WO2022091899A1 - ガスタービンの燃焼調整方法及び燃焼制御装置 - Google Patents

ガスタービンの燃焼調整方法及び燃焼制御装置 Download PDF

Info

Publication number
WO2022091899A1
WO2022091899A1 PCT/JP2021/038719 JP2021038719W WO2022091899A1 WO 2022091899 A1 WO2022091899 A1 WO 2022091899A1 JP 2021038719 W JP2021038719 W JP 2021038719W WO 2022091899 A1 WO2022091899 A1 WO 2022091899A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
value
command
correction
origin
Prior art date
Application number
PCT/JP2021/038719
Other languages
English (en)
French (fr)
Inventor
祐太郎 藤岡
司 伊藤
文克 井上
僚一 羽賀
崇広 伊藤
Original Assignee
三菱パワー株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社, 三菱重工業株式会社 filed Critical 三菱パワー株式会社
Priority to JP2022559053A priority Critical patent/JP7407302B2/ja
Priority to CN202180072275.4A priority patent/CN116391074A/zh
Priority to KR1020237013843A priority patent/KR20230070509A/ko
Priority to US18/032,937 priority patent/US20230392789A1/en
Priority to DE112021004427.3T priority patent/DE112021004427T5/de
Publication of WO2022091899A1 publication Critical patent/WO2022091899A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/263Control of fuel supply by means of fuel metering valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/32Control of fuel supply characterised by throttling of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • F02C9/54Control of fuel supply conjointly with another control of the plant with control of working fluid flow by throttling the working fluid, by adjusting vanes

Definitions

  • the present disclosure relates to a combustion adjusting method and a combustion control device for a gas turbine.
  • This application claims priority based on Japanese Patent Application No. 2020-180324 filed in Japan on October 28, 2020, and this content is incorporated herein by reference.
  • Patent Document 1 discloses an example in which after the gas turbine enters normal operation, the occurrence of combustion vibration is predicted and the operating conditions for suppressing the combustion vibration within an allowable level are automatically selected.
  • Patent Document 1 is normal due to the difference in the structure of the combustor, the difference in the fuel properties, the difference in the atmospheric conditions, and the like. It may not be possible to shift to the combustion controlled state.
  • the permissible range of operating conditions that can suppress combustion vibration within the permissible level is narrow, and it may take time to start up until the rated operation is reached. Therefore, it is important to confirm the allowable range of operating conditions for the fuel-air ratio in advance before starting the test run.
  • the present disclosure is a combustion adjustment method and combustion for confirming the combustion margin range with respect to the combustion air ratio of the combustor as a pre-operation at the start of the trial run of the gas turbine or at the restart of the operation after the end of the regular inspection. It is intended to provide a control device.
  • a combustion adjustment method used for combustion control of a combustor in order to solve the above problems From the step of selecting the combustion parameter that sets the fuel-air ratio to the load of the gas turbine and the position of the origin, the first increase command process, which is the increase command process for increasing the command value of the combustion parameter, or the command value is decreased.
  • the step of executing the first step consisting of the first lowering command process, which is the lowering command process, and the command value reaches the target upper limit value or the target lower limit value without causing combustion vibration in the combustor.
  • the second step is terminated and the command value of the second step of the combustion parameter is set to the position of the origin.
  • the combustion margin confirmation work is streamlined and the combustion adjustment work is facilitated without depending on the skill of the operator.
  • the reliability of the gas turbine is improved.
  • FIG. 1 is a diagram schematically showing an apparatus configuration of a gas turbine.
  • FIG. 2 is a diagram showing the configuration of the combustion control device.
  • FIG. 3 is a diagram showing the configuration of the combustion margin confirmation unit.
  • FIG. 4 is a diagram showing a first combustion margin confirmation pattern.
  • FIG. 5 is a diagram showing a second combustion margin confirmation pattern.
  • FIG. 6 is a diagram showing a third combustion margin confirmation pattern.
  • FIG. 7 is a diagram showing a fourth combustion margin confirmation pattern.
  • FIG. 8 is a flow chart showing the entire process of the combustion margin adjusting unit.
  • FIG. 9 is a flow chart showing a combustion margin confirmation process.
  • FIG. 10A is a diagram showing the relationship between the combustion parameter and the combustion load variable of Case 1.
  • FIG. 10A is a diagram showing the relationship between the combustion parameter and the combustion load variable of Case 1.
  • FIG. 10A is a diagram showing the relationship between the combustion parameter and the combustion load variable of Case 1.
  • FIG. 10A is a diagram showing
  • FIG. 10B is a diagram showing the relationship between the gas turbine inlet temperature of Case 1 and the combustion load coefficient.
  • FIG. 10C is a diagram showing the relationship between the combustion parameters of Case 1 and the gas turbine inlet temperature.
  • FIG. 11A is a diagram showing the relationship between the combustion parameter and the combustion load variable of Case 2.
  • FIG. 11B is a diagram showing the relationship between the gas turbine inlet temperature and the combustion load coefficient of Case 2.
  • FIG. 11C is a diagram showing the relationship between the combustion parameters of Case 2 and the gas turbine inlet temperature.
  • FIG. 12 is a flow chart showing a combustion load variable correction process.
  • FIG. 13 is a logic diagram of the combustion load variable correction unit.
  • FIG. 14 is a schematic diagram showing an example of changing the set value.
  • the schematic device configuration of the gas turbine is shown in FIG.
  • the gas turbine 1 is provided with an inlet guide blade 11, and takes in atmospheric air from the outside to generate compressed air, and burns the generated compressed air and a separately supplied fuel FL to generate combustion gas FG.
  • a turbine 4 that is rotationally driven by the generated combustion gas FG
  • a generator 5 that is connected to the turbine 4 and is rotationally driven to generate electric power
  • a combustion control device 100 that controls the gas turbine 1.
  • the combustor 3 includes a combustion nozzle 30 including a main nozzle 31, a top hat nozzle 32, and a pilot nozzle 33 for each combustor 3.
  • the main nozzles 31 are arranged in a ring shape around the pilot nozzle 33.
  • the combustor 3 includes a bypass valve 44 and a tail tube 24.
  • the combustor 3 further includes a main fuel flow rate control valve 41, a top hat fuel flow rate control valve 42, and a pilot fuel flow rate control valve 43.
  • the fuel for the main combustion nozzle is supplied to the main nozzle 31 via the main fuel flow rate control valve 41.
  • the top hat fuel is supplied to the top hat nozzle 32 via the top hat fuel flow rate control valve 42, and the pilot fuel is supplied to the pilot nozzle 33 via the pilot fuel flow rate control valve 43.
  • the fuel flow rates of the main fuel, the top hat fuel and the pilot fuel are controlled by the flow rate control valves of the main fuel flow rate control valve 41, the top hat fuel flow rate control valve 42 and the pilot fuel flow rate control valve 43.
  • the combustion gas FG generated by the combustor 3 is supplied to the turbine 4 via the tail cylinder 24 to rotationally drive the turbine 4.
  • FIG. 2 shows a schematic configuration of the combustion control device 100 of the gas turbine 1 in the present embodiment.
  • the combustion control device 100 includes a process measurement unit 101, a pressure change measurement unit 102, an acceleration measurement unit 103, a NOx measurement unit 104, a valve operation unit 105, a frequency analysis unit 123, and a control unit 110 installed in the gas turbine 1.
  • the process measurement unit 101 is various measuring devices that measure the operating conditions and the process amount indicating the operating state of the gas turbine 1, and the measurement results are transmitted to the control unit 110 of the combustion control device 100 at predetermined time intervals.
  • the process amount is, for example, turbine output, atmospheric temperature, humidity, fuel flow rate and fuel pressure of each part, air flow rate and air pressure of each part, combustion gas temperature, combustion gas pressure, rotation speed of compressor 2 and turbine 4, turbine. It means the concentration of waste such as nitrogen oxide (NOx) and carbon monoxide (CO) in the exhaust gas discharged from 4.
  • NOx nitrogen oxide
  • CO carbon monoxide
  • the pressure change measuring unit 102 is a pressure measuring device arranged in each of the plurality of combustors 3, and the pressure change measured value in each combustor 3 is periodically sent to the control unit 110 by a command from the control unit 110. Output.
  • the acceleration measuring unit 103 is an acceleration measuring device installed in each combustor 3, and periodically measures the acceleration according to a command from the control unit 110 and outputs the acceleration to the control unit 110.
  • the NOx measuring unit 104 is a measuring device for NOx in the exhaust gas of the combustor 3, and the measured value periodically measures NOx according to a command from the control unit 110 and outputs the measured value to the control unit 110.
  • the valve operation unit 105 receives a command from the control unit 110 to set the opening degree of each control valve of the main fuel flow rate control valve 41, the top hat fuel flow rate control valve 42, the pilot fuel flow rate control valve 43, and the bypass valve 44, and the compressor 2. It is a mechanism for operating the opening degree of the inlet guide blade 11 and the like.
  • the valve operating unit 105 performs main fuel control, top hat fuel control, pilot fuel control, flow rate control of the air flow rate supplied to each combustor 3, flow rate control of atmospheric air supplied to the compressor 2, and the like.
  • the frequency analysis unit 123 frequency-analyzes the pressure fluctuation and the acceleration fluctuation detected by the pressure change measurement unit 102 and the acceleration measurement unit 103, and outputs the frequency analysis to the control unit 110.
  • the combustion control device 100 includes an automatic combustion adjustment unit 120 and a combustion margin adjustment unit 130 in addition to the various measurement units, measurement units, valve operation units and control units 110 described above.
  • the control unit 110 receives output signals from the process measurement unit 101, the pressure change measurement unit 102, the acceleration measurement unit 103, and the frequency analysis unit 123, and transmits them to the automatic combustion adjustment unit 120. Further, the control unit 110 is a signal for operating the valve opening degree of the main fuel flow rate control valve 41, the top hat fuel flow rate control valve 42, the pilot fuel flow rate control valve 43, the bypass valve 44, the inlet guide blade 11 of the compressor 2, and the like. Is output to the valve operating unit 105.
  • the automatic combustion adjusting unit 120 shown in FIG. 2 includes an input unit 121, an operating state grasping unit 122, a combustion characteristic grasping unit 124, a correction unit 125, and an output unit 126.
  • the automatic combustion adjusting unit 120 controls to select each process amount in the most effective direction for suppressing the combustion vibration when the combustion vibration is generated in the combustor 3.
  • the automatic combustion adjustment unit 120 receives the process amount, pressure, acceleration data, etc. of each unit transmitted from the control unit 110 via the input unit 121. Further, from the frequency analysis result in the gas turbine 1 by the frequency analysis unit 123, the operation state grasping unit 122 grasps the operating state of the gas turbine 1, and the combustion characteristic grasping unit 124 grasps the combustion characteristics of each combustor 3. The correction unit 125 determines a control method so as not to generate combustion vibration of the gas turbine 1 based on the data grasped by the operation state grasping unit 122 and the combustion characteristic grasping unit 124.
  • the adjustment amount is determined and output to the control unit 110 via the output unit 126.
  • the combustion margin adjusting unit 130 grasps the region where combustion vibration does not occur in advance before starting the trial run of the gas turbine having a small amount of data accumulated in the past operating conditions, and transmits the data to the automatic combustion adjusting unit 120. , Accumulate in the database 127 in the automatic combustion adjustment unit 120.
  • the combustion margin adjusting unit 130 is rated without generating combustion vibration by using the data of the automatic combustion adjusting unit 120 that reflects the accumulated data at the time of the trial run of the gas turbine 1 or the start-up after the end of the regular inspection. The purpose is to prepare operating conditions that can shift to operation and to realize a state in which the gas turbine can shift to rated operation in a short time.
  • the combustion adjustment work such as confirmation of the margin range of the combustion vibration, which has been conventionally performed by the combustion adjuster, is automated by using the combustion margin adjustment unit 130. Therefore, we are trying to optimize the combustion adjustment work.
  • the combustion margin adjusting unit 130 includes a combustion margin confirmation unit 132, a combustion load variable correction unit 134, and a set value changing unit 136.
  • the combustion load variable correction unit 134 includes a maximum load correction unit 134a and a set value conversion unit 134b.
  • each combustion parameter PM is described in the flow of the combustion margin confirmation step S20 (FIGS. 8 and 9) described later.
  • the combustion margin is confirmed based on various combustion margin patterns along the line, the combustion margin range of the combustion vibration generated in the combustor 3 is confirmed in advance, acquired as steady data 128, and the operation of the gas turbine 1 is started. We are trying to accumulate various operation data for this purpose.
  • the combustion load variable correction unit 134 determines the relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM so that the gas turbine 1 outputs the planned maximum output MOP of the gas turbine 1 at the rated value (100%) of the combustion load variable CLP. The purpose is to optimize the relationship between the combustion parameter PM and the combustion load variable CLP while maintaining it. Although the details will be described later, the maximum load correction unit 134a corrects the combustion load variable CLP so that the combustion load variable CLP becomes the rated value (100%) at the planned maximum output MOP.
  • the set value conversion unit 134b determines the relationship between the gas turbine inlet temperature GTIT and the combustion load variable CLP so that the relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM is maintained based on the corrected combustion load variable CLP.
  • the combustion load variable correction unit 134 By providing the combustion load variable correction unit 134, the generation of combustion vibration of the combustor 3 is suppressed while maintaining the relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM, and stable operation of the gas turbine 1 becomes possible. ..
  • the GT load (GT output) may be simply displayed instead of the gas turbine load (gas turbine output).
  • the set value changing unit 136 changes the set value indicating the relationship between the combustion parameter PM and the combustion load variable CLP when combustion vibration occurs and the origin movement (origin shift) described later occurs. Therefore, the purpose is to automatically change the set value of the combustion load variable CLP before the correction to the set value after the correction. By automating the change of set values, the burden on the operation coordinator is reduced and safety is improved.
  • the main work of the combustion margin adjusting unit 130 is that the combustion vibration generated in the combustor 3 is suppressed within an allowable level for each combustion parameter PM in the combustion margin adjusting unit 130, and the combustion margin does not generate combustion vibration.
  • the point is to check the range.
  • the combustion margin range is defined as the origin OP by defining the position or numerical value of the combustion parameter PM with respect to the combustion load variable CLP as a reference operating point. With the origin OP as a reference, the presence or absence of combustion vibration at operating points with different GT loads is confirmed, and a stable operating range in which combustion vibration does not occur is determined.
  • the combustion load variable CLP at the planned maximum load MOP or the rated load of the gas turbine 1 is set to the rated value (100%), and the combustion load variable CLP of the output NOP equivalent to no load of the gas turbine is used. Is set to 0 (zero)%. Any gas turbine load is represented by the combustion load variable CLP.
  • the combustion parameter PM for any gas turbine load can be displayed as the set value of the corresponding combustion load variable CLP.
  • confirmation of the combustion margin range means confirming the range and width in which combustion vibration does not occur in the combustor 3 for each combustion parameter PM. It may be displayed briefly. The fact that the combustion vibration does not occur means a state in which the combustion vibration in the combustor 3 can be suppressed within the permissible level, and the occurrence of the combustion vibration means a state in which the combustion vibration exceeds the permissible level.
  • the combustion parameter PMs for which the combustion margin range is confirmed are the pilot ratio PL, the top hat ratio TH, and the bypass valve opening BV.
  • the pilot ratio PL is a percentage (%) of the fuel distribution ratio supplied to the pilot nozzle 33 with respect to the total fuel flow rate FL.
  • the top hat ratio TH is a percentage (%) of the fuel distribution ratio supplied to the top hat nozzle 32 with respect to the total fuel flow rate FL.
  • the bypass valve opening degree BV is a valve opening degree BV expressed as a percentage (%) with respect to the time when the bypass valve 44 is fully opened.
  • the presence or absence of combustion vibration in the combustor 3 depends on the set value ST of the pilot ratio PL, the top hat ratio TH, and the bypass valve opening BV with respect to a predetermined GT load.
  • As the combustion parameter PM another parameter that affects the combustion state of the combustor 3 may be selected.
  • the combustion margin adjusting unit 130 executes the combustion margin confirmation step S20 (FIGS. 8 and 9) for confirming the combustion margin range described later for all the above-mentioned combustion parameter PMs.
  • the combustion margin confirmation step S20 As for the priority of the combustion parameter PM, since the confirmation of the combustion margin range is completed in a short time, it is desirable to preferentially execute the combustion margin confirmation step S20 of the combustion parameter PM in which combustion vibration is likely to occur.
  • the range in which combustion vibration does not occur means that the level of combustion vibration with respect to the combustion load variable CLP is within the permissible level, and the operating point of the upper limit GT load and the operating point of the lower limit GT load within the permissible level. It means the range of GT load between.
  • combustion margin confirmation step S20 For example, as a combustion parameter PM, if combustion vibration occurs during the execution of the combustion margin confirmation step S20 for the pilot ratio PL after the combustion margin confirmation step S20 for the top hat ratio TH is completed, the top hat is again used. For the ratio TH, it is necessary to execute the combustion margin confirmation step S20 again. That is, the repetitive work of the combustion margin confirmation step S20 occurs, and it takes a long time to confirm the combustion margin range of the combustion parameter PM. Therefore, at the time of the trial run of the gas turbine 1 or at the start of the operation after the end of the regular inspection, the selection of the priority of the combustion parameter PM affects the trial run process at the time of starting the gas turbine, so careful selection is required.
  • the GT load during the combustion margin confirmation work is selected in the range from 0% to the rated value (100%). ..
  • the rated value (100%) of the GT load means the planned maximum load (planned maximum output) or the rated load (rated output) of the gas turbine.
  • FIG. 4 shows an example of the combustion margin confirmation pattern.
  • the combustion vibration is generated in both the steps of the raising command step STU in the direction of increasing the command value CM indicating the output of the combustion parameter PM and the lowering command step STD in the direction of lowering the command value CM. It is necessary to confirm whether or not it has occurred. After confirming the combustion margin range of both steps, the presence or absence of combustion vibration in a predetermined GT load and the combustion margin range are confirmed.
  • the raising command process STU is prioritized or the lower command process STD is prioritized in a predetermined GT load depends on the combustion parameter PM.
  • steady-state data 128 in each step is collected.
  • the combustion margin confirmation step S20 the two steps of the raising command step STU and the lowering command step STD are completed, and one cycle work of confirming the margin of the target combustion parameter PM is completed.
  • the selection of whether to select the raising command process STU in the first step PR1 of the first half and the lowering commanding step STD in the second step of the second half, or vice versa, is the characteristic of the combustor or the combustion state. Is determined by.
  • the target margin width TMW to confirm the combustion margin range is set.
  • the target margin width TMW is the difference between the target margin upper limit TMUL that defines the upper limit of the command value CM in the raising command process STU and the target wealth lower limit TMLL that defines the lower limit of the command value CM in the lower command process STD. Shown. Basically, it is desirable to select the same width for the target margin upper limit value TMUL and the target margin lower limit value TMLL from the position of the origin OP which is the reference of the output for confirming the combustion margin.
  • the command value CM in the raising command process STU and the lowering command process STD, the command value CM may be increased or decreased in one direction at a constant rate, and as shown in FIG. 4, the command value CM may be increased or decreased. May be raised or lowered along the stepped stage S. Which method is selected is selected according to the characteristics of the combustor and the operating condition of the gas turbine. Further, the stage width SW is the same width, and the number of stages S in the raising command process STU or the lowering command process STD from the origin OP to the target wealth upper limit value TMUL or the target wealth lower limit value TMLL is the same, and the combustion margin range. It is desirable to confirm.
  • the command value CM is selected by setting the position of the origin OP to zero (%) and increasing the command value CM in the (+) direction from the position of the origin OP.
  • the position of the origin OP is set to zero (%), and the command value CM decreases in the ( ⁇ ) direction from the position of the origin OP. It is desirable that the target margin range TMW be variable as long as it does not adversely affect the device.
  • FIG. 4 is an example of the first combustion margin confirmation pattern.
  • the combustion vibration is suppressed within the permissible level within the range where the command value CM of the combustion parameter PM is within the range of the target margin upper limit value TMUL or the target margin lower limit value TMLL.
  • FIG. 5 is an example of the second combustion margin confirmation pattern.
  • the second combustion margin confirmation pattern is an example in which the combustion vibration exceeds the permissible level and the combustion vibration occurs before the command value CM of the combustion parameter PM reaches the target margin upper limit value TMUL in the raising command process STU. Is.
  • FIG. 4 is an example of the first combustion margin confirmation pattern.
  • the combustion vibration is suppressed within the permissible level within the range where the command value CM of the combustion parameter PM is within the range of the target margin upper limit value TMUL or the target margin lower limit value TMLL.
  • An example in which the degree confirmation process is completed is shown.
  • FIG. 5 is an example of the second combustion margin confirmation pattern.
  • the second combustion margin confirmation pattern
  • FIG. 6 is an example of the third combustion margin confirmation pattern.
  • the third combustion margin confirmation pattern in the processes on both sides of the raising command process STU and the lowering command process STD, before the command value CM of the combustion parameter reaches the target wealth upper limit value TMUL and the target wealth lower limit value TMLL. This is an example in which combustion vibration exceeds the permissible level and combustion vibration occurs.
  • FIG. 7 is an example of the fourth combustion margin confirmation pattern.
  • the fourth combustion margin confirmation pattern is a modification of the second combustion margin confirmation pattern shown in FIG. 5, and is before the command value CM of the combustion parameter PM reaches the target margin lower limit value TMLL in the lower command process STD. There is an example of combustion vibration occurring in.
  • ⁇ 1st combustion margin confirmation pattern >> In the first combustion margin confirmation pattern shown in FIG. 4, it was confirmed that the combustion vibration was suppressed within the permissible level up to the target margin upper limit value TMUL in the raising command process STU of the first step PR1 and no combustion vibration was generated. did it. Further, even in the next lowering command process STD of the second step PR2, it is confirmed that the combustion vibration is suppressed within the permissible level up to the target margin lower limit value TMLL and the combustion vibration does not occur, and the position of the origin OP is reached. An embodiment in which the command value CM is returned and the combustion margin range of one cycle at a predetermined GT load and a predetermined origin OP can be confirmed is shown.
  • the fact that the combustion vibration is suppressed within the permissible level means a state in which the combustion vibration is suppressed within the permissible level until a certain holding time elapses at a predetermined set value ST.
  • the first combustion margin confirmation pattern will be specifically described with reference to FIG.
  • the first combustion margin confirmation pattern shows an example in which the raising command process STU is prioritized as the first step PR1 and the lowering commanding process STD of the second step PR2 is executed after the raising commanding process STU is completed.
  • the command value CM is set by adding a predetermined command value input rate BIR starting from the origin OP at the time of initial setting.
  • the command value CM reaches a predetermined new command value CM, the predetermined holding time T1 is held and the presence or absence of combustion vibration is confirmed.
  • a predetermined command value input rate BIR is added to the command value CM to set a new command value CM of the next stage S.
  • the predetermined holding time T1 is held, and the presence or absence of the occurrence of combustion vibration is confirmed. This procedure is repeated with a stage width SW having the same width, and the command value CM reaches the target tolerance upper limit value TMUL, the predetermined holding time T1 is held, and the presence or absence of combustion vibration is confirmed.
  • combustion vibration does not occur even after the predetermined holding time T1 has elapsed, it is determined that the combustion margin range with respect to the origin OP at the time of initial setting in the raising command process STU has been confirmed.
  • the command value CM reaches the target margin upper limit value TMUL, and the predetermined retention time T2 is maintained from the time when the retention time T1 has elapsed, and the gas turbine 1
  • the steady-state data 128 of is collected.
  • the command value CM is set by applying a predetermined bias to the current command value CM in which the holding time T1 (first holding time) is maintained without generating combustion vibration.
  • the holding time T1 (first holding time) may be selected to be different depending on the characteristics of the combustor and the operating state of the gas turbine.
  • a new command value CM is set by subtracting a predetermined command value input rate BIR from the origin OP.
  • the predetermined holding time T1 is held and the presence or absence of combustion vibration is confirmed.
  • a predetermined command value input rate BIR is subtracted from the command value CM to set a new command value CM of the next stage S.
  • the predetermined holding time T1 is held by the new command value CM, and the presence or absence of combustion vibration is confirmed. This procedure is repeated with a stage width SW having the same width, and the command value CM reaches the target tolerance lower limit value TMLL, the predetermined holding time T1 is held, and the presence or absence of combustion vibration is confirmed. If combustion vibration does not occur even after the predetermined holding time T1 has elapsed, it is determined that the combustion margin range with respect to the origin OP at the time of initial setting in the lowering command process STD has been confirmed.
  • a predetermined holding time T2 (second holding time) is held from the time when the command value CM reaches the target lower limit value TMLL and the holding time T1 elapses, and steady-state data 128 is collected.
  • the command value CM is returned to the position of the original origin OP at the command value release rate BRR at the time of returning to the predetermined origin, and the first combustion margin is obtained.
  • the confirmation work of one cycle of the combustion margin range at the predetermined GT load and the predetermined origin OP of the confirmation pattern is completed.
  • the collected steady data 128 of the gas turbine 1 is transmitted to the database 127.
  • the command value input rate BIR may be a fixed fixed value in a stepped manner, or may be a tilt rate having a constant slope.
  • Second combustion margin confirmation pattern is different from the first combustion margin confirmation pattern shown in FIG. Is shown as an example when is not confirmed. That is, in the raising command process STU, the case where the combustion vibration occurs after the command value CM reaches the target tolerance upper limit value TMUL and before the holding time T1 elapses is shown. If combustion vibration occurs without maintaining the holding time T1 in the command value CM that is the target margin upper limit value TMUL, the command value CM of the stage S that is lowered by one stage immediately before the stage S where the combustion vibration occurs is set. , Set as the actual wealth upper limit value AMUL of the raising command process STU.
  • the raising command process STU is preferentially executed, and after the raising commanding process STU is completed, the lowering commanding process STD, which is the second step PR2, is executed.
  • a new command value CM is set by adding a predetermined set value input rate BIR from the origin OP at the time of initial setting as the starting point, as in the first combustion margin confirmation pattern.
  • the command value CM reaches a predetermined new command value CM, the predetermined holding time T1 is held and the presence or absence of combustion vibration is confirmed.
  • a predetermined command value input rate BIR is further added to the command value CM, and the presence or absence of combustion vibration in the new command value CM of the next stage S is confirmed.
  • the method of repeating this procedure is the same as the first combustion margin confirmation pattern.
  • the target combustion margin range that should be originally confirmed is that the command value CM confirms the combustion margin range without causing combustion vibration at the target margin upper limit value TMUL. ..
  • the raising command process STU since combustion vibration was generated in the raising command process STU, the raising command process STU was completed in a state where one stage was insufficient. In this case, it is returned to the command value CM which is the stage S immediately before the combustion margin range is confirmed without generating combustion vibration, and this command value CM is set as the actual margin upper limit value AMUL.
  • the holding time T2 is maintained from the time point PF when the combustion vibration occurs at this command value CM, and the steady-state data 128 of the gas turbine 1 is collected.
  • the collected steady-state data 128 is transmitted to the database 127.
  • the number of the original target stages S is one stage short, so in the lowering commanding process STD, the stage of the lowering commanding process STD which is the original target.
  • the combustion margin confirmation step S20 is executed with the number of stages one stage larger than the number.
  • combustion is further lowered by one stage in the direction of lowering the command value CM from the target lower limit value TMLL at the time of initial setting. Perform a margin check. If the holding time T1 is maintained without the occurrence of combustion vibration in the command value CM that is one step lower than the target margin lower limit value TMLL, it is judged that the combustion margin range in this command value CM has been confirmed, and this The command value CM is set as the actual wealth lower limit value AMLL.
  • the specific procedure for confirming the combustion margin range in the second combustion margin confirmation pattern lowering command process STD is the same as the first combustion margin confirmation pattern lowering command process STD, except for the difference in the number of stages.
  • the holding time T1 is maintained without the occurrence of combustion vibration at the lower limit of the actual margin value ALL, it is determined that the combustion margin range with this command value CM has been confirmed, and the command value CM is the lower limit value of the actual margin value ALLL.
  • the holding time T2 is maintained from the time when the holding time T1 is reached, and the steady data 128 of the gas turbine 1 in the raising command step STU is collected. As a result, it is determined that the second step is completed.
  • the second combustion margin confirmation pattern is different from the first combustion margin confirmation pattern in that the number of stages differs between the ascending command process STU and the lowering command process STD. That is, as described above, it is desirable that the number of stages is the same in the raising command process STU and the lowering command process STD centering on the origin OP. Therefore, the position of the origin OP in the second combustion margin confirmation pattern is set to the intermediate position (midpoint position) between the actual wealth upper limit value AMUL of the raising command process STU and the actual wealth lower limit value AMLL of the lowering command process STD. Is desirable.
  • the position of the origin OP after confirming the combustion margin range is moved to the position of the command value CM lowered by one stage in the direction of lowering the command value from the position of the origin OP at the time of initial setting, and this position is moved to the position of the new origin.
  • NOP the position of the command value CM lowered by one stage in the direction of lowering the command value from the position of the origin OP at the time of initial setting.
  • the holding time T1 cannot be maintained and is shorter than the holding time T1.
  • combustion vibration is generated at the non-delivery time T0.
  • the command value CM is before the target margin upper limit value TMUL, which is the command value CM of the next stage S, is reached from the stage S lowered by one stage immediately before the stage S where the combustion vibration occurs.
  • the command value CM in the stage S in which the combustion margin range immediately before the combustion vibration is confirmed is set to the actual margin upper limit value AMUL in the raising command process STU.
  • the procedure for confirming the combustion margin range in the lower command step STD of the second step PR2 is the same as the first combustion margin confirmation pattern shown in FIG. 4, and the origin OP at the time of initial setting is a new new one. It is desirable to move to the origin NOP. Further, in the raising command process STU of the first step PR1 shown in FIG. 5, even when the combustion vibration occurs at the command value CM lower than the target margin upper limit value TMUL by two stages or more, the stage S in which the combustion vibration occurs. The command value CM in the stage S in which the immediately preceding combustion margin range is confirmed may be set to the actual margin upper limit value AMUL.
  • the lowering command process STD of the second step PR2 it is the difference between the number of stages S of the target margin upper limit value TMUL of the raising command process STU in which combustion vibration is generated and the number of stages of the actual wealth upper limit value AMUL. Then, the number of unachieved stages for which the combustion margin range has not been confirmed is subtracted from the target margin lower limit value TMLL of the lowering command process STD, and a new number of stages is set in the direction of lowering the command value. .. Based on the new number of stages, the number of stages that have not reached the command value CM is lowered from the target lower limit value TMLL by the number of stages, and the combustion margin confirmation of the lower command step STD is executed.
  • the command value CM in the final stage S of the lower command process STD is set to the actual margin lower limit value ALL.
  • the command value CM which is an intermediate position (midpoint position) between the actual wealth upper limit value AMUL and the actual wealth lower limit value AMLL, is set as the new origin NOP. In this case as well, it is determined that the origin shift has occurred.
  • Third combustion margin confirmation pattern As for the third combustion margin confirmation pattern shown in FIG. 6, the raising command process STU is prioritized in the first step PR1 as in the second combustion margin confirmation pattern shown in FIG. However, this is an example different from the second combustion margin confirmation pattern shown in FIG. 5 in that combustion vibration is generated in both steps of the raising command step STU and the lowering command step STD. Further, in the third combustion margin confirmation pattern, the total number of stages between the actual wealth upper limit value AMUL and the actual wealth lower limit value AMLL is the target wealth upper limit value TMUL and the target wealth lower limit value TMLL at the time of initial setting.
  • the first combustion margin confirmation pattern and the second combustion margin confirmation pattern are in that the confirmation of the combustion margin range is completed while the total number of stages between the two is not reached and the number of unachieved stages remains. Is a different aspect.
  • the command value CM is lowered to the command value CM of the stage S immediately before the combustion vibration occurs, and the command value CM in this stage S is defined as the actual margin upper limit value AMUL.
  • the command value CM reaches the actual wealth upper limit value AMUL (PF at the time when the combustion vibration occurs)
  • the holding time T2 is maintained and the steady data 128 of the gas turbine 1 is collected, and it is judged that the first step PR1 is completed.
  • the command value CM is returned to the position of the origin OP.
  • the collected steady-state data 128 is transmitted to the database 127.
  • the stage S is one stage more than the original target number of stages. It is desirable to execute the combustion margin confirmation step S20 by the number and maintain the total number of stages between the predetermined target margin upper limit value TMUL and the target margin lower limit value TMLL. Therefore, in the lower command step STD of the second combustion margin confirmation pattern shown in FIG. 5, the combustion margin is confirmed by further lowering the command value CM from the target lower limit value TMLL at the time of initial setting by one step. Running.
  • combustion vibration occurs in the stage S before the command value CM reaches the target lower limit value TMLL.
  • combustion vibration occurs in the process of lowering the command value CM toward the next stage S after completing the combustion margin confirmation from the position of the origin OP to the three stages S in the lowering direction of the set value ST.
  • the command value is further commanded from the position of stage S where the command value CM is the target margin lower limit TMLL.
  • combustion vibration occurs in the stage S before the target margin lower limit value TMLL is reached, and the combustion margin cannot be confirmed in the original target range, so that the first step PR1 In the processes on both sides of the raising command process STU and the lowering commanding process STD of the second step PR2, the combustion margin confirmation step S20 was completed while leaving a plurality of unachieved stages S for which the combustion margin range could not be confirmed. It is a pattern.
  • the set value ST is returned to the command value CM of the stage S immediately before the combustion vibration is generated, and the command value CM is lowered and set to the actual wealth lower limit value ALL in the command process STD.
  • the holding time T2 is maintained from the time when the command value CM which is the lower limit of the actual wealth degree is returned to the command value CM (the time when the combustion vibration occurs), the steady data 128 of the gas turbine 1 is collected, and then the data is transmitted to the database 127. As a result, it is determined that the second step PR2 of this pattern is completed.
  • combustion vibration is generated in the raising command process STU, and the combustion margin confirmation step S20 of the raising command process STU is completed while leaving the unachieved stage S, and the target wealth is reached.
  • the actual wealth upper limit value AMUL which is an upper limit value lower than the degree upper limit value TMUL, was set.
  • Combustion vibration also occurs in the lower command process STD, and the combustion margin confirmation step S20 of the raise command process STU is completed while leaving the unachieved stage S, which is a lower limit lower than the target margin lower limit TMLL.
  • the lower limit of actual wealth AMLL was set.
  • the range of the confirmed combustion margin (the width between the actual wealth upper limit value AMUL and the actual wealth lower limit value MLL) in this embodiment is the total number of stages of the increase command process STU and the decrease command process STD at the time of initial setting. It means that the combustion margin confirmation step S20 has been completed in a range narrower than the target margin width TMW at the time of initial setting. Further, as a result of checking the combustion margin range in this embodiment, the origin OP at the time of initial setting is changed to an intermediate position (midpoint position) between the actual wealth upper limit value AMUL and the actual wealth lower limit value AMLL. ..
  • the command value CM is moved to the position of the new origin NOP at the release rate BRR at the time of returning to the predetermined origin. To. In this case as well, it is determined that the origin shift has occurred.
  • the fourth combustion margin confirmation pattern shown in FIG. 7 is a modification in which the first step PR1 and the second step PR2 are exchanged with respect to the second combustion margin confirmation pattern shown in FIG. That is, in the fourth combustion margin confirmation pattern shown in FIG. 7, the second combustion margin confirmation shown in FIG. 5 is executed in the first step PR1 in that the lower command process STD is executed in preference to the raise command process STU. It's a little different from the pattern.
  • the lowering command of the first step PR1 is performed, leaving the number of unachieved stages where the combustion vibration is generated in the lowering command process STD and the combustion margin range cannot be confirmed. The process STD has been completed.
  • the combustion margin confirmation step S20 is completed.
  • the other procedure except for the difference in priority between the raising command process STU and the lowering command process STD is the same as the second combustion margin confirmation pattern shown in FIG.
  • the command value CM of the stage S immediately before the stage S where the combustion vibration occurs is set to the actual margin lower limit value ALLL, and the raising command step of the second step PR2 is set.
  • the command value CM of the stage S which is the sum of the number of unachieved stages to the target tolerance upper limit value TMUL, is set to the actual wealth upper limit value AMUL.
  • the range of the combustion margin confirmed in this pattern (the width between the actual wealth upper limit value AMUL and the actual wealth lower limit value AML) is the same as the target margin width TMW at the time of initial setting.
  • the position of the origin OP in the fourth combustion margin confirmation pattern is the actual wealth lower limit value AMLL of the lower command process STD and the actual wealth upper limit of the increase command process STU. It is desirable to use an intermediate position (midpoint position) between the values AMUL. Therefore, the origin OP after confirming the combustion margin range is moved to the position of the command value CM in which the number of unachieved stages is added in the direction of increasing the command value CM from the origin OP at the time of initial setting, and is used as the new origin NOP. There is.
  • the command value CM is moved to the position of the new origin NOP at the release rate BRR at the time of returning to the predetermined origin, and the second step PR2 is finished.
  • the command value CM which is the stage S immediately before the stage S where the combustion vibration occurs, is the lower limit of the actual margin value, ALL, and the holding time T2 is maintained from the time point PF when the combustion vibration occurs, and the gas is maintained.
  • Steering data 128 for turbine 1 is collected and sent to database 127.
  • the steady data 128 of the gas turbine 1 whose command value CM is collected in the actual margin upper limit value AMUL is transmitted to the database 127.
  • the flow of the entire process shown in FIG. 8 is an example, and is not limited to this flow example.
  • the combustion load variable correction step S40 is executed after the combustion margin confirmation step S20, but the combustion load variable correction step S40 may be executed before the combustion margin confirmation step S20. ..
  • FIG. 8 shows a combustion margin confirmation step S20 in the direction of increasing the GT load from a small GT load to a rated load (100%) of a large GT load for a plurality of GT loads selected for combustion adjustment. The whole process including is shown.
  • the combustion margin adjusting unit 130 shown in FIG. 3 when executing the combustion margin adjustment in the direction of increasing the GT load, as shown in FIG. 8, the combustion adjustment that takes in various operation data, parameters, etc. New when the origin shift occurs in the set value input step S10, the combustion margin confirmation step S20 for operating the gas turbine 1 and confirming the combustion margin range of the combustion parameter PM, and the combustion margin confirmation step S20.
  • the setting value change step S30 for changing the set value of the combustion load variable CLP with reference to the origin NOP, and the maximum load for correcting the planned maximum output so that the combustion load variable CLP at the planned maximum output becomes the rated value (100%).
  • a combustion load variable correction step S40 comprising a correction step S50, a set value conversion step S70 for modifying the corrected combustion load variable CLP so that the relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM is maintained, and a combustion load variable correction step S40. Consists of. If the origin shift does not occur in the combustion margin confirmation step S20, the process may shift to the next combustion load variable correction step S40 without executing the set value changing step S30.
  • the target margin width TMW of the combustion parameter PM divides the raising command process STU and the lowering command process STD centering on the origin OP by the same stage width SW, and for each process, The same stage width SW, number of stages SN, and input rate BIR between stages are added as input data.
  • the stage width SW of each stage S in the raising command process STU and the stage width SW of each stage S in the lowering commanding process STD may have the same width in the raising commanding process STU and the lowering commanding process STD. , May be different widths.
  • FIG. 9 shows the flow of the combustion margin confirmation step S20 of the combustion parameter PM.
  • the process of confirming the combustion margin range starts.
  • the combustion margin confirmation step S20 first, the priority of the combustion parameter PM for confirming the combustion margin range is set.
  • the combustion parameter PM of the first priority is set to PM1, and the second priority is set.
  • the combustion parameter PM of priority is assigned as PM2, and the combustion parameter PM of third priority is assigned as PM3 (S21).
  • the priority pattern data for the purpose of confirming the combustion margin range stored in the database 127 of the automatic combustion adjustment unit 120 may be called and the priority of the combustion parameter PM may be set.
  • the priority pattern data may be, for example, a database capable of automatically selecting the priority of the combustion parameter PM based on the combustion load variable CLP. Further, the priority pattern data may include data that determines the priority of the raising command process STU or the lowering command process STD with respect to the set combustion parameter PM by the combustion load variable CLP.
  • the gas turbine load (GT load) for confirming the combustion margin range is set (S22).
  • GT load gas turbine load
  • a plurality of GT loads are set in the range of the GT load of 0 to 100%.
  • the selected GT load is input to the input unit 121.
  • the GT load of 100% corresponds to the planned maximum output or the rated output
  • the GT load of 0% corresponds to the output at no load.
  • the same GT load is used until the confirmation of each combustion margin range of all combustion parameters (pilot ratio PL, top hat ratio TH, bypass valve opening BV) is completed. It is desirable to carry out a check of the combustion margin range.
  • the combustion margin confirmation of the first priority first combustion parameter PM1 is executed (S23).
  • the specific implementation procedure and contents of confirmation of the combustion margin range of the first combustion parameter PM1 of the first priority are the first combustion margin confirmation pattern or the second combustion margin shown in FIG. 4 or FIG. 5 or FIG. It is executed according to either the confirmation pattern or the fourth combustion margin confirmation pattern (S23).
  • the combustion margin confirmation of the first combustion parameter PM1 if combustion vibration does not occur in both processes in the raising command process STU and the lowering command process STD, the combustion margin confirmation of the first combustion parameter PM1 is completed.
  • the combustion margin confirmation step S20 is determined to be continued (S23), and the process proceeds to the next step (S25).
  • the position of the origin OP1 of the first combustion parameter PM1 is maintained.
  • the origin OPs of the first combustion parameter PM1, the second combustion parameter PM2 and the third combustion parameter PM3 are represented by OP1, OP2, OP3, and the new origin NOPs are represented by NOP1, NOP2, NOP3.
  • the target margin range TMW is displayed as TMW1, TMW2, and TMW3.
  • the origin In the confirmation of the combustion margin range of the first combustion parameter PM1, if combustion vibration occurs in either the raising command process STU or the lowering command process STD, the origin is shifted to a predetermined combustion margin range. It is determined whether or not a certain target margin width TMW1 can be secured (S24). If it is determined that the predetermined combustion margin range of the first combustion parameter PM1 is secured, the combustion margin confirmation of the first combustion parameter PM1 is completed, and it is determined that the combustion margin confirmation step S20 is continued (S24). ), The process proceeds to the next step (S25). In the case of this embodiment, since the origin shift of the first combustion parameter PM1 has occurred, the position of the origin OP1 of the first combustion parameter PM1 moves to the new origin NOP1. The stationary data 128 of the gas turbine 1 and the position data of the new origin NOP1 collected by the first combustion parameter PM1 are transmitted to the database 127 (S24).
  • the process proceeds to the confirmation of the combustion margin range of the second combustion parameter PM2.
  • the target margin width TMW1 which is a predetermined combustion margin width cannot be secured, but the combustion vibration is narrower than the target margin width TMW1. If it is determined that the range in which the gas turbine 1 does not occur can be maintained, it is determined that the combustion margin range required for stable operation continuation of the gas turbine 1 is secured. In that case, the confirmation of the combustion margin range of the first combustion parameter PM1 is completed, the combustion margin confirmation step S20 is determined to be continued (S24), and the process proceeds to the next step (S25). If it is determined that the combustion margin range required for stable operation of the gas turbine 1 of the first combustion parameter PM1 cannot be secured, it is determined that the combustion margin confirmation step S20 cannot be continued, and the combustion margin confirmation step is performed. S20 ends (S24).
  • the combustion margin confirmation of the second combustion parameter PM2 is executed (S25).
  • the specific implementation procedure and work contents of the confirmation of the combustion margin range of the second combustion parameter PM2 are the first combustion margin confirmation pattern shown in FIG. 4 or FIG. 5 or FIG. 7, as in the case of the first combustion parameter PM1.
  • the combustion margin confirmation pattern or the fourth combustion margin confirmation pattern If combustion vibration does not occur in both the raising command process STU and the lowering command process STD for the second combustion parameter PM2, the combustion margin confirmation of the second combustion parameter PM2 is completed, and the combustion margin confirmation step S20 is continued. (S25), and the process proceeds to the next step (S27). In this case, the position of the origin OP2 of the second combustion parameter PM2 is maintained.
  • the origin of the second combustion parameter PM2 is shifted. Then, it is determined whether or not the target margin width TMW2, which is a predetermined combustion margin range, can be secured (S26). If it is determined that the predetermined target margin width TMW2 of the second combustion parameter PM2 is secured, the confirmation of the combustion margin range of the second combustion parameter PM2 is completed, and it is determined that the combustion margin confirmation step S20 is continued. (S26).
  • the origin shift of the second combustion parameter PM2 occurs, the position of the origin OP2 of the second combustion parameter PM2 moves to the new origin NOP2, and the first combustion which is the first priority combustion parameter PM is performed. It is returned to the step (S23) of the combustion margin confirmation of the parameter PM1 (S26).
  • the reason for returning to the step of confirming the combustion margin of the first combustion parameter PM1 (S23) is that the origin of the second combustion parameter PM2 is shifted in the step of confirming the combustion margin of the second combustion parameter PM2 (S25).
  • the target margin width TMW2 which is a predetermined combustion margin width
  • the target margin width TMW2 which is a predetermined combustion margin width
  • the position of the origin OP2 of the second combustion parameter PM2 moves to the new origin NOP2, and the first priority combustion parameter It is returned to the step (S23) of confirming the combustion margin range of the first combustion parameter PM1 (S26). If it is determined that the predetermined combustion margin range of the second combustion parameter PM2 cannot be secured, it is determined that the combustion margin confirmation step S20 cannot be continued, and the combustion margin confirmation step S20 ends (S26). ..
  • the combustion margin confirmation of the third combustion parameter PM3 is executed (S27).
  • the specific implementation procedure and work contents of the combustion margin confirmation of the third combustion parameter PM3 are the first combustion margin confirmation pattern, the second combustion margin confirmation pattern, or the fourth combustion shown in FIG. 4 or FIG. 5 or FIG. As shown in one of the margin confirmation patterns.
  • the third combustion parameter PM3 if combustion vibration does not occur in both steps in the raising command process STU and the lowering command process STD, the confirmation of the combustion margin range of the third combustion parameter PM3 is completed and the combustion margin is completed.
  • the degree confirmation step S20 is determined to be continued (S27), and the process proceeds to the next step (S29).
  • the position of the origin OP3 of the third combustion parameter PM3 is maintained, and the stationary data 128 of the gas turbine 1 collected by the third combustion parameter PM3 is transmitted to the database 127.
  • the origin is shifted to achieve the target combustion margin within the predetermined combustion margin range. It is determined whether or not the width TMW3 can be secured (S28). If it is determined that the predetermined target margin width TMW3 of the third combustion parameter PM3 is secured, the combustion margin confirmation of the third combustion parameter PM3 is completed, and it is determined that the combustion margin confirmation step S20 is continued. (S28).
  • the origin OP3 of the third combustion parameter PM3 has occurred.
  • the position of is moved to the new origin NOP3 and returned to the step (S23) of confirming the combustion margin of the first combustion parameter PM1 (S26).
  • the reason for returning to the step (S23) for confirming the combustion margin of the first combustion parameter PM1 is the same as the case where the origin shift of the second combustion parameter PM2 occurs.
  • the stationary data 128 of the gas turbine 1 collected by the third combustion parameter PM3 is transmitted to the database 127 together with the position data of the new origin NOP3.
  • the step (S27) for confirming the combustion margin of the third combustion parameter PM3 is the third combustion margin confirmation pattern shown in FIG. 6, the target margin width TMW3, which is a predetermined combustion margin width, can be secured. However, if it is judged that the range in which combustion vibration does not occur can be maintained even with a margin width narrower than the target margin width TMW3, the combustion margin width necessary for stable operation continuation of the gas turbine 1 is secured. It is determined that the combustion margin confirmation of the third combustion parameter PM3 is completed, and the combustion margin confirmation step S20 is continued (S28).
  • the process After completing the combustion margin confirmation (S28) of the third combustion parameter PM3, the process proceeds to the next step (S29), and it is determined whether or not the GT load has reached the maximum load (S29). If the GT load has not reached the maximum load, the process returns to the GT load setting step S22, and the next GT load is set from the GT load at the time of initial setting (S22). Based on the new GT load, the combustion margin confirmation of the combustion parameters is repeated (S23 to S29). When the GT load reaches the maximum load, the combustion margin confirmation step S20 ends (S29), and the process proceeds to the set value changing step S30 shown in FIG.
  • combustion margin confirmation step S20 ends (S28). ..
  • the flow shown in FIG. 9 is the combustion margin confirmation step S20 in the direction of increasing the GT load, but in the case of the combustion margin confirmation step S20 in the direction of decreasing the GT load, the GT load reaches the minimum load. It is determined whether or not this has been done (S29), the next GT load is set (S22), and the combustion margin confirmation step S20 is executed.
  • combustion load variable correction step S40 the combustion parameter PM and the combustion load variable CLP are set so that the gas turbine 1 obtains the planned maximum output MOP at the rated value (100%) of the combustion load variable CLP.
  • This is a step of making corrections necessary for optimizing the set value ST indicating the relationship. That is, in the combustion load variable correction step S40, the combustion load variable CLP is the rated value at the planned maximum output MOP of the gas turbine 1 on the precondition that the proper relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM is maintained.
  • the relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM is maintained. It is composed of a set value conversion step S70 for converting the set value of the combustion load variable CLP.
  • the GT load control is executed using the combustion load variable CLP displayed by the following formula instead of the gas turbine inlet temperature GTIT.
  • the control of the GT load (GT output) is specifically controlled by the pilot ratio PL, the top hat ratio TH, the bypass valve opening BV, etc., which are the combustion parameter PMs, and each combustion parameter PM is the combustion load variable CLP. Displayed by a function.
  • the combustion load variable CLP of the combustion parameter PM can be calculated by the following [Equation 1].
  • Combustion load variable CLP (%) [(Turbine output-No-load equivalent output) / (Planned maximum output-No-load equivalent output)] x 100
  • the planned maximum output MOP means the turbine output (gas turbine output) at the planned output or the rated output
  • the no-load equivalent output NOP means the turbine output at the time of no load.
  • the combustion load variable CLP is the rated value (100%)
  • the combustion load variable CLP is equivalent to 0 (%). do.
  • the result of the combustion margin confirmation step S20 is correctly reflected in the set value indicating the relationship between the combustion parameter PM and the combustion load variable CLP.
  • the relationship between the combustion parameter PM and the combustion load variable CLP is the rated value of the combustion load variable CLP while maintaining the relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM.
  • the planned maximum load (planned maximum output) MOP needs to be set to be output. Since the combustion control device 100 is set so that the combustion load variable CLP corresponding to the planned maximum output MOP is the rated value (100%), the set value of the combustion load variable CLP is set lower than the rated value.
  • FIGS. 10A to 10C show the concept of the correction means when the gas turbine 1 reaches the planned maximum output MOP at a position where the combustion load variable CLP does not reach the rated value (100%) (Case 1).
  • FIG. 10A is a diagram showing the relationship between the combustion parameter PM of Case 1 and the combustion load variable CLP by placing the combustion parameter PM on the vertical axis and the combustion load variable CLP on the horizontal axis.
  • FIG. 10B is a diagram showing the relationship between the gas turbine inlet temperature GTIT of Case 1 and the combustion load variable CLP by placing the gas turbine inlet temperature GTIT on the vertical axis and the combustion load variable CLP on the horizontal axis.
  • FIG. 10A is a diagram showing the relationship between the combustion parameter PM of Case 1 and the combustion load variable CLP by placing the combustion parameter PM on the vertical axis and the combustion load variable CLP on the horizontal axis.
  • FIG. 10B is a diagram showing the relationship between the gas turbine inlet temperature GTIT of Case 1 and the combustion
  • FIGS. 10C is a diagram showing the relationship between the gas turbine inlet temperature GTIT of Case 1 and the combustion parameter PM with the combustion parameter PM on the vertical axis and the gas turbine inlet temperature GTIT on the horizontal axis.
  • the curve [I-1] and the straight line [I-1] shown by the broken line are the data immediately after being acquired in the combustion margin confirmation step S20.
  • the curved line [II-1] and the straight line [II-1] shown by the chain line are the data after being corrected in the maximum load correction step S50.
  • the curve [III] and the straight line [III] shown by the solid line are the data after being converted in the set value conversion step S70.
  • FIG. 11A to 11C show the concept of the correction means when the gas turbine 1 reaches the planned maximum output MOP at a position where the set value ST of the combustion load variable CLP exceeds the rated value (100%) (Case 2). Shows.
  • FIG. 11A is a diagram showing the relationship between the combustion parameter PM of Case 2 and the combustion load variable CLP by placing the combustion parameter PM on the vertical axis and the combustion load variable CLP on the horizontal axis.
  • FIG. 11B is a diagram showing the relationship between the gas turbine inlet temperature GTIT of Case 2 and the combustion load variable CLP by placing the gas turbine inlet temperature GTIT on the vertical axis and the combustion load variable CLP on the horizontal axis.
  • FIG. 11A is a diagram showing the relationship between the combustion parameter PM of Case 2 and the combustion load variable CLP by placing the combustion parameter PM on the vertical axis and the combustion load variable CLP on the horizontal axis.
  • FIG. 11B is a diagram showing the relationship between the gas turbine inlet temperature GTIT
  • 11C is a diagram showing the relationship between the gas turbine inlet temperature GTIT of Case 2 and the combustion parameter PM with the combustion parameter PM on the vertical axis and the gas turbine inlet temperature GTIT on the horizontal axis.
  • the curve [I-2] and the straight line [I-2] shown by the broken line are the data immediately after being acquired in the combustion margin confirmation step S20.
  • the curved line [II-2] and the straight line [II-2] shown by the chain line are the data after being corrected in the maximum load correction step S50.
  • the curve [III] and the straight line [III] shown by the solid line are the data after being converted in the set value conversion step S70.
  • the curve [I-1] shown in FIG. 10A shows a set value indicating the relationship between the combustion parameter PM acquired in the combustion margin confirmation step S20 and the combustion load variable CLP.
  • the curve [I-1] shows an example in which the GT load increases and the combustion parameter PM decreases as the combustion load variable CLP increases.
  • the set value shown by the curve [I-1] indicates the set value of the optimum combustion load variable CLP for the gas turbine inlet temperature GTIT of the current device, and is the set value capable of the most appropriate combustion control without generating combustion vibration. be.
  • the curve [I-1] shows Y (%) in which the set value of the combustion load variable CLP in the planned maximum output (GT load 100%) MOP is not the rated value (100%) but lower than the rated value (100%). At the position of, the planned maximum output (GT load 100%) MOP has been reached.
  • the combustion control device 100 is set so that the combustion load variable CLP becomes the rated value (100%) at the planned maximum output (GT load 100%) MOP.
  • the curve [III] shown in FIG. 10A is a set value showing the relationship between the combustion parameter PM incorporated in the combustion control device 100 and the combustion load variable CLP. If the deviation between the rated value (100%) of the combustion load variable CLP shown on the horizontal axis and the coordinate axis of Y (%) is left unattended, the combustion control of the gas turbine 1 is adversely affected. Therefore, the relationship of the curve [I-1] shown in FIG.
  • the curve [II-1] shows the relationship between the combustion parameter PM and the combustion load variable CLP before conversion of the set value, which will be described later, and is consistent with the curve [I-1].
  • FIG. 10B is a diagram comparing the set values showing the relationship between the combustion parameter PM and the combustion load variable CLP in FIG. 10A by replacing them with the relationship between the gas turbine inlet temperature GTIT and the combustion load variable CLP.
  • the straight line shown in FIG. 10B is obtained by replacing the relationship between the curve [I-1], the curve [II-1] and the curve [III] shown in FIG. 10A with the relationship between the gas turbine inlet temperature GTIT and the combustion load variable CLP. It corresponds to [I-1], a straight line [II-1] and a straight line [III].
  • the relationship between the gas turbine inlet temperature GTIT of the straight line [I-1], the straight line [II-1], and the straight line [III] shown in FIG. 10B and the combustion load variable CLP is proportional to each other.
  • FIG. 10C is a diagram comparing the set values showing the relationship between the combustion parameter PM and the combustion load variable CLP shown in FIG. 10A by replacing them with the relationship between the combustion parameter PM and the gas turbine inlet temperature GTIT.
  • the curve shown in FIG. 10C is obtained by replacing the relationship between the curve [I-1], the curve [II-1], and the curve [III] shown in FIG. 10A with the relationship between the gas turbine inlet temperature GTIT and the combustion load variable CLP.
  • the position of the point P1-1 is corrected in the direction of reducing the difference (deviation) of the combustion load variable CLP from the position of the point P3 corresponding to the rated value (100%) of the CLP, and the straight line [I-1] becomes a straight line [I-1].
  • a correction means that matches [III] may be applied. By replacing the data of the straight line [I-1] with the data of the straight line [III] by this correction means, the deviation at the time of initial setting of the combustion load variable CLP is eliminated.
  • Equation 2 which will be described later, is a straight line in FIG. 10B in which the straight line [I-1] is moved to the position of the straight line [III] until the position of the point P1-1 at the maximum output temperature TMX coincides with the position of the point P3.
  • a correction means for correcting [1-1] to a straight line [III] By executing the correction means according to [Equation 2], the straight line [1-1] becomes a straight line [III] passing through the point P3 indicating the maximum output temperature TMX at the position of the rated value (100%) of the combustion load variable CLP.
  • the combustion load variable CLP is in the range of 0 to Y (%).
  • the straight line [II-1] is corrected and converted to the straight line [II-1]
  • the position of the point P1-1 of the straight line [II-1] is the straight line [II-] where the combustion load variable CLP is Y (%).
  • the gas turbine inlet temperature GTIT at the combustion load variable CLP at Y (%) is from the inlet temperature TMX to the inlet temperature TMX1 (the corrected combustion load variable CLP is at Y (%). It drops to the inlet temperature). That is, the curve [I-1] showing the relationship between the combustion parameter PM shown in FIG. 10A and the combustion load variable CLP is replaced with the straight line [II-1] shown in FIG. 10B, and the gas turbine inlet temperature with respect to the combustion load variable CLP is replaced. GTIT decreases.
  • the combustion parameter PM and the gas turbine inlet temperature GTIT shown in the curve [I-1] are corrected to the curve [II-1] by correction. That is, the curve [I-1] having the set value that enables proper combustion control after the combustion margin confirmation step S20 is completed has the same relationship between the combustion parameter PM and the gas turbine inlet temperature GTIT as the curve [III]. However, the curve [II-1] corrected by the correction has a relatively lower gas turbine inlet temperature GTIT than the target curve [III].
  • the position of the point P11-1 in which the arbitrary combustion load variable CLP on the curve [I-1] shown in FIG. 10A and the straight line [I-1] shown in FIG. 10B corresponds to X1 (%) is corrected as described above.
  • the curve [II-1] coincides with the curve [I-1] without being different, so that the position of the point P12-1 also coincides with the point P11-1. ..
  • the position of the point P11-1 moves to the point P12-1 on the straight line [II-1] in the same combustion load variable CLP in X1 (%).
  • the relationship between the combustion load variable CLP and the combustion parameter PM does not change even if corrected, but the relationship between the combustion load variable CLP and the gas turbine inlet temperature GTIT is corrected and the gas turbine inlet in the same combustion load variable CLP.
  • the temperature GTIT decreases.
  • the correction means is premised on maintaining the relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM, and this relationship is not maintained. Therefore, in order to satisfy the condition for maintaining the relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM, other correction means are required in addition to the above-mentioned correction means.
  • the relationship between the combustion parameter PM and the combustion load variable CLP is the combustion load while maintaining the relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM. It is necessary to set the planned maximum load (planned maximum output) MOP to be output at the rated value (100%) of the variable CLP, and it is desirable to apply a correction means according to the purpose. From this point of view, the curve [II-1] (straight line [II-1] in FIG. 10B) shown in FIG. 10C selected by the correction is a condition for maintaining the relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM.
  • the combustion gas turbine inlet temperature GTIT shown on the horizontal axis is made to match the inlet temperature TMX from the inlet temperature TMX1 while maintaining the combustion parameter PM on the vertical axis of the curve [II-1].
  • the set value of the combustion load variable CLP may be converted (only the set value of the combustion load variable CLP is slid in the axial direction of the horizontal axis) (set value conversion step S70).
  • set value conversion step S70 By executing the set value conversion step S70, in FIG. 10C, the point P2-1 on the curve [II-1] showing the planned maximum output and the point P3 on the curve [III] showing the planned maximum output without changing the combustion parameter PM.
  • the point P12-1 (FIG.
  • the maximum load correction step S50 which is a correction means in which the combustion load variable CLP that outputs the planned maximum load MOP becomes the rated value (100%) based on [Equation 2], and the gas turbine inlet temperature GTIT. It is desirable to include a set value conversion step S70, which is a correction means for maintaining the relationship between the combustion parameter PM and the combustion parameter PM.
  • the set value of the combustion parameter PM and the combustion load variable CLP is the planned maximum at the rated value (100%) of the combustion load variable CLP while maintaining the relationship between the gas turbine inlet temperature GTIT and the combustion parameter PM.
  • the load (planned maximum output) MOP is corrected to be output. That is, it is a combustion load variable CLP that outputs the planned maximum load (planned maximum output) MOP, although the combustion margin range is confirmed in the combustion margin confirmation step S20 and the set value that can be appropriately controlled for combustion is selected.
  • the adverse effect on the combustion control due to the deviation from the rated value (100%) of the initial set value is eliminated by the above-mentioned correction means.
  • the correction at the time of initial setting enables stable operation for a long period of time even at the stage of steady operation.
  • the gas turbine 1 is the planned maximum at the position where the combustion load variable CLP is at the position where the set value of the combustion load variable CLP exceeds the rated value (100%) and is at the position of Z (%). Shows when the output is reached.
  • the curve [I-2] shown in FIG. 11A shows the relationship between the set value of the combustion parameter PM and the combustion load variable CLP with respect to the combustion parameter PM acquired in the combustion margin confirmation step S20.
  • the curve [I-2] shows the combustion load variable in which the set value of the combustion load variable CLP in the planned maximum output (GT load 100%) MOP exceeds the rated value (100%) instead of the rated value (100%). It differs from Case 1 in that the CLP reaches the planned maximum output (GT load 100%) at the Z (%) position.
  • the curve [II-2] shows the relationship between the combustion parameter PM and the combustion load variable CLP after the combustion load variable CLP is corrected by the maximum load correction step S50.
  • FIG. 11B is a diagram comparing the relationship between the curve [I-2] and the curve [II-2] and the curve [III] in FIG. 11A by replacing the relationship between the gas turbine inlet temperature GTIT and the combustion load variable CLP. ..
  • the straight line shown in FIG. 11B is obtained by replacing the relationship between the curve [I-2], the curve [II-2] and the curve [III] shown in FIG. 11A with the relationship between the gas turbine inlet temperature GTIT and the combustion load variable CLP.
  • FIG. 11C is a diagram comparing the relationship between the curve [I-2] and the curve [II-2] and the curve [III] in FIG.
  • FIG. 11A by replacing the relationship between the combustion parameter PM and the gas turbine inlet temperature GTIT. be.
  • the curve shown in FIG. 11C is obtained by replacing the relationship between the curve [I-2], the curve [II-2], and the curve [III] shown in FIG. 11A with the relationship between the gas turbine inlet temperature GTIT and the combustion load variable CLP. Corresponds to [I-2], curve [II-2] and curve [III].
  • the correction means in the case 2 replaces the curve [I-1] and the curve [II-1] in the above case 1 with the curve [I-2] and the curve [II-2], and the straight line [I-1] and the straight line.
  • [II-1] is read as a straight line [I-2] and a straight line [II-2].
  • the points P1-1, P2-1, P11-1, and P12-1 can be read as points P1-2, P2-2, P11-2, and P12-2.
  • the contents described can be applied to Case 2.
  • the gas turbine inlet temperature GTIT of the data acquired in the combustion margin confirmation step S20 is lowered by the correction, and the lowered gas turbine inlet temperature GTIT is maintained at the initial inlet temperature.
  • Equation 2 is a combustion load variable corrected by using a combustion load variable correction means in order to correct the deviation between the combustion parameter PM and the initial setting value of the combustion load variable CLP with respect to [Equation 1]. It is a formula for calculating CLP, and is composed of correction means of a combustion load variable correction step S40 (maximum load correction step S50, set value conversion step S70).
  • Combustion load variable CLP (%) [(Turbine output (actual output) -No-load equivalent output) / (Planned maximum output x 1st correction coefficient x 2nd correction coefficient-No-load equivalent output)] x 100
  • the first correction coefficient 156a and the second correction coefficient 157a are correction coefficients set in the combustion load variable correction step S40 described later.
  • the concept of the planned maximum output and the output equivalent to no load is the same as in [Equation 1].
  • the first correction coefficient 156a is a correction coefficient for correcting the combustion load variable CLP in order to correct the deviation between the combustion parameter PM and the initial setting value of the combustion load variable CLP.
  • the second correction coefficient 157a corrects the combustion load variable CLP in order to correct the deviation between the combustion parameter PM and the set value of the combustion load variable CLP caused by the deterioration of the gas turbine after the gas turbine 1 enters steady operation. It is a correction coefficient.
  • the correction means corrects the combustion load variable CLP by multiplying the planned maximum output MOP by the first correction coefficient 156a and the second correction coefficient 157a.
  • FIG. 12 is a flow chart showing a work flow of the combustion load variable correction step S40.
  • FIG. 13 shows a control logic diagram for calculating the corrected combustion load variable CLP represented by [Equation 2], and shows each configuration of the combustion load variable correction unit 134 constituting the correction means of the combustion load variable correction step S40. Has been done.
  • [Equation 2] is an equation for calculating the combustion load variable CLP including the first correction coefficient 156a. If the turbine output matches the planned maximum output MOP or the rated output, the combustion load shown in [Equation 2] is calculated. The variable CLP agrees with [Equation 1]. In this case, the first correction coefficient 156a in [Equation 2] is set to the initial value "1".
  • the maximum combustion load variable CLP shown in [Equation 2] is corrected so that the combustion load variable CLP with respect to the planned maximum output MOP becomes the rated value (100%).
  • Set value conversion step S70 that converts the set value of the combustion load variable CLP so that the relationship between the combustion parameter PM and the gas turbine inlet temperature GTIT is maintained based on the load correction step S50 and the corrected combustion load variable CLP. And, it is composed of.
  • the combustion load variable correction step S40 calculates the deviation between the turbine output transmitted from the input unit 121 and the corrected planned maximum output output from the second maximum load multiplier 157 described later. (S51). Next, the calculated deviation is proportionally integrated to calculate the intermediate correction value 151a (S52). A predetermined value ⁇ is added to the calculated intermediate correction value 151a to calculate the second correction value 152a. As the predetermined value ⁇ , 1.0 is usually selected. After starting the execution of the maximum load correction step S50, it is determined whether or not a predetermined time has elapsed (S54).
  • the second correction coefficient 157a shown in [Equation 2] is updated to the second correction value 152a (S55).
  • the combustion load variable CLP shown in [Equation 2] is calculated based on the updated second correction coefficient 157a (S56), and the set value of the combustion load variable CLP of each combustion parameter PM is transmitted to the control unit 110 (S57). ).
  • a control signal is transmitted from the control unit 110 to the gas turbine 1 based on the set value of the corrected combustion load variable CLP.
  • the deviation between the turbine output, which is the actual output based on the set value of the corrected combustion load variable CLP, and the planned maximum output is calculated (S51).
  • the combustion load variable correction command 161 is transmitted from the correction command unit 160 (S60).
  • the switch 154 is switched from the closed (OFF) to the open (ON) state, and the second correction value 152a is input to the switch 154 (S61).
  • the switch 154 is switched to the closed (OFF) state in a short time, and the second correction value 152a is replaced with the first correction value 154a (S62).
  • the second correction value 152a is reset to the initial value (S62).
  • the first correction coefficient 156a shown in [Equation 2] is updated to the first correction value 154a (S63).
  • the set value conversion step S70 corrects the gas turbine inlet temperature GTIT using the first correction coefficient 156a so that the relationship between the combustion parameter PM and the gas turbine inlet temperature GTIT is maintained based on the corrected combustion load variable CLP. , Converts the set value that determines the relationship between the combustion parameter and the combustion load variable CLP.
  • the function generator 141 which is an output calculation means of the planned maximum output, calculates the planned maximum output based on the measured intake air temperature, the intake flow rate, and the IGV opening command value.
  • the function generator 142 which is an output calculation means of the no-load equivalent output, calculates the no-load equivalent output based on the measured intake air temperature, the intake flow rate, and the IGV opening command value.
  • the divider 147 divides the actually measured intake pressure and the standard atmospheric pressure to calculate the atmospheric pressure ratio.
  • the planned maximum output calculated by the function generator 141 is multiplied by the atmospheric pressure ratio calculated by the divider 147 to calculate the planned maximum output in consideration of the atmospheric pressure ratio.
  • the multiplier 149 multiplies the no-load equivalent output calculated by the function generator 142 with the atmospheric pressure ratio calculated by the divider 147 to calculate the no-load equivalent output in consideration of the atmospheric pressure ratio.
  • the subtractor 145 subtracts from the turbine output transmitted from the input unit 121 and the no-load equivalent output output from the multiplier 149.
  • the planned maximum output shown in [Equation 2] is corrected by the first correction coefficient 156a and the second correction coefficient 157a described later.
  • the subtractor 143 subtracts from the corrected planned maximum output output from the second maximum load multiplier 157 and the no-load equivalent output output from the multiplier 149 (see [Equation 2]).
  • the divider 144 divides based on the calculation result of the subtractor 143 and the calculation result of the subtractor 145 to calculate the corrected combustion load variable CLP shown in [Equation 2].
  • the combustion load variable correction unit 134 is composed of a maximum load correction unit 134a and a set value conversion unit 134b.
  • the maximum load correction unit 134a is a means for correcting the deviation of the initial setting value of the combustion parameter PM with respect to the combustion load variable CLP, and is shown in the range surrounded by the broken line in FIG.
  • the maximum load correction unit 134a corresponds to the maximum load correction step 50
  • the set value conversion unit 134b corresponds to the set value conversion step S70.
  • the maximum load correction unit 134a includes a subtractor 150 that calculates the deviation between the turbine output and the planned maximum output MOP after correction, a PI calculator 151 that calculates an intermediate correction value 151a, and a predetermined value output from the signal generator 153.
  • the adder 152 that calculates the second correction value 152a by adding the value ⁇ to the intermediate correction value 151a and the second correction value 152a output from the adder 152 are accepted and replaced with the existing values of the second correction coefficient 157a.
  • the data storage device 155 that stores the second correction value 152a as a new first correction value 154a and the first correction value 154a output from the data storage device 155 are accepted and replaced with the existing values of the first correction coefficient 156a. It is composed of a first maximum load multiplier 156 updated to a first correction value 154a.
  • the turbine output input from the control unit 110 via the input unit 121 and the corrected planned maximum output MOP corrected by the second maximum load multiplier 157 are input to the subtractor 150.
  • the subtractor 150 calculates the deviation between the turbine output and the corrected maximum output MOP.
  • the deviation between the turbine output output from the subtractor 150 and the corrected maximum output MOP is input to the PI calculator 151.
  • the deviation between the turbine output and the corrected maximum output MOP is proportionally integrated, and the intermediate correction value 151a is calculated.
  • the generated intermediate correction value 151a is added with the predetermined value ⁇ input from the signal generator 153 by the adder 152, and the second correction value 152a is calculated.
  • the second correction value 152a output from the adder 152 is input to the second maximum load multiplier 157.
  • the second correction coefficient 157a of the second maximum load multiplier 157 shown in [Equation 2] is updated to the second correction value 152a instead of the existing value.
  • the corrected planned maximum output is calculated.
  • the corrected maximum output is input to the subtractor 143 and subtracted by the no-load equivalent output NOP input from the multiplier 149.
  • the corrected combustion load variable CLP shown in [Equation 2] is calculated based on the calculation result from the subtractor 143 and the calculation result from the subtractor 145, and is output to the control unit 110.
  • the maximum load correction step S50 when the maximum load correction step S50 is started and a predetermined time elapses, it is determined that the deviation between the turbine output calculated by the subtractor 150 and the corrected planned maximum output MOP is within the allowable value of the output deviation.
  • the combustion load variable correction command 161 is transmitted.
  • the combustion load variable correction command 161 is input to the PI calculator 151 and the switch 154, the signal of the combustion load variable correction command 161 is temporarily turned on, and the second correction value 152a output from the adder 152 is turned on.
  • the signal is input to the data storage device 155 and stored as the first correction value 154a.
  • the first correction value 154a is input from the data storage device 155 to the first maximum load multiplier 156.
  • the existing value of the first correction coefficient 156a shown in [Equation 2] is updated to the first correction value 154a, and the planned maximum output MOP after correction is based on the updated first correction coefficient 156a. Is calculated. Further, when the combustion load variable correction command 161 is input to the PI calculator 151, the second correction value 152a is reset and updated to the initial setting value. The switch 154 is opened (ON) based on the combustion load variable correction command 161, and the time for updating the first correction coefficient 156a of the first maximum load multiplier 156 to the first correction value 154a ends in a short time. do.
  • the switch 154 After the switch 154 is switched to the closed (OFF) state, the circuit in which the signal of the second correction value 152a on the upstream side of the switch 154 enters the switch 154 is cut off. At the same time that the switch 154 is switched to the closed (OFF) state, the second correction value 152a is reset and updated to the initial setting value (usually [1]). The second correction value 152a output from the adder 152 is updated to the initial setting value, but the updated second correction value 152a is not input to the switch 154 and is transmitted to the second maximum load multiplier 157. To.
  • the first correction coefficient 156a input to the first maximum load multiplier 156 is the second correction value 152a input when the switch 154 is opened (ON) in response to the combustion load variable correction command 161. Is changed to the first correction value 154a, and is maintained at the first correction value 154a.
  • the first correction value 154a input to the data storage device 155 is stored in the data storage device 155.
  • the second correction value 152a when the switch 154 is opened (ON) in response to the combustion load variable correction command 161 the deviation between the turbine output and the corrected planned maximum output MOP is within the allowable value. It is a value at the time of entering, and the second correction value 152a is stored in the data storage device 155 as the first correction value 154a.
  • the first correction coefficient 156a is corrected for the planned maximum output by using the first correction coefficient 156a and the second correction coefficient 157a, and the rated value (100%) of the combustion load variable CLP is used. Since the purpose is to select a correction coefficient that produces the planned maximum output MOP, the first correction coefficient 156a is updated to the first correction value 154a, and is maintained as it is even after shifting to steady operation.
  • the set value conversion unit 134b converts the set value of the corrected combustion load variable CLP calculated by the maximum load correction unit 134a while maintaining the relationship between the combustion parameter PM and the gas turbine inlet temperature GTIT. That is, the deviation of the inlet temperature caused by the relationship between the combustion parameter PM and the gas turbine inlet temperature GTIT by the correction in the maximum load correction unit 134a is repaired by the conversion of the set value of the combustion load variable CLP in the set value conversion unit 134b.
  • the gas turbine inlet temperature GTIT is divided by the first correction coefficient 156a to obtain the corrected new gas turbine inlet temperature GTIT.
  • the relationship between the combustion parameter PM and the gas turbine inlet temperature GTIT is maintained as the relationship between the combustion parameter PM and the gas turbine inlet temperature GTIT when the combustion margin range is confirmed.
  • the combustion load variable CLP is calculated, and the planned maximum output MOP after correction is calculated. It is calculated.
  • the second correction coefficient 157a updated to the second correction value 152a is reset to the initial set value (usually [1]) in response to the combustion load variable correction command 161. 2
  • the correction coefficient 157a also returns to the initial setting value.
  • the combustion load variable before correction is replaced with the combustion load variable CLP after correction based on [Equation 2], and is transmitted to the control unit 110.
  • the first correction coefficient 156a of the first maximum load multiplier 156 is updated to the first correction value 154a selected under the condition that the planned maximum output and the turbine output substantially match. 2
  • the correction coefficient 157a is transmitted to the control unit 110 with the default setting value.
  • the combustion load variable CLP shown in [Equation 2] is replaced with a set value at which the planned maximum output MOP is output at the rated value (100%) of the combustion load variable CLP. Therefore, in the corrected combustion control of the combustor 3, the deviation of the initial setting value of the combustion load variable CLP is eliminated, and appropriate combustion control becomes possible.
  • the planned maximum output is calculated by using the first correction coefficient 156a in the maximum load correction step S50 in order to eliminate the deviation of the initial set value.
  • a correction means was applied so that the planned maximum output was output at the rated value (100%) of the combustion load variable CLP.
  • the gas turbine 1 enters steady operation.
  • the deviation between the planned maximum output and the actual output occurs as the gas turbine 1 deteriorates.
  • the planned maximum output shown in [Equation 2] is corrected in the same way.
  • the correction means for correcting the deviation of the set value ST of the combustion load variable CLP due to the deterioration of the gas turbine 1 is slightly different from the above-mentioned correction means, and among the maximum load correction steps S50 shown in FIG. A learning circuit is applied in which a process of repeating steps S51 to S57 excluding step S54 is executed. By repeating this process, the deviation between the planned maximum output MOP and the set value ST of the combustion load variable CLP is automatically eliminated.
  • the first correction coefficient 156a selected by the correction performed at the time of trial run or at the start-up after the end of the regular inspection is maintained as it is, and the set value of the planned maximum output MOP and the combustion load variable CLP is maintained using the second correction coefficient 157a.
  • the deviation of ST is corrected.
  • the deviation between the turbine output and the planned maximum output is an allowable value.
  • the planned maximum output is corrected using the second correction coefficient 157a, the corrected planned maximum output MOP is calculated, and the corrected combustion load variable CLP is calculated.
  • the first correction coefficient 156a is fixed at the previously set value.
  • the gas turbine 1 enters steady operation.
  • the deterioration of the gas turbine 1 causes a deviation between the set value ST of the combustion parameter PM and the combustion load variable CLP, but the first correction coefficient 156a has been updated to the first correction value 154a.
  • the second correction coefficient 157a is updated until the deviation between the turbine output and the planned maximum output MOP is within the permissible value. By updating the second correction coefficient 157a, the planned maximum output MOP is corrected and the combustion load variable CLP is automatically corrected.
  • the planned maximum output is multiplied by the first correction coefficient 156a and the second correction coefficient 157a as the correction means.
  • the reason for applying the two correction coefficients is that the first correction coefficient 156a and the second correction coefficient 157a are updated at the initial setting at the start of the trial run and at the time of restarting the operation after the regular inspection, and the optimum first correction coefficient 156a is applied. This is because the first correction coefficient 156a is fixed and only the second correction coefficient 157a is updated to select the optimum second correction coefficient 157a during steady operation.
  • the deviation of the set value is corrected at the initial setting, and the GT is at the steady operation. This is to enable long-term operation of the gas turbine by automatically correcting the deviation of the set value due to deterioration.
  • the set value changing step S30 is a step of changing the set values of the combustion parameter PM and the combustion load variable CLP when the origin shift occurs in the combustion margin confirmation step S20.
  • the set value changing step S30 is executed before the combustion margin confirmation step S20 is executed and the combustion load variable correction step S40 is executed.
  • the set value changing step S30 is a step of changing the set value of the combustion load variable CLP of the combustion parameter PM when the origin shift occurs in the combustion margin confirmation step S20.
  • the set value changing step S30 is the result of the combustion margin confirmation step S20 for the combustion parameter PM that determines the set value of the combustion parameter PM (pilot ratio PL, top hat ratio TH, bypass valve opening BV) for the combustion load variable CLP.
  • This is a step of automatically correcting the combustion parameter PM when the origin shift occurs. Specifically, for each combustion parameter PM, if the origin shift occurs for each combustion parameter PM before the combustion margin confirmation, the set value of the combustion parameter PM for the predetermined combustion load variable CLP is changed to the set value described later. It means that the position of the origin OP is changed according to the method and the set value ST of the combustion load variable CLP of the combustion parameter PM is corrected.
  • the appropriate set value ST of the combustion parameter PM for the combustion load variable CLP is selected, and the generation of combustion vibration is generated. It is possible to set the combustion parameter PM that can be suppressed.
  • FIG. 14 is a diagram showing an example of changing the set value ST of the pilot ratio PL in the combustion parameter PM as an example of the set value changing method.
  • the horizontal axis shows the combustion load variable CLP, and the vertical axis shows the pilot ratio PL (%).
  • the combustion margin confirmation step S20 the combustion load variable CLP corresponding to the predetermined GT load is selected, and the combustion margin range is confirmed.
  • the position of the origin OP before executing the combustion margin confirmation step S20 is indicated by a point P1, and as a result of the combustion margin confirmation step S20, the origin shift indicated by the arrow occurs and the origin OP moves.
  • the position of the new origin NOP is indicated by the point P2. That is, in FIG. 14, the point P1 indicating the position of the origin OP is indicated by the position where the combustion load variable CLP is X1 (%) and the pilot ratio PL is Y1 (%), and the point P2 which is the new origin NOP is combustion.
  • the load variable CLP is shown at the position of X2 (%) and the pilot ratio PL is shown at the position of Y2 (%).
  • the points P3 and P4 are adjacent to the points P1 and indicate the points P3 on the side where the combustion load variable CLP increases and the points P4 on the side where the combustion load variable CLP decreases.
  • the positions indicated by points P1 to P4 and the like indicate positions corresponding to the GT load selected in the GT load setting step S22 in the combustion margin confirmation step S20 shown in FIG.
  • the origin shift did not occur at the positions of the points P3 and P4, and the origin shift occurred in the vicinity of the position of the point P1 sandwiched between the points P3 and P4. This is an example.
  • the line segment passing through the points P3 and the points P1 and P4 showing the relationship between the pilot ratio PL immediately before the origin shift occurs at the point P1 and the combustion load variable CLP is shown by a broken line.
  • the relationship between the pilot ratio PL and the combustion load variable CLP when the origin OP is changed to the new origin NOP due to the occurrence of origin shift at the point P1 is shown by a solid line passing through the points P3, P2, and P4.
  • the position of the point P11 where the line segment P1P4 shown by the broken line intersects the vertical axis passing through X2 of the combustion load variable CLP is such that the initial origin OP is along the line segment P1P4 from the origin OP due to the occurrence of the origin shift.
  • the point P1 where the combustion load variable CLP is X1 (%) and the pilot ratio PL is Y1 (%), which is the position of the origin OP before confirming the combustion margin is the origin set value that was the initial target. rice field.
  • the position of the point P11 may be considered as an example in which the combustion margin confirmation is executed as the position of the origin during actual operation.
  • the combustion margin is confirmed at the position of the point P11 which is the origin during operation, it can be regarded as an example in which the origin position is moved to the position of the point P2 which is the origin movement width WST.
  • the setting value change step when the origin shift occurs by setting the point P11 at the position closest to the origin P1, which is the initial origin position, which was the initial target, as the origin during operation and executing the combustion margin confirmation step S20.
  • the combustion load variable CLP closest to the initial origin set value is set as the origin during operation, and the combustion margin confirmation step S20 is executed.
  • the set value ST of the initial origin OP may be changed to the set value ST of the new origin NOP.
  • combustion margin confirmation step S20 when the origin shift occurs at the origin P1 (pilot ratio PL is Y1 (%), combustion load variable CLP is X1 (%)), the position of the new origin NOP after movement is By selecting the position of the combustion load variable CLP “X2” and the origin movement width WST of the pilot ratio PL from the result of the combustion margin confirmation step S20, the position of the point P2 in FIG. 14 can be determined. By this procedure, when the origin shift occurs, it is possible to change the set value to change the position of the point P1 which is the origin OP to the position of the point P2 which is the new origin NOP.
  • the combustion adjustment method for a gas turbine according to the first aspect is a combustion adjustment method applied to combustion control of a combustor, and includes a step of selecting a combustion parameter for setting a combustion-air ratio with respect to a load of the gas turbine. From the position of the origin, a first step consisting of a first raising command step, which is a raising command step for raising the command value of the combustion parameter, or a first lowering command step, which is a lowering command step for lowering the command value, is executed.
  • a first raising command step which is a raising command step for raising the command value of the combustion parameter
  • a first lowering command step which is a lowering command step for lowering the command value
  • the first step is terminated and the command value of the combustion parameter is set.
  • the step of returning to the position of the origin and the second lowering command process which is the lowering command step of lowering the command value in the direction opposite to the first step from the position of the origin, or the raising command of raising the command value.
  • the step of executing the second step consisting of the second raising command step, which is a step, and the command value of the second step without generating combustion vibration are the target wealth lower limit value or the target wealth.
  • the combustion margin range of the combustion parameter is confirmed, including the step of ending the second step and returning the command value of the second step of the combustion parameter to the position of the origin. Includes a combustion margin confirmation step.
  • the combustion margin range in the direction of increasing and decreasing the command value of the combustion parameter can be confirmed in advance based on the origin position, so that the combustion vibration Stable combustion control of the gas turbine becomes possible without generating the gas turbine, and the reliability of the gas turbine is improved.
  • the gas turbine combustion adjusting method according to the second aspect is the gas turbine combustion adjusting method of (1), and is a step of confirming the combustion margin range of the first combustion parameter of the combustion parameter.
  • the origin, the command value, the target wealth upper limit value, and the target wealth lower limit value of the first combustion parameter are the first origin, the first command value, the first target wealth upper limit value, and the first target. It is the lower limit of the margin.
  • the combustion adjustment method of the gas turbine described in (2) above it is possible to prioritize and confirm the margin range of the combustion vibration of the combustion parameter having a high priority, so that the work of confirming the margin of the combustion vibration is shortened.
  • the start-up time of the gas turbine can be shortened.
  • the method for adjusting the combustion of the gas turbine according to the third aspect is the method for adjusting the combustion of the gas turbine according to (2), in which the combustion margin confirmation step is the combustion of the second combustion parameter of the combustion parameter. It is a step of confirming the margin range, and the origin, the command value, the target wealth upper limit value, and the target wealth lower limit value of the second combustion parameter are the second origin, the second command value, and the second target. It is the upper limit of the margin and the lower limit of the second target.
  • the method for adjusting the combustion of the gas turbine according to the fourth aspect is the method for adjusting the combustion of the gas turbine according to (3), in which the combustion margin confirmation step is the combustion of the third combustion parameter of the combustion parameter. It is a step of confirming the margin range, and the origin, the command value, the target wealth upper limit value, and the target wealth lower limit value of the third combustion parameter are the third origin, the third command value, and the third target. It is the upper limit of the margin and the lower limit of the third target.
  • the method for adjusting the combustion of the gas turbine according to the fifth aspect is the method for adjusting the combustion of any one of the gas turbines (1) to (4), and the combustion margin of the acquired combustion parameter.
  • the maximum load correction step that corrects the set value so that the combustion load variable with respect to the planned maximum output becomes the rated value for the set value of the combustion load variable whose range has been confirmed, and the combustion parameter and the gas turbine inlet temperature.
  • the combustion load variable correction step including the set value conversion step of converting the set value of the combustion load variable calculated in the maximum load correction step while maintaining the relationship is further included.
  • the combustion adjustment range of the combustion parameter is confirmed, the set value of the combustion parameter is corrected, and the appropriate relationship between the combustion parameter and the combustion load variable is set. Therefore, proper combustion control of the combustor becomes possible.
  • the method for adjusting the combustion of the gas turbine according to the sixth aspect is the method for adjusting the combustion of the gas turbine according to any one of (1) to (5), and the combustion margin confirmation step is the gas turbine. It is executed corresponding to the combustion load variable indicating the load of.
  • the method for adjusting the combustion of the gas turbine according to the seventh aspect is the method for adjusting the combustion of the gas turbine according to any one of (1) to (6), and the combustion load variable indicating the load of the gas turbine is used.
  • the step of selecting the priority of the combustion parameter and the priority of the change pattern of the command value of the combustion parameter is included.
  • the priority of the combustion parameter and the priority of the change pattern of the command value of the combustion parameter can be selected corresponding to the combustion load variable. Since it is possible to preferentially confirm the combustion margin of the combustion parameter in which combustion vibration is likely to occur, the relapse of the combustion margin confirmation is reduced and the combustion margin confirmation work is shortened.
  • the gas turbine combustion adjusting method according to the eighth aspect is the combustion adjusting method for any one of the gas turbines (1) to (7), and the first step or the second step is completed. After that, when the command value is returned to the position of the origin, the command value is lowered or raised at the first predetermined rate.
  • the gas turbine can be returned to the origin position at the first predetermined rate after the raising command step or the lowering command step of the first step or the second step is completed. , The combustion margin confirmation process is shortened.
  • the method for adjusting the combustion of the gas turbine according to the ninth aspect is the method for adjusting the combustion of the gas turbine according to any one of (1) to (8), and is the first step or the second step.
  • the step of raising or lowering the command value along the stepped stage from the position of the origin and the stage after the command value is raised or lowered by one stage by the raising command step or the lowering commanding step.
  • the generation of combustion vibration is accompanied by a time delay with respect to the command value. Therefore, in each stage, after reaching a predetermined set value, the first holding is performed. By maintaining the time, it is possible to reliably determine the presence or absence of combustion vibration at the corresponding command value, and the command value is raised or lowered while checking the presence or absence of combustion vibration, so the combustion parameters are more reliable. The combustion vibration range of can be confirmed.
  • the method for adjusting the combustion of the gas turbine according to the tenth aspect is the method for adjusting the combustion of the gas turbine according to (9), which is the raising command step or the lowering command step of the first step or the second step. However, when the command value is raised or lowered by one stage, the step of raising or lowering the command value at a second predetermined rate is included.
  • the gas turbine combustion adjusting method according to the eleventh aspect is the gas turbine combustion adjusting method according to any one of (9) and (10), and the raising of the first step or the second step.
  • the command process or the lower command process maintains the command value at the stage where the command value reaches the target tolerance upper limit value or the target wealth lower limit value, and the command value is maintained at the stage without causing combustion vibration.
  • the step of maintaining the second holding time from the time when the first holding time has elapsed in the command value and collecting steady data is included.
  • the gas turbine combustion adjusting method is the combustion adjusting method for any one of the gas turbines (1) to (10), and the combustion margin confirmation step is the first.
  • the step of raising the command if combustion vibration occurs before the command value of the combustion parameter reaches the target tolerance upper limit value, or the command value of the combustion parameter is the target tolerance upper limit value. If combustion vibration occurs after reaching the stage and before reaching the first holding time in the command value, the command value of the stage immediately before the occurrence of combustion vibration is set as the actual wealth upper limit value, and the command value is set. From the position of the origin in the step of returning to the position of the origin and ending the first step and in the lowering command step of the second step in the direction opposite to the raising command step of the first step.
  • the difference between the number of stages up to the target tolerance upper limit value in the raising command process in the first step and the number of stages between the position of the origin and the actual wealth upper limit value is calculated, and the difference in the number of stages is calculated.
  • the difference of the command value corresponding to the difference of the number of stages of the first step is added in the direction of lowering the command value of the second step with respect to the target tolerance lower limit value of the lowering command step.
  • the step of setting the actual wealth lower limit value and the command value of the combustion parameter are lowered from the position of the origin of the lowering command step of the second step to the actual wealth lower limit value without causing combustion vibration.
  • the gas turbine combustion adjusting method according to the thirteenth aspect is the combustion adjusting method for any one of the gas turbines (1) to (10), and the combustion margin confirmation step is the first.
  • the lowering command step of the step when combustion vibration occurs before the command value of the combustion parameter reaches the target tolerance lower limit value, or the command value of the combustion parameter is the target tolerance lower limit value. If combustion vibration occurs after reaching the stage and before reaching the first holding time in the command value, the command value of the stage immediately before the occurrence of the combustion vibration is set as the lower limit value of the actual wealth, and the command value is set.
  • the command value of the combustion parameter is raised from the position of the origin to the actual upper limit of the margin without causing combustion vibration.
  • the position of the origin is set to the direction of raising the command value.
  • the upper limit of the actual margin which is the upper limit where combustion vibration does not occur in the direction of moving to the position and raising the command value from the position of the new origin
  • the lower limit which is the lower limit where the combustion vibration does not occur in the direction of lowering the command value. Since the new origin is set at a position in the middle of the target tolerance without changing the target tolerance between the lower limit and the lower limit, a stable operating range in which combustion vibration does not occur can be secured.
  • the method for adjusting the combustion of the gas turbine according to the fourteenth aspect is the method for adjusting the combustion of any one of the gas turbines (9) to (10), and the combustion margin confirmation step is the origin. From the position, the raising command step or the lowering command step of the first step is executed, and combustion vibration occurs before the command value of the stage reaches the target tolerance upper limit value or the target wealth lower limit value. In the case, or when the combustion vibration occurs before the first holding time is reached after the command value of the stage reaches the target tolerance upper limit value or the target tolerance lower limit value, immediately before the combustion vibration occurs.
  • the command value of the stage is set to the actual wealth upper limit value or the actual wealth lower limit value
  • the actual wealth upper limit value or the actual wealth lower limit value is set to the first set value of the first step
  • the lowering commanding step or the raising commanding step of the second step is executed in the direction opposite to the raising commanding step or the lowering commanding step of the first step, and the command value of the stage is set.
  • the command value of the stage immediately before the combustion vibration occurs is set to the actual wealth lower limit value or the actual wealth upper limit value of the second step.
  • the actual wealth upper limit value or the actual wealth lower limit value of the second step is set as the second set value of the second step, and the position of the midpoint between the first set value and the second set value. Includes a step to set to the new origin.
  • the actual wealth upper limit value or the actual wealth lower limit value which is the upper limit or the lower limit in which the combustion vibration of the raising command process or the lowering command process of the first step does not occur.
  • the position of the origin is moved to an intermediate position between the lower limit or the upper limit of the actual wealth, which is the lower limit or the upper limit of the combustion vibration in the lower command process or the upper command process of the second step. Since the point is set as the new origin, a stable operating range in which combustion vibration does not occur can be secured even when combustion vibration occurs on both sides of the raising command process and the lowering command process of the first step and the second step.
  • the gas turbine combustion adjusting method is the combustion adjusting method for any one of (12) to (14), and the combustion margin confirmation step is the first.
  • combustion vibration is generated in the step or the raising command step or the lowering commanding step of the second step, and the position of the origin is moved to select the position of the new origin, the command value at which the combustion vibration is generated is selected. It includes a step of collecting steady data by maintaining a second holding time from the time when combustion vibration occurs at the command value which is lowered by one step or raised by one step.
  • the gas turbine combustion adjusting method according to the sixteenth aspect is the combustion adjusting method for any one of (12) to (15), and is the combustion closest to the initial set value of the origin.
  • the load variable is set as the origin during operation and the combustion margin confirmation step is executed, the set value of the initial origin is changed, and the new origin is set, the set value of the initial origin is set. Includes a set value changing step of changing to the set value of the new origin.
  • the set value of the origin and the set value of the combustion load variable are changed by changing the set value of the origin. Since an appropriate relationship is selected, it is possible to select combustion parameters that can suppress the occurrence of combustion vibration.
  • the gas turbine combustion adjusting method is the gas turbine combustion adjusting method of (5), and the maximum load correction step is proportional to the deviation between the turbine output and the planned maximum output.
  • Elapsed time after the step of integrating to calculate the intermediate correction value, adding a predetermined value to the intermediate correction value to calculate the second correction value, and the deviation from the start of execution of the combustion load variable correction step.
  • a step in which the first correction coefficient is updated to the first correction value based on the combustion load variable correction command.
  • the gas turbine combustion adjusting method according to the eighteenth aspect is the gas turbine combustion adjusting method of (17), and in the maximum load correction step, the second correction coefficient is set to the second correction value. Includes additional steps to be updated.
  • the combustion adjustment method of the gas turbine described in (18) above in addition to the initial setting at the start of the trial run and after the regular inspection, the deviation of the set value due to the GT deterioration during the steady operation is corrected, and the gas turbine is corrected. Long-term operation is possible.
  • the gas turbine combustion adjusting method according to the nineteenth aspect is the gas turbine combustion adjusting method according to any one of (17) and (18), and the set value conversion step is the first correction coefficient.
  • the gas turbine inlet temperature is corrected based on the above.
  • the gas turbine inlet temperature is corrected based on the first correction coefficient, so that an appropriate relationship between the combustion parameter and the gas turbine inlet temperature is maintained.
  • the combustion control device for the gas turbine according to the twentieth aspect includes a control unit that controls the operating state of the gas turbine, an automatic combustion adjustment unit that controls combustion vibration, and combustion that does not generate combustion vibration with respect to the gas turbine load. It includes a combustion margin adjusting unit that determines a combustion margin range of parameters and transmits it to the automatic combustion adjusting unit.
  • the combustion margin adjusting unit is capable of selecting the combustion margin range in which combustion vibration does not occur, the combustion adjusting work is automated and the burden on the worker is increased. Is reduced.
  • the combustion control device for the gas turbine shown in the 21st aspect is the combustion control device for the gas turbine according to (20), and the combustion margin adjusting unit burns combustion parameters according to the gas turbine load.
  • a new origin is set in the combustion margin confirmation unit that confirms the margin range, the combustion load variable correction unit that corrects the combustion load variable for the combustion parameter and sets a new set value, and the combustion margin confirmation unit. If so, it includes a set value changing unit that corrects the relationship between the combustion parameter and the combustion load variable based on the new origin.
  • the combustion control device for the gas turbine shown in the 22nd aspect is the combustion control device for the gas turbine according to (21), and in the combustion load variable correction unit, the combustion load variable with respect to the planned maximum output is a rated value.
  • the first correction coefficient is provided so as to correct the combustion load variable so that the deviation between the gas turbine output and the planned maximum output is within the permissible value.
  • Based on the first correction coefficient so as to maintain the relationship between the combustion parameter and the gas turbine inlet temperature based on the maximum load correction unit that is updated to the value and corrects the combustion load variable and the corrected combustion load variable. Includes a set value converter that corrects the gas turbine inlet temperature.
  • the gas turbine combustion control device shown in the 23rd aspect is the gas turbine combustion control device of (22), and the maximum load correction unit determines the deviation between the turbine output and the planned maximum output.
  • the correction command unit that detects that the deviation between the turbine output and the planned maximum output is within the allowable value, and issues a combustion load variable correction command, and the correction command unit.
  • the switch that is opened based on the transmitted combustion load variable correction command, the second correction value that is output from the adder and is stored as the first correction value via the switch, and the first correction value.
  • the first maximum load multiplier having the first correction coefficient that takes in the first correction value output from the data storage and updates the first correction value, and the addition. It includes a second maximum load multiplier having a second correction coefficient that takes in the second correction value from the device and updates it to the second correction value.
  • the combustion margin confirmation work is streamlined and the combustion adjustment work is facilitated without depending on the skill of the operator.
  • the reliability of the gas turbine is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

燃焼器の燃焼制御に適用する燃焼調整方法は、ガスタービンの負荷に対する燃焼パラメータを選定し、原点の位置から、燃焼パラメータの指令値を上昇させる又は指令値を下降させる第1工程を実行する。指令値が目標裕度上限値又は目標裕度下限値に達したら、第1工程を終了する。更に、第1工程とは反対方向に前記指令値を下降させる又は上昇させる第2工程を実行する。指令値が目標裕度下限値又は目標裕度上限値に達したら、第2工程を終了する前記燃焼パラメータの燃焼裕度範囲を確認する燃焼裕度確認工程を含む。

Description

ガスタービンの燃焼調整方法及び燃焼制御装置
 本開示は、ガスタービンの燃焼調整方法及び燃焼制御装置に関する。
 本願は、2020年10月28日に、日本国に出願された特願2020-180324号に基づき優先権を主張し、この内容をここに援用する。
 ガスタービンを安定して運転するには、燃焼振動を許容レベル以内に抑制できる運転条件を確立することが重要になる。そのため、燃焼振動の発生を予測し、燃焼振動を許容レベル以内に抑制する燃焼調整方法及び燃焼制御装置の補正手段に関して、種々の提案がなされている。特許文献1には、ガスタービンが通常運転に入った後、燃焼振動の発生を予測し、燃焼振動を許容レベル以内に抑制する運転条件を自動選択する例が、開示されている。
特開2010-84523号公報
 しかしながら、ガスタービンの試運転時または定検終了後の運転再開時においては、燃焼器の構造の違い、燃料性状の違い、大気条件の違い等により、特許文献1に開示された方法では、正常な燃焼制御された状態へ移行できない場合がある。特に、燃空比によっては、燃焼振動を許容レベル以内に抑制可能な運転条件の許容範囲が狭く、定格運転に達するまでの立ち上げ時間を要する場合がある。そのため、試運転の開始前に、燃空比に対する運転条件の許容範囲を事前に確認する作業が重要となる。
 本開示は、上記課題を解決するため、ガスタービンの試運転開始時または定検終了後の運転再開時の前作業として、燃焼器の燃空比に対する燃焼裕度範囲を確認する燃焼調整方法及び燃焼制御装置を提供することを目的とする。
 上記課題を解決するために、燃焼器の燃焼制御に用いる燃焼調整方法であって、
ガスタービンの負荷に対する燃空比を設定する燃焼パラメータを選定するステップと、原点の位置から、前記燃焼パラメータの指令値を上昇させる上げ指令工程である第1上げ指令工程又は前記指令値を下降させる下げ指令工程である第1下げ指令工程からなる第1工程を実行するステップと、前記燃焼器が燃焼振動を発生することなく前記指令値が目標裕度上限値又は目標裕度下限値に達したら、前記第1工程を終了して、前記燃焼パラメータの前記指令値を前記原点の位置に戻すステップと、前記原点の位置から前記第1工程とは反対方向に前記指令値を下降させる前記下げ指令工程である第2下げ指令工程又は前記指令値を上昇させる前記上げ指令工程である第2上げ指令工程からなる第2工程を実行するステップと、前記燃焼器が燃焼振動を発生することなく前記第2工程の前記指令値が前記目標裕度下限値又は前記目標裕度上限値に達したら、前記第2工程を終了して、前記燃焼パラメータの前記第2工程の前記指令値を前記原点の位置に戻すステップと、を含む、前記燃焼パラメータの燃焼裕度範囲を確認する燃焼裕度確認工程を含む。
 本開示の燃焼裕度確認方法によれば、作業者の技量によることなく、燃焼裕度確認作業が効率化され、燃焼調整作業が容易になる。また、ガスタービンの信頼性が向上する。
図1は、ガスタービンの装置構成を模式的に示した図である。 図2は、燃焼制御装置の構成を示した図である。 図3は、燃焼裕度確認部の構成を示した図である。 図4は、第1燃焼裕度確認パターンを示す図である。 図5は、第2燃焼裕度確認パターンを示す図である。 図6は、第3燃焼裕度確認パターンを示す図である。 図7は、第4燃焼裕度確認パターンを示す図である。 図8は、燃焼裕度調整部の全体工程を示すフロー図である。 図9は、燃焼裕度確認工程を示すフロー図である。 図10Aは、ケース1の燃焼パラメータと燃焼負荷変数の関係を示した図である。 図10Bは、ケース1のガスタービン入口温度と燃焼負荷係数の関係を示した図である。 図10Cは、ケース1の燃焼パラメータとガスタービン入口温度の関係を示した図である。 図11Aは、ケース2の燃焼パラメータと燃焼負荷変数の関係を示した図である。 図11Bは、ケース2のガスタービン入口温度と燃焼負荷係数の関係を示した図である。 図11Cは、ケース2の燃焼パラメータとガスタービン入口温度の関係を示した図である。 図12は、燃焼負荷変数補正工程を示すフロー図である。 図13は、燃焼負荷変数補正部のロジック図である。 図14は、設定値変更の例を示す模式図である。
 以下、本開示の実施形態を図面に基づき説明する。
《装置構成》
 ガスタービンの概略装置構成を図1に示す。ガスタービン1は、入口案内翼11を備え、外部から大気空気を取り込み、圧縮空気を生成する圧縮機2と、生成された圧縮空気と別途供給された燃料FLを燃焼させ、燃焼ガスFGを生成する燃焼器3と、生成された燃焼ガスFGにより回転駆動するタービン4と、タービン4に連結して回転駆動され、電力を生成する発電機5と、ガスタービン1を制御する燃焼制御装置100と、を備える。
 燃焼器3は、燃焼器3ごとに、メインノズル31、トップハットノズル32及びパイロットノズル33からなる燃焼ノズル30を備える。メインノズル31は、パイロットノズル33を中心に環状に配列されている。また、燃焼器3は、バイパス弁44及び尾筒24を備えている。燃焼器3は、更に、メイン燃料流量制御弁41、トップハット燃料流量制御弁42及びパイロット燃料流量制御弁43を備えている。燃焼器3に供給される燃料FLのうち、メイン燃焼ノズル用燃料は、メイン燃料流量制御弁41を介してメインノズル31に供給される。トップハット燃料は、トップハット燃料流量制御弁42を介してトップハットノズル32に供給され、パイロット燃料は、パイロット燃料流量制御弁43を介してパイロットノズル33に供給される。メイン燃料、トップハット燃料及びパイロット燃料は、メイン燃料流量制御弁41、トップハット燃料流量制御弁42及びパイロット燃料流量制御弁43の各流量制御弁により燃料流量が制御される。燃焼器3で生成された燃焼ガスFGは、尾筒24を介してタービン4に供給され、タービン4を回転駆動する。
《燃焼制御装置》
 図2は、本実施形態におけるガスタービン1の燃焼制御装置100の概略構成を示す。燃焼制御装置100は、ガスタービン1に設置されるプロセス計測部101、圧力変化測定部102、加速度測定部103、NOx測定部104、弁操作部105、周波数解析部123及び制御部110を備える。
 プロセス計測部101は、ガスタービン1の運転条件や運転状態を示すプロセス量を計測する各種計測機器であり、所定時間毎に、計測結果が燃焼制御装置100の制御部110へ送信される。プロセス量とは、例えば、タービン出力、大気温度、湿度、各部の燃料流量及び燃料圧力、各部の空気流量及び空気圧力、燃焼ガス温度、燃焼ガス圧力、圧縮機2及びタービン4の回転数、タービン4から排出される排ガス中の窒素酸化物(NOx)及び一酸化炭素(CO)等の廃棄物濃度等を意味する。
 圧力変化測定部102は、複数の燃焼器3のそれぞれに配置された圧力測定器であり、制御部110からの指令により、定期的に各燃焼器3内の圧力変化測定値を制御部110へ出力する。加速度測定部103は、各燃焼器3に設置された加速度の測定器であり、制御部110からの指令により、定期的に加速度を計測し、制御部110へ出力する。NOx測定部104は、燃焼器3の排ガス中のNOxの測定器であり、測定値は、制御部110からの指令により、定期的にNOxを測定し、制御部110へ出力する。
 弁操作部105は、制御部110からの指令により、メイン燃料流量制御弁41、トップハット燃料流量制御弁42、パイロット燃料流量制御弁43、バイパス弁44の各制御弁の開度、圧縮機2の入口案内翼11の開度等を操作する機構である。弁操作部105は、メイン燃料制御、トップハット燃料制御、パイロット燃料制御及び各燃焼器3へ供給する空気流量の流量制御、圧縮機2に供給される大気空気の流量制御等を行う。
 周波数解析部123は、圧力変化測定部102及び加速度測定部103で検出された圧力変動及び加速度変動を周波数解析し、制御部に110に出力する。
 燃焼制御装置100は、上述の各種計測部、測定部、弁操作部及び制御部110の他に、自動燃焼調整部120及び燃焼裕度調整部130を備える。制御部110は、プロセス計測部101、圧力変化測定部102、加速度測定部103及び周波数解析部123からの出力信号を受け取り、自動燃焼調整部120に送信する。また、制御部110は、メイン燃料流量制御弁41、トップハット燃料流量制御弁42、パイロット燃料流量制御弁43、バイパス弁44、圧縮機2の入口案内翼11等の弁開度を操作する信号を弁操作部105に出力する。
《自動燃焼調整部》
 図2に示す自動燃焼調整部120は、入力部121、運転状態把握部122、燃焼特性把握部124、補正部125及び出力部126を含んで構成されている。自動燃焼調整部120は、燃焼器3で燃焼振動が発生した際に、燃焼振動を抑制する最も効果的な方向で各プロセス量を選定する制御を行なう。
 自動燃焼調整部120は、制御部110から送信された各部のプロセス量や圧力、加速度データ等を、入力部121を介して受信する。また、周波数解析部123によるガスタービン1内の周波数解析結果から、運転状態把握部122においてガスタービン1の運転状態を把握し、燃焼特性把握部124において各燃焼器3の燃焼特性を把握する。補正部125は、運転状態把握部122及び燃焼特性把握部124で把握されたデータに基づき、ガスタービン1の燃焼振動が発生しないような制御方法を決定する。例えば、メイン燃料流量制御弁41、トップハット燃料流量制御弁42、パイロット燃料流量制御弁43、バイパス弁44、圧縮機2の入口案内翼11の各弁の弁開度の調整の要否を判断する。弁開度の調整が必要な場合は、その調整量を決定し、出力部126を介して制御部110へ出力する。
《燃焼裕度調整部》
 燃焼裕度調整部130は、過去の運転条件のデータ蓄積量が少ないガスタービンの試運転の開始前に、事前に燃焼振動が発生しない領域を把握し、そのデータを自動燃焼調整部120に送信し、自動燃焼調整部120内のデータベース127に蓄積する。燃焼裕度調整部130は、ガスタービン1の試運転又は定検終了後の起動時に、蓄積されたデータを反映させた自動燃焼調整部120のデータを利用して、燃焼振動を発生させることなく定格運転に移行できる運転条件を準備し、ガスタービンが短時間に定格運転に移行できる状態を実現することを目的としている。
 そのため、試運転開始時又は定検終了後の運転再開の際、従来、燃焼調整員が行っていた燃焼振動の裕度範囲の確認等の燃焼調整作業を、燃焼裕度調整部130を用いて自動化して、燃焼調整作業の適正化を図っている。
 図3に示すように、燃焼裕度調整部130は、燃焼裕度確認部132、燃焼負荷変数補正部134及び設定値変更部136から構成されている。なお、燃焼負荷変数補正部134は、最大負荷補正部134aと設定値変換部134bと、から構成されている。
 燃焼裕度確認部132では、ガスタービン1の試運転開始前又は定検終了後の運転再開前に、各燃焼パラメータPMについて、後述する燃焼裕度確認工程S20(図8、図9)の流れに沿った種々の燃焼裕度パターンに基づく燃焼裕度確認を行い、燃焼器3に発生する燃焼振動の燃焼裕度範囲を事前に確認して、定常データ128として取得し、ガスタービン1の運転開始にあたっての各種運転データの蓄積を図っている。
 燃焼負荷変数補正部134は、ガスタービン1が、燃焼負荷変数CLPの定格値(100%)においてガスタービン1の計画最大出力MOPが出るように、ガスタービン入口温度GTITと燃焼パラメータPMの関係を維持しながら、燃焼パラメータPMと燃焼負荷変数CLPの関係を適正化することを目的とする。最大負荷補正部134aは、詳細は後述するが、計画最大出力MOPで燃焼負荷変数CLPが定格値(100%)となるように、燃焼負荷変数CLPを補正する。設定値変換部134bは、補正後の燃焼負荷変数CLPに基づいて、ガスタービン入口温度GTITと燃焼パラメータPMの関係が維持されるように、ガスタービン入口温度GTITと燃焼負荷変数CLPの関係を定める設定値を変換する。燃焼負荷変数補正部134を設けることにより、ガスタービン入口温度GTITと燃焼パラメータPMの関係を維持しつつ、燃焼器3の燃焼振動の発生を抑制され、ガスタービン1の安定した運転が可能になる。なお、以下の説明では、ガスタービン負荷(ガスタービン出力)の替わりに、GT負荷(GT出力)と簡略表示する場合もある。
 設定値変更部136は、燃焼裕度確認工程S20において、燃焼振動が発生して後述する原点移動(原点ずらし)が発生した場合、燃焼パラメータPMと燃焼負荷変数CLPの関係を示す設定値が変更されるため、補正前の燃焼負荷変数CLPの設定値を補正後の設定値に自動的に変更することを目的とする。設定値変更を自動化することにより、運転調整員の負担が軽減され、安全性が向上する。
 燃焼裕度調整部130で主体をなす作業は、燃焼裕度調整部130における各燃焼パラメータPMについて、燃焼器3で発生する燃焼振動が許容レベル以内に抑制され、燃焼振動の発生しない燃焼裕度範囲を確認する点にある。燃焼裕度範囲は、燃焼負荷変数CLPに対する燃焼パラメータPMの位置又は数値を基準となる運転点として画定して、原点OPと定める。原点OPを基準に、GT負荷が異なる運転点での燃焼振動の発生の有無を確認して、燃焼振動が発生しない安定した運転範囲を定める。なお、ガスタービン負荷は、便宜的に、ガスタービン1の計画最大負荷MOP又は定格負荷における燃焼負荷変数CLPを定格値(100%)とし、ガスタービンの無負荷時相当出力NOPの燃焼負荷変数CLPを0(零)%と設定する。任意のガスタービン負荷は、燃焼負荷変数CLPで表示される。任意のガスタービン負荷に対する燃焼パラメータPMは、対応する燃焼負荷変数CLPの設定値として表示できる。
《燃焼裕度確認方法》
 次に、各燃焼パラメータPMに共通する燃焼裕度確認方法の考え方及び燃焼裕度パターンについて説明する。なお、以下の説明において、燃焼裕度範囲の確認とは、各燃焼パラメータPMについて、燃焼器3内において、燃焼振動が発生しない範囲及び幅を確認することを意味するが、燃焼裕度確認として簡略表示する場合もある。燃焼振動が発生しないとは、燃焼器3内の燃焼振動が許容レベル以内に抑制できている状態を意味し、燃焼振動が発生するとは、燃焼振動が許容レベルを越えている状態を意味する。
 燃焼裕度範囲を確認する対象となる燃焼パラメータPMは、パイロット比PL、トップハット比TH及びバイパス弁開度BVである。パイロット比PLは、全燃料流量FLに対するパイロットノズル33に供給される燃料配分比率をパーセント(%)で表示したものである。トップハット比THは、全燃料流量FLに対するトップハットノズル32に供給される燃料配分比率をパーセント(%)で表示したものである。バイパス弁開度BVは、バイパス弁44の全開時に対する弁開度BVをパーセント(%)で表示したものである。燃焼器3内における燃焼振動の発生の有無は、所定のGT負荷に対するパイロット比PL、トップハット比TH及びバイパス弁開度BVの設定値STに依存する。なお、燃焼パラメータPMとして、燃焼器3の燃焼状態に影響を与える他のパラメータを選択してもよい。
《燃焼パラメータの優先順位》
 燃焼裕度調整部130では、上述の全ての燃焼パラメータPMについて、後述する燃焼裕度範囲を確認する燃焼裕度確認工程S20(図8、図9)を実行する。燃焼パラメータPMの優先順位は、燃焼裕度範囲の確認を短時間に終了させるため、燃焼振動が発生し易い燃焼パラメータPMの燃焼裕度確認工程S20を優先的に実行することが望ましい。燃焼振動の発生しない範囲とは、燃焼負荷変数CLPに対する燃焼振動のレベルが許容レベル以内にあることを意味し、許容レベル以内の上限のGT負荷の運転点と下限のGT負荷の運転点との間のGT負荷の範囲を意味する。例えば、燃焼パラメータPMとして、トップハット比THについて燃焼裕度確認工程S20が終了後、パイロット比PLについて燃焼裕度確認工程S20を実行している途中で燃焼振動が発生した場合は、改めてトップハット比THについて、再度、燃焼裕度確認工程S20を実行する必要がある。つまり、燃焼裕度確認工程S20の繰り返し作業が発生し、燃焼パラメータPMの燃焼裕度範囲の確認に長時間を要することになる。従って、ガスタービン1の試運転時又は定検終了後の運転開始時において、燃焼パラメータPMの優先順位の選定は、ガスタービン起動時の試運転工程に影響するため、慎重な選定が必要になる。
《ガスタービン負荷との関係》
 GT負荷により、燃焼器3内に発生する燃焼振動の周波数帯、発生位置等が異なるため、燃焼裕度確認作業時におけるGT負荷は、0%から定格値(100%)までの範囲で選定する。GT負荷の定格値(100%)とは、ガスタービンの計画最大負荷(計画最大出力)又は定格負荷(定格出力)を意味する。
《上げ指令工程及び下げ指令工程》
 以下では、燃焼裕度確認工程S20における各燃焼パラメータの燃焼裕度範囲の確認を目的としたいくつかの変更パターン及びその優先度について説明する。
 図4に燃焼裕度確認パターンの一例を示す。燃焼裕度確認工程S20では、燃焼パラメータPMの出力を示す指令値CMを上昇させる方向の上げ指令工程STUと、指令値CMを下降させる方向の下げ指令工程STDの両側の工程で、燃焼振動の発生の有無を確認する必要がある。両側の工程の燃焼裕度範囲の確認を終えて、所定のGT負荷における燃焼振動の発生の有無及び燃焼裕度幅が確認される。なお、所定のGT負荷において、上げ指令工程STUを優先させるか又は下げ指令工程STDを優先させるかは、燃焼パラメータPMによって異なっている。上げ指令工程STU及び下げ指令工程STDのそれぞれの工程が終了後、それぞれの工程における定常データ128が採取される。なお、燃焼裕度確認工程S20は、上げ指令工程STU及び下げ指令工程STDの2工程を終えて、対象となる燃焼パラメータPMの裕度確認の1サイクル作業が終了する。前半の第1工程PR1において、上げ指令工程STUを選択し、後半の第2工程において下げ指令工程STDを選択するか、又はその逆の順番にするかの選択は、燃焼器の特性又は燃焼状態により決定される。
 また、試運転又は定検終了後の運転再開時の初期設定時は、燃焼裕度範囲の確認を実行する目標裕度幅TMWを定める。目標裕度幅TMWとは、上げ指令工程STUにおける指令値CMの上限を定める目標裕度上限値TMULと、下げ指令工程STDにおける指令値CMの下限を定める目標裕度下限値TMLLとの差で示される。基本的には、目標裕度上限値TMULと目標裕度下限値TMLLとは、燃焼裕度を確認する出力の基準となる原点OPの位置から同一の幅を選定することが望ましい。また、上げ指令工程STU及び下げ指令工程STDにおける指令値CMの選択は、一定のレートで一方向に指令値CMを上昇させ又は下降させても良いし、図4に示すように、指令値CMを階段状のステージSに沿って上昇させ又は下降させても良い。いずれの方法を選択するかは、燃焼器の特性やガスタービンの運転状態に応じて選定される。また、ステージ幅SWは同一幅とし、原点OPから目標裕度上限値TMUL又は目標裕度下限値TMLLまでの上げ指令工程STU又は下げ指令工程STDにおけるステージSの数は同一として燃焼裕度範囲の確認を行うことが望ましい。なお、指令値CMの選定は、上げ指令工程STUでは、原点OPの位置を零(%)として、原点OPの位置から(+)方向に指令値CMが増加する方向である。一方、下げ指令工程STDは、原点OPの位置を零(%)として、原点OPの位置から(-)方向に指令値CMが低下する方向である。目標裕度幅TMWは、装置に悪影響を及ぼさない範囲で、可変とすることが望ましい。
 燃焼パラメータPMの燃焼裕度確認パターンの具体的な例を、以下に説明する。
 図4は、第1燃焼裕度確認パターンの例である。所定のGT負荷における一つの燃焼パラメータPMについて、燃焼パラメータPMの指令値CMが目標裕度上限値TMUL又は目標裕度下限値TMLLの範囲内において、燃焼振動が許容レベル以内に抑えられて燃焼裕度確認工程が終了した例を示している。図5は、第2燃焼裕度確認パターンの例である。同様に、第2燃焼裕度確認パターンは、上げ指令工程STUで、燃焼パラメータPMの指令値CMが目標裕度上限値TMULに達する前に燃焼振動が許容レベルを越え、燃焼振動が発生した例である。図6は、第3燃焼裕度確認パターンの例である。同様に、第3燃焼裕度確認パターンは、上げ指令工程STUと下げ指令工程STDの両側の工程で、燃焼パラメータの指令値CMが目標裕度上限値TMUL及び目標裕度下限値TMLLに達する前に燃焼振動が許容レベルを越え、燃焼振動が発生した例である。図7は、第4燃焼裕度確認パターンの例である。第4燃焼裕度確認パターンは、図5に示す第2燃焼裕度確認パターンの変形例であって、下げ指令工程STDで、燃焼パラメータPMの指令値CMが目標裕度下限値TMLLに達する前に燃焼振動が発生した例ある。
《第1燃焼裕度確認パターン》
 図4に示す第1燃焼裕度確認パターンは、第1工程PR1の上げ指令工程STUで目標裕度上限値TMULまで燃焼振動が許容レベル以内に抑えられ、燃焼振動が発生しなかったことを確認できた。更に、次の第2工程PR2の下げ指令工程STDでも、目標裕度下限値TMLLまで燃焼振動が許容レベル以内に抑えられ、燃焼振動が発生しなかったことを確認して、原点OPの位置まで指令値CMを戻して、所定のGT負荷及び所定の原点OPにおける1サイクルの燃焼裕度範囲が確認できた実施形態を示す。ここで、燃焼振動が許容レベル以内に抑えられたとは、所定の設定値STにおいて、一定の保持時間が経過するまで燃焼振動が許容レベル以内に抑えられた状態を意味する。
 図4を参照しつつ、第1燃焼裕度確認パターンを具体的に説明する。第1燃焼裕度確認パターンは、第1工程PR1として、上げ指令工程STUを優先し、上げ指令工程STUを終了後、第2工程PR2の下げ指令工程STDを実行する例を示している。第1工程PR1の上げ指令工程STUでは、初期設定時の原点OPを起点として、所定の指令値投入レートBIRを加算して指令値CMを設定する。指令値CMが所定の新たな指令値CMに達したら、所定の保持時間T1を保持して、燃焼振動の発生の有無を確認する。燃焼振動が発生しないことを確認後、指令値CMに所定の指令値投入レートBIRを加算して次のステージSの新たな指令値CMを設定する。指令値CMが、次のステージSの新たな指令値CMに達した後、所定の保持時間T1を保持し、燃焼振動の発生の有無を確認する。一定の同一幅のステージ幅SWでこの手順を繰り返し、指令値CMが目標裕度上限値TMULに達し、所定の保持時間T1を保持して燃焼振動の発生の有無を確認する。所定の保持時間T1を経過しても燃焼振動が発生しない場合は、上げ指令工程STUにおける初期設定時の原点OPに対する燃焼裕度範囲が確認されたと判断する。初期設定時の原点OPに対する燃焼裕度範囲が確認されたら、指令値CMが目標裕度上限値TMULに達し、保持時間T1を経過した時から所定の保持時間T2を保持して、ガスタービン1の定常データ128を採取する。定常データ128が採取されたら、第1工程PR1は終了と判断され、指令値CMは、所定の原点復帰時の指令値解除レートBRRで当初の初期設定時の原点OPの位置に戻される。なお、指令値CMは、燃焼振動が発生することなく保持時間T1(第1保持時間)が維持された現在の指令値CMに所定のバイアスを加えることにより設定される。なお、保持時間T1(第1保持時間)は、燃焼器の特性やガスタービンの運転状態に応じて、異なる時間を選択してもよい。
 次に、第2工程PR2は、原点OPを起点に、上げ指令工程STUとは反対方向の下げ指令工程STDの燃焼裕度範囲を確認する。下げ指令工程STDでは、原点OPに所定の指令値投入レートBIRを減算して新たな指令値CMを設定する。指令値CMが所定の新たな指令値CMに達したら、所定の保持時間T1を保持して、燃焼振動の発生の有無を確認する。燃焼振動が発生しないことを確認後、指令値CMから所定の指令値投入レートBIRを減算して次のステージSの新たな指令値CMを設定する。指令値CMが次の新たな指令値CMに達した後、新たな指令値CMで所定の保持時間T1を保持し、燃焼振動の発生の有無を確認する。一定の同一幅のステージ幅SWでこの手順を繰り返し、指令値CMが目標裕度下限値TMLLに達し、所定の保持時間T1を保持して燃焼振動の発生の有無を確認する。所定の保持時間T1を経過しても燃焼振動が発生しない場合は、下げ指令工程STDにおける初期設定時の原点OPに対する燃焼裕度範囲が確認されたと判断する。指令値CMが目標裕度下限値TMLLに達し、保持時間T1が経過した時から所定の保持時間T2(第2保持時間)を保持して、定常データ128を採取する。定常データ128が採取されたら、第2工程PR2は終了と判断され、指令値CMは、所定の原点復帰時の指令値解除レートBRRで当初の原点OPの位置に戻され、第1燃焼裕度確認パターンの所定のGT負荷及び所定の原点OPにおける燃焼裕度範囲の1サイクルの確認作業が終了する。採取されたガスタービン1の定常データ128は、データベース127に送信される。なお、指令値投入レートBIRは、階段状の一定の固定値でもよいし、一定の傾斜を備えた傾斜レートであってもよい。
《第2燃焼裕度確認パターン》
 図5に示す第2燃焼裕度確認パターンは、図4に示す第1燃焼裕度確認パターンとは異なり、第1工程PR1の上げ指令工程STUにおいて、目標裕度上限値TMULで燃焼裕度範囲が確認出来なかった場合の例を示している。すなわち、上げ指令工程STUにおいて、指令値CMが目標裕度上限値TMULに達した後、保持時間T1が経過する前に燃焼振動が発生した場合を示している。目標裕度上限値TMULである指令値CMにおいて、保持時間T1を維持できずに燃焼振動が発生した場合は、燃焼振動が発生したステージSの直前の1ステージ下げたステージSの指令値CMを、上げ指令工程STUの実裕度上限値AMULとして設定する。
 図5に示す第2燃焼裕度確認パターンは、第1工程PR1として、上げ指令工程STUを優先して実行し、上げ指令工程STUが終了後、第2工程PR2である下げ指令工程STDを実行した例である。上げ指令工程STUでは、第1燃焼裕度確認パターンと同様に、初期設定時の原点OPを起点として、所定の設定値投入レートBIRを加算して新たな指令値CMを設定する。指令値CMが所定の新たな指令値CMに達したら、所定の保持時間T1を保持して、燃焼振動の発生の有無を確認する。燃焼振動が発生しないことを確認後、指令値CMに更に所定の指令値投入レートBIRを加算して次のステージSの新たな指令値CMにおける燃焼振動の発生の有無を確認する。この手順を繰り返す方法は、第1燃焼裕度確認パターンと同様である。
 但し、図5に示す第2燃焼裕度確認パターンの場合、指令値CMが目標裕度上限値TMULに達した後、保持時間T1より短い未達時間T0で燃焼振動が発生した例を示している。このように、目標裕度上限値TMULに到達する前に燃焼振動が発生し、燃焼裕度範囲が確認出来なかった場合は、燃焼振動が発生したステージSの直前の1ステージ下げたステージSにおける指令値CMを実裕度上限値AMULと定め、上げ指令工程STUの指令値CMの上限値としている。この場合は、燃焼振動が発生した時点で、第1工程PR1の上げ指令工程STUは終了する。つまり、上げ指令工程STUでは、本来の確認すべき目標の燃焼裕度範囲は、指令値CMが、目標裕度上限値TMULにおいて燃焼振動が発生することなく燃焼裕度範囲を確認する点にある。しかし、図5に示す例は、上げ指令工程STUで燃焼振動が発生したため、1ステージ分足りない状態で上げ指令工程STUを終了している。この場合、燃焼振動が発生することなく燃焼裕度範囲が確認された直前のステージSである指令値CMに戻し、この指令値CMを実裕度上限値AMULと設定する。この指令値CMで燃焼振動が発生した時点PFから保持時間T2を維持して、ガスタービン1の定常データ128を採取する。採取された定常データ128は、データベース127に送信される。ここで、第1工程PR1は終了と判断され、指令値CMは原点OPに戻される。
 次に、上述のように、第1工程PR1の上げ指令工程STUにおいて、本来の目標ステージSの数が1ステージ足りないため、下げ指令工程STDでは、本来の目標となる下げ指令工程STDのステージ数より1ステージ多いステージ数で燃焼裕度確認工程S20を実行する。上述のように、初期設定時の目標裕度幅TMWは維持することが前提となるため、初期設定時の目標裕度上限値TMULと目標裕度下限値TMLLの間の合計ステージ数又は目標裕度幅TMWを維持することが望ましい。そこで、図5に示すように、第2燃焼裕度確認パターンの下げ指令工程STDにおいては、初期設定時の目標裕度下限値TMLLより指令値CMの下げの方向に、更に1ステージ下げて燃焼裕度確認を実行する。目標裕度下限値TMLLより1ステージ下げた指令値CMで、燃焼振動が発生することなく保持時間T1が維持された場合、この指令値CMでの燃焼裕度範囲が確認されたと判断し、この指令値CMを実裕度下限値AMLLと設定する。第2燃焼裕度確認パターンの下げ指令工程STDにおける具体的な燃焼裕度範囲の確認手順は、ステージ数の違いを除き、第1燃焼裕度確認パターンの下げ指令工程STDと同様である。実裕度下限値AMLLにおいて、燃焼振動が発生することなく保持時間T1が維持されたら、この指令値CMでの燃焼裕度範囲が確認されたと判断し、指令値CMが実裕度下限値AMLLに達し、保持時間T1が経過した時から保持時間T2を維持して、上げ指令工程STUでのガスタービン1の定常データ128を採取する。これにより、第2工程は終了と判断される。
 第2燃焼裕度確認パターンは、上げ指令工程STUと下げ指令工程STDとでは、ステージ数が異なる点が、第1燃焼裕度確認パターンと異なっている。つまり、上述のように、原点OPを中心に、上げ指令工程STUと下げ指令工程STDとでは、ステージ数を同一とすることが望ましい。従って、第2燃焼裕度確認パターンにおける原点OPの位置は、上げ指令工程STUの実裕度上限値AMULと下げ指令工程STDの実裕度下限値AMLLの中間位置(中点の位置)とすることが望ましい。従って、燃焼裕度範囲の確認後の原点OPの位置は、初期設定時の原点OPの位置より指令値を下降させる方向に1ステージ下げた指令値CMの位置に移動され、この位置を新原点NOPとする。下げ指令工程STDにおける定常データ128の採取が終了したら、第2工程PR2は終了し、指令値CMは、所定の原点復帰時の解除レートBRRで新原点NOPの位置まで移動する。燃焼裕度範囲の確認の結果、原点OPが新原点NOPに移動した場合、原点ずらしが発生したと判断する。
 なお、図5に示す第2燃焼裕度確認パターンは、第1工程PR1において、指令値CMが、目標裕度上限値TMULに達した後、保持時間T1を維持できず、保持時間T1より短い未達時間T0で燃焼振動が発生した実施態様である。この実施態様の場合は、燃焼振動が発生したステージSの直前の1ステージ下げたステージSから次のステージSの指令値CMである目標裕度上限値TMULに達する前であって、指令値CMが増加する過程で燃焼振動が発生した場合も同様である。すなわち、燃焼振動が発生する直前の燃焼裕度範囲が確認されたステージSにおける指令値CMを、上げ指令工程STUにおける実裕度上限値AMULに設定する。この場合、第2工程PR2の下げ指令工程STDにおける燃焼裕度範囲を確認する手順は、図4に示す第1燃焼裕度確認パターンと同じであり、初期設定時の原点OPは、新たな新原点NOPに移動することが望ましい。また、図5に示す第1工程PR1の上げ指令工程STUにおいて、目標裕度上限値TMULより2ステージ以上下げた指令値CMで燃焼振動が発生した場合においても、燃焼振動が発生したステージSの直前の燃焼裕度範囲が確認されたステージSにおける指令値CMを実裕度上限値AMULに設定してもよい。更に、第2工程PR2の下げ指令工程STDにおいては、燃焼振動が発生した上げ指令工程STUの目標裕度上限値TMULのステージSの数と実裕度上限値AMULのステージ数との差分であって、燃焼裕度範囲の確認が出来ていない未達のステージ数を、下げ指令工程STDの目標裕度下限値TMLLから減算して、指令値を下降させる方向に更に新たなステージ数を設定する。新たなステージ数に基づき、目標裕度下限値TMLLより指令値CMの下げ方向に未達のステージ数だけ下げて、下げ指令工程STDの燃焼裕度確認を実行する。下げ指令工程STDで、燃焼振動が発生することなく燃焼裕度範囲が確認された場合は、下げ指令工程STDの最終ステージSにおける指令値CMを、実裕度下限値AMLLに設定する。実裕度上限値AMULと実裕度下限値AMLLの間の中間位置(中点の位置)である指令値CMを新原点NOPとする。この場合も、原点ずらしが発生したと判断する。
《第3燃焼裕度確認パターン》
 図6に示す第3燃焼裕度確認パターンは、図5に示す第2燃焼裕度確認パターンと同様に、第1工程PR1は、上げ指令工程STUが優先されている。但し、上げ指令工程STUと下げ指令工程STDの両側の工程において、燃焼振動が発生した実施態様である点で、図5に示す第2燃焼裕度確認パターンとは異なる例である。また、第3燃焼裕度確認パターンは、実裕度上限値AMULと実裕度下限値AMLLとの間の合計ステージ数が、初期設定時の目標裕度上限値TMULと目標裕度下限値TMLLの間の合計ステージ数に達せず、未達のステージ数を残したまま燃焼裕度範囲の確認を終了する態様である点で、第1燃焼裕度確認パターン及び第2燃焼裕度確認パターンとは異なる態様である。
 図6に示すように、上げ指令工程STUでは、図5に示す第2燃焼裕度確認パターンの上げ指令工程STUと同様に、指令値CMが目標裕度上限値TMULに達した後、保持時間T1より短い未達時間T0で燃焼振動が発生した例である。従って、このパターンの場合は、図5に示す第2燃焼裕度確認パターンと同様に、本来目標としていた目標裕度上限値TMULにおいて燃焼振動が発生し、燃焼裕度範囲を確認することなく、1ステージ未達のまま上げ指令工程STUを終了した例である。この場合も、指令値CMを燃焼振動が発生する直前のステージSの指令値CMに下げ、このステージSにおける指令値CMを実裕度上限値AMULと定める。指令値CMが実裕度上限値AMULに達した時(燃焼振動が発生した時点PF)から保持時間T2を維持してガスタービン1の定常データ128を採取し、第1工程PR1は終了と判断され、指令値CMは原点OPの位置に戻される。採取された定常データ128は、データベース127に送信される。
 下げ指令工程STDでは、第2燃焼裕度確認パターンの下げ指令工程STDと同様に、初期設定時の目標裕度幅TMWを維持する観点から、本来の目標となるステージ数より1ステージ多いステージS数で燃焼裕度確認工程S20を実行し、所定の目標裕度上限値TMULと目標裕度下限値TMLLの間の合計ステージ数を維持することが望ましい。そのため、図5に示す第2燃焼裕度確認パターンの下げ指令工程STDにおいては、初期設定時の目標裕度下限値TMLLより指令値CMの下げ方向に更に1ステージ下げて、燃焼裕度確認を実行している。
 しかし、図6に示す第3燃焼裕度確認パターンの下げ指令工程STDにおいては、指令値CMが目標裕度下限値TMLLに達する前のステージSにおいて、燃焼振動が発生した例を示している。具体的には、原点OPの位置から、設定値STの下げ方向に3つのステージSの段階まで燃焼裕度確認を終え、次のステージSに向けて指令値CMを下げる過程で燃焼振動が発生した例である。このパターンでは、下げ指令工程STDにおいて、本来であれば、初期設定時の目標裕度幅TMWを満たすためには、指令値CMが目標裕度下限値TMLLであるステージSの位置から更に指令値CMの下げ方向に1ステージ下げた位置の指令値CMにおいて、燃焼裕度を確認する必要がある。しかし、上述のように、この態様においては、目標裕度下限値TMLLに達する前のステージSにおいて、燃焼振動が発生し、本来の目標範囲での燃焼裕度確認が出来ず、第1工程PR1の上げ指令工程STU及び第2工程PR2の下げ指令工程STDの両側の工程で、燃焼裕度範囲の確認の出来ない複数の未達のステージSを残したまま燃焼裕度確認工程S20を終えたパターンである。この実施態様では、設定値STを燃焼振動が発生する直前のステージSの指令値CMに戻し、この指令値CMを下げ指令工程STDにおける実裕度下限値AMLLに設定する。実裕度下限値AMLLである指令値CMに戻した時点(燃焼振動が発生した時点PF)から保持時間T2を維持し、ガスタービン1の定常データ128を採取した後、データベース127に送信する。これにより、このパターンの第2工程PR2は終了と判断される。
 図6に示すように、この実施態様では、上げ指令工程STUにおいて燃焼振動が発生して、未達のステージSを残したまま上げ指令工程STUの燃焼裕度確認工程S20が終了し、目標裕度上限値TMULより低い上限値である実裕度上限値AMULが設定された。また、下げ指令工程STDにおいても燃焼振動が発生し、未達のステージSを残したまま上げ指令工程STUの燃焼裕度確認工程S20が終了し、目標裕度下限値TMLLより低い下限値である実裕度下限値AMLLが設定された。つまり、この実施態様における確認された燃焼裕度の範囲(実裕度上限値AMULと実裕度下限値AMLLの幅)は、初期設定時の上げ指令工程STUと下げ指令工程STDの合計ステージ数より少なく、初期設定時の目標裕度幅TMWより狭い範囲で燃焼裕度確認工程S20を終えたことになる。また、この態様の燃焼裕度範囲の確認の結果、初期設定時の原点OPは、実裕度上限値AMULと実裕度下限値AMLLの間の中間位置(中点の位置)に変更される。第3燃焼裕度確認パターンにおいては、下げ指令工程STDにおいてガスタービン1の定常データ128を採取した後、指令値CMは、所定の原点復帰時の解除レートBRRで新原点NOPの位置に移動される。この場合も、原点ずらしが発生したと判断する。
《第4燃焼裕度確認パターン》
 図7に示す第4燃焼裕度確認パターンは、図5に示す第2燃焼裕度確認パターンに対して、第1工程PR1と第2工程PR2を入れ替えた変形例である。すなわち、図7に示す第4燃焼裕度確認パターンは、第1工程PR1において、下げ指令工程STDが上げ指令工程STUに優先して実行される点で、図5に示す第2燃焼裕度確認パターンとは若干異なっている。第4燃焼裕度確認パターンを示す本実施態様は、下げ指令工程STDで燃焼振動が発生し、燃焼裕度範囲の確認が出来ない未達のステージ数を残して、第1工程PR1の下げ指令工程STDを終了している。更に、第2工程PR2の上げ指令工程STUにおいて、目標裕度上限値TMULに未達のステージSを加算して燃焼裕度範囲の確認を実行し、燃焼裕度確認工程S20を終了した例である。上げ指令工程STUと下げ指令工程STDの優先順位の違いを除く他の手順は、図5に示す第2燃焼裕度確認パターンと同様である。このパターンでは、第1工程PR1の下げ指令工程STDにおいて、燃焼振動が発生するステージSの直前のステージSの指令値CMを実裕度下限値AMLLに設定し、第2工程PR2の上げ指令工程STUでは、目標裕度上限値TMULに対し未達のステージ数を加算したステージSの指令値CMを実裕度上限値AMULに設定している。このパターンで確認された燃焼裕度の範囲(実裕度上限値AMULと実裕度下限値AMLLの幅)は、初期設定時の目標裕度幅TMWと同じである。
 図5に示す第2燃焼裕度確認パターンと同様に、第4燃焼裕度確認パターンにおける原点OPの位置は、下げ指令工程STDの実裕度下限値AMLLと上げ指令工程STUの実裕度上限値AMULの間の中間位置(中点の位置)とすることが望ましい。従って、燃焼裕度範囲の確認後の原点OPは、初期設定時の原点OPより指令値CMを上昇させる方向に未達のステージ数を加算した指令値CMの位置に移動され、新原点NOPとしている。上げ指令工程STUにおける定常データ128の採取が終了したら、指令値CMは、所定の原点復帰時の解除レートBRRで新原点NOPの位置に移動され、第2工程PR2は終了する。なお、下げ指令工程STDにおいて、燃焼振動が発生するステージSの直前のステージSである指令値CMが実裕度下限値AMLLにおいて、燃焼振動の発生した時点PFから保持時間T2を維持してガスタービン1の定常データ128が採取され、データベース127に送信される。上げ指令工程STUにおいても、指令値CMが実裕度上限値AMULにおいて採取されたガスタービン1の定常データ128が、データベース127に送信される。
《燃焼調整全体工程》
 上述のような種々の燃焼裕度確認パターンを前提に、ガスタービンの燃焼調整の全体工程の流れについて、以下に説明する。上述のように、燃焼裕度範囲の確認は、GT負荷が無負荷(0(%))から定格負荷(GT負荷100%)の範囲内で、定格負荷を含めて複数のGT負荷を選定して行う。その際、燃焼裕度範囲の確認は、燃焼振動の発生のし易さ等を考慮して、燃焼裕度範囲の確認の開始時のGT負荷を最小負荷として、GT負荷を上げていくGT負荷上げ方向、又はGT負荷を最大負荷として、GT負荷を下げていくGT負荷下げ方向のいずれかを優先的に選定する。図8は、GT負荷を上げる方向の燃焼調整全体工程を示したフロー図である。但し、図8に示す全体工程のフローは、一例であって、このフローの例に限定されない。例えば、図8の例は、燃焼裕度確認工程S20の後で燃焼負荷変数補正工程S40が実行されるが、燃焼裕度確認工程S20の前に燃焼負荷変数補正工程S40を実行してもよい。
 図8は、燃焼調整を行うために選定された複数のGT負荷について、小さいGT負荷から大きいGT負荷の定格負荷(100%)に向けて、GT負荷を上げる方向の燃焼裕度確認工程S20を含んだ全体工程を示す。図3に示す燃焼裕度調整部130で実行される全体工程は、GT負荷を上げる方向で燃焼裕度調整を実行するにあたって、図8に示すように、各種運転データ及びパラメータ等を取り込む燃焼調整に係る設定値入力工程S10と、ガスタービン1を稼働させ燃焼パラメータPMの燃焼裕度範囲を確認する燃焼裕度確認工程S20と、燃焼裕度確認工程S20で原点ずらしが発生した場合に、新原点NOPを基準にして燃焼負荷変数CLPの設定値を変更する設定値変更工程S30と、計画最大出力における燃焼負荷変数CLPが定格値(100%)となるように計画最大出力を補正する最大負荷補正工程S50と、ガスタービン入口温度GTITと燃焼パラメータPMの関係が維持されるように、補正後の燃焼負荷変数CLPを修正する設定値変換工程S70と、からなる燃焼負荷変数補正工程S40と、から構成される。なお、燃焼裕度確認工程S20で原点ずらしが発生しない場合は、設定値変更工程S30を実行せずに、次の燃焼負荷変数補正工程S40に移行してもよい。
《燃焼調整に係る設定値入力工程》
 燃焼調整に係る設定値入力工程S10では、GT負荷範囲、燃焼パラメータPMの優先順位、燃焼パラメータPMの燃焼負荷変数CLPの設定値、目標裕度幅TMW、指令値CMの投入レートBIR、各ステージSにおける保持時間T1、定常データ128の採取に必要な保持時間T2、原点復帰時の解除レートBRR、ステージ幅SW、ステージ数SNが、入力部121に入力され、燃焼裕度確認工程S20に送信される。燃焼裕度確認工程S20は、上述のように、燃焼パラメータPMの指令値CMを階段状にステージSに沿って変更させつつ燃焼裕度範囲の確認を行うバイアス投入方式を採用している。図4から図7に示すように、燃焼パラメータPMの目標裕度幅TMWは、原点OPを中心に上げ指令工程STUと下げ指令工程STDを同一のステージ幅SWで区分けし、それぞれの工程について、同一のステージ幅SW及びステージ数SN並びにステージ間の投入レートBIRを入力データとして付与している。なお、上げ指令工程STUにおける各ステージSのステージ幅SWと下げ指令工程STDにおける各ステージSのステージ幅SWは、上げ指令工程STUと下げ指令工程STDとでは、同一の幅であっても良いし、異なる幅であってもよい。
《燃焼裕度確認工程》
 図9は、燃焼パラメータPMの燃焼裕度確認工程S20のフローを示す。図9に示す燃焼裕度確認工程S20に基づき、燃焼裕度範囲の確認の処理が開始する。燃焼裕度確認工程S20では、まず燃焼裕度範囲の確認を行う燃焼パラメータPMの優先順位を設定する。入力部121で入力された燃焼パラメータPMの優先順位に基づき、燃焼裕度範囲の確認を実行する燃焼パラメータPMの優先順位を設定し、第1優先順位の燃焼パラメータPMをPM1とし、第2優先順位の燃焼パラメータPMをPM2とし、第3優先順位の燃焼パラメータPMをPM3として割り当てる(S21)。
 なお、自動燃焼調整部120のデータベース127に記憶された燃焼裕度範囲の確認を目的とした優先度パターンデータを呼び出し、燃焼パラメータPMの優先順位を設定してもよい。優先度パターンデータは、例えば、燃焼負荷変数CLPに基づいて燃焼パラメータPMの優先順位を自動選択できるデータベースであってもよい。また、優先度パターンデータには、設定された燃焼パラメータPMに対して、燃焼負荷変数CLPによって、上げ指令工程STU又は下げ指令工程STDの優先順位を定めるデータを含んでいてもよい。
 燃焼パラメータ優先順位設定工程S21において、燃焼パラメータPMの優先順位の割当てを終えたら、燃焼裕度範囲の確認を実行するためのガスタービン負荷(GT負荷)を設定する(S22)。GT負荷の設定は、上述のように、GT負荷0~100%の範囲で複数のGT負荷を設定する。選定されたGT負荷は、入力部121に入力される。GT負荷100%は、計画最大出力又は定格出力に相当し、GT負荷0%は、無負荷時出力に相当する。なお、燃焼裕度範囲の確認においては、全ての燃焼パラメータ(パイロット比PL、トップハット比TH、バイパス弁開度BV)のそれぞれの燃焼裕度範囲の確認が終了するまで、同一のGT負荷で燃焼裕度範囲の確認を実行することが望ましい。
 GT負荷設定工程S22において、燃焼裕度範囲の確認のためのGT負荷が設定されたら、第1優先の第1燃焼パラメータPM1の燃焼裕度確認を実行する(S23)。第1優先の第1燃焼パラメータPM1の燃焼裕度範囲の確認の具体的な実施手順及び実施内容は、図4又は図5又は図7に示す第1燃焼裕度確認パターン又は第2燃焼裕度確認パターン又は第4燃焼裕度確認パターンのいずれかのパターンに沿って実行される(S23)。第1燃焼パラメータPM1の燃焼裕度確認において、上げ指令工程STU及び下げ指令工程STDにおいて、両側の工程共に燃焼振動が発生しなかった場合は、第1燃焼パラメータPM1の燃焼裕度確認は終了し、燃焼裕度確認工程S20は継続と判定され(S23)、次の工程(S25)に移行する。なお、第1燃焼パラメータPM1の原点OP1の位置は維持される。以下の説明では、第1燃焼パラメータPM1、第2燃焼パラメータPM2及び第3燃焼パラメータPM3の原点OPは、OP1、OP2、OP3で表示され、新原点NOPは、NOP1、NOP2、NOP3で表示され、目標裕度幅TMWは、TMW1、TMW2、TMW3で表示される。
 第1燃焼パラメータPM1の燃焼裕度範囲の確認において、上げ指令工程STU又は下げ指令工程STDのいずれかの工程で燃焼振動が発生した場合は、原点ずらしを行うことで所定の燃焼裕度幅である目標裕度幅TMW1が確保出来ているか否かを判断する(S24)。第1燃焼パラメータPM1の所定の燃焼裕度範囲が確保出来ていると判断されれば、第1燃焼パラメータPM1の燃焼裕度確認が終了し、燃焼裕度確認工程S20は継続と判定され(S24)、次の工程(S25)に移行する。
 この実施態様の場合、第1燃焼パラメータPM1の原点ずらしが発生したため、第1燃焼パラメータPM1の原点OP1の位置は新原点NOP1に移動する。第1燃焼パラメータPM1の採取されたガスタービン1の定常データ128及び新原点NOP1の位置データは、データベース127に送信される(S24)。
 次に、燃焼裕度確認工程S20は継続と判定された場合(S24)は、第2燃焼パラメータPM2の燃焼裕度範囲の確認へ移行する。なお、図6に示す第3燃焼裕度確認パターンの場合は、所定の燃焼裕度幅である目標裕度幅TMW1が確保出来ていないが、目標裕度幅TMW1より狭い裕度幅でも燃焼振動が発生しない範囲が維持できると判断されれば、ガスタービン1の安定した運転継続に必要な燃焼裕度幅が確保されていると判断する。その場合、第1燃焼パラメータPM1の燃焼裕度範囲の確認が終了し、燃焼裕度確認工程S20は継続と判定され(S24)、次の工程(S25)に移行する。第1燃焼パラメータPM1のガスタービン1の安定運転に必要な燃焼裕度幅が確保出来ないと判定された場合は、燃焼裕度確認工程S20の継続は不可能と判定し、燃焼裕度確認工程S20は終了する(S24)。
 第1燃焼パラメータPM1の燃焼裕度範囲の確認が終了し、燃焼裕度確認工程S20は継続と判断されたら、第2燃焼パラメータPM2の燃焼裕度確認を実行する(S25)。第2燃焼パラメータPM2の燃焼裕度範囲の確認の具体的な実施手順及び作業内容は、第1燃焼パラメータPM1と同様に、図4又は図5又は図7に示す第1燃焼裕度確認パターン又は第2燃焼裕度確認パターン又は第4燃焼裕度確認パターンのいずれかのパターンに示す通りである。第2燃焼パラメータPM2について、上げ指令工程STU及び下げ指令工程STDにおいて共に燃焼振動が発生しなかった場合は、第2燃焼パラメータPM2の燃焼裕度確認は終了し、燃焼裕度確認工程S20は継続と判定され(S25)、次の工程(S27)に移行する。なお、この場合は、第2燃焼パラメータPM2の原点OP2の位置は維持される。
 第2燃焼パラメータPM2の燃焼裕度範囲の確認において、第2燃焼パラメータPM2の上げ指令工程STU又は下げ指令工程STDのいずれかで燃焼振動が発生した場合は、第2燃焼パラメータPM2の原点ずらしを行い、所定の燃焼裕度範囲である目標裕度幅TMW2が確保出来ているか否かを判断する(S26)。第2燃焼パラメータPM2の所定の目標裕度幅TMW2が確保出来ていると判断されれば、第2燃焼パラメータPM2の燃焼裕度範囲の確認が終了し、燃焼裕度確認工程S20は継続と判定する(S26)。
 但し、この実施態様の場合、第2燃焼パラメータPM2の原点ずらしが発生したため、第2燃焼パラメータPM2の原点OP2の位置は新原点NOP2に移動し、第1優先の燃焼パラメータPMである第1燃焼パラメータPM1の燃焼裕度確認のステップ(S23)に戻される(S26)。第1燃焼パラメータPM1の燃焼裕度確認のステップ(S23)に戻す理由は、第2燃焼パラメータPM2の燃焼裕度確認のステップ(S25)において、第2燃焼パラメータPM2の原点ずらしが発生し、第2燃焼パラメータPM2の原点OP2の位置が新原点NOP2の位置に移動して、第1燃焼パラメータPM1の定常データ128を採取した燃焼器3の燃焼条件が変わるからである。また、第2燃焼パラメータPM2の原点ずらしが発生したため、原点OP2の位置は新原点NOP2に移動され、第2燃焼パラメータPM2の採取されたガスタービン1の定常データ128と共に、新原点NOP2の位置が、データベース127に送信される。
 なお、第2燃焼パラメータPM2の燃焼裕度範囲の確認のステップ(S25)が、図6に示す第3燃焼裕度確認パターンの場合は、所定の燃焼裕度幅である目標裕度幅TMW2が確保出来ていないが、目標裕度幅TMW2より狭い裕度幅でも燃焼振動が発生しない範囲が維持できると判断される。その場合は、ガスタービン1の安定した運転継続に必要な燃焼裕度幅が確保されていると判断して、第2燃焼パラメータPM2の燃焼裕度範囲の確認が終了し、燃焼裕度確認工程S20は継続と判定する(S26)。この実施態様の場合も、上述した理由と同様に、第2燃焼パラメータPM2の原点ずらしが発生したため、第2燃焼パラメータPM2の原点OP2の位置は新原点NOP2に移動し、第1優先の燃焼パラメータである第1燃焼パラメータPM1の燃焼裕度範囲の確認のステップ(S23)に戻される(S26)。第2燃焼パラメータPM2の所定の燃焼裕度範囲が確保出来ないと判断される場合は、燃焼裕度確認工程S20の継続は不可能と判断し、燃焼裕度確認工程S20は終了する(S26)。
 第2燃焼パラメータPM2の燃焼裕度確認を終え、第1燃焼パラメータPM1の燃焼裕度確認のステップ(S23)に戻った場合は、再度、第1燃焼パラメータPM1の燃焼裕度範囲の確認を実行し、燃焼振動の発生の有無を再確認する(S23)。第1燃焼パラメータPM1の燃焼裕度確認の実行(S23)以降の手順は、前述の手順と同様である。
 第2燃焼パラメータPM2の燃焼裕度確認が終了し、燃焼裕度確認工程S20は継続と判定されたら、第3燃焼パラメータPM3の燃焼裕度確認を実行する(S27)。第3燃焼パラメータPM3の燃焼裕度確認の具体的な実施手順及び作業内容は、図4又は図5又は図7に示す第1燃焼裕度確認パターン又は第2燃焼裕度確認パターン又は第4燃焼裕度確認パターンのいずれかのパターンに示す通りである。第3燃焼パラメータPM3について、上げ指令工程STU及び下げ指令工程STDにおいて、両側の工程共に燃焼振動が発生しなかった場合は、第3燃焼パラメータPM3の燃焼裕度範囲の確認は終了し、燃焼裕度確認工程S20は継続と判定され(S27)、次の工程(S29)に移行する。第3燃焼パラメータPM3の原点OP3の位置は維持され、第3燃焼パラメータPM3の採取されたガスタービン1の定常データ128は、データベース127に送信される。
 第3燃焼パラメータPM3の燃焼裕度確認において、上げ指令工程TU3又は下げ指令工程STDのいずれかで燃焼振動が発生した場合は、原点ずらしを行うことで所定の燃焼裕度範囲である目標裕度幅TMW3が確保出来ているか否かを判断する(S28)。第3燃焼パラメータPM3の所定の目標裕度幅TMW3が確保出来ていると判断されれば、第3燃焼パラメータPM3の燃焼裕度確認が終了し、燃焼裕度確認工程S20は継続と判定される(S28)。
 本実施態様の場合、上述した第2燃焼パラメータPM2の燃焼裕度確認において原点ずらしが発生した実施態様と同様に、第3燃焼パラメータPM3の原点ずらしが発生したため、第3燃焼パラメータPM3の原点OP3の位置は新原点NOP3に移動され、第1燃焼パラメータPM1の燃焼裕度確認のステップ(S23)に戻される(S26)。第1燃焼パラメータPM1の燃焼裕度確認のステップ(S23)に戻す理由は、第2燃焼パラメータPM2の原点ずらしが発生した場合と同様の理由である。また、第3燃焼パラメータPM3の採取されたガスタービン1の定常データ128は、新原点NOP3の位置データと共に、データベース127に送信される。
 なお、第3燃焼パラメータPM3の燃焼裕度確認のステップ(S27)が、図6に示す第3燃焼裕度確認パターンの場合は、所定の燃焼裕度幅である目標裕度幅TMW3が確保出来ていないが、目標裕度幅TMW3より狭い裕度幅でも燃焼振動が発生しない範囲が維持できると判断されれば、ガスタービン1の安定した運転継続に必要な燃焼裕度幅が確保されていると判断して、第3燃焼パラメータPM3の燃焼裕度確認が終了し、燃焼裕度確認工程S20は継続と判定する(S28)。この実施態様の場合も、上述した理由と同様に、第3燃焼パラメータPM3の原点ずらしが発生したため、第3燃焼パラメータPM3の原点OP3の位置は新原点NOP3に移動し、第1燃焼パラメータPM1の燃焼裕度範囲の確認のステップ(S23)に戻される(S28)。第3燃焼パラメータPM3の所定の燃焼裕度範囲が確保出来ないと判断される場合は、燃焼裕度確認工程S20の継続は不可能と判定し、燃焼裕度確認工程S20は終了する(S28)。
 第3燃焼パラメータPM3の燃焼裕度確認を終え(S28)、第1燃焼パラメータPM1の燃焼裕度確認のステップ(S23)に戻った場合は、再度、第1燃焼パラメータPM1の燃焼裕度範囲の確認を実行し、燃焼振動の発生の有無を再確認する(S23)。第1燃焼パラメータPM1の燃焼裕度確認の実行手順等は、前述の内容と同様である。
 第3燃焼パラメータPM3の燃焼裕度確認(S28)を終えたら、次の工程(S29)に移行し、GT負荷が最大負荷に達したか否かを判断する(S29)。GT負荷が、最大負荷に達していない場合は、GT負荷設定工程S22に戻り、初期設定時のGT負荷から次のGT負荷を設定する(S22)。新たなGT負荷に基づき、燃焼パラメータの燃焼裕度確認を繰り返す(S23~S29)。GT負荷が、最大負荷に達したら、燃焼裕度確認工程S20は終了し(S29)、図8に示す設定値変更工程S30に移行する。第3燃焼パラメータPM3の所定の燃焼裕度範囲が確保出来ないと判断される場合は、燃焼裕度確認工程S20の継続は不可能と判断し、燃焼裕度確認工程S20は終了する(S28)。なお、図9に示すフローは、GT負荷を上げる方向での燃焼裕度確認工程S20であるが、GT負荷を下げる方向での燃焼裕度確認工程S20の場合は、GT負荷が最小負荷に達したか否かを判断し(S29)、次のGT負荷を設定し(S22)、燃焼裕度確認工程S20を実行する。
《燃焼負荷変数補正工程》
 図8に示すように、燃焼負荷変数補正工程S40は、ガスタービン1が、燃焼負荷変数CLPの定格値(100%)において計画最大出力MOPが出るように、燃焼パラメータPMと燃焼負荷変数CLPの関係を示す設定値STを適正化するために必要な補正を行う工程である。すなわち、燃焼負荷変数補正工程S40は、ガスタービン入口温度GTITと燃焼パラメータPMとの適正な関係を維持することを前提条件に、ガスタービン1の計画最大出力MOPで燃焼負荷変数CLPが定格値(100%)となるように燃焼負荷変数CLPを補正する最大負荷補正工程S50と、補正後の燃焼負荷変数CLPに基づいて、ガスタービン入口温度GTITと燃焼パラメータPMの関係が維持されるように、燃焼負荷変数CLPの設定値を変換する設定値変換工程S70と、から構成されている。
 GT負荷の制御は、ガスタービン入口温度GTITの替わりに、下記の数式で表示された燃焼負荷変数CLPを用いて実行される。GT負荷(GT出力)の制御は、具体的には、燃焼パラメータPMであるパイロット比PL、トップハット比TH及びバイパス弁開度BV等で制御され、各燃焼パラメータPMは、燃焼負荷変数CLPの関数で表示される。燃焼パラメータPMの燃焼負荷変数CLPは、下記に示す〔式1〕により算出できる。
〔式1〕:燃焼負荷変数CLP(%)=〔(タービン出力―無負荷相当出力)/(計画最大出力―無負荷相当出力)〕×100
 ここで、計画最大出力MOPとは、計画出力または定格出力時のタービン出力(ガスタービン出力)を言い、無負荷相当出力NOPとは、無負荷時のタービン出力を言う。タービン出力が、計画最大出力MOP又は定格出力の場合は、燃焼負荷変数CLPは定格値(100%)であり、無負荷相当出力NOPの場合は、燃焼負荷変数CLPは、0(%)に相当する。
 ガスタービンの試運転開始時又は定検後の運転再開時は、燃焼器3の適正な燃焼制御に必要なガスタービン入口温度GTITと燃焼負荷変数CLPの関係に僅かなずれが生ずる場合がある。上述のように、ガスタービン1の燃焼調整は、燃焼負荷変数CLPを関数とした燃焼パラメータPMで制御される。従って、ガスタービン入口温度GTITに対する燃焼負荷変数CLPのずれは、燃焼振動が発生し易い状態を生み、燃焼調整に悪影響を与える場合がある。そのため、燃焼裕度確認工程S20で取得された定常データ128を有効利用するためには、燃焼裕度確認工程S20の結果を、燃焼パラメータPMと燃焼負荷変数CLPの関係を示す設定値に正しく反映し、定常運転に入れるようにするために、燃焼負荷変数CLPを修正することが望ましい。
 燃焼器3の燃焼制御に適用される燃焼パラメータPMと燃焼負荷変数CLPの設定値の補正の基本的な考え方について、図10A~図10C及び図11A~図11Cを参照しながら説明する。ガスタービン1の適正な燃焼制御を実行するには、ガスタービン入口温度GTITと燃焼パラメータPMとの関係を維持しながら、燃焼パラメータPMと燃焼負荷変数CLPの関係が、燃焼負荷変数CLPの定格値(100%)において、計画最大負荷(計画最大出力)MOPが出力されるように設定される必要がある。燃焼制御装置100は、計画最大出力MOPに対応する燃焼負荷変数CLPが定格値(100%)となるように設定されているため、燃焼負荷変数CLPの設定値が定格値より低く設定されていても、高く設定されていても、適正な燃焼制御が行われず、ガスタービン1の制御に悪影響を及ぼす。すなわち、燃焼負荷変数補正工程S40を設け、試運転時又は定検後の運転再開時等の初期設定時における燃焼負荷変数CLPのずれを補正することにより、後述する学習回路を適切に動作させ、ガスタービン1の長時間の定常運転を継続可能としている。
 図10A~図10Cは、燃焼負荷変数CLPが定格値(100%)に達しない位置で、ガスタービン1が計画最大出力MOPに到達する場合(ケース1)の補正手段の考え方を示している。図10Aは、燃焼パラメータPMを縦軸に置き、燃焼負荷変数CLPを横軸に置いて、ケース1の燃焼パラメータPMと燃焼負荷変数CLPの関係を示した図である。図10Bは、ガスタービン入口温度GTITを縦軸に置き、燃焼負荷変数CLPを横軸に置いて、ケース1のガスタービン入口温度GTITと燃焼負荷変数CLPの関係を示した図である。図10Cは、燃焼パラメータPMを縦軸に置き、ガスタービン入口温度GTITを横軸に置いて、ケース1のガスタービン入口温度GTITと燃焼パラメータPMの関係を示した図である。なお、図10A~図10Cに共通して、破線で示す曲線〔I-1〕及び直線〔I-1〕は、燃焼裕度確認工程S20で取得された直後のデータである。鎖線で示す曲線〔II-1〕及び直線〔II―1〕は、最大負荷補正工程S50で補正された後のデータである。実線で示す曲線〔III〕及び直線〔III〕は、設定値変換工程S70で変換された後のデータである。
 図11A~図11Cは、燃焼負荷変数CLPの設定値STが定格値(100%)を越えた位置で、ガスタービン1が計画最大出力MOPに到達する場合(ケース2)の補正手段の考え方を示している。図11Aは、燃焼パラメータPMを縦軸に置き、燃焼負荷変数CLPを横軸に置いて、ケース2の燃焼パラメータPMと燃焼負荷変数CLPの関係を示した図である。図11Bは、ガスタービン入口温度GTITを縦軸に置き、燃焼負荷変数CLPを横軸に置いて、ケース2のガスタービン入口温度GTITと燃焼負荷変数CLPの関係を示した図である。図11Cは、燃焼パラメータPMを縦軸に置き、ガスタービン入口温度GTITを横軸に置いて、ケース2のガスタービン入口温度GTITと燃焼パラメータPMの関係を示した図である。なお、図11A~図11Cに共通して、破線で示す曲線〔I-2〕及び直線〔I-2〕は、燃焼裕度確認工程S20で取得された直後のデータである。鎖線で示す曲線〔II-2〕及び直線〔II―2〕は、最大負荷補正工程S50で補正された後のデータである。実線で示す曲線〔III〕及び直線〔III〕は、設定値変換工程S70で変換された後のデータである。
 ケース1について、図10A~図10Cを参照しながら説明する。図10Aに示す曲線〔I―1〕は、燃焼裕度確認工程S20で取得された燃焼パラメータPMと燃焼負荷変数CLPの関係を表示した設定値を示している。本実施態様の場合、曲線〔I-1〕は、GT負荷が増加して、燃焼負荷変数CLPの増加と共に燃焼パラメータPMが低下する例を示している。曲線〔I-1〕で示す設定値は、現状の装置のガスタービン入口温度GTITに対する最適な燃焼負荷変数CLPの設定値を示し、燃焼振動が発生しない最も適切な燃焼制御が可能な設定値である。但し、曲線〔I-1〕は、計画最大出力(GT負荷100%)MOPにおける燃焼負荷変数CLPの設定値が定格値(100%)ではなく、定格値(100%)より低いY(%)の位置で、計画最大出力(GT負荷100%)MOPに到達している。
 一方、燃焼制御装置100は、計画最大出力(GT負荷100%)MOPで燃焼負荷変数CLPが定格値(100%)となるように設定されている。図10Aに示す曲線〔III〕が、燃焼制御装置100に組み込まれている燃焼パラメータPMと燃焼負荷変数CLPの関係を示した設定値である。横軸に示す燃焼負荷変数CLPの定格値(100%)とY(%)の座標軸のずれを放置すると、ガスタービン1の燃焼制御に悪影響を及ぼす。そのため、燃焼制御装置100に組み込まれた設定値と同じ関係が維持されるように、図10Aに示す曲線〔I-1〕の関係を、ガスタービン入口温度GTITと燃焼パラメータPMの関係を維持しつつ、曲線〔III〕に一致するように燃焼負荷変数CLPを修正する補正手段が必要になる。なお、曲線〔II-1〕は、後述する設定値変換前の燃焼パラメータPMと燃焼負荷変数CLPの関係を示し、曲線〔I-1〕と一致している。
 図10Bは、図10Aにおける燃焼パラメータPMと燃焼負荷変数CLPの関係を示した設定値を、ガスタービン入口温度GTITと燃焼負荷変数CLPの関係に置き替えて比較した図である。図10Aに示す曲線〔I―1〕、曲線〔II-1〕及び曲線〔III〕の関係を、ガスタービン入口温度GTITと燃焼負荷変数CLPの関係に置き替えたものが、図10Bに示す直線〔I-1〕、直線〔II-1〕及び直線〔III〕に相当する。図10Bに示す直線〔I-1〕、直線〔II-1〕及び直線〔III〕のガスタービン入口温度GTITと燃焼負荷変数CLPの関係は、いずれも比例関係にある。
 図10Cは、図10Aに示す燃焼パラメータPMと燃焼負荷変数CLPの関係を示した設定値を、燃焼パラメータPMとガスタービン入口温度GTITの関係に置き替えて比較した図である。図10Aに示す曲線〔I―1〕、曲線〔II-1〕及び曲線〔III〕の関係を、ガスタービン入口温度GTITと燃焼負荷変数CLPの関係に置き替えたものが、図10Cに示す曲線〔I-1〕、曲線〔II-1〕及び曲線〔III〕に相当する。
 燃焼負荷変数CLPの補正手段の具体的な説明の前に、補正手段の概要を以下に説明する。後述する具体的な補正手段である〔式2〕に基づく補正の意義は、ガスタービン入口温度GTITと燃焼パラメータPMの関係を維持しつつ、GT負荷と燃焼負荷変数CLPの関係を修正することを意味する。図10Bにおいて、初期設定値のずれを示す最大出力温度TMX(計画最大出力に対応するガスタービン入口温度GTIT)における燃焼負荷変数Y(%)に対応する点P1-1の位置と、燃焼負荷変数CLPの定格値(100%)に対応する点P3の位置との燃焼負荷変数CLPの差(ずれ)を小さくする方向に点P1-1の位置を修正し、直線〔I―1〕が直線〔III〕に一致するような補正手段を適用すればよい。この補正手段により、直線〔I―1〕のデータを直線〔III〕のデータに置き換えることにより、燃焼負荷変数CLPの初期設定時のずれが解消される。
 後述する〔式2〕は、図10Bにおいて、最大出力温度TMXにおける点P1-1の位置を点P3の位置に一致するまで直線〔I―1〕を直線〔III〕の位置まで移動させ、直線〔1-1〕を直線〔III〕に修正する補正手段を提供する。〔式2〕による補正手段を実行することにより、直線〔1-1〕は、燃焼負荷変数CLPの定格値(100%)の位置で最大出力温度TMXを示す点P3を通る直線〔III〕と重なる位置にあり、燃焼負荷変数CLPが0~Y(%)の範囲にある直線〔II―1〕に変換される。直線〔I―1〕を補正して直線〔II-1〕に変換した場合、直線〔II―1〕の点P1-1の位置は、燃焼負荷変数CLPがY(%)における直線〔II-1〕上の点P2-1に移動され、燃焼負荷変数CLPがY(%)におけるガスタービン入口温度GTITは、入口温度TMXから入口温度TMX1(補正後の燃焼負荷変数CLPがY(%)における入口温度)まで低下する。すなわち、図10Aに示す燃焼パラメータPMと燃焼負荷変数CLPの関係を示す曲線〔I-1〕は、図10Bに示す直線〔II―1〕に置き替えられ、燃焼負荷変数CLPに対するガスタービン入口温度GTITは低下する。
 この関係を図10Cで見ると、曲線〔I-1〕に示す燃焼パラメータPMとガスタービン入口温度GTITは、補正により曲線〔II-1〕に修正される。すなわち、燃焼裕度確認工程S20を終了し、適正な燃焼制御が可能な設定値を有する曲線〔I-1〕は、曲線〔III〕と同じ燃焼パラメータPMとガスタービン入口温度GTITの関係を有するが、補正により修正された曲線〔II-1〕は、目標とした曲線〔III〕と比較して、相対的にガスタービン入口温度GTITが低下している。
 また、図10Aに示す曲線〔I―1〕及び図10Bに示す直線〔I―1〕上の任意の燃焼負荷変数CLPがX1(%)に対応する点P11-1の位置は、上述の補正手段により、図10Aの燃焼パラメータPMとの関係では、曲線〔II-1〕は曲線〔I-1〕と異なることなく一致するため、点P12-1の位置も、点P11-1と一致する。一方、図10Bのガスタービン入口温度GTITとの関係では、点P11-1の位置は、同じ燃焼負荷変数CLPがX1(%)における直線〔II-1〕上の点P12-1に移動する。すなわち、燃焼負荷変数CLPと燃焼パラメータPMとの関係は、補正しても変わらないが、燃焼負荷変数CLPとガスタービン入口温度GTITの関係は、補正により、同一の燃焼負荷変数CLPにおけるガスタービン入口温度GTITが低下する。上述のように、補正手段は、ガスタービン入口温度GTITと燃焼パラメータPMの関係を維持することが前提となり、この関係が維持されていない。従って、ガスタービン入口温度GTITと燃焼パラメータPMの関係を維持する条件を満たすためには、上述の補正手段に加えて、他の補正手段が必要になる。
 上述のように、ガスタービン1の適正な燃焼制御を実行するには、ガスタービン入口温度GTITと燃焼パラメータPMとの関係を維持しながら、燃焼パラメータPMと燃焼負荷変数CLPの関係が、燃焼負荷変数CLPの定格値(100%)において計画最大負荷(計画最大出力)MOPが出力されるように設定される必要があり、その目的に沿った補正手段を適用することが望ましい。この点から言えば、補正により選定された図10Cに示す曲線〔II-1〕(図10Bの直線〔II-1〕)は、ガスタービン入口温度GTITと燃焼パラメータPMとの関係を維持する条件が満たされておらず、図10Cに示す曲線〔II―1〕(図10Bの直線〔II-1〕)を曲線〔III〕(図10Bの直線〔III〕)に一致させる補正手段が更に必要となる。
 具体的には、図10Cにおいて、曲線〔II-1〕の縦軸の燃焼パラメータPMを維持したまま、横軸に示す燃焼ガスタービン入口温度GTITを、入口温度TMX1から入口温度TMXに一致するように、燃焼負荷変数CLPの設定値を変換(燃焼負荷変数CLPの設定値のみを横軸の軸方向にスライドさせる)すればよい(設定値変換工程S70)。設定値変換工程S70を実行することにより、図10Cにおいて、燃焼パラメータPMを変えずに、計画最大出力を示す曲線〔II-1〕上の点P2-1を、曲線〔III〕上の点P3に移動し、任意の燃焼負荷変数CLPがX1(%)である曲線〔II-1〕上の点P12-1(図10A)は、燃焼負荷変数CLPがX2(%)である曲線〔III〕上の点P13に移動する。最終的には、曲線〔II-1〕は、曲線〔III〕に一致して、初期設定値のずれは解消される。
 すなわち、補正手段としては、〔式2〕に基づき、計画最大負荷MOPを出力する燃焼負荷変数CLPが定格値(100%)となる補正手段である最大負荷補正工程S50と、ガスタービン入口温度GTITと燃焼パラメータPMとの関係を維持する補正手段である設定値変換工程S70と、を備えることが望ましい。
 上述の補正手段により、ガスタービン入口温度GTITと燃焼パラメータPMとの関係を維持しながら、燃焼パラメータPMと燃焼負荷変数CLPの設定値が、燃焼負荷変数CLPの定格値(100%)において計画最大負荷(計画最大出力)MOPが出力されるように補正される。すなわち、燃焼裕度確認工程S20で燃焼裕度範囲が確認され、適正な燃焼制御可能な設定値は選定されたが、計画最大負荷(計画最大出力)MOPが出力される燃焼負荷変数CLPである定格値(100%)との初期設定値のずれのために燃焼制御に及ぼす悪影響が、上記補正手段により解消される。初期設定時での補正により、定常運転の段階でも長期間の安定した運転が可能になる。
 上述の補正手段の考え方は、ケース1についての説明であったが、ケース2についても同様の考え方が適用できる。図11Aに示すように、ケース2は、燃焼負荷変数CLPの設定値が定格値(100%)を越えた位置である燃焼負荷変数CLPがZ(%)の位置で、ガスタービン1が計画最大出力に到達する場合を示している。図11Aに示す曲線〔I―2〕は、燃焼裕度確認工程S20で取得された燃焼パラメータPMに対する燃焼パラメータPMと燃焼負荷変数CLPの設定値の関係を示している。但し、曲線〔I-2〕は、計画最大出力(GT負荷100%)MOPにおける燃焼負荷変数CLPの設定値が定格値(100%)ではなく、定格値(100%)を越えた燃焼負荷変数CLPがZ(%)の位置で、計画最大出力(GT負荷100%)に到達している点が、ケース1とは異なっている。曲線〔II-2〕は、最大負荷補正工程S50により燃焼負荷変数CLPを補正した後の燃焼パラメータPMと燃焼負荷変数CLPの関係を示す。
 図11Bは、図11Aにおける曲線〔I-2〕と曲線〔II-2〕及び曲線〔III〕の関係を、ガスタービン入口温度GTITと燃焼負荷変数CLPの関係に置き替えて比較した図である。図11Aに示す曲線〔I-2〕と曲線〔II-2〕及び曲線〔III〕の関係を、ガスタービン入口温度GTITと燃焼負荷変数CLPの関係に置き替えたものが、図11Bに示す直線〔I-2〕、直線〔II-2〕及び直線〔III〕に相当する。また、図11Cは、図11Aにおける曲線〔I-2〕と曲線〔II-2〕及び曲線〔III〕の関係を、燃焼パラメータPMとガスタービン入口温度GTITの関係に置き替えて比較した図である。図11Aに示す曲線〔I-2〕と曲線〔II-2〕及び曲線〔III〕の関係を、ガスタービン入口温度GTITと燃焼負荷変数CLPの関係に置き替えたものが、図11Cに示す曲線〔I-2〕、曲線〔II-2〕及び曲線〔III〕に相当する。
 ケース2における補正手段は、上述のケース1における曲線〔I-1〕及び曲線〔II―1〕を曲線〔I-2〕及び曲線〔II-2〕と読み替え、直線〔I-1〕及び直線〔II―1〕を直線〔I-2〕及び直線〔II-2〕と読み替える。また、点P1-1、点P2-1、点P11-1、点P12-1を、点P1-2、点P2-2、点P11-2、点P12-2と読み替えることより、ケース1で説明した内容がケース2にも適用できる。但し、ケース1の場合は、補正により、燃焼裕度確認工程S20で取得されたデータのガスタービン入口温度GTITが低下し、低下したガスタービン入口温度GTITを当初の入口温度に維持するために、設定値変換で修正する補正手段を適用した。一方、ケース2の場合は、補正によりガスタービン入口温度GTITが逆に上昇するため、上昇したガスタービン入口温度GTITを当初のガスタービン入口温度に維持するために、設定値変換で修正する点がケース1の補正手段とは異なっている。
 以下では、補正手段の具体的な内容を説明する。
 下記に示す〔式2〕は、〔式1〕に対して、燃焼パラメータPMと燃焼負荷変数CLPの初期設定値のずれを補正するため、燃焼負荷変数補正手段を用いて補正された燃焼負荷変数CLPを算出する式であり、燃焼負荷変数補正工程S40(最大負荷補正工程S50、設定値変換工程S70)の補正手段から構成される。
〔式2〕:燃焼負荷変数CLP(%)=〔(タービン出力(実出力)―無負荷相当出力)/(計画最大出力×第1補正係数×第2補正係数―無負荷相当出力)〕×100
 第1補正係数156a及び第2補正係数157aは、後述する燃焼負荷変数補正工程S40で設定される補正係数である。なお、計画最大出力、無負荷相当出力の考え方は、〔式1〕と同様である。
 第1補正係数156aは、燃焼パラメータPMと燃焼負荷変数CLPの初期設定値のずれを補正するため燃焼負荷変数CLPを補正する補正係数である。第2補正係数157aは、ガスタービン1が定常運転に入った後、ガスタービンの劣化により生ずるお燃焼パラメータPMと燃焼負荷変数CLPの設定値のずれを補正するため、燃焼負荷変数CLPを補正する補正係数である。補正手段は、計画最大出力MOPに対して、第1補正係数156aと第2補正係数157aを乗算することにより、燃焼負荷変数CLPを補正している。
 燃焼負荷変数補正工程S40における補正手段について、図12及び図13を用いて具体的に説明する。図12は、燃焼負荷変数補正工程S40の作業の流れを示すフロー図である。図13は、〔式2〕で示される補正後の燃焼負荷変数CLPを算出する制御ロジック図を示し、燃焼負荷変数補正工程S40の補正手段を構成する燃焼負荷変数補正部134の各構成が示されている。
 〔式2〕は、第1補正係数156aを包含した燃焼負荷変数CLPを演算する式であるが、タービン出力が計画最大出力MOP又は定格出力に一致する場合は、〔式2〕に示す燃焼負荷変数CLPは、〔式1〕と一致する。この場合は、〔式2〕における第1補正係数156aは、初期値である「1」に設定されている。
 図12に示された燃焼負荷変数補正工程S40は、計画最大出力MOPに対する燃焼負荷変数CLPが、定格値(100%)となるように、〔式2〕に示す燃焼負荷変数CLPを補正する最大負荷補正工程S50と、補正後の燃焼負荷変数CLPに基づいて、燃焼パラメータPMとガスタービン入口温度GTITの関係が維持されるように、燃焼負荷変数CLPの設定値を変換する設定値変換工程S70と、から構成されている。
 図12に示すように、燃焼負荷変数補正工程S40は、入力部121から送信されたタービン出力と、後述の第2最大負荷乗算器157から出力された補正後の計画最大出力の偏差を算出する(S51)。次に、算出された偏差を比例積分演算して、中間補正値151aを算出する(S52)。算出された中間補正値151aに所定値αを加算して、第2補正値152aを算出する。所定値αは、通常は1.0が選定される。最大負荷補正工程S50の工程を実行開始後、所定時間が経過しているか否かを判断する(S54)。所定時間が経過していないと判断する場合は、〔式2〕に示す第2補正係数157aを第2補正値152aに更新する(S55)。更新された第2補正係数157aに基づき〔式2〕に示す燃焼負荷変数CLPが演算され(S56)、各燃焼パラメータPMの燃焼負荷変数CLPの設定値が、制御部110に送信される(S57)。補正後の燃焼負荷変数CLPの設定値に基づき、制御部110からガスタービン1に制御信号が送信される。補正後の燃焼負荷変数CLPの設定値に基づく実出力であるタービン出力と計画最大出力との偏差が演算される(S51)。所定時間が経過するまで、タービン出力と補正後の計画最大出力の偏差の算出(S51)、偏差に基づく中間補正値151a及び第2補正値152aの算出(S52、S53)、第2補正係数157aを第2補正値152aに更新(S55)及び補正後の燃焼負荷変数CLPを算出し(S56)、制御部110に送信(S57)等のサイクルが繰り返される。これらのステップを繰り返すことにより、タービン出力と計画最大出力の偏差は徐々に小さくなる。
 一方、所定時間が経過したら、補正指令部160から燃焼負荷変数補正指令161が発信される(S60)。燃焼負荷変数補正指令161が発信されると、切替器154が、閉(OFF)から開(ON)状態に切り替わり、第2補正値152aが切替器154に入力される(S61)。切替器154は短時間に閉(OFF)状態に切り替わり、第2補正値152aは第1補正値154aとして置き替えられる(S62)。第2補正値152aは初期値にリセットされる(S62)。〔式2〕に示す第1補正係数156aは、第1補正値154aに更新される(S63)。この工程を経ることにより、〔式2〕に示す燃焼負荷変数CLPが、定格値(100%)において計画最大出力が出力可能な補正後の燃焼負荷変数CLPの設定値として取得される。
 設定値変換工程S70は、補正後の燃焼負荷変数CLPに基づき、燃焼パラメータPMとガスタービン入口温度GTITの関係が維持されるように第1補正係数156aを用いてガスタービン入口温度GTITを修正し、燃焼パラメータと燃焼負荷変数CLPの関係を定める設定値を変換する。
 最大負荷補正工程S50及び設定値変換工程S70から構成される燃焼負荷変数補正工程S40を終了すれば、燃焼パラメータPMと対応する燃焼負荷変数CLPとの初期設定値のずれが解消され、燃焼器3の適正な燃焼制御が可能になる。
 次に、図13に基づき、燃焼負荷変数補正部134の構成及び制御ロジックを説明する。図13に示すように、計画最大出力の出力算出手段である関数発生器141は、実測値の吸気温度、吸気流量、IGV開度指令値に基づいて、計画最大出力を算出する。また、無負荷相当出力の出力算出手段である関数発生器142は、実測値の吸気温度、吸気流量、IGV開度指令値に基づいて、無負荷相当出力を算出する。除算器147は、実測値の吸気圧力と標準大気圧とを除算して大気圧比を算出する。乗算器148では、関数発生器141で演算された計画最大出力と除算器147で算出された大気圧比とを乗算して、大気圧比を考慮した計画最大出力を算出する。乗算器149は、関数発生器142で演算された無負荷相当出力と除算器147で算出された大気圧比とを乗算して、大気圧比を考慮した無負荷相当出力を算出する。減算器145は、入力部121から送信されたタービン出力と乗算器149から出力された無負荷相当出力により減算する。次に、第1最大負荷乗算器156及び第2最大負荷乗算器157では、後述する第1補正係数156a及び第2補正係数157aにより〔式2〕に示す計画最大出力が補正される。減算器143では、第2最大負荷乗算器157から出力された補正後の計画最大出力と乗算器149から出力された無負荷相当出力とから減算する(〔式2〕参照)。除算器144では、減算器143の演算結果と減算器145の演算結果に基づき除算して、〔式2〕に示す補正後の燃焼負荷変数CLPを演算する。
 次に、計画最大出力の補正に係る燃焼負荷変数補正部134の一部を構成する最大負荷補正部134aを説明する。なお、図3に示すように、燃焼負荷変数補正部134は、最大負荷補正部134aと設定値変換部134bで構成される。最大負荷補正部134aは、燃焼負荷変数CLPに対する燃焼パラメータPMの初期設定値のずれを補正する手段であり、図13の破線で囲われた範囲で示される。最大負荷補正部134aは、最大負荷補正工程50に対応し、設定値変換部134bは、設定値変換工程S70に対応する。
 最大負荷補正部134aは、タービン出力と補正後の計画最大出力MOPとの偏差を算出する減算器150と、中間補正値151aを算出するPI演算器151と、信号発生器153から出力された所定値αを中間補正値151aに加算して第2補正値152aを算出する加算器152と、加算器152から出力された第2補正値152aを受入れ、第2補正係数157aの既存値に替えて第2補正値152aに更新する第2最大負荷乗算器157と、補正指令部160からの燃焼負荷変数補正指令161に基づいて第2補正値152aを受け入れる切替器154と、切替器154から出力された第2補正値152aをあらたな第1補正値154aとして記憶するデータ記憶器155と、データ記憶器155から出力された第1補正値154aを受け入れ、第1補正係数156aの既存値に替えて第1補正値154aに更新される第1最大負荷乗算器156と、から構成されている。
 減算器150には、制御部110から入力部121を介して入力されたタービン出力と、第2最大負荷乗算器157で補正された補正後の計画最大出力MOPが入力される。減算器150でタービン出力と補正後の計画最大出力MOPとの偏差が算出される。減算器150から出力されたタービン出力と補正後の計画最大出力MOPとの偏差が、PI演算器151に入力される。PI演算器151で、タービン出力と補正後の計画最大出力MOPとの偏差が比例積分演算され、中間補正値151aが算出される。生成された中間補正値151aは、加算器152で信号発生器153から入力された所定値αが加算され、第2補正値152aが算出される。加算器152から出力された第2補正値152aは、第2最大負荷乗算器157に入力される。〔式2〕に示す第2最大負荷乗算器157の第2補正係数157aは、既存値に替えて第2補正値152aに更新される。更新された第2補正係数157aに基づき、補正後の計画最大出力が演算される。補正後の計画最大出力は、減算器143に入力され、乗算器149から入力された無負荷相当出力NOPで減算される。除算器144では、減算器143からの演算結果と、減算器145からの演算結果に基づき、〔式2〕に示す補正後の燃焼負荷変数CLPが演算され、制御部110に出力される。
 一方、最大負荷補正工程S50が開始され、所定時間が経過したら、減算器150で演算されたタービン出力と補正後の計画最大出力MOPとの偏差が出力偏差の許容値内に入ったと判断され、燃焼負荷変数補正指令161が発信される。PI演算器151及び切替器154に燃焼負荷変数補正指令161が入力されると、燃焼負荷変数補正指令161の信号が一時的にONになり、加算器152から出力された第2補正値152aの信号が、データ記憶器155に入力され、第1補正値154aとして記憶される。第1補正値154aは、データ記憶器155から第1最大負荷乗算器156に入力される。第1最大負荷乗算器156では、〔式2〕に示す第1補正係数156aの既存値が第1補正値154aに更新され、更新後の第1補正係数156aに基づき補正後の計画最大出力MOPが演算される。また、燃焼負荷変数補正指令161がPI演算器151に入力されると、第2補正値152aはリセットされ、初期設定値に更新される。なお、燃焼負荷変数補正指令161に基づき切替器154が開(ON)状態となり、第1最大負荷乗算器156の第1補正係数156aが第1補正値154aに更新される時間は短時間で終了する。切替器154が閉(OFF)状態に切り替わった後は、切替器154の上流側の第2補正値152aの信号が切替器154へ入る回路は遮断される。切替器154が閉(OFF)状態に切り替わると同時に第2補正値152aはリセットされ、初期設定値(通常は、〔1〕)に更新される。加算器152から出力される第2補正値152aは、初期設定値に更新されるが、更新後の第2補正値152aは切替器154に入力されず、第2最大負荷乗算器157に送信される。従って、第1最大負荷乗算器156に入力される第1補正係数156aは、燃焼負荷変数補正指令161を受けて、切替器154が開(ON)となった時に入力された第2補正値152aが第1補正値154aに変更され、第1補正値154aのまま維持される。データ記憶器155に入力された第1補正値154aは、データ記憶器155に記憶される。但し、燃焼負荷変数補正指令161を受けて、切替器154が開(ON)となった時の第2補正値152aは、タービン出力と補正後の計画最大出力MOPとの偏差が許容値内に入った時の値であり、この第2補正値152aを第1補正値154aとしてデータ記憶器155に記憶される。第1補正係数156aは、〔式2〕に示すように、計画最大出力について第1補正係数156a及び第2補正係数157aを用いて補正して、燃焼負荷変数CLPの定格値(100%)で計画最大出力MOPが出るような補正係数を選定することを目的としているため、第1補正係数156aは第1補正値154aに更新され、定常運転に移行してからも、そのまま維持される。
 設定値変換部134bは、燃焼パラメータPMとガスタービン入口温度GTITの関係は維持したまま、最大負荷補正部134aで算出された補正後の燃焼負荷変数CLPの設定値を変換する。すなわち、最大負荷補正部134aでの補正により、燃焼パラメータPMとガスタービン入口温度GTITの関係に生じた入口温度のずれが、設定値変換部134bにおける燃焼負荷変数CLPの設定値の変換により修復される。具体的には、ガスタービン入口温度GTITを第1補正係数156aで除算して、修正後の新たなガスタービン入口温度GTITとする。この変換の結果、燃焼パラメータPMとガスタービン入口温度GTITの関係は、燃焼裕度範囲の確認時における燃焼パラメータPMとガスタービン入口温度GTITの関係が維持されている。
 最大負荷補正部134aで選定された第1補正値154aに更新された第1補正係数156aを包含した〔式2〕に基づき、燃焼負荷変数CLPを演算して、補正後の計画最大出力MOPが演算される。なお、第2補正値152aに更新された第2補正係数157aは、燃焼負荷変数補正指令161を受けて第2補正値152aが初期設定値(通常は〔1〕)にリセットされるので、第2補正係数157aも初期設定値に戻る。補正前の燃焼負荷変数は、〔式2〕に基づく補正後の燃焼負荷変数CLPに置き替えられ、制御部110に送信される。燃焼負荷変数補正指令161を受けて、第1最大負荷乗算器156の第1補正係数156aは、計画最大出力とタービン出力が大略一致する条件で選択された第1補正値154aに更新され、第2補正係数157aは初期設定値のまま、制御部110に送信される。〔式2〕に示す燃焼負荷変数CLPは、燃焼負荷変数CLPの定格値(100%)で計画最大出力MOPが出力される設定値に置き替えられている。従って、補正後の燃焼器3の燃焼制御は、燃焼負荷変数CLPの初期設定値のずれが解消され、適正な燃焼制御が可能な状態になる。
 なお、上述のように、試運転時又は定検終了後の再稼働時においては、最大負荷補正工程S50で、初期設定値のずれを解消するため、第1補正係数156aを用いて計画最大出力を補正して、燃焼負荷変数CLPの定格値(100%)において計画最大出力が出力されるような補正手段が適用された。補正後は、ガスタービン1は定常運転に入る。但し、定常運転に入った後であっても、ガスタービン1の劣化と共に、計画最大出力と実出力のずれが生ずる。このような場合は、この設定値STのずれを解消するため、同様の考え方で、〔式2〕に示す計画最大出力の補正が行われる。但し、定常運転において、ガスタービン1の劣化に伴う燃焼負荷変数CLPの設定値STのずれの補正手段は、上述の補正手段とは、若干異なり、図12に示す最大負荷補正工程S50の内、工程S54を除く工程S51~S57を繰り返す処理が実行される学習回路が適用されている。この処理を繰り返すことにより、計画最大出力MOPと燃焼負荷変数CLPの設定値STのずれは自動的に解消される。すなわち、試運転時又は定検終了後の起動時に行った補正により選定された第1補正係数156aは、そのまま維持され、第2補正係数157aを用いて計画最大出力MOPと燃焼負荷変数CLPの設定値STのずれが補正される。
 上述のように、ガスタービン1の試運転開始時又は定検後の運転再開時における燃焼パラメータPMの燃焼負荷変数CLPの初期設定値を補正する段階では、タービン出力と計画最大出力の偏差が許容値に納まるまでの間、第2補正係数157aを用いて計画最大出力を補正して、補正後の計画最大出力MOPを算出し、補正後の燃焼負荷変数CLPを演算している。 その間、第1補正係数156aは、前回の設定値で固定されている。一方、タービン出力と計画最大出力の偏差が許容値内に納まり、初期設定値のずれが補正された後、ガスタービン1は定常運転に入る。定常運転に入った場合は、ガスタービン1の劣化により、燃焼パラメータPMと燃焼負荷変数CLPの設定値STのずれが発生するが、第1補正係数156aは第1補正値154aに更新された新たな設定値に固定され、タービン出力と計画最大出力MOPの偏差が許容値内に納まるまで第2補正係数157aが更新される。第2補正係数157aの更新により、計画最大出力MOPが補正され、燃焼負荷変数CLPが自動補正される。
 〔式2〕に示す燃焼負荷変数CLPの算出式において、補正手段として、計画最大出力に第1補正係数156aと第2補正係数157aを乗算している。2つの補正係数を適用する理由は、試運転開始時及び定検後の運転再開時の初期設定時は、第1補正係数156aと第2補正係数157aを更新して、最適な第1補正係数156aを選定し、定常運転時は、第1補正係数156aは固定し、第2補正係数157aのみを更新して、最適な第2補正係数157aを選定するためである。試運転開始時及び定検後の運転再開時の初期設定時と、定常運転時で燃焼負荷変数CLPの補正方法を変えるのは、初期設定時に設定値のずれを補正し、定常運転時は、GT劣化に伴う設定値のずれを自動補正して、ガスタービンの長期運転を可能とするためである。
 なお、図12に示す最大負荷補正工程S50の全工程を適用せず、工程S51~S57のみを実行し、工程S60以降の工程を省略して定常運転に入った場合、燃焼調整に悪影響を及ぼす可能性がある。つまり、燃焼負荷変数CLPの初期設定値のずれを解消せずに定常運転に入ることになり、GT負荷と燃焼負荷変数CLPの適正な関係が維持されないからである。
《設定値変更工程》
 図8に示すように、設定値変更工程S30は、燃焼裕度確認工程S20において原点ずらしが発生した場合において、燃焼パラメータPMと燃焼負荷変数CLPの設定値の変更を行う工程である。設定値変更工程S30は、燃焼裕度確認工程S20を実行し、燃焼負荷変数補正工程S40を実行する前に実行される。
 上述のように、設定値変更工程S30は、燃焼裕度確認工程S20において原点ずらしが発生した場合に、燃焼パラメータPMの燃焼負荷変数CLPの設定値変更を行う工程である。設定値変更工程S30は、燃焼負荷変数CLPに対する燃焼パラメータPM(パイロット比PL、トップハット比TH、バイパス弁開度BV)の設定値を定める燃焼パラメータPMについて、燃焼裕度確認工程S20の結果、原点ずらしが発生した場合、燃焼パラメータPMを自動修正する工程である。具体的には、各燃焼パラメータPMについて、燃焼裕度確認前のそれぞれの燃焼パラメータPMについて原点ずらしが発生した場合は、所定の燃焼負荷変数CLPに対する燃焼パラメータPMの設定値を後述する設定値変更方法に沿って原点OPの位置を変更し、燃焼パラメータPMの燃焼負荷変数CLPの設定値STを修正することを意味する。
 燃焼裕度確認工程S20の結果を反映させて、各燃焼パラメータPMの設定値STを変更することにより、燃焼負荷変数CLPに対する燃焼パラメータPMの適正な設定値STが選定され、燃焼振動の発生を抑制可能な燃焼パラメータPMの設定が可能になる。
 図14は、設定値変更方法の一例として、燃焼パラメータPMのうちのパイロット比PLの設定値STの変更例を示した図である。横軸は燃焼負荷変数CLPを示し、縦軸はパイロット比PL(%)を示す。燃焼裕度確認工程S20では、所定のGT負荷に対応した燃焼負荷変数CLPを選定し、燃焼裕度範囲の確認を実行する。
 図14において、燃焼裕度確認工程S20を実行する前の原点OPの位置を点P1で示し、燃焼裕度確認工程S20の結果、矢印で示す原点ずらしが発生し、原点OPが移動した後の新原点NOPの位置を点P2で示している。すなわち、図14において、原点OPの位置を示す点P1は、燃焼負荷変数CLPがX1(%)、パイロット比PLがY1(%)の位置で示され、新原点NOPである点P2は、燃焼負荷変数CLPがX2(%)、パイロット比PLがY2(%)の位置で示されている。本実施例では、例えば、図7の例に示す燃焼裕度確認の結果、図14においてパイロット比PLが上昇する方向に原点ずらしが発生したため、当初の点P1における燃焼負荷変数CLPであるX1が減少する方向である新たな燃焼負荷変数のX2に変更されたものである。
 本実施態様では、図14に示すように、点P3及び点P4は、点P1に隣接し、燃焼負荷変数CLPが増加する側の点P3と減少する側の点P4を示している。なお、点P1~P4等に示す位置は、図9に示す燃焼裕度確認工程S20におけるGT負荷設定工程S22で選定されるGT負荷に対応する位置を示している。図14は、燃焼裕度確認の結果、点P3及び点P4の位置では原点ずらしが発生せず、点P3と点P4の間に挟まれた点P1の位置の近傍で、原点ずらしが発生した例である。点P1で原点ずらしが発生する直前のパイロット比PLと燃焼負荷変数CLPの関係を示した点P3及び点P1及び点P4を通る線分は破線で示している。点P1における原点ずらしの発生により、原点OPが新原点NOPに変更された場合のパイロット比PLと燃焼負荷変数CLPの関係は、点P3及び点P2及び点P4を通る実線で示している。なお、破線で示す線分P1P4が、燃焼負荷変数CLPのX2を通る縦軸と交差する点P11の位置は、当初の原点OPが、原点ずらしの発生により、原点OPから線分P1P4に沿って、燃焼負荷変数CLPの減少分(X1-X2)だけ移動した位置である。点P11におけるパイロット比PL(%)に対して原点移動幅WSTだけ加算した位置が、原点ずらし後の点P2の位置に相当する。
 見方を変えれば、燃焼裕度確認前の原点OPの位置である燃焼負荷変数CLPがX1(%)、パイロット比PLがY1(%)の点P1は、当初の目標とした原点設定値であった。しかし、実際の燃焼裕度確認工程S20では、目標となる原点位置を正確に設定することが困難であり、実際の原点位置は、目標原点位置である点P1の位置から点P11の位置へ若干のずれが発生する。従って、点P11の位置は、実際の運転時原点の位置として燃焼裕度確認を実行した例と考えてもよい。運転時原点である点P11の位置で燃焼裕度確認を行ったところ、原点移動幅WSTである点P2の位置に原点位置が移動した例と見なすことができる。
 従って、当初目標としていた初期の原点位置である原点P1に最も近い位置の点P11を運転時原点に設定し、燃焼裕度確認工程S20を実行して原点ずらしが発生した場合の設定値変更工程S30は、初期の原点設定値に最も近い燃焼負荷変数CLPを運転時原点に設定して燃焼裕度確認工程S20を実行する。初期の前記原点OPの設定値STが変更されて新原点NOPを設定した場合は、初期の原点OPの設定値STを新原点NOPの設定値STに変更すればよい。
 従って、燃焼裕度確認工程S20で、原点P1(パイロット比PLがY1(%)、燃焼負荷変数CLPがX1(%))において原点ずらしが発生した場合、移動後の新原点NOPの位置は、燃焼負荷変数CLPである「X2」の位置とパイロット比PLの原点移動幅WSTを、燃焼裕度確認工程S20の結果から選定することにより、図14における点P2の位置を決定できる。この手順により、原点ずらしが発生した場合、原点OPである点P1の位置を新原点NOPである点P2の位置に変更する設定値変更が可能になる。
 上述の実施形態として記載されている又は図面に示されている内容は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。また、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 上記各実施形態に記載の内容は、以下のように把握される。
(1)第1の態様に係るガスタービンの燃焼調整方法は、燃焼器の燃焼制御に適用する燃焼調整方法であって、ガスタービンの負荷に対する燃空比を設定する燃焼パラメータを選定するステップと、原点の位置から、前記燃焼パラメータの指令値を上昇させる上げ指令工程である第1上げ指令工程又は前記指令値を下降させる下げ指令工程である第1下げ指令工程からなる第1工程を実行するステップと、前記燃焼器が燃焼振動を発生することなく前記指令値が目標裕度上限値又は目標裕度下限値に達したら、前記第1工程を終了して、前記燃焼パラメータの前記指令値を前記原点の位置に戻すステップと、前記原点の位置から前記第1工程とは反対方向に前記指令値を下降させる前記下げ指令工程である第2下げ指令工程又は前記指令値を上昇させる前記上げ指令工程である第2上げ指令工程からなる第2工程を実行するステップと、前記燃焼器が燃焼振動を発生することなく前記第2工程の前記指令値が前記目標裕度下限値又は前記目標裕度上限値に達したら、前記第2工程を終了して、前記燃焼パラメータの前記第2工程の前記指令値を前記原点の位置に戻すステップと、を含む、前記燃焼パラメータの燃焼裕度範囲を確認する燃焼裕度確認工程を含む。
 上記(1)に記載のガスタービンの燃焼調整方法によれば、原点位置を基準に、燃焼パラメータの指令値を上昇させる方向及び下降させる方向の燃焼裕度範囲を事前に確認できるので、燃焼振動を発生することなく、安定したガスタービンの燃焼制御が可能になり、ガスタービンの信頼性が向上する。
(2)第2の態様に係るガスタービンの燃焼調整方法は、(1)のガスタービンの燃焼調整方法であって、前記燃焼パラメータの第1燃焼パラメータの前記燃焼裕度範囲を確認する工程であり、前記第1燃焼パラメータの前記原点及び前記指令値及び前記目標裕度上限値及び前記目標裕度下限値が、第1原点及び第1指令値及び第1目標裕度上限値及び第1目標裕度下限値である。
 上記(2)に記載のガスタービンの燃焼調整方法によれば、優先度の高い燃焼パラメータの燃焼振動の裕度範囲を優先して確認できるので、燃焼振動の裕度確認作業が短縮化され、ガスタービンの起動時間を早めることが出来る。
(3)第3の態様に係るガスタービンの燃焼調整方法は、(2)のガスタービンの燃焼調整方法であって、前記燃焼裕度確認工程が、前記燃焼パラメータの第2燃焼パラメータの前記燃焼裕度範囲を確認する工程であり、前記第2燃焼パラメータの前記原点及び前記指令値及び前記目標裕度上限値及び前記目標裕度下限値が、第2原点及び第2指令値及び第2目標裕度上限値及び第2目標裕度下限値である。
(4)第4の態様に係るガスタービンの燃焼調整方法は、(3)のガスタービンの燃焼調整方法であって、前記燃焼裕度確認工程が、前記燃焼パラメータの第3燃焼パラメータの前記燃焼裕度範囲を確認する工程であり、前記第3燃焼パラメータの前記原点及び前記指令値及び前記目標裕度上限値及び前記目標裕度下限値が、第3原点及び第3指令値及び第3目標裕度上限値及び第3目標裕度下限値である。
(5)第5の態様に係るガスタービンの燃焼調整方法は、(1)から(4)の何れか一つのガスタービンの燃焼調整方法であって、取得された前記燃焼パラメータの前記燃焼裕度範囲が確認された燃焼負荷変数の設定値に対し、計画最大出力に対する前記燃焼負荷変数が定格値となるように前記設定値を補正する最大負荷補正工程と、前記燃焼パラメータとガスタービン入口温度の関係を維持しつつ前記最大負荷補正工程で演算された前記燃焼負荷変数の前記設定値を変換する設定値変換工程と、からなる燃焼負荷変数補正工程を更に含む。
 上記(5)に記載のガスタービンの燃焼調整方法によれば、燃焼パラメータの燃焼調整範囲を確認し、燃焼パラメータの設定値を補正して、燃焼パラメータと燃焼負荷変数の適正な関係を設定するので、燃焼器の適正な燃焼制御が可能になる。
(6)第6の態様に係るガスタービンの燃焼調整方法は、(1)から(5)の何れか一つのガスタービンの燃焼調整方法であって、前記燃焼裕度確認工程が、前記ガスタービンの負荷を示す前記燃焼負荷変数に対応して実行される。
 上記(6)に記載のガスタービンの燃焼調整方法によれば、GT負荷に対応した燃焼負荷変数に基づき燃焼裕度確認を行うので、燃焼振動の発生の予測が容易である。
(7)第7の態様に係るガスタービンの燃焼調整方法は、(1)から(6)の何れか一つのガスタービンの燃焼調整方法であって、前記ガスタービンの負荷を示す燃焼負荷変数に対応して、前記燃焼パラメータの優先度及び前記燃焼パラメータの前記指令値の変更パターンの優先度を選定するステップを含む。
 上記(7)に記載のガスタービンの燃焼調整方法によれば、燃焼負荷変数に対応して、燃焼パラメータの優先度及び燃焼パラメータの前記指令値の変更パターンの優先度を選定することが出来るので、燃焼振動の発生し易い燃焼パラメータの燃焼裕度確認を優先的に実行できるので、燃焼裕度確認の後戻りが低減され、燃焼裕度確認作業が短縮化される。
(8)第8の態様に係るガスタービンの燃焼調整方法は、(1)から(7)の何れか一つのガスタービンの燃焼調整方法であって、前記第1工程又は前記第2工程が終了した後、前記指令値を前記原点の位置に戻す際、前記指令値を第1所定レートで下降させ又は上昇させる。
 上記(8)に記載のガスタービンの燃焼調整方法によれば、第1工程又は第2工程の上げ指令工程又は下げ指令工程が終了した後、第1所定レートで原点位置に戻すことが出来るので、燃焼裕度確認工程が短縮化される。
(9)第9の態様に係るガスタービンの燃焼調整方法は、(1)から(8)のいずれか一つのガスタービンの燃焼調整方法であって、前記第1工程又は前記第2工程の前記上げ指令工程又は前記下げ指令工程が、前記原点の位置から階段状のステージに沿って前記指令値を上昇又は下降させるステップと、前記指令値を1ステージ上昇又は1ステージ下降させた後の前記ステージにおいて、燃焼振動を発生することなく第1保持時間を維持するステップと、を含む。
 上記(9)に記載のガスタービンの燃焼調整方法によれば、指令値に対して燃焼振動の発生には時間遅れが伴うので、各ステージにおいて、所定の設定値に達した後、第1保持時間を維持することにより、該当指令値での燃焼振動の発生の有無を確実に判断でき、燃焼振動の発生の有無を確認しながら指令値を上昇又は下降させていくので、より確実に燃焼パラメータの燃焼振動範囲が確認できる。
(10)第10の態様に係るガスタービンの燃焼調整方法は、(9)のガスタービンの燃焼調整方法であって、前記第1工程又は前記第2工程の前記上げ指令工程又は前記下げ指令工程が、前記指令値を1ステージ上昇又は1ステージ下降させる際、第2所定レートで前記指令値を上昇させ又は下降させるステップを含む。
 上記(10)に記載のガスタービンの燃焼調整方法によれば、燃焼器によっては、燃焼振動が発生しにくい領域があるため、そのような領域における指令値変更速度を早めることにより、燃焼裕度確認作業が短縮化される。
(11)第11の態様に係るガスタービンの燃焼調整方法は、(9)又は(10)の何れかのガスタービンの燃焼調整方法であって、前記第1工程又は前記第2工程の前記上げ指令工程又は前記下げ指令工程が、前記指令値が前記目標裕度上限値又は前記目標裕度下限値に達した前記ステージで前記指令値を維持し、燃焼振動を発生することなく前記ステージで前記第1保持時間に達した場合は、前記指令値において前記第1保持時間を経過した時点から第2保持時間を維持して定常データを採取するステップを含む。
 上記(11)に記載のガスタービンの燃焼調整方法によれば、燃焼裕度上限値又は燃焼裕度下限値の設定値において、第1保持時間に達しても燃焼振動が発生しなかった場合は、上げ指令工程又は下げ指令工程での燃焼裕度範囲が確認されたと判断されるので、第2保持時間を維持してガスタービンの定常データを採取し、自動燃焼調整部のデータ蓄積を図り、適正な燃焼調整運転を可能となる。
(12)第12の態様に係るガスタービンの燃焼調整方法は、(1)から(10)の何れか一つのガスタービンの燃焼調整方法であって、前記燃焼裕度確認工程が、前記第1工程の前記上げ指令工程において、前記燃焼パラメータの前記指令値が前記目標裕度上限値に達する前に燃焼振動が発生した場合、又は前記燃焼パラメータの前記指令値が前記目標裕度上限値であるステージに達した後、前記指令値において第1保持時間に達する前に燃焼振動が発生した場合、燃焼振動が発生する直前のステージの前記指令値を実裕度上限値に設定し、前記指令値を前記原点の位置に戻して、前記第1工程を終了するステップと、前記第1工程の前記上げ指令工程とは反対方向の前記第2工程の前記下げ指令工程において、前記原点の位置から前記第1工程の前記上げ指令工程の前記目標裕度上限値までの間のステージ数と前記原点の位置から前記実裕度上限値までの間のステージ数の差分を算出し、前記第2工程の前記下げ指令工程の前記目標裕度下限値に対して前記第2工程の前記指令値を下降させる方向に前記第1工程のステージ数の前記差分に相当する前記指令値の前記差分を加算して実裕度下限値として設定するステップと、前記第2工程の前記下げ指令工程の前記原点の位置から前記燃焼パラメータの前記指令値を燃焼振動が発生することなく前記実裕度下限値まで前記下げ指令工程を実行するステップと、前記原点の位置に対して前記第2工程の前記指令値を下降させる方向に前記第1工程のステージ数の前記差分だけ移動させた位置に新原点を設定するステップと、を含む。
 上記(12)に記載のガスタービンの燃焼調整方法によれば、上記(12)に記載のガスタービンの燃焼調整方法によれば、第1工程の上げ指令工程で燃焼振動が発生しても、原点の位置を、指令値を下降させる方向である新原点の位置に移動し、新原点の位置から指令値を上昇させる方向の燃焼振動が発生しない上限である実裕度上限値と、指令値を下降させる方向の燃焼振動の発生しない下限である実裕度下限値との間の目標裕度幅の中間の位置に新原点が設定されるので、燃焼振動が発生しない安定した運転の範囲が確保できる。
(13)第13の態様に係るガスタービンの燃焼調整方法は、(1)から(10)の何れか一つのガスタービンの燃焼調整方法であって、前記燃焼裕度確認工程が、前記第1工程の前記下げ指令工程において、前記燃焼パラメータの前記指令値が前記目標裕度下限値に達する前に燃焼振動が発生した場合、又は前記燃焼パラメータの前記指令値が前記目標裕度下限値であるステージに達した後、前記指令値において第1保持時間に達する前に燃焼振動が発生した場合、燃焼振動が発生する直前のステージの前記指令値を実裕度下限値に設定し、前記指令値を前記原点の位置に戻し、前記第1工程を終了するステップと、前記第1工程の前記下げ指令工程とは反対方向の前記第2工程の前記上げ指令工程において、前記原点の位置から前記第1工程の前記下げ指令工程の前記目標裕度下限値までの間のステージ数と前記原点の位置から前記実裕度下限値までの間のステージ数の差分を算出し、前記第2工程の前記上げ指令工程の前記目標裕度上限値に対して前記第2工程の前記指令値を上昇させる方向に前記第1工程のステージ数の前記差分に相当する前記指令値の前記差分を加算して実裕度上限値として設定するステップと、前記第2工程の前記上げ指令工程において、前記原点の位置から前記燃焼パラメータの前記指令値を燃焼振動が発生することなく前記実裕度上限値まで前記上げ指令工程を実行するステップと、前記原点の位置に対して前記第2工程の前記指令値を上昇させる方向に前記第1工程のステージ数の前記差分だけ移動させた位置に新原点を設定するステップと、を含む。
 上記(13)に記載のガスタービンの燃焼調整認方法によれば、第1工程の下げ指令工程で燃焼振動が発生しても、原点の位置を、指令値を上昇させる方向である新原点の位置に移動し、新原点の位置から指令値を上昇させる方向の燃焼振動が発生しない上限である実裕度上限値と、指令値を下降させる方向の燃焼振動の発生しない下限である実裕度下限値との間の目標裕度幅を変えることなく、目標裕度幅の中間の位置に新原点が設定されるので、燃焼振動が発生しない安定した運転範囲が確保できる。
(14)第14の態様に係るガスタービンの燃焼調整方法は、(9)から(10)の何れか一つのガスタービンの燃焼調整方法であって、前記燃焼裕度確認工程が、前記原点の位置から、前記第1工程の前記上げ指令工程又は前記下げ指令工程を実行し、前記ステージの前記指令値が前記目標裕度上限値又は前記目標裕度下限値に達する前に燃焼振動が発生した場合、又は前記ステージの前記指令値が前記目標裕度上限値又は前記目標裕度下限値に達した後、第1保持時間に達する前に燃焼振動が発生した場合、燃焼振動が発生する直前の前記ステージの前記指令値を実裕度上限値又は実裕度下限値に設定し、前記実裕度上限値又は前記実裕度下限値を前記第1工程の第1設定値に設定し、前記原点の位置から、前記第1工程の前記上げ指令工程又は前記下げ指令工程とは反対方向に、前記第2工程の前記下げ指令工程又は前記上げ指令工程を実行し、前記ステージの前記指令値が前記目標裕度下限値又は前記目標裕度上限値に達する前に燃焼振動が発生した場合、又は前記ステージの前記指令値が前記目標裕度下限値又は前記目標裕度上限値に達した後、前記第1保持時間に達する前に燃焼振動が発生した場合、燃焼振動が発生する直前の前記ステージの前記指令値を前記第2工程の実裕度下限値又は実裕度上限値に設定し、前記第2工程の前記実裕度上限値又は前記実裕度下限値を前記第2工程の第2設定値に設定し、前記第1設定値と前記第2設定値の間の中点の位置を新原点に設定するステップを含む。
 上記(14)に記載のガスタービンの燃焼調整方法によれば、第1工程の上げ指令工程又は下げ指令工程の燃焼振動の発生しない上限又は下限である実裕度上限値又は実裕度下限値と、第2工程の下げ指令工程又は上げ指令工程の燃焼振動の発生しない下限又は上限である実裕度下限値又は実裕度上限値との間の中間位置に原点の位置を移動し、中点を新原点とするので、第1工程及び第2工程の上げ指令工程及び下げ指令工程の両側で燃焼振動が発生した場合であっても、燃焼振動の発生しない安定した運転範囲が確保できる。
(15)第15の態様に係るガスタービンの燃焼調整方法は、(12)から(14)の何れか一つのガスタービンの燃焼調整方法であって、前記燃焼裕度確認工程が、前記第1工程又は前記第2工程の前記上げ指令工程又は前記下げ指令工程において、燃焼振動が発生し、前記原点の位置を移動して前記新原点の位置を選定した場合、燃焼振動が発生した前記指令値より1ステージ下降又は1ステージ上昇した前記指令値において、燃焼振動が発生した時点から第2保持時間を維持して定常データを採取するステップを含む。
 上記(15)に記載のガスタービンの燃焼調整方法によれば、燃焼振動が発生した指令値より1ステージ上昇又は1ステージ下降した指令値において、第2保持時間を維持して定常データを採取するので、燃焼振動の発生しない安定した運転条件が蓄積され、ガスタービンの燃焼制御の信頼性が向上する。
(16)第16の態様に係るガスタービンの燃焼調整方法は、(12)から(15)の何れか一つのガスタービンの燃焼調整方法であって、初期の前記原点の設定値に最も近い燃焼負荷変数を運転時原点に設定して前記燃焼裕度確認工程を実行し、前記初期の前記原点の前記設定値が変更され、前記新原点を設定した場合、前記初期の前記原点の前記設定値を前記新原点の前記設定値に変更する設定値変更工程を含む。
 上記(16)に記載のガスタービンの燃焼調整方法によれば、燃焼裕度確認工程において原点ずらしが発生した場合、原点の設定値を変更することにより、燃焼パラメータの設定値と燃焼負荷変数の適正な関係が選定されるので、燃焼振動の発生を抑制可能な燃焼パラメータの選定が可能になる。
(17)第17の態様に係るガスタービンの燃焼調整方法は、(5)のガスタービンの燃焼調整方法であって、前記最大負荷補正工程は、タービン出力と前記計画最大出力との偏差を比例積分して中間補正値を演算し、前記中間補正値に所定値を加算して第2補正値を演算するステップと、前記偏差が、前記燃焼負荷変数補正工程の実行開始した後、経過時間が所定時間を経過したら、燃焼負荷変数補正指令を発信するステップと、前記燃焼負荷変数補正指令に基づき、前記第2補正値は第1補正値に置き換えられ、前記第2補正値がリセットされるステップと、前記燃焼負荷変数補正指令に基づき、第1補正係数が前記第1補正値に更新されるステップと、を含む。
 上記(17)に記載のガスタービンの燃焼調整方法によれば、最大負荷補正工程を実行することにより、燃焼負荷変数100%において計画最大出力が得られる設定値が取得できる。
(18)第18の態様に係るガスタービンの燃焼調整方法は、(17)のガスタービンの燃焼調整方法であって、前記最大負荷補正工程は、第2補正係数が、前記第2補正値に更新されるステップを更に含む。
 上記(18)に記載のガスタービンの燃焼調整方法によれば、試運転開始時及び定検後の初期設定時の他に、定常運転時のGT劣化に伴う設定値のずれも補正され、ガスタービンの長期運転が可能になる。
(19)第19の態様に係るガスタービンの燃焼調整方法は、(17)又は(18)の何れかのガスタービンの燃焼調整方法であって、前記設定値変換工程は、前記第1補正係数に基づき前記ガスタービン入口温度が修正される。
 上記(19)に記載のガスタービンの燃焼調整方法によれば、第1補正係数に基づきガスタービン入口温度が修正されるので、燃焼パラメータとガスタービン入口温度の適正な関係が維持される。
(20)第20の態様に係るガスタービンの燃焼制御装置は、ガスタービンの運転状態を制御する制御部と、燃焼振動を制御する自動燃焼調整部と、ガスタービン負荷に対する燃焼振動が発生しない燃焼パラメータの燃焼裕度範囲を決定し、前記自動燃焼調整部に送信する燃焼裕度調整部と、を含む。
 上記(20)に記載のガスタービンの燃焼制御装置によれば、燃焼振動が発生しない燃焼裕度範囲を選定可能な燃焼裕度調整部を有するので、燃焼調整作業が自動化され、作業員の負担が軽減される。
(21)第21の態様に示すガスタービンの燃焼制御装置は、(20)のガスタービンの燃焼制御装置であって、前記燃焼裕度調整部は、前記ガスタービン負荷に応じて燃焼パラメータの燃焼裕度範囲を確認する燃焼裕度確認部と、前記燃焼パラメータに対する燃焼負荷変数を補正して、新設定値を設定する燃焼負荷変数補正部と、前記燃焼裕度確認部において新原点が設定された場合、前記新原点に基づき、前記燃焼パラメータと前記燃焼負荷変数との関係を補正する設定値変更部と、を含む。
(22)第22の態様に示すガスタービンの燃焼制御装置は、(21)のガスタービンの燃焼制御装置であって、前記燃焼負荷変数補正部は、計画最大出力に対する前記燃焼負荷変数が定格値となるように前記燃焼負荷変数を補正する第1補正係数を備え、前記第1補正係数が、ガスタービン出力と前記計画最大出力との偏差が許容値内に納まるように演算された第1補正値に更新され、前記燃焼負荷変数を補正する最大負荷補正部と、補正後の前記燃焼負荷変数に基づいて前記燃焼パラメータとガスタービン入口温度の関係を維持するよう前記第1補正係数に基づき前記ガスタービン入口温度を修正する設定値変換部と、を含む。
(23)第23の態様に示すガスタービンの燃焼制御装置は、(22)のガスタービンの燃焼制御装置であって、前記最大負荷補正部は、前記タービン出力と前記計画最大出力との偏差を演算する減算器と、前記減算器で演算された前記偏差を比例積分して中間補正値を演算するPI演算器と、前記PI演算器で演算された前記中間補正値に所定値を加算して第2補正値を演算する加算器と、前記タービン出力と前記計画最大出力との偏差が許容値内に収まることを検知して燃焼負荷変数補正指令を発する補正指令部と、前記補正指令部より発信された燃焼負荷変数補正指令に基づき開状態になる切替器と、前記加算器から出力され、前記切替器を介して前記第2補正値を第1補正値として記憶し、前記第1補正値を出力するデータ記憶器と、前記データ記憶器から出力された前記第1補正値を取り込み、前記第1補正値に更新される前記第1補正係数を備える第1最大負荷乗算器と、前記加算器からの前記第2補正値を取り込み、前記第2補正値に更新される第2補正係数を備える第2最大負荷乗算器と、を含む。
 本開示の一態様では、作業者の技量によることなく、燃焼裕度確認作業が効率化され、燃焼調整作業が容易になる。また、ガスタービンの信頼性が向上する。
1 ガスタービン
2 圧縮機
3 燃焼器
4 タービン
5 発電機
11 入口案内翼
24 尾筒
30 燃焼ノズル
31 メインノズル
32 トップハットノズル
33 パイロットノズル
41 メイン燃料流量制御弁
42 トップハット燃料流量制御弁
43 パイロット燃料流量制御弁
44 バイパス弁
100 燃焼制御装置
101 プロセス計測部
102 圧力変化測定部
103 加速度測定部
104 NOx測定部
110 制御部
121 入力部
122 運転状態把握部
123 周波数解析部
124 燃焼特性把握部
125 補正部
126 出力部
127 データベース
130 燃焼裕度調整部
132 燃焼裕度確認部
134 燃焼負荷変数補正部
134a 最大負荷補正部
134b 設定値変換部
136 設定値変更部
141 関数発生器(計画最大出力)
142 関数発生器(無負荷相当出力)
143、145,150 減算器
144、147 除算器
148、149 乗算器
151 PI演算器
151a 中間補正値
152 加算器
152a 第2補正値
153 信号発生器
154 切替器
154a 第1補正値
155 データ記憶器
156 第1最大負荷乗算器
156a 第1補正係数
157 第2最大負荷乗算器
157a 第2補正係数
160 補正指令部
161 燃焼負荷変数補正指令
PL パイロット比
TH トップハット比
BV バイパス弁開度
CLP 燃焼負荷変数
GTIT ガスタービン入口温度
PM 燃焼パラメータ
PM1 第1燃焼パラメータ
PM2 第2燃焼パラメータ
PM3 第3燃焼パラメータ
S ステージ
SW ステージ幅
CM 指令値
CM1 第1指令値
CM2 第2指令値
CM3 第3指令値
OP 原点
OP1 第1原点
OP2 第2原点
OP3 第3原点
NOP、NOP1、NOP2、NOP3 新原点
WST 原点移動幅
PR1 第1工程
PR2 第2工程
STU 上げ指令工程
STD 下げ指令工程
TMW、TMW1、TMW2、TMW3 目標裕度幅
TMUL 目標裕度上限値
TMLL 目標裕度下限値
AMUL 実裕度上限値
AMLL 実裕度下限値
T1 第1保持時間
T2 第2保持時間
T0 未達時間
BRR 指令値解除レート(第1所定レート)
BIR 指令値投入レート(第2所定レート)
α 所定値
MOP 計画最大負荷(計画最大出力)
NOP 無負荷相当出力

Claims (23)

  1.  燃焼器の燃焼制御に適用する燃焼調整方法であって、
     ガスタービンの負荷に対する燃空比を設定する燃焼パラメータを選定するステップと、
    原点の位置から、前記燃焼パラメータの指令値を上昇させる上げ指令工程である第1上げ指令工程又は前記指令値を下降させる下げ指令工程である第1下げ指令工程からなる第1工程を実行するステップと、
     前記燃焼器が燃焼振動を発生することなく前記指令値が目標裕度上限値又は目標裕度下限値に達したら、前記第1工程を終了して、前記燃焼パラメータの前記指令値を前記原点の位置に戻すステップと、
     前記原点の位置から前記第1工程とは反対方向に前記指令値を下降させる前記下げ指令工程である第2下げ指令工程又は前記指令値を上昇させる前記上げ指令工程である第2上げ指令工程からなる第2工程を実行するステップと、
     前記燃焼器が燃焼振動を発生することなく前記第2工程の前記指令値が前記目標裕度下限値又は前記目標裕度上限値に達したら、前記第2工程を終了して、前記燃焼パラメータの前記第2工程の前記指令値を前記原点の位置に戻すステップと、
    を含む、
     前記燃焼パラメータの燃焼裕度範囲を確認する燃焼裕度確認工程を含む、
     ガスタービンの燃焼調整方法。
  2.  前記燃焼裕度確認工程が、
     前記燃焼パラメータの第1燃焼パラメータの前記燃焼裕度範囲を確認する工程であり、
     前記第1燃焼パラメータの前記原点及び前記指令値及び前記目標裕度上限値及び前記目標裕度下限値が、第1原点及び第1指令値及び第1目標裕度上限値及び第1目標裕度下限値である、
     請求項1に記載のガスタービンの燃焼調整方法。
  3.  前記燃焼裕度確認工程が、
     前記燃焼パラメータの第2燃焼パラメータの前記燃焼裕度範囲を確認する工程であり、
     前記第2燃焼パラメータの前記原点及び前記指令値及び前記目標裕度上限値及び前記目標裕度下限値が、第2原点及び第2指令値及び第2目標裕度上限値及び第2目標裕度下限値である、
     請求項2に記載のガスタービンの燃焼調整方法。
  4.  前記燃焼裕度確認工程が、
     前記燃焼パラメータの第3燃焼パラメータの前記燃焼裕度範囲を確認する工程であり、
     前記第3燃焼パラメータの前記原点及び前記指令値及び前記目標裕度上限値及び前記目標裕度下限値が、第3原点及び第3指令値及び第3目標裕度上限値及び第3目標裕度下限値である、
     請求項3に記載のガスタービンの燃焼調整方法。
  5.  取得された前記燃焼パラメータの前記燃焼裕度範囲が確認された燃焼負荷変数の設定値に対し、計画最大出力に対する燃焼負荷変数が定格値となるように前記設定値を補正する最大負荷補正工程と、
     前記燃焼パラメータとガスタービン入口温度の関係を維持しつつ、前記最大負荷補正工程で演算された前記燃焼負荷変数の前記設定値を変換する設定値変換工程と、
     からなる燃焼負荷変数補正工程を更に含む、
     請求項1から4のいずれか何れか一項に記載のガスタービンの燃焼調整方法。
  6.  前記燃焼裕度確認工程が、前記ガスタービンの負荷を示す燃焼負荷変数に対応して実行される、
     請求項1から5の何れか一項に記載のガスタービンの燃焼調整方法。
  7.  前記燃焼裕度確認工程が、
     前記ガスタービンの負荷を示す燃焼負荷変数に対応して、前記燃焼パラメータの優先度及び前記燃焼パラメータの前記指令値の変更パターンの優先度を選定するステップを含む、
     請求項1から6の何れか一項に記載のガスタービンの燃焼調整方法。
  8.  前記第1工程又は前記第2工程が終了した後、前記指令値を前記原点の位置に戻す際、
    前記指令値を第1所定レートで下降させ又は上昇させる、
     請求項1から7の何れか一項に記載のガスタービンの燃焼調整方法。
  9.  前記第1工程又は前記第2工程の前記上げ指令工程又は前記下げ指令工程が、
     前記原点の位置から階段状のステージに沿って前記指令値を上昇又は下降させるステップと、
     前記指令値を1ステージ上昇又は1ステージ下降させた後の前記ステージにおいて、燃焼振動を発生することなく第1保持時間を維持するステップと、
     を含む、
     請求項1から8の何れか一項に記載のガスタービンの燃焼調整方法。
  10.  前記第1工程又は前記第2工程の前記上げ指令工程又は前記下げ指令工程が、
     前記指令値を1ステージ上昇又は1ステージ下降させる際、第2所定レートで前記指令値を上昇させ又は下降させるステップを含む、
     請求項9に記載のガスタービンの燃焼調整方法。
  11.  前記第1工程又は前記第2工程の前記上げ指令工程又は前記下げ指令工程が、
     前記指令値が前記目標裕度上限値又は前記目標裕度下限値に達した前記ステージで前記指令値を維持し、燃焼振動を発生することなく前記ステージで前記第1保持時間に達した場合は、前記指令値において前記第1保持時間を経過した時点から第2保持時間を維持して定常データを採取するステップを含む、
     請求項9又は10の何れかに記載のガスタービンの燃焼調整方法。
  12.  前記燃焼裕度確認工程が、
     前記第1工程の前記上げ指令工程において、前記燃焼パラメータの前記指令値が前記目標裕度上限値に達する前に燃焼振動が発生した場合、又は前記燃焼パラメータの前記指令値が前記目標裕度上限値であるステージに達した後、前記指令値において第1保持時間に達する前に燃焼振動が発生した場合、燃焼振動が発生する直前のステージの前記指令値を実裕度上限値に設定し、前記指令値を前記原点の位置に戻して、前記第1工程を終了するステップと、
     前記第1工程の前記上げ指令工程とは反対方向の前記第2工程の前記下げ指令工程において、前記原点の位置から前記第1工程の前記上げ指令工程の前記目標裕度上限値までの間のステージ数と前記原点の位置から前記実裕度上限値までの間のステージ数の差分を算出し、前記第2工程の前記下げ指令工程の前記目標裕度下限値に対して前記第2工程の前記指令値を下降させる方向に前記第1工程のステージ数の前記差分に相当する前記指令値の前記差分を加算して実裕度下限値として設定するステップと、
     前記第2工程の前記下げ指令工程の前記原点の位置から前記燃焼パラメータの前記指令値を燃焼振動が発生することなく前記実裕度下限値まで前記下げ指令工程を実行するステップと、
     前記原点の位置に対して前記第2工程の前記指令値を下降させる方向に前記第1工程のステージ数の前記差分だけ移動させた位置に新原点を設定するステップと、
     を含む、
     請求項1から10の何れか一項に記載のガスタービンの燃焼調整方法。
  13.  前記燃焼裕度確認工程が、
     前記第1工程の前記下げ指令工程において、前記燃焼パラメータの前記指令値が前記目標裕度下限値に達する前に燃焼振動が発生した場合、又は前記燃焼パラメータの前記指令値が前記目標裕度下限値であるステージに達した後、前記指令値において第1保持時間に達する前に燃焼振動が発生した場合、燃焼振動が発生する直前のステージの前記指令値を実裕度下限値に設定し、前記指令値を前記原点の位置に戻し、前記第1工程を終了するステップと、
     前記第1工程の前記下げ指令工程とは反対方向の前記第2工程の前記上げ指令工程において、前記原点の位置から前記第1工程の前記下げ指令工程の前記目標裕度下限値までの間のステージ数と前記原点の位置から前記実裕度下限値までの間のステージ数の差分を算出し、前記第2工程の前記上げ指令工程の前記目標裕度上限値に対して前記第2工程の前記指令値を上昇させる方向に前記第1工程のステージ数の前記差分に相当する前記指令値の前記差分を加算して実裕度上限値として設定するステップと、
     前記第2工程の前記上げ指令工程において、前記原点の位置から前記燃焼パラメータの前記指令値を燃焼振動が発生することなく前記実裕度上限値まで前記上げ指令工程を実行するステップと、
     前記原点の位置に対して前記第2工程の前記指令値を上昇させる方向に前記第1工程のステージ数の前記差分だけ移動させた位置に新原点を設定するステップと、
     を含む、
     請求項1から10の何れか一項に記載のガスタービンの燃焼調整方法。
  14.  前記燃焼裕度確認工程が、
     前記原点の位置から、前記第1工程の前記上げ指令工程又は前記下げ指令工程を実行し、
     前記ステージの前記指令値が前記目標裕度上限値又は前記目標裕度下限値に達する前に燃焼振動が発生した場合、又は前記ステージの前記指令値が前記目標裕度上限値又は前記目標裕度下限値に達した後、第1保持時間に達する前に燃焼振動が発生した場合、燃焼振動が発生する直前の前記ステージの前記指令値を実裕度上限値又は実裕度下限値に設定し、前記実裕度上限値又は前記実裕度下限値を前記第1工程の第1設定値に設定し、
     前記原点の位置から、前記第1工程の前記上げ指令工程又は前記下げ指令工程とは反対方向に、前記第2工程の前記下げ指令工程又は前記上げ指令工程を実行し、
     前記ステージの前記指令値が前記目標裕度下限値又は前記目標裕度上限値に達する前に燃焼振動が発生した場合、又は前記ステージの前記指令値が前記目標裕度下限値又は前記目標裕度上限値に達した後、前記第1保持時間に達する前に燃焼振動が発生した場合、燃焼振動が発生する直前の前記ステージの前記指令値を前記第2工程の実裕度下限値又は実裕度上限値に設定し、前記第2工程の前記実裕度上限値又は前記実裕度下限値を前記第2工程の第2設定値に設定し、
     前記第1設定値と前記第2設定値の間の中点の位置を新原点に設定するステップを含む、
     請求項9又は10に記載のガスタービンの燃焼調整方法。
  15.  前記燃焼裕度確認工程が、
     前記第1工程又は前記第2工程の前記上げ指令工程又は前記下げ指令工程において、燃焼振動が発生し、前記原点の位置を移動して前記新原点の位置を選定した場合、燃焼振動が発生した前記指令値より1ステージ下降又は1ステージ上昇した前記指令値において、燃焼振動が発生した時点から第2保持時間を維持して定常データを採取するステップを含む、
     請求項12から14の何れか一項に記載のガスタービンの燃焼調整方法。
  16.  前記燃焼裕度確認工程が、
     初期の前記原点の設定値に最も近い燃焼負荷変数を運転時原点に設定して前記燃焼裕度確認工程を実行し、
     前記初期の前記原点の前記設定値が変更され、前記新原点を設定した場合、前記初期の前記原点の前記設定値を前記新原点の前記設定値に変更する設定値変更工程を含む、
     請求項12から15の何れか一項に記載のガスタービンの燃焼調整方法。
  17.  前記最大負荷補正工程は、
     タービン出力と前記計画最大出力との偏差を比例積分して中間補正値を演算し、前記中間補正値に所定値を加算して第2補正値を演算するステップと、
     前記燃焼負荷変数補正工程の実行を開始した後、経過時間が所定時間を経過したら、燃焼負荷変数補正指令を発信するステップと、
     前記燃焼負荷変数補正指令に基づき、切替器で前記第2補正値は第1補正値に置き換えられ、前記第2補正値がリセットされるステップと、
     前記燃焼負荷変数補正指令に基づき、第1補正係数が前記第1補正値に更新されるステップと、
     を含む、
     請求項5に記載のガスタービンの燃焼調整方法。
  18.  前記最大負荷補正工程は、第2補正係数が、前記第2補正値に更新されるステップを更に含む、
     請求項17に記載のガスタービンの燃焼調整方法。
  19.  前記設定値変換工程は、前記第1補正係数に基づき前記ガスタービン入口温度が修正される、
     請求項17又は18の何れかに記載のガスタービンの燃焼調整方法。
  20.  ガスタービンの運転状態を制御する制御部と、
     燃焼振動を制御する自動燃焼調整部と、
     前記ガスタービンの負荷に対する燃焼振動が発生しない燃焼パラメータの燃焼裕度範囲を選定し、前記自動燃焼調整部に送信する燃焼裕度調整部と、
     を含む、
     ガスタービンの燃焼制御装置。
  21.  前記燃焼裕度調整部は、
     前記ガスタービンの負荷に応じて前記燃焼パラメータの燃焼裕度範囲を確認する燃焼裕度確認部と、
     前記燃焼パラメータに対する燃焼負荷変数の設定値を補正して、新設定値を設定する燃焼負荷変数補正部と、
     前記燃焼裕度確認部において新原点が設定された場合、前記新原点に基づき、前記燃焼パラメータと前記燃焼負荷変数との関係を補正する設定値変更部と、
     を含む、
     請求項20に記載のガスタービンの燃焼制御装置。
  22.  前記燃焼負荷変数補正部は、
     計画最大出力に対する燃焼負荷変数が定格値となるように前記燃焼負荷変数を補正する第1補正係数を備え、
     前記第1補正係数が、タービン出力と計画最大出力との偏差が出力偏差許容値内に収まるように演算された第1補正値に更新され、前記燃焼負荷変数を補正する最大負荷補正部と、
     補正後の前記燃焼負荷変数に基づいて前記燃焼パラメータとガスタービン入口温度の関係を維持するよう前記第1補正係数に基づき前記ガスタービン入口温度を修正する設定値変換部と、
     を含む、
     請求項21に記載のガスタービンの燃焼制御装置。
  23.  前記最大負荷補正部は、
     前記タービン出力と前記計画最大出力との偏差を演算する減算器と、
     前記減算器で演算された前記偏差を比例積分して中間補正値を演算するPI演算器と、
     前記PI演算器で演算された前記中間補正値に所定値を加算して第2補正値を演算する加算器と、
     前記タービン出力と前記計画最大出力との偏差が許容値内に収まることを検知して燃焼負荷変数補正指令を発する補正指令部と、
     前記補正指令部より発信された燃焼負荷変数補正指令に基づき開状態になる切替器と、
     前記加算器から出力され、前記切替器を介して前記第2補正値を前記第1補正値として記憶し、前記第1補正値を出力するデータ記憶器と、
     前記データ記憶器から出力された前記第1補正値を取り込み、前記第1補正値に更新される第1補正係数を備える第1最大負荷乗算器と、
     前記加算器からの前記第2補正値を取り込み、前記第2補正値に更新される第2補正係数を備える第2最大負荷乗算器と、
     を含む、
     請求項22に記載のガスタービンの燃焼制御装置。
PCT/JP2021/038719 2020-10-28 2021-10-20 ガスタービンの燃焼調整方法及び燃焼制御装置 WO2022091899A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022559053A JP7407302B2 (ja) 2020-10-28 2021-10-20 ガスタービンの燃焼調整方法及び燃焼制御装置
CN202180072275.4A CN116391074A (zh) 2020-10-28 2021-10-20 燃气涡轮的燃烧调整方法及燃烧控制装置
KR1020237013843A KR20230070509A (ko) 2020-10-28 2021-10-20 가스 터빈의 연소 조정 방법 및 연소 제어 장치
US18/032,937 US20230392789A1 (en) 2020-10-28 2021-10-20 Combustion adjustment method and combustion control device of gas turbine
DE112021004427.3T DE112021004427T5 (de) 2020-10-28 2021-10-20 Verbrennungsanpassungsverfahren und verbrennungssteuervorrichtung von gasturbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-180324 2020-10-28
JP2020180324 2020-10-28

Publications (1)

Publication Number Publication Date
WO2022091899A1 true WO2022091899A1 (ja) 2022-05-05

Family

ID=81382364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038719 WO2022091899A1 (ja) 2020-10-28 2021-10-20 ガスタービンの燃焼調整方法及び燃焼制御装置

Country Status (6)

Country Link
US (1) US20230392789A1 (ja)
JP (1) JP7407302B2 (ja)
KR (1) KR20230070509A (ja)
CN (1) CN116391074A (ja)
DE (1) DE112021004427T5 (ja)
WO (1) WO2022091899A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149361A (ja) * 2010-01-22 2011-08-04 Mitsubishi Heavy Ind Ltd ガスタービン遠隔燃焼調整システム
JP2014148933A (ja) * 2013-02-01 2014-08-21 Hitachi Ltd 2軸ガスタービン
CN110195715A (zh) * 2019-04-19 2019-09-03 中国神华能源股份有限公司 机械设备的可调导叶的控制方法、装置以及机械设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4995169B2 (ja) 2008-09-29 2012-08-08 三菱重工業株式会社 ガスタービン制御方法及び装置
US9810156B2 (en) * 2012-12-18 2017-11-07 General Electric Company Systems and methods for controlling mode transfers of a combustor
JP6427841B2 (ja) * 2015-08-25 2018-11-28 三菱日立パワーシステムズ株式会社 燃料制御装置、燃焼器、ガスタービン、制御方法及びプログラム
JP7234773B2 (ja) 2019-04-24 2023-03-08 日本製鉄株式会社 渦電流式減速装置用ロータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149361A (ja) * 2010-01-22 2011-08-04 Mitsubishi Heavy Ind Ltd ガスタービン遠隔燃焼調整システム
JP2014148933A (ja) * 2013-02-01 2014-08-21 Hitachi Ltd 2軸ガスタービン
CN110195715A (zh) * 2019-04-19 2019-09-03 中国神华能源股份有限公司 机械设备的可调导叶的控制方法、装置以及机械设备

Also Published As

Publication number Publication date
KR20230070509A (ko) 2023-05-23
CN116391074A (zh) 2023-07-04
US20230392789A1 (en) 2023-12-07
JPWO2022091899A1 (ja) 2022-05-05
JP7407302B2 (ja) 2023-12-28
DE112021004427T5 (de) 2023-06-15

Similar Documents

Publication Publication Date Title
EP1762715B1 (en) Fuel-flow-rate control device and controlling method for a power generation system
JP4592513B2 (ja) ガスタービン制御装置、及びガスタービンシステム
EP3892829B1 (en) Modeling and control of gas cycle power plant operation with variant control profile
US7610746B2 (en) Combustion control device for gas turbine
US10208678B2 (en) Gas turbine combustion control device and combustion control method and program therefor
JP4995182B2 (ja) ガスタービン制御方法及び装置
KR102022811B1 (ko) 연료 제어 장치, 연소기, 가스 터빈, 제어 방법 및 프로그램
JP5640227B2 (ja) ガスタービン発電プラントの制御装置
US9140195B2 (en) Exhaust temperature versus turbine pressure ratio based turbine control method and device
EP1533573A1 (en) Method for controlling fuel splits to a gas turbine combustor
US20110142602A1 (en) Methods of determining variable element settings for a turbine engine
WO2022091899A1 (ja) ガスタービンの燃焼調整方法及び燃焼制御装置
JP5501870B2 (ja) ガスタービン
JP5836069B2 (ja) ガスタービン及びガスタービンの燃焼制御方法
EP3324023A1 (en) Systems and methods for adaptive fuel distribution in fuel circuits
US10221777B2 (en) Gas turbine combustion control device and combustion control method and program therefor
US9771877B2 (en) Power output and fuel flow based probabilistic control in part load gas turbine tuning, related control systems, computer program products and methods
JP5745640B2 (ja) ガスタービン発電プラントの制御装置
EP3892830B1 (en) Modeling and control of gas cycle power plant operation by varying split load for multiple gas turbines
JP5031779B2 (ja) ガスタービン・エンジンの制御装置
US11959424B2 (en) Gas turbine output correcting method, control method, device for executing said methods, and program causing computer to execute said methods
KR102273982B1 (ko) 가스 터빈의 제어 장치 및 가스 터빈 및 가스 터빈의 제어 방법
KR20230053252A (ko) 터빈 연소 튜닝 프로세스 자동화 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559053

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18032937

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237013843

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21886018

Country of ref document: EP

Kind code of ref document: A1