light of a desired wavelength, it is preferable to improve the smoothness of the support on the surface opposite to the surface side on which the fixed layer is formed, which will be described later, and the arithmetic mean roughness. The Ra is preferably 0.01 μm to 0.80 μm. The arithmetic average roughness Ra is a value measured in accordance with JIS B 0601: 1994.
 また、支持体は、着色剤を含有していてもよいが、後述する(C)工程及び(G)工程の接着力低下工程においてレーザー光を用いる場合、レーザー光透過性により優れる支持体とする観点から、当該レーザー光を吸収する着色剤等の成分の含有量は少ないことが好ましい。具体的には、レーザー光を吸収する着色剤の含有量は、支持体の全量基準で、好ましくは0.1質量%未満、より好ましくは0.01質量%未満、さらに好ましくは0.001質量%未満、よりさらに好ましくは使用するレーザー光の波長を吸収する成分を含有しないことである。 Further, the support may contain a colorant, but when laser light is used in the adhesive force lowering steps of the steps (C) and (G) described later, the support is made to be more excellent in laser light transmission. From the viewpoint, it is preferable that the content of components such as a colorant that absorbs the laser beam is small. Specifically, the content of the colorant that absorbs the laser light is preferably less than 0.1% by mass, more preferably less than 0.01% by mass, still more preferably 0.001% by mass based on the total amount of the support. %, More preferably, it does not contain a component that absorbs the wavelength of the laser light used.
 さらに、他の一態様において、支持体として、例えば、後述する接着力低下工程である(C)の工程及び前記(G)の工程の一方又は双方において、後述する粘着剤層と熱電変換材料のチップとの接着力を低下させる場合は、熱膨張性基材を用いることが好ましい。 Further, in another aspect, as the support, for example, in one or both of the step (C) and the step (G) described later, which is a step of reducing the adhesive strength described later, the pressure-sensitive adhesive layer and the thermoelectric conversion material described later are used. When reducing the adhesive force with the chip, it is preferable to use a heat-expandable base material.
 熱膨張性基材は、樹脂及び熱膨張性粒子を含む非粘着性の基材である。
 樹脂としては、アクリルウレタン系樹脂及びオレフィン系樹脂等が挙げられる。
 熱膨張性粒子としては、熱可塑性樹脂から構成された外殻と、当該外殻に内包され、且つ所定の温度まで加熱されると気化する内包成分とから構成される、マイクロカプセル化発泡剤であることが好ましい。
 マイクロカプセル化発泡剤の外殻を構成する熱可塑性樹脂としては、例えば、塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、及びポリスルホン等が挙げられる。
 外殻に内包された内包成分としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、及びイソブタン等が挙げられる。
 これらの内包成分は、単独で用いてもよく、2種以上を併用してもよい。
The heat-expandable base material is a non-adhesive base material containing a resin and heat-expandable particles.
Examples of the resin include acrylic urethane-based resins and olefin-based resins.
The heat-expandable particles are microencapsulated foaming agents composed of an outer shell made of a thermoplastic resin and an inner shell component contained in the outer shell and vaporized when heated to a predetermined temperature. It is preferable to have.
Examples of the thermoplastic resin constituting the outer shell of the microencapsulated foaming agent include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethylmethacrylate, polyacrylonitrile, polyvinylidene chloride, and polysulfone. ..
Examples of the contained component contained in the outer shell include propane, butane, pentane, hexane, heptane, octane, nonane, decane, and isobutane.
These inclusion components may be used alone or in combination of two or more.
 熱膨張性粒子の23℃における膨張前の平均粒子径は、好ましくは3~100μm、より好ましくは4~70μm、更に好ましくは6~60μm、より更に好ましくは10~50μmである。
 なお、熱膨張性粒子の膨張前の平均粒子径とは、体積中位粒子径(D50)であり、レーザー回折式粒度分布測定装置(例えば、Malvern社製、製品名「マスターサイザー3000」)を用いて測定した、膨張前の熱膨張性粒子の粒子分布において、膨張前の熱膨張性粒子の粒子径の小さい方から計算した累積体積頻度が50%に相当する粒子径を意味する。
The average particle size of the heat-expandable particles before expansion at 23 ° C. is preferably 3 to 100 μm, more preferably 4 to 70 μm, still more preferably 6 to 60 μm, still more preferably 10 to 50 μm.
The average particle size of the heat-expandable particles before expansion is the volume medium particle size (D50), and a laser diffraction type particle size distribution measuring device (for example, manufactured by Malvern, product name “Mastersizer 3000”) is used. In the particle distribution of the heat-expandable particles before expansion measured using the particle size, it means the particle size corresponding to the cumulative volume frequency of 50% calculated from the smaller particle size of the heat-expandable particles before expansion.
 支持体の厚さは、特に限定されないが、好ましくは20μm~450μm、より好ましくは25μm~400μmの範囲である。 The thickness of the support is not particularly limited, but is preferably in the range of 20 μm to 450 μm, more preferably 25 μm to 400 μm.
<固定層>
 本発明に用いる固定層は、支持体と、熱電変換材料層もしくは熱電変換材料層のチップとを接着し、かつ後述する物理化学的な作用により複数の熱電変換材料のチップのうち、一部の熱電変換材料のチップとの接着力を選択的に低下する機能を供するものを用いる。
 固定層は、上記を満たせば、熱硬化性樹脂や光硬化性樹脂等を含む層を用いることができる。一態様として、粘着剤層を用いることが好ましい。また、他の一態様として、接着性及び光吸収性の観点から、着色剤又は金属フィラーを含有する粘着剤層を用いることが好ましい。さらに、他の一態様として、熱電変換材料のチップ保持性と転写性の観点から、側鎖に重合性官能基を導入したエネルギー線硬化型の粘着性樹脂を含む粘着剤層を用いることが好ましい。
 さらにまた、他の一態様として、熱電変換材料のチップの剥離の容易性の観点から、粘着剤層に前記熱膨張性粒子を含む態様であることが好ましい。
<Fixed layer>
The fixed layer used in the present invention adheres the support to the chip of the thermoelectric conversion material layer or the thermoelectric conversion material layer, and is a part of the chips of a plurality of thermoelectric conversion materials due to the physicochemical action described later. A material having a function of selectively reducing the adhesive force of the thermoelectric conversion material with the chip is used.
As the fixed layer, a layer containing a thermosetting resin, a photocurable resin, or the like can be used as long as the above conditions are satisfied. As one embodiment, it is preferable to use an adhesive layer. Further, as another aspect, it is preferable to use a pressure-sensitive adhesive layer containing a colorant or a metal filler from the viewpoint of adhesiveness and light absorption. Further, as another aspect, from the viewpoint of chip retention and transferability of the thermoelectric conversion material, it is preferable to use a pressure-sensitive adhesive layer containing an energy ray-curable pressure-sensitive adhesive resin having a polymerizable functional group introduced in the side chain. ..
Furthermore, as another aspect, from the viewpoint of easy peeling of the chip of the thermoelectric conversion material, it is preferable that the pressure-sensitive adhesive layer contains the heat-expandable particles.
 粘着剤層は、粘着性樹脂を含むものであればよく、必要に応じて、架橋剤、粘着付与剤、重合性化合物、重合開始剤等の粘着剤用添加剤を含有してもよい。
 粘着剤層は、粘着性樹脂を含む粘着剤組成物から形成することができる。
 以下、粘着剤層の形成材料である粘着剤組成物に含まれる各成分について説明する。
The pressure-sensitive adhesive layer may contain any pressure-sensitive adhesive resin, and may contain additives for pressure-sensitive adhesive such as a cross-linking agent, a pressure-sensitive adhesive, a polymerizable compound, and a polymerization initiator, if necessary.
The pressure-sensitive adhesive layer can be formed from a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive resin.
Hereinafter, each component contained in the pressure-sensitive adhesive composition, which is a material for forming the pressure-sensitive adhesive layer, will be described.
(粘着性樹脂)
 粘着性樹脂は、当該樹脂単独で粘着性を有し、質量平均分子量(Mw)が1万以上の重合体であることが好ましい。
 粘着性樹脂の質量平均分子量(Mw)としては、粘着力の向上の観点から、より好ましくは1万~200万、さらに好ましくは2万~150万、よりさらに好ましくは3万~100万である。
 また、粘着性樹脂のガラス転移温度(Tg)は、好ましくは-60℃~-10℃、より好ましくは-50℃~-20℃である。
(Adhesive resin)
The adhesive resin is preferably a polymer having adhesiveness by itself and having a mass average molecular weight (Mw) of 10,000 or more.
The mass average molecular weight (Mw) of the adhesive resin is more preferably 10,000 to 2,000,000, still more preferably 20,000 to 1.5 million, and even more preferably 30,000 to 1,000,000 from the viewpoint of improving the adhesive strength. ..
The glass transition temperature (Tg) of the adhesive resin is preferably −60 ° C. to −10 ° C., more preferably −50 ° C. to −20 ° C.
 粘着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、及びポリビニルエーテル系樹脂等が挙げられる。
 これらの粘着性樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、これらの粘着性樹脂が、2種以上の構成単位を有する共重合体である場合、当該共重合体の形態は、特に限定されず、ブロック共重合体、ランダム共重合体、及びグラフト共重合体のいずれであってもよい。
Examples of the adhesive resin include rubber resins such as acrylic resins, urethane resins and polyisobutylene resins, polyester resins, olefin resins, silicone resins, polyvinyl ether resins and the like.
These adhesive resins may be used alone or in combination of two or more.
Further, when these adhesive resins are copolymers having two or more kinds of structural units, the form of the copolymer is not particularly limited, and the block copolymer, the random copolymer, and the graft can be used together. It may be any of the polymers.
 粘着性樹脂は、側鎖に重合性官能基を導入したエネルギー線硬化型の粘着性樹脂であってもよい。ただし、この場合、後述する光重合開始剤を含有することが好ましい。
 当該重合性官能基としては、(メタ)アクリロイル基及びビニル基等が挙げられる。
 また、エネルギー線としては、紫外線及び電子線等が挙げられるが、例えば、後述する接着力低下工程である(C)工程又は(G)工程において、粘着剤層と熱電変換材料のチップとの接着力を低下させる場合は、一態様として、紫外線を用いることが好ましい。
The adhesive resin may be an energy ray-curable adhesive resin in which a polymerizable functional group is introduced into the side chain. However, in this case, it is preferable to contain a photopolymerization initiator described later.
Examples of the polymerizable functional group include (meth) acryloyl group and vinyl group.
Examples of the energy ray include ultraviolet rays and electron beams. For example, in the step (C) or the step (G), which is a step of reducing the adhesive force described later, the adhesive layer and the chip of the thermoelectric conversion material are bonded to each other. When reducing the force, it is preferable to use ultraviolet rays as one embodiment.
 粘着性樹脂の含有量は、粘着剤組成物の有効成分の全量(100質量%)に対して、好ましくは30~99.99質量%、より好ましくは40~99.95質量%、さらに好ましくは50~99.90質量%、よりさらに好ましくは55~99.80質量%、さらになお好ましくは60~99.50質量%である。
 なお、本明細書の以下の記載において、「粘着剤組成物の有効成分の全量に対する各成分の含有量」は、「当該粘着剤組成物から形成される粘着剤層中の各成分の含有量」と同義である。
The content of the pressure-sensitive adhesive resin is preferably 30 to 99.99% by mass, more preferably 40 to 99.95% by mass, still more preferably, based on the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition. It is 50 to 99.90% by mass, more preferably 55 to 99.80% by mass, and even more preferably 60 to 99.50% by mass.
In the following description of the present specification, "the content of each component with respect to the total amount of the active ingredient of the pressure-sensitive adhesive composition" is "the content of each component in the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition". Is synonymous with.
 ここで、優れた粘着力を発現させる観点から、粘着性樹脂は、アクリル系樹脂を含むことが好ましい。
 粘着性樹脂中のアクリル系樹脂の含有割合としては、粘着剤組成物に含まれる粘着性樹脂の全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは50~100質量%、さらに好ましくは70~100質量%、よりさらに好ましくは85~100質量%である。
Here, from the viewpoint of exhibiting excellent adhesive strength, the adhesive resin preferably contains an acrylic resin.
The content ratio of the acrylic resin in the pressure-sensitive adhesive resin is preferably 30 to 100% by mass, more preferably 50 to 100% by mass, based on the total amount (100% by mass) of the pressure-sensitive adhesive resin contained in the pressure-sensitive adhesive composition. %, More preferably 70 to 100% by mass, still more preferably 85 to 100% by mass.
(アクリル系樹脂)
 粘着性樹脂として使用し得るアクリル系樹脂としては、例えば、直鎖又は分岐鎖のアルキル基を有するアルキル(メタ)アクリレートに由来する構成単位を含む重合体、環状構造を有する(メタ)アクリレートに由来する構成単位を含む重合体等が挙げられる。
(Acrylic resin)
Acrylic resins that can be used as adhesive resins include, for example, a polymer containing a structural unit derived from an alkyl (meth) acrylate having a linear or branched alkyl group, and a (meth) acrylate having a cyclic structure. Examples thereof include a polymer containing a structural unit thereof.
 アクリル系樹脂の質量平均分子量(Mw)は、好ましくは10万~150万、より好ましくは20万~130万、さらに好ましくは35万~120万、である。 The mass average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 1,500,000, more preferably 200,000 to 1,300,000, and even more preferably 350,000 to 1,200,000.
 アクリル系樹脂としては、アルキル(メタ)アクリレート(a1’)(以下、「モノマー(a1’)」ともいう)に由来する構成単位(a1)及び官能基含有モノマー(a2’)(以下、「モノマー(a2’)」ともいう)に由来する構成単位(a2)を有するアクリル系共重合体(A1)がより好ましい。 The acrylic resin includes a structural unit (a1) derived from an alkyl (meth) acrylate (a1') (hereinafter, also referred to as "monomer (a1')") and a functional group-containing monomer (a2') (hereinafter, "monomer"). (A2') ”), an acrylic copolymer (A1) having a structural unit (a2) is more preferable.
 モノマー(a1’)が有するアルキル基の炭素数としては、粘着特性の向上の観点から、好ましくは1~24、より好ましくは1~12、さらに好ましくは2~10、よりさらに好ましくは4~8である。
 なお、モノマー(a1’)が有するアルキル基は、直鎖アルキル基であってもよく、分岐鎖アルキル基であってもよい。
The number of carbon atoms of the alkyl group of the monomer (a1') is preferably 1 to 24, more preferably 1 to 12, still more preferably 2 to 10, and even more preferably 4 to 8 from the viewpoint of improving the adhesive properties. Is.
The alkyl group of the monomer (a1') may be a linear alkyl group or a branched chain alkyl group.
 モノマー(a1’)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、及びステアリル(メタ)アクリレート等が挙げられる。
 これらのモノマー(a1’)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 モノマー(a1’)としては、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、及び2-エチルヘキシル(メタ)アクリレートから選択される1種以上が好ましく、メチル(メタ)アクリレート及びブチル(メタ)アクリレートから選択される1種以上がより好ましい。
Examples of the monomer (a1') include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, and tridecyl (). Examples thereof include meth) acrylate and stearyl (meth) acrylate.
These monomers (a1') may be used alone or in combination of two or more.
As the monomer (a1'), one or more selected from methyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate are preferable, and from methyl (meth) acrylate and butyl (meth) acrylate. One or more selected are more preferable.
 構成単位(a1)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは50~99.9質量%、より好ましくは60~99.0質量%、さらに好ましくは70~97.0質量%、よりさらに好ましくは80~95.0質量%である。 The content of the structural unit (a1) is preferably 50 to 99.9% by mass, more preferably 60 to 99.0% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 70 to 97.0% by mass, still more preferably 80 to 95.0% by mass.
 モノマー(a2’)が有する官能基としては、例えば、水酸基、カルボキシ基、アミノ基、及びエポキシ基等が挙げられる。
 つまり、モノマー(a2’)としては、例えば、水酸基含有モノマー、カルボキシ基含有モノマー、アミノ基含有モノマー、及びエポキシ基含有モノマー等が挙げられる。
 これらのモノマー(a2’)は、単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、モノマー(a2’)としては、水酸基含有モノマー及びカルボキシ基含有モノマーが好ましく、水酸基含有モノマーがより好ましい。
Examples of the functional group of the monomer (a2') include a hydroxyl group, a carboxy group, an amino group, an epoxy group and the like.
That is, examples of the monomer (a2') include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
These monomers (a2') may be used alone or in combination of two or more.
Among these, as the monomer (a2'), a hydroxyl group-containing monomer and a carboxy group-containing monomer are preferable, and a hydroxyl group-containing monomer is more preferable.
 水酸基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、及び4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール及びアリルアルコール等の不飽和アルコール類等が挙げられる。
 これらの中でも、2-ヒドロキシエチル(メタ)アクリレートが好ましい。
Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl (meth). ) Acrylate and hydroxyalkyl (meth) acrylates such as 4-hydroxybutyl (meth) acrylate; unsaturated alcohols such as vinyl alcohol and allyl alcohol can be mentioned.
Among these, 2-hydroxyethyl (meth) acrylate is preferable.
 カルボキシ基含有モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、イタコン酸、マレイン酸、及びシトラコン酸等のエチレン性不飽和ジカルボン酸及びその無水物、2-(アクリロイルオキシ)エチルサクシネート、及び2-カルボキシエチル(メタ)アクリレート等が挙げられる。 Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid; ethylenically unsaturated dicarboxylic acids such as fumaric acid, itaconic acid, maleic acid, and citraconic acid and their anhydrides. Examples thereof include 2- (acryloyloxy) ethyl succinate, 2-carboxyethyl (meth) acrylate and the like.
 構成単位(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは0.1~40質量%、より好ましくは0.5~35質量%、さらに好ましくは1.0~30質量%、よりさらに好ましくは3.0~25質量%である。 The content of the structural unit (a2) is preferably 0.1 to 40% by mass, more preferably 0.5 to 35% by mass, based on the total structural unit (100% by mass) of the acrylic copolymer (A1). %, More preferably 1.0 to 30% by mass, still more preferably 3.0 to 25% by mass.
 アクリル系共重合体(A1)は、さらにモノマー(a1’)及び(a2’)以外の他のモノマー(a3’)に由来の構成単位(a3)を有していてもよい。
 なお、アクリル系共重合体(A1)において、構成単位(a1)及び(a2)の含有量は、アクリル系共重合体(A1)の全構成単位(100質量%)に対して、好ましくは70~100質量%、より好ましくは80~100質量%、さらに好ましくは90~100質量%、よりさらに好ましくは95~100質量%である。
The acrylic copolymer (A1) may further have a structural unit (a3) derived from a monomer (a3') other than the monomers (a1') and (a2').
In the acrylic copolymer (A1), the content of the structural units (a1) and (a2) is preferably 70 with respect to the total structural units (100% by mass) of the acrylic copolymer (A1). It is -100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, still more preferably 95 to 100% by mass.
 モノマー(a3’)としては、例えば、エチレン、プロピレン、及びイソブチレン等のオレフィン類;塩化ビニル及びビニリデンクロリド等のハロゲン化オレフィン類;ブタジエン、イソプレン、及びクロロプレン等のジエン系モノマー類;シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、及びイミド(メタ)アクリレート等の環状構造を有する(メタ)アクリレート;スチレン、α-メチルスチレン、ビニルトルエン、ギ酸ビニル、酢酸ビニル、アクリロニトリル、(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリロイルモルホリン、及びN-ビニルピロリドン等が挙げられる。 Examples of the monomer (a3') include olefins such as ethylene, propylene, and isobutylene; halogenated olefins such as vinyl chloride and vinylidene chloride; diene monomers such as butadiene, isoprene, and chloroprene; cyclohexyl (meth). Cyclic such as acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and imide (meth) acrylate. Structural (meth) acrylates; styrene, α-methylstyrene, vinyltoluene, vinyl formate, vinyl acetate, acrylonitrile, (meth) acrylamide, (meth) acrylonitrile, (meth) acryloylmorpholine, N-vinylpyrrolidone and the like. Be done.
 また、アクリル系共重合体(A1)は、側鎖に重合性官能基を導入した、エネルギー線硬化型のアクリル系共重合体としてもよい。
 当該重合性官能基としては、(メタ)アクリロイル基及びビニル基等が挙げられる。
 また、エネルギー線としては、紫外線及び電子線等が挙げられるが、紫外線が好ましい。
 なお、重合性官能基は、上述の構成単位(a1)及び(a2)を有するアクリル系共重合体と、当該アクリル系共重合体の構成単位(a2)が有する官能基と結合可能な置換基と重合性官能基とを有する化合物とを反応させることで導入することができる。
 前記化合物としては、例えば、(メタ)アクリロイルオキシエチルイソシアネート、(メタ)アクリロイルイソシアネート、及びグリシジル(メタ)アクリレート等が挙げられる。
Further, the acrylic copolymer (A1) may be an energy ray-curable acrylic copolymer having a polymerizable functional group introduced in the side chain.
Examples of the polymerizable functional group include (meth) acryloyl group and vinyl group.
Examples of the energy ray include ultraviolet rays and electron beams, but ultraviolet rays are preferable.
The polymerizable functional group is a substituent capable of binding to the acrylic copolymer having the above-mentioned structural units (a1) and (a2) and the functional group having the structural unit (a2) of the acrylic copolymer. It can be introduced by reacting with a compound having a polymerizable functional group.
Examples of the compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, and glycidyl (meth) acrylate.
(架橋剤)
 粘着剤組成物は、さらに架橋剤を含有することが好ましい。
 当該架橋剤は、上述のアクリル系共重合体(A1)のように、官能基を有する粘着性樹脂と反応し、当該官能基を架橋起点として、粘着性樹脂同士を架橋するものである。
(Crosslinking agent)
The pressure-sensitive adhesive composition preferably further contains a cross-linking agent.
The cross-linking agent, like the above-mentioned acrylic copolymer (A1), reacts with a pressure-sensitive adhesive resin having a functional group and cross-links the pressure-sensitive resins with the functional group as a starting point for cross-linking.
 架橋剤としては、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アジリジン系架橋剤、及び金属キレート系架橋剤等が挙げられる。
 これらの架橋剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの架橋剤の中でも、凝集力を高めて粘着力を向上させる観点、及び入手し易さ等の観点から、イソシアネート系架橋剤が好ましい。
Examples of the cross-linking agent include an isocyanate-based cross-linking agent, an epoxy-based cross-linking agent, an aziridine-based cross-linking agent, a metal chelate-based cross-linking agent, and the like.
These cross-linking agents may be used alone or in combination of two or more.
Among these cross-linking agents, isocyanate-based cross-linking agents are preferable from the viewpoint of increasing the cohesive force to improve the adhesive force and the availability.
 架橋剤の含有量は、粘着性樹脂が有する官能基の数により適宜調整されるものであるが、官能基を有する粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~7質量部、さらに好ましくは0.05~5質量部である。 The content of the cross-linking agent is appropriately adjusted depending on the number of functional groups of the adhesive resin, and is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the adhesive resin having functional groups. It is more preferably 0.03 to 7 parts by mass, and further preferably 0.05 to 5 parts by mass.
(粘着付与剤)
 本実施形態において、粘着剤組成物は、粘着力をより向上させる観点から、さらに粘着付与剤を含有してもよい。
 本明細書において、「粘着付与剤」とは、上述の粘着性樹脂の粘着力を補助的に向上させる成分であって、質量平均分子量(Mw)が1万未満のオリゴマーを指し、上述の粘着性樹脂とは区別されるものである。
 粘着付与剤の質量平均分子量(Mw)は、好ましくは400~10000未満、より好ましくは500~8000、さらに好ましくは800~5000である。
(Adhesive)
In the present embodiment, the pressure-sensitive adhesive composition may further contain a pressure-sensitive adhesive from the viewpoint of further improving the pressure-sensitive adhesive strength.
As used herein, the term "adhesive-imparting agent" refers to an oligomer having a mass average molecular weight (Mw) of less than 10,000, which is a component that supplementarily improves the adhesive strength of the above-mentioned adhesive resin, and refers to the above-mentioned adhesion. It is distinguished from the sex resin.
The mass average molecular weight (Mw) of the tackifier is preferably 400 to less than 10000, more preferably 500 to 8000, and even more preferably 800 to 5000.
 粘着付与剤としては、例えば、ロジン系樹脂、テルペン系樹脂、スチレン系樹脂、石油ナフサの熱分解で生成するペンテン、イソプレン、ピペリン、及び1,3-ペンタジエン等のC5留分を共重合して得られるC5系石油樹脂、石油ナフサの熱分解で生成するインデン及びビニルトルエン等のC9留分を共重合して得られるC9系石油樹脂、並びにこれらを水素化した水素化樹脂等が挙げられる。 As the tackifier, for example, C5 distillates such as rosin-based resin, terpene-based resin, styrene-based resin, pentene, isoprene, piperin, and 1,3-pentadiene produced by thermal decomposition of petroleum naphtha are copolymerized. Examples thereof include a C5 petroleum resin obtained, a C9 petroleum resin obtained by copolymerizing a C9 distillate such as inden and vinyl toluene produced by thermal decomposition of petroleum naphtha, and a hydride resin obtained by hydrogenating these.
 粘着付与剤の軟化点は、好ましくは60~170℃、より好ましくは65~160℃、さらに好ましくは70~150℃である。
 なお、本明細書において、粘着付与剤の「軟化点」は、JIS K 2531に準拠して測定した値を意味する。
 粘着付与剤は、1種を単独で用いてもよく、軟化点、構造等が異なる2種以上を併用してもよい。
 そして、2種以上の複数の粘着付与剤を用いる場合、それら複数の粘着付与剤の軟化点の加重平均が、上記範囲に属することが好ましい。
The softening point of the tackifier is preferably 60 to 170 ° C, more preferably 65 to 160 ° C, and even more preferably 70 to 150 ° C.
In the present specification, the "softening point" of the tackifier means a value measured according to JIS K 2531.
As the tackifier, one type may be used alone, or two or more types having different softening points, structures, etc. may be used in combination.
When two or more kinds of a plurality of tackifiers are used, it is preferable that the weighted average of the softening points of the plurality of tackifiers belongs to the above range.
 粘着付与剤の含有量は、粘着剤組成物の有効成分の全量(100質量%)に対して、好ましくは0.01~65質量%、より好ましくは0.05~55質量%、さらに好ましくは0.1~50質量%、よりさらに好ましくは0.5~45質量%、さらになお好ましくは1.0~40質量%である。 The content of the tackifier is preferably 0.01 to 65% by mass, more preferably 0.05 to 55% by mass, still more preferably, based on the total amount (100% by mass) of the active ingredient of the pressure-sensitive adhesive composition. It is 0.1 to 50% by mass, more preferably 0.5 to 45% by mass, and even more preferably 1.0 to 40% by mass.
(光重合開始剤)
 本実施形態において、粘着剤組成物が、粘着性樹脂として、エネルギー線硬化型の粘着性樹脂を含む場合、さらに光重合開始剤を含有することが好ましい。
 光重合開始剤を含有することで、比較的低エネルギーのエネルギー線の照射によっても、十分に硬化反応を進行させることができる。
 光重合開始剤としては、例えば、1-ヒドロキシ-シクロへキシル-フェニル-ケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンジルフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロルニトリル、ジベンジル、ジアセチル、及び8-クロールアンスラキノン等が挙げられる。
 これらの光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Photopolymerization initiator)
In the present embodiment, when the pressure-sensitive adhesive composition contains an energy ray-curable pressure-sensitive adhesive resin as the pressure-sensitive adhesive resin, it is preferable that the pressure-sensitive adhesive composition further contains a photopolymerization initiator.
By containing the photopolymerization initiator, the curing reaction can be sufficiently advanced even by irradiation with relatively low energy energy rays.
Examples of the photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzylphenyl sulfide, tetramethylthium monosulfide, and azobisisobutyrol. Examples thereof include nitrile, dibenzyl, diacetyl, 8-chloranthraquinone and the like.
These photopolymerization initiators may be used alone or in combination of two or more.
 光重合開始剤の含有量は、エネルギー線硬化型の粘着性樹脂100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.03~5質量部、さらに好ましくは0.05~2質量部である。 The content of the photopolymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.03 to 5 parts by mass, and further preferably 0. It is 05 to 2 parts by mass.
(着色剤)       
 後述する接着力低下工程である(C)工程又は(G)工程において、例えば、レーザー光を用いる場合、粘着剤層には特定の波長のレーザー光を吸収し発熱する着色剤を含有することが好ましい。
 着色剤としては、例えば、顔料及び染料から選択される1種以上が挙げられる。
 顔料は、有機顔料であっても無機顔料であってもよい。
 染料としては、例えば、塩基性染料、酸性染料、分散染料、及び直接染料等が挙げられる。
 黒色顔料としては、例えば、カーボンブラック、酸化銅、四三酸化鉄、二酸化マンガン、アニリンブラック、及び活性炭等が挙げられる。
 黄色顔料としては、例えば、黄鉛、亜鉛黄、カドミウムイエロー、黄色酸化鉄、ミネラルファストイエロー、ニッケルチタンイエロー、ネーブルスエロー、ナフトールエローS、ハンザエロー、ベンジジンエローG、ベンジジンエローGR、キノリンエローレーキ、パーマネントエローNCG、及びタートラジンレーキ等が挙げられる。
 橙色顔料としては、例えば、赤色黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、インダスレンブリリアントオレンジRK、ベンジジンオレンジG、及びインダスレンブリリアントオレンジGKM等が挙げられる。
 赤色顔料としては、例えば、ベンガラ、カドミウムレッド、鉛丹、硫化水銀、カドミウム、パーマネントレッド4R、リソールレッド、ピロゾロンレッド、ウオッチングレッド、カルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、及びブリリアントカーミン3B等が挙げられる。
 紫色顔料としては、例えば、マンガン紫、ファストバイオレットB、及びメチルバイオレットレーキ等が挙げられる。
 青色顔料としては、例えば、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩素化物、ファーストスカイブルー、及びインダスレンブルーBC等が挙げられる。
 緑色顔料としては、例えば、クロムグリーン、酸化クロム、ピグメントグリーンB、マラカイトグリーンレーキ、及びファイナルイエローグリーンG等が挙げられる。
 染料としては、例えば、ニグロシン、メチレンブルー、ローズベンガル、キノリンイエロー、及びウルトラマリンブルー等が挙げられる。
 着色剤の含有量は、レーザー光の波長、出力、照射時間等により適宜調整可能であるが、通常、粘着剤組成物の全量に対して、好ましくは0.01~10質量%、より好ましくは0.05~7質量%、さらに好ましくは0.1~5質量%である。
(Colorant)
In step (C) or step (G), which is a step of reducing the adhesive strength described later, for example, when laser light is used, the pressure-sensitive adhesive layer may contain a colorant that absorbs laser light of a specific wavelength and generates heat. preferable.
Examples of the colorant include one or more selected from pigments and dyes.
The pigment may be an organic pigment or an inorganic pigment.
Examples of the dye include basic dyes, acid dyes, disperse dyes, direct dyes and the like.
Examples of the black pigment include carbon black, copper oxide, iron tetraoxide, manganese dioxide, aniline black, activated carbon and the like.
Examples of the yellow pigment include chrome yellow, zinc yellow, cadmium yellow, yellow iron oxide, mineral fast yellow, nickel titanium yellow, nables ero, naphthol ero S, hansa ero, benzine ero G, benzine ero GR, quinoline ero lake, and the like. Permanent yellow NCG, tartrazine lake and the like can be mentioned.
Examples of the orange pigment include red chrome yellow, molybdenum orange, permanent orange GTR, pyrazolone orange, vulcan orange, induthren brilliant orange RK, benzidine orange G, and induslen brilliant orange GKM.
Examples of red pigments include red iron oxide, cadmium red, lead tan, mercury sulfide, cadmium, permanent red 4R, resole red, pyrozolone red, watching red, calcium salt, lake red D, brilliant carmine 6B, eosin lake, and rhodamine. Examples thereof include Lake B, Alizarin Lake, Brilliant Carmine 3B and the like.
Examples of the purple pigment include manganese purple, fast violet B, methyl violet lake and the like.
Examples of the blue pigment include dark blue, cobalt blue, alkaline blue lake, Victoria blue lake, phthalocyanine blue, metal-free phthalocyanine blue, phthalocyanine blue partially chlorinated, first sky blue, and induslen blue BC.
Examples of the green pigment include chrome green, chromium oxide, pigment green B, malachite green lake, final yellow green G and the like.
Examples of the dye include niglocin, methylene blue, rose bengal, quinoline yellow, ultramarine blue and the like.
The content of the colorant can be appropriately adjusted depending on the wavelength, output, irradiation time, etc. of the laser beam, but is usually preferably 0.01 to 10% by mass, more preferably 0.01 to 10% by mass, based on the total amount of the pressure-sensitive adhesive composition. It is 0.05 to 7% by mass, more preferably 0.1 to 5% by mass.
(金属フィラー)
 後述する接着力低下工程である(C)工程又は(G)工程において、レーザー光を用いる場合、粘着剤層には、特定の波長のレーザー光を吸収し発熱する金属フィラー等を含有してもよい。
 金属フィラーとしては、特に制限されないが、例えば、銅、銀、金、亜鉛、ニッケル、又はパラジウムからなる金属フィラー等が挙げられる。
 金属フィラーの含有量は、レーザー光の波長、出力、照射時間等により適宜調整可能であるが、通常、粘着剤組成物の全量に対して、好ましくは0.01~10質量%、より好ましくは0.05~5質量%、さらに好ましくは0.1~3質量%である。
 なお、前記着色剤と金属フィラーとを組み合わせて用いてもよい。
(Metal filler)
When laser light is used in step (C) or step (G), which is a step of reducing the adhesive strength described later, the adhesive layer may contain a metal filler or the like that absorbs laser light of a specific wavelength and generates heat. good.
The metal filler is not particularly limited, and examples thereof include a metal filler made of copper, silver, gold, zinc, nickel, or palladium.
The content of the metal filler can be appropriately adjusted depending on the wavelength, output, irradiation time, etc. of the laser beam, but is usually preferably 0.01 to 10% by mass, more preferably 0.01 to 10% by mass, based on the total amount of the pressure-sensitive adhesive composition. It is 0.05 to 5% by mass, more preferably 0.1 to 3% by mass.
The colorant and the metal filler may be used in combination.
<熱電変換材料層>
 本発明に用いる熱電変換材料層(以下、「熱電変換材料層の薄膜」、又は「熱電変換材料のチップ」ということがある。)は、特に制限されず、熱電半導体材料からなるものであっても、熱電半導体組成物からなる薄膜であってもよい。
 屈曲性、薄型の観点から、熱電半導体材料(以下、「熱電半導体粒子」ということがある。)、樹脂、イオン液体及び無機イオン性化合物の一方又は双方を含む熱電半導体組成物からなる薄膜からなることが好ましい。
<Thermoelectric conversion material layer>
The thermoelectric conversion material layer used in the present invention (hereinafter, may be referred to as “thin film of thermoelectric conversion material layer” or “chip of thermoelectric conversion material”) is not particularly limited and is made of a thermoelectric semiconductor material. It may also be a thin film made of a thermoelectric semiconductor composition.
From the viewpoint of flexibility and thinness, it is composed of a thin film made of a thermoelectric semiconductor composition containing one or both of a thermoelectric semiconductor material (hereinafter, may be referred to as "thermoelectric semiconductor particles"), a resin, an ionic liquid and an inorganic ionic compound. Is preferable.
(熱電半導体材料)
 熱電変換材料層に用いる熱電半導体材料は、例えば、微粉砕装置等により、所定のサイズまで粉砕し、熱電半導体粒子として使用することが好ましい(以下、熱電半導体材料を「熱電半導体粒子」ということがある。)。
 熱電半導体粒子の粒径は、好ましくは10nm~100μm、より好ましくは20nm~50μm、さらに好ましくは30nm~30μmである。
 前記熱電半導体微粒子の平均粒径は、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)にて測定することにより得られ、粒径分布の中央値とした。
(Thermoelectric semiconductor material)
The thermoelectric semiconductor material used for the thermoelectric conversion material layer is preferably pulverized to a predetermined size by, for example, a fine pulverizer or the like, and used as thermoelectric semiconductor particles (hereinafter, the thermoelectric semiconductor material is referred to as "thermoelectric semiconductor particles". be.).
The particle size of the thermoelectric semiconductor particles is preferably 10 nm to 100 μm, more preferably 20 nm to 50 μm, and even more preferably 30 nm to 30 μm.
The average particle size of the thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction type particle size analyzer (Mastersizer 3000 manufactured by Malvern), and was used as the median value of the particle size distribution.
 本発明に用いる熱電変換材料層において、P型熱電変換材料層及びN型変換材料層を構成する熱電半導体材料としては、温度差を付与することにより、熱起電力を発生させることができる材料であれば特に制限されず、例えば、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン-テルル系熱電半導体材料;ZnSb、ZnSb2、ZnSb等の亜鉛-アンチモン系熱電半導体材料;SiGe等のシリコン-ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料、TiS等の硫化物系熱電半導体材料等が用いられる。 In the thermoelectric conversion material layer used in the present invention, the thermoelectric semiconductor material constituting the P-type thermoelectric conversion material layer and the N-type conversion material layer is a material capable of generating thermoelectromotive force by imparting a temperature difference. If there is, the present invention is not particularly limited, and for example, a bismuth-tellu-based thermoelectric semiconductor material such as P-type bismasterlide and N-type bismasterlide; a telluride-based thermoelectric semiconductor material such as GeTe and PbTe; an antimony-tellu-based thermoelectric semiconductor material; ZnSb, Zn. Zinc-antimony thermoelectric semiconductor materials such as 3 Sb 2, Zn 4 Sb 3 ; silicon-germanium thermoelectric semiconductor materials such as SiGe; bismus selenide thermoelectric semiconductor materials such as Bi 2 Se 3 ; β-FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si and the like, silicide-based thermoelectric semiconductor materials; oxide-based thermoelectric semiconductor materials; FeVAL, FeVALSi, FeVTiAl and the like, whisler materials, TiS 2 and the like, sulfide-based thermoelectric semiconductor materials and the like are used.
 これらの中でも、本発明に用いる前記熱電半導体材料は、P型ビスマステルライド又はN型ビスマステルライド等のビスマス-テルル系熱電半導体材料であることが好ましい。
 前記P型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、P型熱電変換材料としての特性が維持されるので好ましい。
 また、前記N型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3-YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3(Y=0の時:BiTe)であり、より好ましくは0.1<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、N型熱電変換材料としての特性が維持されるので好ましい。
Among these, the thermoelectric semiconductor material used in the present invention is preferably a bismuth-tellurium-based thermoelectric semiconductor material such as P-type bismuthellide or N-type bismuthellide.
As the P-type bismuth telluride, one having a hole as a carrier and a positive Seebeck coefficient, for example, represented by Bi X Te 3 Sb 2-X is preferably used. In this case, X is preferably 0 <X ≦ 0.8, more preferably 0.4 ≦ X ≦ 0.6. When X is larger than 0 and 0.8 or less, the Seebeck coefficient and the electric conductivity become large, and the characteristics as a P-type thermoelectric conversion material are maintained, which is preferable.
Further, as the N-type bismuth telluride, one having an electron carrier and a negative Seebeck coefficient, for example, represented by Bi 2 Te 3-Y Se Y is preferably used. In this case, Y is preferably 0 ≦ Y ≦ 3 (when Y = 0: Bi 2 Te 3 ), and more preferably 0.1 <Y ≦ 2.7. When Y is 0 or more and 3 or less, the Seebeck coefficient and the electric conductivity become large, and the characteristics as an N-type thermoelectric conversion material are maintained, which is preferable.
 熱電半導体粒子の前記熱電半導体組成物中の含有量は、好ましくは、30~99質量%である。より好ましくは、50~96質量%であり、さらに好ましくは、70~95質量%である。熱電半導体粒子の含有量が、上記範囲内であれば、ゼーベック係数(ペルチェ係数の絶対値)が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下するため高い熱電性能を示すとともに、十分な皮膜強度、屈曲性を有する膜が得られ好ましい。 The content of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. It is more preferably 50 to 96% by mass, and even more preferably 70 to 95% by mass. When the content of the thermoelectric semiconductor particles is within the above range, the Seebeck coefficient (absolute value of the Perche coefficient) is large, the decrease in the electric conductivity is suppressed, and only the thermal conductivity is decreased, so that high thermoelectric performance is exhibited. At the same time, a film having sufficient film strength and flexibility can be obtained, which is preferable.
 また、熱電半導体粒子は、アニール処理(以下、「アニール処理A」ということがある。)されたものであることが好ましい。アニール処理Aを行うことにより、熱電半導体粒子は、結晶性が向上し、さらに、熱電半導体粒子の表面酸化膜が除去されるため、熱電変換材料のゼーベック係数(ペルチェ係数の絶対値)が増大し、熱電性能指数をさらに向上させることができる。 Further, it is preferable that the thermoelectric semiconductor particles are annealed (hereinafter, may be referred to as "annealing treatment A"). By performing the annealing treatment A, the crystallinity of the thermoelectric semiconductor particles is improved, and further, the surface oxide film of the thermoelectric semiconductor particles is removed, so that the Seebeck coefficient (absolute value of the Perche coefficient) of the thermoelectric conversion material is increased. , The thermoelectric performance index can be further improved.
(樹脂)
 本発明に用いる樹脂は、熱電半導体材料(熱電半導体粒子)間を物理的に結合する作用を有し、熱電変換モジュールの屈曲性を高めることができるとともに、塗布等による薄膜の形成を容易にする。
 樹脂としては、耐熱性樹脂、又はバインダー樹脂が好ましい。
(resin)
The resin used in the present invention has a function of physically bonding thermoelectric semiconductor materials (thermoelectric semiconductor particles), can enhance the flexibility of the thermoelectric conversion module, and facilitates the formation of a thin film by coating or the like. ..
As the resin, a heat-resistant resin or a binder resin is preferable.
 耐熱性樹脂は、熱電半導体組成物からなる薄膜をアニール処理等により熱電半導体粒子を結晶成長させる際に、樹脂としての機械的強度及び熱伝導率等の諸物性が損なわれず維持される。
 前記耐熱性樹脂は、耐熱性がより高く、且つ薄膜中の熱電半導体粒子の結晶成長に悪影響を及ぼさないという点から、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂が好ましく、屈曲性に優れるという点からポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂がより好ましい。
The heat-resistant resin is maintained without impairing various physical properties such as mechanical strength and thermal conductivity as the resin when the thin film made of the thermoelectric semiconductor composition is subjected to crystal growth such as annealing treatment.
The heat-resistant resin is preferably a polyamide resin, a polyamideimide resin, a polyimide resin, or an epoxy resin, and has excellent flexibility, because it has higher heat resistance and does not adversely affect the crystal growth of thermoelectric semiconductor particles in the thin film. From this point of view, polyamide resin, polyamideimide resin, and polyimide resin are more preferable.
 前記耐熱性樹脂は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、屈曲性を維持することができる。 The heat-resistant resin preferably has a decomposition temperature of 300 ° C. or higher. As long as the decomposition temperature is within the above range, the flexibility can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
 また、前記耐熱性樹脂は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、熱電変換材料のチップの屈曲性を維持することができる。 Further, the heat-resistant resin preferably has a mass reduction rate of 10% or less, more preferably 5% or less, and further preferably 1% or less at 300 ° C. by thermogravimetric analysis (TG). .. As long as the mass reduction rate is within the above range, the flexibility of the chip of the thermoelectric conversion material is maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later. Can be done.
 前記耐熱性樹脂の前記熱電半導体組成物中の含有量は、0.1~40質量%、好ましくは0.5~20質量%、より好ましくは、1~20質量%、さらに好ましくは2~15質量%である。前記耐熱性樹脂の含有量が、上記範囲内であると、熱電半導体材料のバインダーとして機能し、薄膜の形成がしやすくなり、しかも高い熱電性能と皮膜強度が両立した膜が得られ、熱電変換材料のチップの外表面には樹脂部が存在する。 The content of the heat-resistant resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, still more preferably 2 to 15. It is mass%. When the content of the heat-resistant resin is within the above range, it functions as a binder for the thermoelectric semiconductor material, facilitates the formation of a thin film, and obtains a film having both high thermoelectric performance and film strength, and thermoelectric conversion. There is a resin portion on the outer surface of the material chip.
 バインダー樹脂は、焼成(アニール)処理(後述する「アニール処理B」に対応、以下同様。)後の、熱電変換材料のチップの作製時に用いるガラス、アルミナ、シリコン等の基材からの剥離も容易にする。 The binder resin can be easily peeled off from the base material such as glass, alumina, silicon, etc. used for manufacturing chips of thermoelectric conversion materials after firing (annealing) treatment (corresponding to "annealing treatment B" described later, the same applies hereinafter). To.
 バインダー樹脂としては、焼成(アニール)温度以上で、90質量%以上が分解する樹脂を指し、95質量%以上が分解する樹脂であることがより好ましく、99質量%以上が分解する樹脂であることが特に好ましい。また、熱電半導体組成物からなる塗布膜(薄膜)を焼成(アニール)処理等により熱電半導体粒子を結晶成長させる際に、機械的強度及び熱伝導率等の諸物性が損なわれず維持される樹脂がより好ましい。
 バインダー樹脂として、焼成(アニール)温度以上で90質量%以上が分解する樹脂、即ち、前述した耐熱性樹脂よりも低温で分解する樹脂、を用いると、焼成によりバインダー樹脂が分解するため、焼成体中に含まれる絶縁性の成分となるバインダー樹脂の含有量が減少し、熱電半導体組成物における熱電半導体粒子の結晶成長が促進されるので、熱電変換材料層における空隙を少なくして、充填率を向上させることができる。
 なお、焼成(アニール)温度以上で所定値(例えば、90質量%)以上が分解する樹脂であるか否かは、熱重量測定(TG)による焼成(アニール)温度における質量減少率(分解前の質量で分解後の質量を除した値)を測定することにより判断する。
The binder resin refers to a resin that decomposes in an amount of 90% by mass or more at a firing (annealing) temperature or higher, more preferably a resin that decomposes in an amount of 95% by mass or more, and a resin that decomposes in an amount of 99% by mass or more. Is particularly preferable. Further, when a coating film (thin film) made of a thermoelectric semiconductor composition is subjected to crystal growth such as firing (annealing) treatment, a resin that maintains various physical properties such as mechanical strength and thermal conductivity without being impaired. More preferred.
If a resin that decomposes by 90% by mass or more at a firing (annealing) temperature or higher, that is, a resin that decomposes at a lower temperature than the heat-resistant resin described above, is used as the binder resin. Since the content of the binder resin, which is an insulating component contained therein, is reduced and the crystal growth of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is promoted, the voids in the thermoelectric conversion material layer are reduced and the filling rate is increased. Can be improved.
Whether or not the resin decomposes at a predetermined value (for example, 90% by mass) or more at the firing (annealing) temperature or higher is determined by the mass reduction rate (before decomposition) at the firing (annealing) temperature by thermogravimetric analysis (TG). Judgment is made by measuring (the value obtained by dividing the mass after decomposition by the mass).
 このようなバインダー樹脂として、熱可塑性樹脂や硬化性樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリメチルペンテン等のポリオレフィン系樹脂;ポリカーボネート;ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル樹脂;ポリスチレン、アクリロニトリル-スチレン共重合体、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、塩化ビニル、ポリビニルピリジン、ポリビニルアルコール、ポリビニルピロリドン等のポリビニル重合体;ポリウレタン;エチルセルロース等のセルロース誘導体;などが挙げられる。硬化性樹脂としては、熱硬化性樹脂や光硬化性樹脂が挙げられる。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂等が挙げられる。光硬化性樹脂としては、例えば、光硬化性アクリル樹脂、光硬化性ウレタン樹脂、光硬化性エポキシ樹脂等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、熱電変換材料層における熱電変換材料の電気抵抗率の観点から、熱可塑性樹脂が好ましく、ポリカーボネート、エチルセルロース等のセルロース誘導体がより好ましく、ポリカーボネートが特に好ましい。
As such a binder resin, a thermoplastic resin or a curable resin can be used. Examples of the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polymethylpentene; polycarbonate; thermoplastic polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polystyrene, acrylonitrile-styrene copolymer, and polyacetic acid. Examples thereof include polyvinyl polymers such as vinyl, ethylene-vinyl acetate copolymers, vinyl chloride, polyvinylpyridine, polyvinyl alcohol, and polyvinylpyrrolidone; polyurethanes; cellulose derivatives such as ethyl cellulose; and the like. Examples of the curable resin include thermosetting resins and photocurable resins. Examples of the thermosetting resin include epoxy resin and phenol resin. Examples of the photocurable resin include a photocurable acrylic resin, a photocurable urethane resin, and a photocurable epoxy resin. These may be used alone or in combination of two or more.
Among these, from the viewpoint of the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer, a thermoplastic resin is preferable, a cellulose derivative such as polycarbonate and ethyl cellulose is more preferable, and polycarbonate is particularly preferable.
 バインダー樹脂は、焼成(アニール)処理工程における熱電半導体材料に対する焼成(アニール)処理の温度に応じて適宜選択される。バインダー樹脂が有する最終分解温度以上で焼成(アニール)処理することが、熱電変換材料層における熱電変換材料の電気抵抗率の観点から好ましい。
 本明細書において、「最終分解温度」とは、熱重量測定(TG)による焼成(アニール)温度における質量減少率が100%(分解後の質量が分解前の質量の0%)となる温度をいう。
The binder resin is appropriately selected according to the temperature of the firing (annealing) treatment of the thermoelectric semiconductor material in the firing (annealing) treatment step. It is preferable to perform the firing (annealing) treatment at a temperature equal to or higher than the final decomposition temperature of the binder resin from the viewpoint of the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer.
In the present specification, the "final decomposition temperature" is a temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetric analysis (TG) is 100% (the mass after decomposition is 0% of the mass before decomposition). say.
 バインダー樹脂の最終分解温度は、通常150~600℃、好ましくは200~560℃、より好ましくは220~460℃、特に好ましくは240~360℃である。最終分解温度がこの範囲にあるバインダー樹脂を用いれば、熱電半導体材料のバインダーとして機能し、印刷時に薄膜の形成がしやすくなる。 The final decomposition temperature of the binder resin is usually 150 to 600 ° C, preferably 200 to 560 ° C, more preferably 220 to 460 ° C, and particularly preferably 240 to 360 ° C. If a binder resin having a final decomposition temperature in this range is used, it functions as a binder for the thermoelectric semiconductor material, and it becomes easy to form a thin film at the time of printing.
 バインダー樹脂の熱電半導体組成物中の含有量は、0.1~40質量%、好ましくは0.5~20質量%、より好ましくは0.5~10質量%、特に好ましくは0.5~5質量%である。バインダー樹脂の含有量が、上記範囲内であると、熱電変換材料層における熱電変換材料の電気抵抗率を減少させることができる。 The content of the binder resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, and particularly preferably 0.5 to 5%. It is mass%. When the content of the binder resin is within the above range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
 熱電変換材料中におけるバインダー樹脂の含有量は、好ましくは0~10質量%、より好ましくは0~5質量%、特に好ましくは0~1質量%である。熱電変換材料中におけるバインダー樹脂の含有量が、上記範囲内であれば、熱電変換材料層における熱電変換材料の電気抵抗率を減少させることができる。 The content of the binder resin in the thermoelectric conversion material is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and particularly preferably 0 to 1% by mass. When the content of the binder resin in the thermoelectric conversion material is within the above range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
(イオン液体)
 熱電半導体組成物に含まれ得るイオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50℃以上400℃未満のいずれかの温度領域において液体で存在し得る塩をいう。換言すれば、イオン液体は、融点が-50℃以上400℃未満の範囲にあるイオン性化合物である。イオン液体の融点は、好ましくは-25℃以上200℃以下、より好ましくは0℃以上150℃以下である。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体材料間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、耐熱性樹脂との相溶性に優れるため、熱電変換材料の電気伝導率を均一にすることができる。
(Ionic liquid)
The ionic liquid that can be contained in the thermoelectric semiconductor composition is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range of −50 ° C. or higher and lower than 400 ° C. In other words, the ionic liquid is an ionic compound having a melting point in the range of −50 ° C. or higher and lower than 400 ° C. The melting point of the ionic liquid is preferably −25 ° C. or higher and 200 ° C. or lower, and more preferably 0 ° C. or higher and 150 ° C. or lower. The ionic liquid has features such as extremely low vapor pressure, non-volatileity, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, as a conductive auxiliary agent, it is possible to effectively suppress the reduction of the electrical conductivity between the thermoelectric semiconductor materials. Further, since the ionic liquid exhibits high polarity based on the aprotic ionic structure and has excellent compatibility with the heat-resistant resin, the electric conductivity of the thermoelectric conversion material can be made uniform.
 イオン液体は、公知または市販のものが使用できる。例えば、ピリジニウム、ピリミジニウム、ピラゾリウム、ピロリジニウム、ピペリジニウム、イミダゾリウム等の窒素含有環状カチオン化合物及びそれらの誘導体;テトラアルキルアンモニウム系のアミン系カチオン及びそれらの誘導体;ホスホニウム、トリアルキルスルホニウム、テトラアルキルホスホニウム等のホスフィン系カチオン及びそれらの誘導体;リチウムカチオン及びその誘導体等のカチオン成分と、Cl、Br、I、AlCl 、AlCl 、BF 、PF 、ClO 、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(FSO、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF) 、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N等のアニオン成分とから構成されるものが挙げられる。 As the ionic liquid, a known or commercially available one can be used. For example, nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine-based cations and their derivatives; phosphonium, trialkylsulfonium, tetraalkylphosphonium and the like. Phosphonic cations and their derivatives; cation components such as lithium cations and their derivatives, Cl- , Br- , I- , AlCl 4- , Al 2 Cl 7- , BF 4- , PF 6- , ClO 4- , NO 3- , CH 3 COO- , CF 3 COO- , CH 3 SO 3- , CF 3 SO 3- , (FSO 2 ) 2 N- , (CF 3 SO 2 ) 2 N- , (CF 3 SO 2 ) 3 C- , AsF 6- , SbF 6- , NbF 6- , TaF 6- , F (HF) n- , (CN) 2 N- , C 4 F 9 SO 3- , (C 2 F 5 SO 2 ) Examples thereof include those composed of anionic components such as 2 N , C 3 F 7 COO , and (CF 3 SO 2 ) (CF 3 CO) N .
 上記のイオン液体の中で、高温安定性、熱電半導体材料及び樹脂との相溶性、熱電半導体材料間隙の電気伝導率の低下抑制等の観点から、イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含むことが好ましい。 Among the above ionic liquids, the cation component of the ionic liquid is a pyridinium cation and its derivatives from the viewpoints of high temperature stability, compatibility with thermoelectric semiconductor materials and resins, and suppression of decrease in electrical conductivity between thermoelectric semiconductor material gaps. , It is preferable to contain at least one selected from the imidazolium cation and its derivatives.
 カチオン成分が、ピリジニウムカチオン及びその誘導体を含むイオン液体として、1-ブチル-4-メチルピリジニウムブロミド、1-ブチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファートが好ましい。 As the ionic liquid containing the pyridinium cation and its derivative as the cation component, 1-butyl-4-methylpyridinium bromide, 1-butylpyridinium bromide, and 1-butyl-4-methylpyridinium hexafluorophosphart are preferable.
 また、カチオン成分が、イミダゾリウムカチオン及びその誘導体を含むイオン液体として、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]が好ましい。 Further, as an ionic liquid containing an imidazolium cation and a derivative thereof, the cation component is [1-butyl-3- (2-hydroxyethyl) imidazolium bromide], [1-butyl-3- (2-hydroxyethyl) imidazole]. Rium tetrafluoroborate] is preferred.
 また、上記のイオン液体は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。 Further, the above-mentioned ionic liquid preferably has a decomposition temperature of 300 ° C. or higher. As long as the decomposition temperature is within the above range, the effect as a conductive auxiliary agent can be maintained even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
 イオン液体の熱電半導体組成物中の含有量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~20質量%である。イオン液体の含有量が、上記範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。 The content of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass. When the content of the ionic liquid is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
(無機イオン性化合物)
 熱電半導体組成物に含まれ得る無機イオン性化合物は、少なくともカチオンとアニオンから構成される化合物である。無機イオン性化合物は400~900℃の幅広い温度領域において固体で存在し、イオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体材料間の電気伝導率の低減を抑制することができる。
(Inorganic ionic compound)
The inorganic ionic compound that can be contained in the thermoelectric semiconductor composition is a compound composed of at least cations and anions. Inorganic ionic compounds exist as solids in a wide temperature range of 400 to 900 ° C. and have characteristics such as high ionic conductivity. Therefore, as a conductive auxiliary agent, the electrical conductivity between thermoelectric semiconductor materials is reduced. Can be suppressed.
 無機イオン性化合物の熱電半導体組成物中の含有量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。無機イオン性化合物の含有量が、上記範囲内であれば、電気伝導率の低下を効果的に抑制でき、結果として熱電性能が向上した膜が得られる。
 なお、無機イオン性化合物とイオン液体とを併用する場合においては、熱電半導体組成物中における、無機イオン性化合物及びイオン液体の含有量の総量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。
The content of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 10% by mass. When the content of the inorganic ionic compound is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
When the inorganic ionic compound and the ionic liquid are used in combination, the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably. Is 0.5 to 30% by mass, more preferably 1.0 to 10% by mass.
 熱電変換材料層は、支持体上の固定層に貼着することにより形成する。一態様として、例えば、事前に剥離可能な基材上に準備した熱電変換材料層を用いる。熱電性能の観点から、後述するアニール処理Bを行う場合は、当該貼着前にアニール処理Bを行っておくことが好ましい。
 本発明に用いる熱電半導体組成物からなる熱電変換材料層の形成方法としては、例えば、ガラス、シリコン等の公知の基材上に、前記熱電半導体組成物を塗布し、乾燥することで形成することができる。このように、形成することで、簡便に低コストで多数の熱電変換材料層を得ることができる。
 熱電半導体組成物を塗布し、熱電変換材料層を得る方法としては、スクリーン印刷法、フレキソ印刷法、グラビア印刷法、スピンコート法、ディップコート法、ダイコート法、スプレーコート法、バーコート法、ドクターブレード法等の公知の方法が挙げられ、特に制限されない。
 次いで、得られた塗膜を乾燥することにより、熱電変換材料層が形成される。
The thermoelectric conversion material layer is formed by being attached to a fixed layer on a support. As one embodiment, for example, a thermoelectric conversion material layer prepared on a pre-peelable substrate is used. From the viewpoint of thermoelectric performance, when the annealing treatment B described later is performed, it is preferable to perform the annealing treatment B before the attachment.
As a method for forming a thermoelectric conversion material layer made of a thermoelectric semiconductor composition used in the present invention, the thermoelectric semiconductor composition is formed by applying the thermoelectric semiconductor composition on a known substrate such as glass or silicon and drying it. Can be done. By forming in this way, a large number of thermoelectric conversion material layers can be easily obtained at low cost.
As a method of applying a thermoelectric semiconductor composition to obtain a thermoelectric conversion material layer, a screen printing method, a flexographic printing method, a gravure printing method, a spin coating method, a dip coating method, a die coating method, a spray coating method, a bar coating method, and a doctor Known methods such as the blade method can be mentioned, and the present invention is not particularly limited.
Then, the obtained coating film is dried to form a thermoelectric conversion material layer.
 熱電変換材料層の厚さは、特に限定されるものではなく、熱電性能と皮膜強度の点から、好ましくは100nm~1000μm、より好ましくは300nm~600μm、さらに好ましくは5~400μmである。 The thickness of the thermoelectric conversion material layer is not particularly limited, and is preferably 100 nm to 1000 μm, more preferably 300 nm to 600 μm, and further preferably 5 to 400 μm from the viewpoint of thermoelectric performance and film strength.
 熱電半導体組成物からなる薄膜としてのP型熱電変換材料層及びN型熱電変換材料層は、さらにアニール処理(以下、「アニール処理B」ということがある。)を行うことが好ましい。該アニール処理Bを行うことで、熱電性能を安定化させるとともに、薄膜中の熱電半導体粒子を結晶成長させることができ、熱電性能をさらに向上させることができる。アニール処理Bは、特に限定されないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、還元ガス雰囲気下、または真空条件下で行われ、用いる熱電半導体組成物、基材等の耐熱温度に依存するが、100~500℃で、数分~数十時間行われる。 It is preferable that the P-type thermoelectric conversion material layer and the N-type thermoelectric conversion material layer as a thin film made of the thermoelectric semiconductor composition are further subjected to an annealing treatment (hereinafter, may be referred to as "annealing treatment B"). By performing the annealing treatment B, the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thin film can be crystal-grown, so that the thermoelectric performance can be further improved. The annealing treatment B is not particularly limited, but is usually carried out under an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere, or a vacuum condition in which the gas flow rate is controlled, and the thermoelectric semiconductor composition and the group to be used are used. Although it depends on the heat-resistant temperature of the material, it is carried out at 100 to 500 ° C. for several minutes to several tens of hours.
・熱電変換材料のチップ形成工程
 本発明の熱電変換材料のチップの配列方法においては、(B)P型熱電変換材料のチップ形成工程、及び、(F)N型熱電変換材料のチップ形成工程を含む。
 熱電変換材料のチップ形成工程は、熱電変換材料層を個片化し、熱電変換材料のチップを得る工程であり、例えば、図1(b)において、P型熱電変換材料層3pを個片化し、P型熱電変換材料のチップ3ptを得る工程である[(B)工程]。同様に、図1(f)において、N型熱電変換材料層3nを個片化し、N型熱電変換材料のチップ3ntを得る工程である[(F)工程]。
-Chip formation step of thermoelectric conversion material In the method of arranging chips of thermoelectric conversion material of the present invention, (B) chip forming step of P-type thermoelectric conversion material and (F) chip forming step of N-type thermoelectric conversion material are performed. include.
The chip forming step of the thermoelectric conversion material is a step of individualizing the thermoelectric conversion material layer to obtain a chip of the thermoelectric conversion material. For example, in FIG. 1 (b), the P-type thermoelectric conversion material layer 3p is individualized. This is a step of obtaining a chip 3pt of a P-type thermoelectric conversion material [step (B)]. Similarly, in FIG. 1 (f), the N-type thermoelectric conversion material layer 3n is fragmented to obtain a chip 3nt of the N-type thermoelectric conversion material [(F) step].
 熱電変換材料層を個片化する方法は、特に制限されず、公知の方法を用いることができる。例えば、ダイシングによる方法が挙げられる。
 ダイシング方法は、特に限定されないが、ブレードダイシング及びレーザダイシング等の公知の方法を採用することができ、例えば、熱電変換材料層を貫通するように、切り込み部を設けることにより行われる。
The method for individualizing the thermoelectric conversion material layer is not particularly limited, and a known method can be used. For example, a dicing method can be mentioned.
The dicing method is not particularly limited, but known methods such as blade dicing and laser dicing can be adopted. For example, the dicing method is performed by providing a notch so as to penetrate the thermoelectric conversion material layer.
・接着力低下工程
 本発明の熱電変換材料のチップの配列方法においては、P型熱電変換材料のチップに係る(C)接着力低下工程、及び、N型熱電変換材料のチップに係る(G)接着力低下工程を含む。
 接着力低下工程は、固定層と熱電変換材料のチップとの接着力を低下させる工程であり、例えば、図1(c)において、一部のP型熱電変換材料のチップ3ptが貼着している領域の固定層2の接着力を低下させる工程である[(C)工程]。同様に、図1(g)において、一部のN型熱電変換材料のチップ3ntが貼着している領域の固定層2の接着力を低下させる工程である[(G)工程]。
-Adhesive strength reducing step In the method of arranging the chips of the thermoelectric conversion material of the present invention, (C) the adhesive strength reducing step relating to the chip of the P-type thermoelectric conversion material and (G) relating to the chip of the N-type thermoelectric conversion material. Includes a step of reducing adhesive strength.
The adhesive strength lowering step is a step of lowering the adhesive strength between the fixed layer and the chip of the thermoelectric conversion material. For example, in FIG. 1 (c), a part of the P-type thermoelectric conversion material chip 3pt is attached. This is a step of reducing the adhesive strength of the fixed layer 2 in the region [(C) step]. Similarly, in FIG. 1 (g), it is a step of reducing the adhesive force of the fixed layer 2 in the region to which the chip 3nt of a part of the N-type thermoelectric conversion material is attached [(G) step].
 接着力低下工程は、一態様として、前記固定層を、レーザー光を吸収可能な固定層とし、前記(C)の工程、前記(G)の工程が、この順に、前記一部のP型熱電変換材料のチップ、前記一部のN型熱電変換材料のチップ、が貼着しているそれぞれの領域の固定層の少なくとも一部に前記レーザー光を照射することにより行われることが好ましい。 As one aspect of the adhesive force lowering step, the fixed layer is made into a fixed layer capable of absorbing laser light, and the step (C) and the step (G) are, in this order, a part of the P-type thermoelectric. It is preferably performed by irradiating at least a part of the fixed layer of each region to which the chip of the conversion material and the chip of the part of the N-type thermoelectric conversion material are attached with the laser beam.
 図2は本発明における接着力低下工程の一態様を示す断面模式図であり、第1の支持体1a上の固定層2に貼着された複数のP型熱電変換材料のチップ3ptのうち、一部のP型熱電変換材料のチップ3ptと固定層2との接着力が低下する態様を模式的に示している。
 (C)工程又は(G)工程において、固定層と熱電変換材料のチップとの接着力の低下をレーザー光の照射で行う場合では、例えば、固定層2のP型熱電変換材料のチップ3ptとの貼着面とは反対側の面から、レーザー照射装置4を用い、一部のP型熱電変換材料のチップ3ptが貼着している領域の固定層2の少なくとも一部にレーザー光4を照射することにより、固定層2の一部がアブレートされて昇華ガス6が発生し、レーザー光4の照射部周囲において、一部のP型熱電変換材料のチップ3ptと固定層2との接触面積が減少する。そして、レーザー光5をさらに固定層2の面内方向にスキャンし固定層2への照射領域を広げることで、固定層2が広範囲にアブレートされて昇華ガスが発生し、一部のP型熱電変換材料のチップ3ptと固定層2との接触面積がさらに減少することにより、一部のP型熱電変換材料のチップ3ptと固定層2との接着力がさらに低下する。
 なお、昇華ガス6が、一部のP型熱電変換材料のチップ3ptの周囲に漏れ出したとしても、漏れ出した昇華ガス6は、P型熱電変換材料のチップ3pt間の隙間7から放出される。したがって、一部のP型熱電変換材料のチップ3ptの周囲の剥離を望まないP型熱電変換材料のチップ3ptに対しては接着力の低下を防ぐことができる。
 レーザー光の照射手段の他の一態様としては、一部の熱電変換材料のチップの配置及び数に合わせ、レーザーをマルチアレイ化して、一括で行うことが、生産性の観点から好ましい。
FIG. 2 is a schematic cross-sectional view showing one aspect of the adhesive force reducing step in the present invention, and is among the chips 3pt of a plurality of P-type thermoelectric conversion materials attached to the fixed layer 2 on the first support 1a. A mode in which the adhesive force between the chip 3pt of some P-type thermoelectric conversion materials and the fixed layer 2 is reduced is schematically shown.
In the case where the adhesive force between the fixed layer and the chip of the thermoelectric conversion material is reduced by irradiation with laser light in the step (C) or the step (G), for example, with the chip 3pt of the P-type thermoelectric conversion material of the fixed layer 2. Using a laser irradiation device 4, laser light 4 is applied to at least a part of the fixed layer 2 in the region where the chip 3pt of a part of the P-type thermoelectric conversion material is attached from the surface opposite to the attachment surface of the above. By irradiating, a part of the fixed layer 2 is ablated to generate sublimation gas 6, and the contact area between the chip 3pt of a part of the P-type thermoelectric conversion material and the fixed layer 2 around the irradiated portion of the laser beam 4 is generated. Decreases. Then, by further scanning the laser beam 5 in the in-plane direction of the fixed layer 2 and expanding the irradiation region to the fixed layer 2, the fixed layer 2 is ablated over a wide range to generate sublimation gas, and a part of the P-type thermoelectric is generated. By further reducing the contact area between the chip 3pt of the conversion material and the fixed layer 2, the adhesive force between the chip 3pt of some P-type thermoelectric conversion materials and the fixed layer 2 is further reduced.
Even if the sublimation gas 6 leaks around the chip 3pt of the P-type thermoelectric conversion material, the leaked sublimation gas 6 is released from the gap 7 between the chips 3pt of the P-type thermoelectric conversion material. To. Therefore, it is possible to prevent a decrease in the adhesive force for the chip 3pt of the P-type thermoelectric conversion material that does not want to be peeled off around the chip 3pt of some P-type thermoelectric conversion materials.
As another aspect of the laser light irradiation means, it is preferable from the viewpoint of productivity that the lasers are multi-arrayed and collectively performed according to the arrangement and number of chips of some thermoelectric conversion materials.
 また、他の一態様として、(C)工程又は(G)工程において、固定層と熱電変換材料のチップとの接着力の低下を紫外線の照射で行うことが好ましい。この場合では、例えば、接着力の低下を望まない熱電変換材料のチップのすべてを、固定層の熱電変換材料のチップとの貼着面とは反対側の面から、支持体一括でマスキングし、かつ当該マスキング面側から、紫外線照射装置を用い、一部の熱電変換材料のチップのすべてが貼着している領域の固定層のそれぞれに紫外線を照射することにより、固定層と一部の熱電変換材料のチップのすべてとの接着力を低下させることができ、複数の熱電変換材料のチップのうちの一部の熱電変換材料のチップのすべてを支持体一括で選択的に容易に剥離することができる。
 マスキングの材料としては、紫外線を透過しない材料でかつ温度上昇が少ない材料であれば特に制限がなく、アルミニウム等熱伝導率が高い金属板等を用いることができる。
Further, as another aspect, in the step (C) or the step (G), it is preferable to reduce the adhesive force between the fixed layer and the chip of the thermoelectric conversion material by irradiation with ultraviolet rays. In this case, for example, all the chips of the thermoelectric conversion material that do not want to reduce the adhesive strength are masked together with the support from the surface opposite to the surface on which the fixed layer is attached to the chip of the thermoelectric conversion material. Moreover, by irradiating each of the fixed layers in the region to which all the chips of some thermoelectric conversion materials are attached with an ultraviolet irradiation device from the masking surface side, the fixed layer and some thermoelectrics are applied. Adhesion to all of the conversion material chips can be reduced, and all of the thermoelectric conversion material chips of some of the plurality of thermoelectric conversion material chips can be selectively and easily peeled off at once on the support. Can be done.
The masking material is not particularly limited as long as it is a material that does not transmit ultraviolet rays and has a small temperature rise, and a metal plate having high thermal conductivity such as aluminum can be used.
 さらにまた、他の一態様として、前記支持体を、前述した熱膨張性基材とし、前記(C)の工程及び前記(G)の工程の一方又は双方において、対応する一部のP型熱電変換材料のチップ、対応する一部のN型熱電変換材料のチップ、が貼着しているそれぞれの領域の固定層と同じ領域の熱膨張性基材の少なくとも一部に選択的に加熱することにより行われることが好ましい。
 熱膨張性基材の一部を熱膨張性粒子が膨張する温度以上に加熱することにより、熱膨張性粒子を膨張させる温度において、熱膨張性基材が熱膨張性粒子の体積膨張に追随して変形し、固定層である粘着剤層の熱電変換材料のチップ側の表面に凹凸を形成させることにより、複数の熱電変換材料のチップのうちの一部の熱電変換材料のチップを選択的に容易に剥離することができる。
Furthermore, as another aspect, the support is made of the above-mentioned heat-expandable base material, and a part of the corresponding P-type thermoelectrics is used in one or both of the steps (C) and the step (G). To selectively heat at least a part of the heat-expandable substrate in the same region as the fixed layer in each region to which the chip of the conversion material, the chip of the corresponding N-type thermoelectric conversion material, is attached. It is preferable to be carried out by.
By heating a part of the heat-expandable base material to a temperature higher than the temperature at which the heat-expandable particles expand, the heat-expandable base material follows the volume expansion of the heat-expandable particles at a temperature at which the heat-expandable particles are expanded. By forming irregularities on the chip-side surface of the thermoelectric conversion material of the pressure-sensitive adhesive layer, which is a fixed layer, the chips of some thermoelectric conversion materials among the chips of a plurality of thermoelectric conversion materials are selectively selected. It can be easily peeled off.
 支持体としての熱膨張性基材の加熱手段としては、熱膨張性基材中の熱膨張性粒子が膨張する温度以上に選択的に加熱することができるものであれば特に限定されず、例えば、近赤外線、中赤外線、遠赤外線等の電磁波による加熱などを適宜使用できる。なお、加熱方式は、直接加熱方式及び間接加熱方式のいずれの加熱方式であってもよい。 The means for heating the heat-expandable base material as a support is not particularly limited as long as it can selectively heat the heat-expandable particles in the heat-expandable base material to a temperature higher than the temperature at which the heat-expandable particles expand. , Heating by electromagnetic waves such as near-infrared rays, mid-infrared rays, and far-infrared rays can be used as appropriate. The heating method may be either a direct heating method or an indirect heating method.
 さらにまた、他の一態様として、前記(C)の工程及び前記(G)の工程の一方又は双方において、対応する一部のP型熱電変換材料のチップ、対応する一部のN型熱電変換材料のチップ、が貼着しているそれぞれの領域の固定層の熱膨張性粒子の少なくとも一部に選択的に加熱することにより行われることが好ましい。
 前記対応する一部のP型熱電変換材料のチップ、前記対応する一部のN型熱電変換材料のチップをより容易に剥離する観点から、前記(C)の工程及び前記(G)の工程の一方又は双方において、熱膨張性粒子を含む固定層(粘着剤層)及び支持体としての熱膨張性基材を併用してもよい。
Furthermore, as another aspect, in one or both of the step (C) and the step (G), a chip of a part of the corresponding P-type thermoelectric conversion material and a part of the corresponding N-type thermoelectric conversion. It is preferably carried out by selectively heating at least a part of the heat-expandable particles of the fixed layer of the fixed layer to which the chip of the material is attached.
From the viewpoint of more easily peeling off the chip of the corresponding P-type thermoelectric conversion material and the chip of the corresponding N-type thermoelectric conversion material, the step (C) and the step (G). In one or both of them, a fixed layer (adhesive layer) containing heat-expandable particles and a heat-expandable base material as a support may be used in combination.
・熱電変換材料のチップ転写工程
 本発明の熱電変換材料のチップの配列方法においては、(D)P型熱電変換材料のチップ転写工程、及び、(H)N型熱電変換材料のチップ転写工程を含む。
 熱電変換材料のチップ転写工程は、一部の接着力が低下した熱電変換材料のチップのみを選択的に他の支持体上の固定層上に転写し貼着する工程であり、例えば、図1(d)において、一部のP型熱電変換材料のチップ3ptのみを第1の支持体1a上の固定層2から選択的に剥離させ、第2の支持体1b上の固定層2に転写し貼着する工程である[(D)工程]。同様に、図1(h)において、一部のN型熱電変換材料のチップ3ntのみを第3の支持体1c上の固定層2から選択的に剥離させ、第4の支持体1d上の固定層2に転写し貼着する工程である[(H)工程]。
 接着力が低下した固定層から熱電変換材料のチップを他の支持体上の固定層上に転写し貼着する方法としては、特に制限はなく、公知の方法で行うことができる。
-Chip transfer step of thermoelectric conversion material In the method of arranging chips of thermoelectric conversion material of the present invention, (D) chip transfer step of P-type thermoelectric conversion material and (H) chip transfer step of N-type thermoelectric conversion material are performed. include.
The chip transfer step of the thermoelectric conversion material is a step of selectively transferring and adhering only a part of the chips of the thermoelectric conversion material having reduced adhesive strength onto a fixed layer on another support, for example, FIG. 1. In (d), only the chip 3pt of a part of the P-type thermoelectric conversion material is selectively peeled from the fixed layer 2 on the first support 1a and transferred to the fixed layer 2 on the second support 1b. It is a step of sticking [(D) step]. Similarly, in FIG. 1 (h), only the chip 3nt of a part of the N-type thermoelectric conversion material is selectively peeled from the fixing layer 2 on the third support 1c and fixed on the fourth support 1d. It is a step of transferring and sticking to the layer 2 [step (H)].
The method of transferring the chip of the thermoelectric conversion material from the fixed layer having reduced adhesive strength onto the fixed layer on another support is not particularly limited, and a known method can be used.
・熱電変換材料のチップ貼り合わせ工程
 本発明の熱電変換材料のチップの配列方法においては、(I)熱電変換材料のチップ貼り合わせ工程及び(J)熱電変換材料のチップ貼り合わせ工程を含む。
 熱電変換材料のチップ貼り合わせ工程は、熱電変換材料のチップ転写工程で得られた支持体上の固定層に貼着された離間したP型熱電変換材料のチップ(もしくN型熱電変換材料のチップ)と他の支持体上の固定層上に離間したN型熱電変換材料のチップ(もしくP型熱電変換材料のチップ)とが、所定の配列となるよう、両支持体上の熱電変換材料のチップの面同士を対向させ貼り合わせる工程である。例えば、図1(i)において、転写工程で得られた第4の支持体1d上の固定層2に転写された離間したN型熱電変換材料のチップ3ntと第1の支持体1a上の固定層2上の離間したP型熱電変換材料のチップ3ptとを貼り合わせ、N型熱電変換材料のチップ3ntとP型熱電変換材料のチップ3ptを交互に配列させる工程である[(I)工程]。同様に、例えば、図1(j)において、転写工程で得られた第2の支持体1b上の固定層2に転写された離間したP型熱電変換材料のチップ3ptと第3の支持体1c上の固定層2上の離間したN型熱電変換材料のチップ3ntとを貼り合わせ、P型熱電変換材料のチップ3ptとN型熱電変換材料のチップ3ntを交互に配列させる工程である[(J)工程]。
 熱電変換材料のチップ転写工程で得られた支持体上の固定層に貼着された離間したP型熱電変換材料のチップ(もしくN型熱電変換材料のチップ)と他の支持体上の固定層上に離間したN型熱電変換材料のチップ(もしくP型熱電変換材料のチップ)とを、所定の配列となるように貼り合わせる方法としては、特に制限はなく、公知の方法で行うことができる。
 例えば、転写工程で得られた第4の支持体1d上の固定層2に転写された離間したN型熱電変換材料のチップ3ntと第1の支持体1a上の固定層2上の離間したP型熱電変換材料のチップ3ptとを貼り合わせる場合は、第1の支持体1a上の固定層2上の離間したP型熱電変換材料のチップ3ptを、第4の支持体1d上の固定層2に転写された離間したN型熱電変換材料のチップ3nt間の所定の位置に精度良く配置させるために、第1の支持体及び第2の支持体にアライメントマークをあらかじめ設けておき、顕微鏡等で位置合わせを行い、公知の方法で貼り合わせる。
-Chip bonding step of the thermoelectric conversion material The chip arranging method of the thermoelectric conversion material of the present invention includes (I) a chip bonding step of the thermoelectric conversion material and (J) a chip bonding step of the thermoelectric conversion material.
The chip bonding step of the thermoelectric conversion material is a chip of a separated P-type thermoelectric conversion material (or an N-type thermoelectric conversion material) attached to a fixed layer on a support obtained in the chip transfer step of the thermoelectric conversion material. Thermoelectric conversion on both supports so that the chip) and the chip of the N-type thermoelectric conversion material (or the chip of the P-type thermoelectric conversion material) separated on the fixed layer on the other support have a predetermined arrangement. This is a process in which the surfaces of the chips of the material face each other and are bonded together. For example, in FIG. 1 (i), the separated N-type thermoelectric conversion material chips 3nt transferred to the fixed layer 2 on the fourth support 1d obtained in the transfer step and fixed on the first support 1a. It is a step of laminating the chips 3pt of the P-type thermoelectric conversion material separated on the layer 2 and alternately arranging the chips 3nt of the N-type thermoelectric conversion material and the chips 3pt of the P-type thermoelectric conversion material [(I) step]. .. Similarly, for example, in FIG. 1 (j), the separated P-type thermoelectric conversion material chips 3pt and the third support 1c transferred to the fixed layer 2 on the second support 1b obtained in the transfer step. It is a step of laminating the separated chips 3nt of the N-type thermoelectric conversion material on the upper fixed layer 2 and alternately arranging the chips 3pt of the P-type thermoelectric conversion material and the chips 3nt of the N-type thermoelectric conversion material [(J). ) Process].
Chip of thermoelectric conversion material Chip of isolated P-type thermoelectric conversion material (or chip of N-type thermoelectric conversion material) attached to the fixed layer on the support obtained in the transfer process and fixing on other supports The method of laminating the chips of the N-type thermoelectric conversion material (or the chips of the P-type thermoelectric conversion material) separated on the layer so as to have a predetermined arrangement is not particularly limited, and is performed by a known method. Can be done.
For example, the separated N-type thermoelectric conversion material chips 3nt transferred to the fixed layer 2 on the fourth support 1d obtained in the transfer step and the separated Ps on the fixed layer 2 on the first support 1a. When the chip 3pt of the type thermoelectric conversion material is bonded, the chip 3pt of the separated P-type thermoelectric conversion material on the fixed layer 2 on the first support 1a is attached to the fixed layer 2 on the fourth support 1d. Alignment marks are provided in advance on the first support and the second support in order to accurately place them at predetermined positions between the chips 3nt of the separated N-type thermoelectric conversion material transferred to the above, and with a microscope or the like. Align and bond by a known method.
 本発明の熱電変換材料のチップの配列方法においては、さらに、固定層を有する支持体の一方を熱電変換材料のチップから剥離する工程を含む。例えば、図1(i’)においては、第4の支持体1d上の固定層2上に交互に配列されたN型熱電変換材料のチップ3nt及びP型熱電変換材料のチップ3ptの面から第1の支持体1a上の固定層ごと剥離する工程である。同様に、例えば、図1(j’)において、第2の支持体1b上の固定層2上に交互に配列されたP型熱電変換材料のチップ3pt及びN型熱電変換材料のチップ3ntの面から第3の支持体1c上の固定層ごと剥離する工程である。
 固定層を有する支持体の一方を剥離する方法としては、(C)工程又は(G)工程と同様の方法で、接着力が低下してない熱電変換材料のチップ[例えば、図1(i’)においては、P型熱電変換材料のチップ3ptに相当]の領域に貼着された固定層のすべての接着力を低下させた後、公知の方法で剥離すればよい。
 なお、当該剥離を容易にする観点から、剥離対象の一方の支持体上の固定層の接着力(例えば、粘着剤層の粘着力)を、対向する剥離対象としない他方の支持体上の固定層の接着力(例えば、粘着剤層の粘着力)より低くしておくことが好ましい。
The method for arranging chips of a thermoelectric conversion material of the present invention further includes a step of peeling one of the supports having a fixed layer from the chips of the thermoelectric conversion material. For example, in FIG. 1 (i'), the N-type thermoelectric conversion material chips 3nt and the P-type thermoelectric conversion material chips 3pt alternately arranged on the fixed layer 2 on the fourth support 1d are the first. This is a step of peeling off the fixed layer on the support 1a of 1. Similarly, for example, in FIG. 1 (j'), the surfaces of the chips 3pt of the P-type thermoelectric conversion material and the chips 3nt of the N-type thermoelectric conversion material alternately arranged on the fixed layer 2 on the second support 1b. This is a step of peeling off the fixed layer on the third support 1c.
As a method of peeling off one of the supports having a fixed layer, a chip of a thermoelectric conversion material whose adhesive strength is not reduced by the same method as in step (C) or step (G) [for example, FIG. 1 (i'). ), After reducing the adhesive strength of all the fixing layers attached to the region of [corresponding to the chip 3pt of the P-type thermoelectric conversion material], it may be peeled off by a known method.
From the viewpoint of facilitating the peeling, the adhesive force of the fixed layer on one support to be peeled off (for example, the adhesive force of the pressure-sensitive adhesive layer) is fixed on the other support which is not the object to be peeled off. It is preferable that the adhesive strength of the layer is lower than that of the adhesive layer (for example, the adhesive strength of the pressure-sensitive adhesive layer).
[熱電変換材料のチップ配列体の製造方法]
 本発明の熱電変換材料のチップ配列体の製造方法は、(A)工程~(J)工程を含む本発明の熱電変換材料のチップの配列方法又は本発明の一態様の配列方法を実施する工程を含む。
 特に、本発明の熱電変換材料のチップ配列体の製造方法は、(A)工程~(J)工程がこの順で含む本発明の一態様の熱電変換材料のチップの配列方法を実施する工程を含むことで、P型及びN型熱電変換材料層からP型及びN型熱電変換材料のチップが支持体一括で効率良く交互に配列された熱電変換材料のチップ配列体を製造することが可能である。
[Manufacturing method of chip array of thermoelectric conversion material]
The method for producing a chip array of a thermoelectric conversion material of the present invention is a step of arranging chips of the thermoelectric conversion material of the present invention including steps (A) to (J) or a step of carrying out an arrangement method of one aspect of the present invention. including.
In particular, the method for producing a chip array of a thermoelectric conversion material of the present invention is a step of carrying out a method of arranging chips of a thermoelectric conversion material according to one aspect of the present invention, which includes steps (A) to (J) in this order. By including the P-type and N-type thermoelectric conversion material layers, it is possible to manufacture a chip array of thermoelectric conversion materials in which chips of P-type and N-type thermoelectric conversion materials are efficiently and alternately arranged in a support. be.
[熱電変換モジュールの製造方法]
 本発明の熱電変換モジュールの製造方法は、(A)工程~(J)工程を含む本発明の熱電変換材料のチップの配列方法又は本発明の一態様の配列方法を実施する工程を含む。
 したがって、支持体一括で交互に配列された複数のP型及びN型熱電変換材料のチップのすべてを、熱電変換モジュールの組み立て工程に供することができる。
 具体的には、支持体一括で交互に配列された複数のP型及びN型熱電変換材料のチップのすべてを、熱電変換モジュールの組み立て工程に供することが可能となり、熱電変換モジュールの歩留まり向上及び生産性の向上に資する。
[Manufacturing method of thermoelectric conversion module]
The method for manufacturing a thermoelectric conversion module of the present invention includes a step of arranging chips of the thermoelectric conversion material of the present invention including steps (A) to (J) or a step of carrying out an arrangement method of one aspect of the present invention.
Therefore, all of the chips of the plurality of P-type and N-type thermoelectric conversion materials arranged alternately in the support batch can be used in the process of assembling the thermoelectric conversion module.
Specifically, all of the chips of a plurality of P-type and N-type thermoelectric conversion materials arranged alternately in a support can be used in the process of assembling the thermoelectric conversion module, and the yield of the thermoelectric conversion module can be improved. Contributes to improving productivity.
 本発明の熱電変換材料のチップの配列方法によれば、P型変換材料のチップとN型熱電変換材料のチップとを支持体一括で効率良く交互に配列できる。このため、これを熱電変換モジュールの組み立て工程に供することにより、熱電変換モジュールの生産性の向上につなげることができる。 According to the method of arranging the chips of the thermoelectric conversion material of the present invention, the chips of the P-type conversion material and the chips of the N-type thermoelectric conversion material can be efficiently and alternately arranged in a support. Therefore, by using this in the process of assembling the thermoelectric conversion module, it is possible to improve the productivity of the thermoelectric conversion module.
 本発明の熱電変換材料のチップの配列方法を実施する工程を含む、熱電変換材料のチップの製造方法では、支持体一括で交互に配列された複数のP型及びN型熱電変換材料のチップのすべてを、熱電変換モジュールの組み立て工程に供することが可能となり、熱電変換モジュールの歩留まり向上を含め生産性の向上につながることから、安価な熱電変換モジュールを大量に提供することが期待できる。 In the method for manufacturing a chip of a thermoelectric conversion material, which comprises a step of arranging the chip of the thermoelectric conversion material of the present invention, a plurality of P-type and N-type thermoelectric conversion material chips arranged alternately in a support batch are used. All of them can be used in the process of assembling the thermoelectric conversion module, which leads to the improvement of productivity including the improvement of the yield of the thermoelectric conversion module. Therefore, it can be expected to provide a large amount of inexpensive thermoelectric conversion modules.
1a:第1の支持体
1b:第2の支持体
1c:第3の支持体
1d:第4の支持体
2:固定層
3p:P型熱電変換材料層
3n:N型熱電変換材料層
3pt:P型熱電変換材料のチップ
3nt:N型熱電変換材料のチップ
4:レーザー照射装置
5:レーザー光
6:昇華ガス
7:隙間
1a: 1st support 1b: 2nd support 1c: 3rd support 1d: 4th support 2: Fixed layer 3p: P-type thermoelectric conversion material layer 3n: N-type thermoelectric conversion material layer 3pt: P-type thermoelectric conversion material chip 3nt: N-type thermoelectric conversion material chip 4: Laser irradiation device 5: Laser light 6: Sublimation gas 7: Gap

Claims (10)

  1.  熱電変換材料のチップの配列方法であって、前記熱電変換材料のチップが、P型熱電変換材料のチップ及びN型熱電変換材料のチップを含み、
    (A)P型熱電変換材料層を第1の支持体上の固定層に貼着する工程、
    (B)前記第1の支持体上の固定層に貼着されたP型熱電変換材料層を、P型熱電変換材料のチップに個片化して、複数のP型熱電変換材料のチップを得る工程、
    (C)複数のP型熱電変換材料のチップのうち、一部のP型熱電変換材料のチップと固定層との接着力を低下させる工程、
    (D)固定層との接着力が低下した前記一部のP型熱電変換材料のチップを前記第1の支持体上の固定層から剥離し、前記一部のP型熱電半導体チップの貼着面とは反対側の面を第2の支持体上の固定層に転写し貼着する工程、
    (E)N型熱電変換材料層を第3の支持体上の固定層に貼着する工程、
    (F)前記第3の支持体上の固定層に貼着されたN型熱電変換材料層を、N型熱電変換材料のチップに個片化して、複数のN型熱電変換材料のチップを得る工程、
    (G)複数のN型熱電変換材料のチップのうち、一部のN型熱電変換材料のチップと固定層との接着力を低下させる工程、
    (H)固定層との接着力が低下した前記一部のN型熱電変換材料のチップを前記第3の支持体上の固定層から剥離し、前記一部のN型熱電変換材料のチップの貼着面とは反対側の面を第4の支持体上の固定層に転写し貼着する工程、
    (I)前記(D)の工程で固定層との接着力が維持されたP型熱電変換材料のチップの貼着面とは反対側の面を、前記(H)の工程で得られた前記第4の支持体上の固定層に貼着された前記一部のN型熱電変換材料のチップ間の固定層に貼着する工程、及び
    (J)前記(H)の工程で固定層との接着力が維持されたN型熱電変換材料のチップの貼着面とは反対側の面を、前記(D)の工程で得られた前記第2の支持体上の固定層に貼着された前記一部のP型熱電変換材料のチップ間の固定層に貼着する工程、
    を含む、熱電変換材料のチップの配列方法。
    A method of arranging chips of a thermoelectric conversion material, wherein the chip of the thermoelectric conversion material includes a chip of a P-type thermoelectric conversion material and a chip of an N-type thermoelectric conversion material.
    (A) A step of attaching a P-type thermoelectric conversion material layer to a fixed layer on a first support,
    (B) The P-type thermoelectric conversion material layer attached to the fixed layer on the first support is individualized into P-type thermoelectric conversion material chips to obtain a plurality of P-type thermoelectric conversion material chips. Process,
    (C) A step of reducing the adhesive force between the chip of some P-type thermoelectric conversion materials and the fixed layer among the chips of a plurality of P-type thermoelectric conversion materials.
    (D) The chip of the part of the P-type thermoelectric conversion material having a reduced adhesive force with the fixed layer is peeled off from the fixed layer on the first support, and the part of the P-type thermoelectric semiconductor chip is attached. The step of transferring and attaching the surface opposite to the surface to the fixed layer on the second support.
    (E) A step of attaching the N-type thermoelectric conversion material layer to the fixed layer on the third support,
    (F) The N-type thermoelectric conversion material layer attached to the fixed layer on the third support is individualized into N-type thermoelectric conversion material chips to obtain a plurality of N-type thermoelectric conversion material chips. Process,
    (G) A step of reducing the adhesive force between the chip of some N-type thermoelectric conversion materials and the fixed layer among the chips of a plurality of N-type thermoelectric conversion materials.
    (H) The chip of the part of the N-type thermoelectric conversion material having a reduced adhesive force with the fixed layer is peeled off from the fixed layer on the third support, and the chip of the part of the N-type thermoelectric conversion material is peeled off. The process of transferring and attaching the surface opposite to the attachment surface to the fixed layer on the fourth support.
    (I) The surface of the P-type thermoelectric conversion material whose adhesive strength with the fixed layer was maintained in the step (D) opposite to the attachment surface of the chip was obtained in the step (H). The step of sticking to the fixed layer between the chips of the part of the N-type thermoelectric conversion material stuck to the fixed layer on the fourth support, and (J) the step of sticking to the fixed layer in the step (H). The surface of the N-type thermoelectric conversion material whose adhesive strength was maintained opposite to the attachment surface of the chip was attached to the fixing layer on the second support obtained in the step (D). A step of attaching to a fixed layer between chips of some of the P-type thermoelectric conversion materials,
    How to arrange chips of thermoelectric conversion material, including.
  2.  前記固定層を、レーザー光を吸収可能な固定層とし、前記(C)の工程、前記(G)の工程が、この順に、前記一部のP型熱電変換材料のチップ、前記一部のN型熱電変換材料のチップ、が貼着しているそれぞれの領域の固定層の少なくとも一部に前記レーザー光を照射することにより行われる、請求項1に記載の熱電変換材料のチップの配列方法。 The fixed layer is a fixed layer capable of absorbing laser light, and the step (C) and the step (G) are, in this order, a chip of a part of the P-type thermoelectric conversion material and a part of N. The method for arranging chips of a thermoelectric conversion material according to claim 1, which is performed by irradiating at least a part of the fixed layer of each region to which the chips of the type thermoelectric conversion material are attached with the laser beam.
  3.  前記固定層が粘着剤層を含む、請求項1又は2に記載の熱電変換材料のチップの配列方法。 The method for arranging chips of a thermoelectric conversion material according to claim 1 or 2, wherein the fixed layer includes an adhesive layer.
  4.  前記レーザー光を吸収可能な固定層が、着色剤又は金属フィラーを含む粘着剤層からなる、請求項2に記載の熱電変換材料のチップの配列方法。 The method for arranging chips of a thermoelectric conversion material according to claim 2, wherein the fixed layer capable of absorbing the laser beam comprises a pressure-sensitive adhesive layer containing a colorant or a metal filler.
  5.  前記支持体が樹脂フィルムからなる、請求項1~4のいずれか1項に記載の熱電変換材料のチップの配列方法。 The method for arranging chips of a thermoelectric conversion material according to any one of claims 1 to 4, wherein the support is made of a resin film.
  6.  前記(C)の工程及び前記(G)の工程の一方又は双方において、前記支持体として熱膨張性基材を用いる、請求項1に記載の熱電変換材料のチップの配列方法。 The method for arranging chips of a thermoelectric conversion material according to claim 1, wherein a heat-expandable base material is used as the support in one or both of the step (C) and the step (G).
  7.  前記(C)の工程及び前記(G)の工程の一方又は双方において、前記固定層に熱膨張性粒子を含む、請求項1に記載の熱電変換材料のチップの配列方法。 The method for arranging chips of a thermoelectric conversion material according to claim 1, wherein the fixed layer contains heat-expandable particles in one or both of the step (C) and the step (G).
  8.  前記熱電変換材料のチップが熱電半導体組成物からなり、該熱電半導体組成物が熱電半導体材料、樹脂、並びにイオン液体及び無機イオン性化合物の一方又は双方を含む、請求項1~7のいずれか1項に記載の熱電変換材料のチップの配列方法。 One of claims 1 to 7, wherein the chip of the thermoelectric conversion material comprises a thermoelectric semiconductor composition, and the thermoelectric semiconductor composition contains one or both of a thermoelectric semiconductor material, a resin, and an ionic liquid and an inorganic ionic compound. The method for arranging chips of a thermoelectric conversion material according to the section.
  9.  請求項1~8のいずれか1項に記載の方法を実施する工程を含む、熱電変換材料のチップ配列体の製造方法。 A method for producing a chip array of thermoelectric conversion materials, which comprises a step of carrying out the method according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項に記載の方法を実施する工程を含む、熱電変換材料のチップを含む熱電変換モジュールの製造方法。 A method for manufacturing a thermoelectric conversion module including a chip of a thermoelectric conversion material, which comprises a step of carrying out the method according to any one of claims 1 to 8.
PCT/JP2021/039752 2020-10-30 2021-10-28 Method for arraying chips of thermoelectric conversion material WO2022092179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022559217A JPWO2022092179A1 (en) 2020-10-30 2021-10-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-182614 2020-10-30
JP2020182614 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022092179A1 true WO2022092179A1 (en) 2022-05-05

Family

ID=81382593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039752 WO2022092179A1 (en) 2020-10-30 2021-10-28 Method for arraying chips of thermoelectric conversion material

Country Status (3)

Country Link
JP (1) JPWO2022092179A1 (en)
TW (1) TW202226624A (en)
WO (1) WO2022092179A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105244A1 (en) * 2002-01-01 2003-12-18 古河電気工業株式会社 Thermoelectric element module and method for fabricating the same
JP2004221109A (en) * 2003-01-09 2004-08-05 Furukawa Electric Co Ltd:The Thermoelectric element module and manufacturing method therefor
JP2005019767A (en) * 2003-06-27 2005-01-20 Yamaha Corp Manufacturing method for thermoelectric conversion module
WO2018139475A1 (en) * 2017-01-27 2018-08-02 リンテック株式会社 Flexible thermoelectric conversion element and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105244A1 (en) * 2002-01-01 2003-12-18 古河電気工業株式会社 Thermoelectric element module and method for fabricating the same
JP2004221109A (en) * 2003-01-09 2004-08-05 Furukawa Electric Co Ltd:The Thermoelectric element module and manufacturing method therefor
JP2005019767A (en) * 2003-06-27 2005-01-20 Yamaha Corp Manufacturing method for thermoelectric conversion module
WO2018139475A1 (en) * 2017-01-27 2018-08-02 リンテック株式会社 Flexible thermoelectric conversion element and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2022092179A1 (en) 2022-05-05
TW202226624A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
JP7438115B2 (en) Method for manufacturing chips of thermoelectric conversion material and method for manufacturing thermoelectric conversion modules using chips obtained by the manufacturing method
TWI761485B (en) Thermoelectric conversion element layer and method for producing the same
TWI396290B (en) Photovoltaic cell module
EP2930024B1 (en) Multilayered polyolefin-based films having a layer comprising a crystalline block copolymer composite or a block copolymer composite resin
KR101390440B1 (en) Sealing resin sheet
CN103370801B (en) For the manufacture of the method and structure of solar cell
JP6295304B1 (en) Dicing tape integrated adhesive sheet
CN109148350B (en) Dicing tape-integrated adhesive sheet
US20160237288A1 (en) Sheet for sealing and method for manufacturing semiconductor device
WO2022057139A1 (en) Solder strip carrier film, preparation method therefor, and application thereof
JP2022159549A (en) Photovoltaic module, photovoltaic encapsulant and method for producing photovoltaic module
KR20190071599A (en) Adhesive film and adhesive film with dicing tape
WO2022092179A1 (en) Method for arraying chips of thermoelectric conversion material
KR20190000828A (en) Dicing tape-combined adhesive sheet
JPWO2020045376A1 (en) A method for manufacturing a chip of a thermoelectric conversion material and a method for manufacturing a thermoelectric conversion module using the chip obtained by the manufacturing method.
WO2022092177A1 (en) Thermoelectric conversion module
JP7129110B2 (en) Laminate and method for producing cured sealing body
CN113707744A (en) Connecting film for photovoltaic cell
TW202144519A (en) Adhesive laminated film and production method of electronic device
JP2016127136A (en) Led-mounted module
WO2012132118A1 (en) Method for manufacturing solar battery cell with wiring board, and method for manufacturing solar battery module
JP2020101707A (en) Semiconductor reverse surface adhesive film
WO2021153361A1 (en) Method for removing semiconductor chip with protective film
WO2021153360A1 (en) Method for separating adherend
KR20190065662A (en) Adhesive kit, adhesive film and encapsulation member comprising the same, and method for encapsulating organic electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886296

Country of ref document: EP

Kind code of ref document: A1