WO2022091817A1 - 軌道輸送システム、軌道輸送システムの制御方法および沿線設備形状計測システム - Google Patents

軌道輸送システム、軌道輸送システムの制御方法および沿線設備形状計測システム Download PDF

Info

Publication number
WO2022091817A1
WO2022091817A1 PCT/JP2021/038244 JP2021038244W WO2022091817A1 WO 2022091817 A1 WO2022091817 A1 WO 2022091817A1 JP 2021038244 W JP2021038244 W JP 2021038244W WO 2022091817 A1 WO2022091817 A1 WO 2022091817A1
Authority
WO
WIPO (PCT)
Prior art keywords
railway line
equipment
along
train
observation data
Prior art date
Application number
PCT/JP2021/038244
Other languages
English (en)
French (fr)
Inventor
幸彦 小野
健二 今本
潤 小池
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP21885936.1A priority Critical patent/EP4238852A1/en
Priority to US18/250,588 priority patent/US20230415800A1/en
Priority to AU2021371394A priority patent/AU2021371394B2/en
Publication of WO2022091817A1 publication Critical patent/WO2022091817A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/04Control, warning, or like safety means along the route or between vehicles or vehicle trains for monitoring the mechanical state of the route
    • B61L23/041Obstacle detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/06Indicating or recording the setting of track apparatus, e.g. of points, of signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0072On-board train data handling

Definitions

  • the present invention relates to an orbital transportation system, a control method for the orbital transportation system, and an equipment shape measurement system along the railway line.
  • Patent Document 2 as a method of performing three-dimensional measurement with a camera, a method of photographing an object from a plurality of places and obtaining the three-dimensional coordinates and a shape of the object by triangular survey, or a method of preparing a plurality of cameras and taking an image.
  • a method of using a stereo camera system, a method of obtaining a three-dimensional shape of a subject based on SfM (Structure from Motion) technology from multiple captured images taken while the vehicle is moving by a camera mounted on the vehicle, etc. Is described.
  • FIG. 1 is a schematic diagram showing an example of measurement by a sensor installed on the front surface of the leading vehicle
  • FIG. 2 is a schematic diagram showing an example of measurement by a sensor installed on the upper part of the leading vehicle.
  • FIG. 2 there is a method of expanding the measurement area of the object by installing the sensor group of the ambient environment observation unit 107 on the upper part of the vehicle, but the sensor group will be installed at a high place. , There are problems such as difficult maintenance of the sensor group.
  • the present invention has been made in consideration of this point, and an object of the present invention is to provide a track transportation system, a control method of a track transportation system, and a line equipment shape measurement system that can confirm abnormalities of railway railway line equipment from multiple viewpoints.
  • one of the typical track transportation systems of the present invention is installed on a train, observes the surrounding environment while the train is running, including known facilities along the railway line, and acquires ambient environment observation data.
  • the ambient environment observation unit and the railway equipment shape measurement system that obtains the three-dimensional shape of the railway equipment by superimposing multiple ambient environment observation data including the railway equipment acquired at multiple positions on the track based on the track of the rail. To prepare for.
  • FIG. 3 is a diagram showing an example of the configuration of the orbital transportation system.
  • a track transportation system 100 including a transportation vehicle 102, a self-position estimation system 101, an ambient environment observation unit 107, an obstacle detection system 103, and a railway line equipment shape measurement system 104 will be described.
  • the transportation vehicle 102 is a vehicle that transports passengers and freight traveling along the track.
  • the ambient environment observation unit 107 is a device installed in front of and behind the transportation vehicle 102 to acquire the position, shape, color, reflection intensity, etc. of an object around the transportation vehicle 102, and is a camera, a laser radar, or a device. Alternatively, it is composed of millimeter-wave radar and the like.
  • the obstacle detection system 103 is a system that detects obstacles based on the position / attitude information 133 of the transportation vehicle 102 acquired from the self-position estimation system 101.
  • the obstacle detection system 103 When the obstacle detection system 103 detects an obstacle that hinders the traveling of the transportation vehicle 102, the obstacle detection system 103 sends information regarding the existence of the obstacle to the transportation vehicle 102, and the transportation vehicle 102 Make an emergency stop.
  • the obstacle detection system 103 includes a detection range setting database 123, a monitoring area setting processing unit 111, a detection target information database 112, a side boundary monitoring unit 114, a front boundary monitoring unit 113, and an obstacle detection unit 115.
  • the monitoring area setting processing unit 111 acquires the obstacle detection range 138 corresponding to the position / attitude information 133 of the transportation vehicle estimated by the self-position estimation system 101 from the detection range setting database 123, and detects the obstacle. Set the monitoring area.
  • the detection range setting database 123 for example, it is conceivable to register the area within the building limit as the detection range, and register the area near the home or the area where maintenance work is performed as an area that is not exceptionally detected.
  • the side boundary monitoring unit 114 and the front boundary monitoring unit 113 use a camera, a laser radar, a millimeter wave radar, or the like to set the boundary detection areas 139 and 140 at the side boundary and the front boundary of the obstacle monitoring area. It has a function to detect objects.
  • the side boundary monitoring unit 114 and the front boundary monitoring unit 113 may use the sensor of the ambient environment observation unit 107 as the obstacle detection sensor.
  • the detection target information database 112 can record the position of an existing object (rail, sign, etc.) having a detection rate equal to or higher than a certain value in advance and its reflectance.
  • the obstacle detection unit 115 can detect obstacles in the obstacle monitoring area based on the monitoring results 144 and 143 by the side boundary monitoring unit 114 and the front boundary monitoring unit 113.
  • the obstacle detection unit 115 When the obstacle detection unit 115 detects an obstacle that interferes with the operation of the transportation vehicle 102, the obstacle detection unit 115 transmits the information of "obstacle: present" to the transportation vehicle control drive unit 106 of the transportation vehicle 102.
  • FIG. 4 is a diagram showing an example of the configuration of the self-position estimation system 101 and the railway line equipment shape measurement system 104.
  • the self-position estimation system 101 includes an observation data selection processing unit 116, a vehicle attitude estimation processing unit 117, an ambient environment data coordinate conversion processing unit 118, an ambient environment map generation processing unit 119, an ambient environment map database 120, and a scan matching self-position estimation process. It is composed of a unit 121.
  • the self-position estimation system 101 is for transportation in the external coordinate system based on the ambient environment observation data 130 acquired by the ambient environment observation unit 107, the ambient environment map database 120 defined in the external coordinate system, and the three-dimensional rail track database 108. This is a system that estimates the position and posture of the vehicle 102 by scan matching.
  • the observation data selection processing unit 116 can select the rail observation data 147 from the ambient environment observation data 130 observed by the ambient environment observation unit 107.
  • the vehicle attitude estimation processing unit 117 can estimate the attitude of the transportation vehicle 102 from the rail observation data 147 and the rail position information 137 acquired from the three-dimensional rail track database 108.
  • the surrounding environment data coordinate conversion processing unit 118 uses the vehicle posture 150 to obtain the surrounding environment observation data 130 from the vehicle coordinate system fixed to the transport vehicle 102, and the surrounding environment map database 120 and the three-dimensional rail track database 108 are used. It can be converted into the defined external coordinate system to obtain the ambient environment measurement data 151 (hereinafter, the ambient environment observation data converted into the external coordinate system may be referred to as "ambient environment measurement data”. ).
  • the scan matching self-position estimation processing unit 121 uses the rail position information 137 to move on the track recorded in the three-dimensional rail track database 108 while maintaining the vehicle attitude 149, while moving the surrounding environment measurement data 151 and the surroundings.
  • the self-position of the vehicle can be estimated by matching with the surrounding environment map data 153 recorded in the environment map database 120.
  • the railway line equipment information 136 recorded in the railway line equipment database 110 may be used.
  • the surrounding environment map generation processing unit 119 can generate the surrounding environment map data 153 from the surrounding environment measurement data 152.
  • the railway line equipment shape measurement system 104 is composed of a three-dimensional rail track database 108, a railway line equipment shape measurement processing unit 109, and a railway line equipment database 110.
  • the railway line equipment shape measurement system 104 uses the railway line equipment shape measurement processing unit 109 to measure the three-dimensional shape of the railway line equipment based on the point cloud data of the railway line equipment converted into the external coordinate system from the scan matching self-position estimation processing unit 121. Measure and record in the equipment database 110 along the railway line.
  • Rail measurement data 132 can be recorded in the 3D rail track database 108.
  • the railway line equipment shape measurement processing unit 109 detects the railway line equipment in the ambient environment measurement data 131 from the ambient environment measurement data 131, the rail shape model 134, and the railway line equipment information 135, and creates a three-dimensional shape model of the railway line equipment. Can be created.
  • the railway line equipment database 110 it is possible to record the surrounding environment measurement data 131 in which the railway line equipment is detected and the three-dimensional shape model of the railway line equipment.
  • the transportation vehicle 102 is composed of a transportation vehicle operation control unit 105 and a transportation vehicle control drive unit 106.
  • the transportation vehicle operation control unit 105 is a device that generates a control drive command for the transportation vehicle 102, and an ATO device (automatic train operation device) can be mentioned as an example.
  • the generated transport vehicle control drive command 146 is transmitted to the transport vehicle control drive unit 106.
  • the transport vehicle operation control unit 105 can generate a control drive command so that the transport vehicle 102 travels along a target travel pattern defined by a position and a speed. Although not shown in FIG. 3, it has an internal function of detecting the position and speed of the transport vehicle 102 in order to travel along the target travel pattern.
  • the pattern based on the speed limit of the transport vehicle 102 and the speed limit of the traveling section, which are known in advance, is the basis. Then, the allowable maximum speed of the transportation vehicle 102 is calculated from the position of the transportation vehicle 102 and the maximum deceleration of the transportation vehicle 102, and is reflected in the target traveling pattern of the transportation vehicle 102.
  • the transportation vehicle control drive unit 106 controls and drives the transportation vehicle 102 based on the transportation vehicle control drive command 146 acquired from the transportation vehicle operation control unit 105.
  • Examples of the specific device of the transport vehicle control drive unit 106 include an inverter, a motor, a friction brake, and the like.
  • obstacle detection information 145 is input from the obstacle detection unit 115 to the transportation vehicle control drive unit 106.
  • the transportation vehicle 102 is stopped at the station and the content of the obstacle detection information 145 is "obstacle: yes"
  • the vehicle is put into a braking state and cannot start.
  • the transportation vehicle 102 is traveling between stations and the content of the obstacle detection information 145 is "obstacle: present”
  • braking is performed at the maximum deceleration to stop the transportation vehicle 102.
  • FIG. 5 is a flowchart showing an example of a processing procedure executed by the obstacle detection system 103.
  • step 201 the current position / posture 133 of the transportation vehicle 102 required for acquiring the obstacle detection range 138 is acquired from the self-position estimation system 101.
  • step 202 the obstacle monitoring area is set from the obstacle detection range 138 corresponding to the current position of the transportation vehicle acquired in step 201.
  • the building limit as the lateral boundary of the obstacle monitoring area and set the stoptable distance of the transport vehicle as the traveling direction boundary of the obstacle monitoring area.
  • step 203 sensor information regarding obstacles in the boundary detection areas 139 and 140 set at the boundary of the obstacle monitoring area is acquired from the obstacle detection sensor, and it is determined whether or not there is an obstacle in the obstacle monitoring area. .. As a result of determining whether or not an obstacle exists in step 203, if it is determined that an obstacle exists, the process proceeds to step 204. If it is determined that there is no obstacle, the process proceeds to step 205.
  • the width of the lateral boundary detection area 139 is at least when the obstacle enters the boundary, considering the size and maximum moving speed of the obstacle expected to enter the area and the sensing cycle of the obstacle detection sensor.
  • the width should be such that it can be detected at least once.
  • this lateral boundary detection area 139 is set to several cm to several tens of cm (more specifically, 10 cm) assuming passengers waiting at the platform, and crossing a car or the like near the railroad crossing. It is desirable to change it according to the current position of the transportation vehicle 102, such as setting it widely (for example, 1 m) assuming it.
  • FIG. 6 is a diagram showing an example of sensor installation.
  • FIG. 1 As a sensor for detecting the presence or absence of a side obstacle in the side boundary detection area 155, considering that the shape of the side boundary detection area 155 is a rectangle having a width of several tens of centimeters and a depth of more than 100 m, FIG. It is possible to use two LIDAR detectors 201 and 202 installed at high positions on the front left and right of the transport vehicle 102 so as to be able to detect the left and right lateral boundary detection areas 155. can.
  • the detection result in the side boundary detection area 155 satisfies any of the following (condition 1) to (condition 3) as compared with the side detection target information 141 registered in the detection target information database 112. When it is determined that an obstacle has invaded.
  • the stopping distance of the transportation vehicle 102 increases, and the obstacle monitoring area expands. If the reflectance of the laser to be detected at a long distance is small, it may be erroneously determined that an obstacle has entered due to condition 1. Therefore, for example, it is necessary to suppress the allowable travelable speed.
  • Countermeasure 1 Only the position of an existing object (rail, sign, etc.) having a detection rate of a certain value or higher in the side boundary detection area 155 is targeted for detection.
  • Countermeasure 2 An object having a detection rate of a certain value or higher is installed as a detection target in the lateral boundary detection area 155. For example, an object having a high reflectance or an object that is hard to get dirty has a high detection rate.
  • the position of the detection target and its reflectance are recorded in the detection target information database 112 in advance, and only when the position of the detection target is included in the lateral boundary detection area 155 at the current position of the transportation vehicle 102. ,
  • the detection target is used to judge the intrusion of obstacles.
  • FIG. 7 is a diagram showing an example of detection of a lateral boundary detection region when the obstacle detection system travels on a turning track.
  • the detection points on the lateral boundary detection region 155 that spans a plurality of layers are used. , It is possible to determine the intrusion of obstacles even when the boundary is curved, such as a curved trajectory.
  • the road surface detection points by each detection layer irradiated from the multilayer type LIDAR are shown by dotted lines, but the detection layer passing over the side boundary detection regions 155a and 155b differs depending on the distance from the vehicle and is an obstacle.
  • a plurality of stereo cameras, millimeter wave radars, and laser rangefinders may be used, or these sensors may be attached to an automatic pan head to scan the side boundary detection area 155. May be good.
  • a narrow-angle monocular camera including infrared rays
  • a stereo camera a millimeter-wave radar
  • LIDAR laser rangefinder
  • the detection result (color, detection position and distance, reflection intensity of laser or millimeter wave) of any of the sensors is registered in the detection target information database 112 as the detection target information 141. , 142 may be determined that an obstacle exists in the monitoring area.
  • the detection rate can be increased by using the detection results of a plurality of sensors of different types.
  • the false positive rate can be reduced by using the AND of the detection result.
  • the detection target registered in the detection target information database 112 may be distant and cannot be detected. Therefore, an object other than the detection target information 142 registered in the detection target information database 112 is detected. When it does, it is determined that there is an obstacle.
  • step 203 If it is determined in step 203 that an obstacle exists, it is necessary to stop the transportation vehicle 102, so the obstacle detection information 145 is created in step 204. On the other hand, if it is determined that there is no obstacle, the process proceeds to step 205.
  • step 205 the obstacle detection information 145 in the obstacle monitoring area is transmitted to the transportation vehicle 102.
  • the above is a description of the operation of the obstacle detection system 103.
  • FIG. 8 is a flowchart showing an example of a processing procedure executed by the self-position estimation system 101.
  • step 401 the ambient environment observation data 130 observed by the ambient environment observation unit 107 is acquired.
  • FIG. 9 is a diagram showing an example of rail detection by the self-position estimation system.
  • step 402 the rail observation data 147 of FIG. 9 is selected from the ambient environment observation data 130 acquired in step 401.
  • the rail observation data 147 in FIG. 9 can be selected by utilizing the shape and reflectance of the rail as well as the data detected as the rail forming one plane.
  • FIG. 10 is a diagram showing an example of vehicle attitude estimation by a self-position estimation system.
  • step 403 the posture of the transport vehicle 102 is estimated from the plane R formed by the rail surface obtained from the rail observation data 147 and the rail position information 137 acquired from the three-dimensional rail track database 108.
  • the attitude of the transport vehicle 102 means the inclination of the transport vehicle 102 with respect to the external coordinate system ⁇ O in which the three-dimensional rail track database 108 is defined.
  • the 3D rail track database 108 records 3D point cloud data passing on the left and right rails and their reflectances.
  • step 404 the surrounding environment map database 120 and the three-dimensional rail track database 108 are obtained by using the vehicle posture 150 estimated in step 403 from the vehicle coordinate system ⁇ T fixed to the transport vehicle 102 for the surrounding environment observation data 130. Is converted into the defined external coordinate system ⁇ O to obtain the ambient environment measurement data 151.
  • step 405 while maintaining the vehicle attitude 149 estimated in step 403 and moving on the track recorded in the three-dimensional rail track database 108, the ambient environment measurement data 151 calculated by coordinate conversion in step 404 and the surroundings The self-position of the vehicle is estimated by matching with the surrounding environment map data 153 recorded in the environment map database 120.
  • FIG. 11 is a diagram showing an example of the surrounding environment in which the transportation vehicle travels
  • FIG. 12 is a diagram showing an example of the surrounding environment measurement data.
  • the point cloud data 151 defined by the external coordinate system ⁇ O as shown in FIG. 12 can be acquired in step 404.
  • FIGS. 13 and 14 are diagrams showing an example of matching between the ambient environment measurement data and the ambient environment map data
  • FIGS. 15 and 16 are diagrams showing an example of matching between the ambient environment measurement data and the ambient environment map data in an automobile. It is a figure which shows.
  • the ambient environment measurement data 151 and the ambient environment map data 153 are correlated while moving in an arbitrary direction. It is necessary to obtain the position with the highest correlation value (FIG. 16) as the self-position.
  • the ambient environment measurement data 151 and the ambient environment map data 153 are correlated while moving on the rail track 185 in FIG. 13, and the correlation value is the highest.
  • the high position (FIG. 14) may be obtained as the self-position.
  • the estimated self-position is always on the orbit, and it is possible to prevent the estimated self-position from deviating from the orbit as in the effect of multipath when GNSS is used.
  • the above is a description of the operation of the self-position estimation system 101.
  • FIG. 17 is a flowchart showing an example of a processing procedure executed by the equipment shape measurement system 104 along the railway line.
  • FIGS. 18 to 21 are diagrams showing an example of ambient environment observation for acquiring ambient environment measurement data used in the railway equipment shape measurement system
  • FIGS. 22 to 25 are ambient environments used in the railway equipment shape measurement system. It is a figure which shows an example of the measurement data.
  • the ambient environment measurement data 131 converted into the external coordinate system is acquired from the self-position estimation system 101, and the ambient environment measurement data 131 is matched with the rail shape model 134 acquired from the three-dimensional rail track database 108.
  • the relative position of the ambient environment measurement data 131 with respect to the rail track 185 is calculated.
  • the relative position with respect to the rail track 185 is defined by the relative position coordinate system in which the origin 173 is taken on the rail track 185, or the distance / attitude with respect to the rail.
  • the ambient environment measurement data 131 acquired at the positions of FIGS. 18 to 21 can be defined by the coordinate system ⁇ R having the origin 173 on the rail track 185 as shown in FIGS. 22 to 25.
  • the railway line equipment 171 is detected from the ambient environment measurement data 131 based on the railway line equipment information (position / attitude, three-dimensional shape, color, reflectance) 135 acquired from the railway line equipment database 110.
  • the position / posture of the equipment along the railway line does not necessarily have to be the position / posture in the external coordinate system, but may be the distance or the posture with respect to the rail.
  • FIG. 26 is a diagram showing an example of a railway line equipment database used in the railway line equipment shape measurement system.
  • step 503 the ambient environment measurement data 131 in which the alongside equipment 171 is detected is recorded in the alongside equipment database 110 for each of the detected alongside equipment 171.
  • FIG. 27 is a diagram showing matching between the surrounding environment measurement data and the equipment along the railway line in the equipment shape measurement system along the railway line.
  • step 504 the rail track is maintained relative to the rail estimated in step 501 with respect to the plurality of ambient environment measurement data 131 in the railway line equipment database 110 recorded for each line equipment 171.
  • the ICP algorithm can be used for matching between the ambient environment measurement data 131.
  • the accuracy of the three-dimensional shape model of the railway line equipment 171 is improved by giving a large weight to the measurement data 172 of the railway line equipment 171.
  • the railway line equipment shape measurement system obtains the three-dimensional shape of the railway line equipment by superimposing a plurality of ambient environment measurement data including the railway line equipment acquired at a plurality of positions on the track based on the rail track. More specifically, the railway line equipment shape measurement system matches the rail measurement data included in the surrounding environment measurement data with the rail shape model, and the measurement data of the railway line equipment and the shape of the railway line equipment included in the ambient environment measurement data. Based on the matching with, the three-dimensional shape of the equipment along the railway line is obtained by superimposing a plurality of ambient environment observation data including the equipment along the railway line.
  • FIG. 28 is a diagram showing an example of ambient environment measurement data observed by a sensor installed in the front
  • FIG. 29 is a diagram showing an example of ambient environment measurement data observed by a sensor installed in the rear
  • FIG. 30 is a diagram showing an example of measurement of the shape of equipment along the railway line by the ambient environment measurement data observed by the sensor installed in the front and the ambient environment measurement data observed by the sensor installed in the rear.
  • FIG. 28 which observes the surrounding environment from the leading vehicle
  • FIG. 29 which observes the surrounding environment from the rearmost vehicle
  • the surrounding environment measurement data 131 that observes the environment is heavily weighted by matching with a plurality of ambient environment measurement data 131 in the railway line equipment database, and a three-dimensional shape model of the railway line equipment 171 is obtained as shown in FIG.
  • step 505 the three-dimensional shape model of the created railway line equipment 171 is recorded in the railway line equipment database 110.
  • the above is a description of the operation of the equipment shape measurement system 104 along the railway line.
  • FIG. 31 is a flowchart showing an example of a processing procedure executed by the transportation vehicle operation control unit.
  • the obstacle detection information 145 includes information regarding the necessity of braking of the transportation vehicle 102
  • the transportation vehicle operation control unit controls the control drive of the transportation vehicle 102 based on the obstacle detection information 145.
  • step 300 the transportation vehicle operation control unit 105 acquires the transportation vehicle presence position.
  • step 301 it is determined whether or not the transportation vehicle 102 is stopped at the station. The determination is made from the position and speed of the transportation vehicle 102 held by the transportation vehicle operation control unit 105. Specifically, if the position is near the station and the speed is zero, it is determined that the vehicle is stopped at the station.
  • step 301 If it is determined in step 301 that the vehicle is stopped, the time when the transportation vehicle 102 is scheduled to depart from the station where the transportation vehicle 102 is currently stopped (scheduled departure time of the transportation vehicle) is acquired in step 302.
  • the scheduled departure time of the transportation vehicle may be obtained from the operation management system (not shown).
  • step 303 it is determined whether or not the current time has passed the scheduled departure time of the transportation vehicle. If it has not passed, exit this processing flow. If it has passed, the process proceeds to step 304.
  • step 304 it is determined whether or not the transportation vehicle 102 has completed the departure preparation.
  • An example of preparation for departure is confirmation of the closed state of the vehicle door. If it is not completed, exit this processing flow. If the departure preparation is completed, the process proceeds to step 305.
  • step 305 the obstacle detection information 145 is acquired from the obstacle detection unit 115.
  • step 306 it is determined from the obstacle detection information 145 whether or not an obstacle exists in the orbit. If it is determined that there is no obstacle, the process proceeds to step 307.
  • step 306 If it is determined in step 306 that an obstacle exists, it is necessary to suspend the departure, so the process exits this process.
  • step 307 the transport vehicle control drive command 146 is calculated and transmitted to the transport vehicle control drive unit 106. Specifically, here, a powering command is sent to depart the station.
  • the estimated arrival time of the next station (estimated time of arrival of the transportation vehicle) is calculated from the timing at which the transportation vehicle 102 departs and the estimated time of travel between the stations to be traveled, and the operation management system ( (Not shown).
  • step 311 the obstacle detection information 145 in the monitoring area is acquired from the obstacle detection system 103.
  • step 312 the necessity of braking of the transportation vehicle 102 is determined based on the obstacle detection information 145, and if it is determined that braking is necessary, the process proceeds to step 314. If it is determined that there is no obstacle or it is not necessary to brake, the process proceeds to step 313.
  • step 313 the transport vehicle control drive command 146 is calculated and transmitted to the transport vehicle control drive unit 106. Specifically, here, first, the target speed is calculated based on the position of the transportation vehicle 102 and the predetermined target traveling pattern. Then, the control drive command 146 is calculated by proportional control or the like so that the speed of the transport vehicle 102 becomes the target speed.
  • step 314 the transport vehicle braking command 146 is calculated and transmitted to the transport vehicle control drive unit 106. Specifically, here, a braking command is calculated so as to decelerate and stop the transport vehicle 102 at the maximum deceleration, and the process exits the present processing flow.
  • step 315 the time when the transportation vehicle 102 arrives at the next station is estimated from the position and speed of the transportation vehicle 102 at that time, and is transmitted to the operation management system (not shown).
  • the operation management system not shown.
  • the shape of the equipment along the railway line is measured by the ambient environment measurement data observed by the sensor installed in the front and the ambient environment measurement data observed by the sensor installed in the rear, it is close to the entire circumference of the equipment along the railway line. You can create a 3D shape model.
  • the equipment shape measurement system 104 along the railway line in the first embodiment measures the shape of the equipment along the railway line without obtaining the self-position of the transportation vehicle 102 in the external coordinate system.
  • FIG. 32 is a diagram showing an example of the configuration of the equipment shape measurement system 104 along the railway line in the second embodiment.
  • the railway line equipment shape measurement system 104 includes a three-dimensional rail track database 108, a train formation information database 180, a movement amount estimation processing unit 183, a railway line equipment shape measurement processing unit 109, and a railway line equipment database 110.
  • the three-dimensional shape of the equipment along the railway line is measured by the equipment shape measurement processing unit 109 along the railway line from the point cloud data of the equipment along the railway line, and recorded in the facility database 110 along the railway line.
  • the movement amount estimation processing unit 183 can obtain the estimated train movement amount 184 based on the surrounding environment observation data 182 and the equipment information 136 along the railway line.
  • the railway line equipment shape measurement processing unit 109 detects the railway line equipment in the surrounding environment observation data 182 from the rail shape model 134, the train formation information 181 and the estimated train movement amount 184, and the railway line equipment information 135, and three-dimensionally the railway line equipment. You can create a shape model.
  • the railway line equipment shape measurement processing unit 109 uses sensors installed in front of the railway line. The time from observing the equipment to observing the same equipment along the railway line with a sensor installed behind can be calculated and used for detecting the equipment along the railway line in the surrounding environment observation data 182.
  • the railway line equipment shape measurement system obtains the three-dimensional shape of the railway line equipment by superimposing a plurality of ambient environment observation data including the railway line equipment that is presumed to be the same from the train speed and the train length. More specifically, the equipment shape measurement system along the railway line estimates the same thing based on the speed of the train, the track of the rail, and the formation of the train.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • Surrounding environment Data coordinate conversion processing unit 119 ... Surrounding environment map generation processing unit 120 ... Surrounding environment map database 121 ... Scan matching self-position estimation processing unit 123 ... Detection range setting database 130 ... Surrounding environment observation data 131 ⁇ ⁇ ⁇ Ambient environment measurement data 132 ⁇ ⁇ ⁇ Rail measurement data 133 ⁇ ⁇ ⁇ Position / attitude information of transportation vehicle 134 ⁇ ⁇ ⁇ Rail shape model 135 ⁇ ⁇ ⁇ Railway equipment information 136 ⁇ ⁇ ⁇ railway equipment information 137 ⁇ ⁇ Rail position information 138 ⁇ ⁇ ⁇ Obstacle detection range 139 ⁇ ⁇ ⁇ Side boundary detection area 140 ⁇ ⁇ ⁇ Front boundary detection area 141 ⁇ ⁇ ⁇ Side detection target information 142 ⁇ ⁇ ⁇ Front detection target information 143 ⁇ ⁇ Side boundary monitoring result 144 ⁇ ⁇ ⁇ Front boundary monitoring result 145 ⁇ ⁇ ⁇ Obstacle detection information 146 ⁇ ⁇ ⁇ Transportation vehicle control drive command
  • Surrounding environment measurement data 152 ... Surrounding environment measurement data 153 ; Surrounding environment map data 155 ... Lateral boundary detection area 156 ... Front boundary detection area 171 ... Line equipment 172. ⁇ ⁇ Equipment measurement data along the railway line 173 ⁇ ⁇ ⁇ Ambient environment measurement data set on the rail track Origin 180 ⁇ ⁇ ⁇ Train formation information database 181 ⁇ ⁇ ⁇ Train formation information 182 ⁇ ⁇ ⁇ Surrounding environment observation data 183 ⁇ ⁇ ⁇ Movement amount Estimated processing unit 184 ... Estimated train movement amount 185 ... Rail track

Abstract

本発明は、鉄道沿線設備の異常を多視点から確認できる軌道輸送システム、軌道輸送システムの制御方法および沿線設備形状計測システムを提供するものである。 このため、本発明の軌道輸送システムは、列車に設置され、既知の沿線設備を含む列車走行中の周囲環境を観測して周囲環境観測データを取得する周囲環境観測部と、軌道上の複数の位置で取得した沿線設備を含む複数の周囲環境観測データをレールの軌道に基づいて重ね合わせて沿線設備の3次元形状を求める沿線設備形状計測システムと、を備える。

Description

軌道輸送システム、軌道輸送システムの制御方法および沿線設備形状計測システム
 本発明は、軌道輸送システム、軌道輸送システムの制御方法および沿線設備形状計測システムに関する。
 運行列車による鉄道沿線設備の遠隔監視は、鉄道事業における運営および保守のコスト低減につながるとともに、列車運行の支障物を早期に発見するうえでも重要である。
 このような鉄道沿線設備の遠隔監視の方法としては、例えば、特許文献1に記載された、列車に設置したカメラで鉄道周辺を撮影し、同一路線を異なる日時に撮影したカメラ画像を比較することで、時系列的な環境の変化を検出する方法などがある。
 一方で、ある沿線設備の異常を調べるためには、その沿線設備を多方向から確認しなければならない場合もあり、このとき、ある方向からのカメラ撮影のみでなく、3次元計測が必要となる。
 特許文献2には、カメラで3次元の計測を行う方法として、対象物を複数個所から撮影し、三角測量により対象物の3次元座標や形状を求める方法や、カメラを複数台用意して撮影するステレオカメラシステムを使用する方法、車両に搭載されたカメラによって車両の移動中に撮影された複数の撮影画像から、SfM(Structure from Motion)の技術に基づいて被写体の3次元形状を求める方法などが記載されている。
 また、特許文献3に記載されているように、車両に搭載されたLIDARを用いて、車両の移動中に点群を取得し、取得した点群を車両座標系での位置から外部座標系での位置に変換して蓄積し、蓄積した点群情報から、対象物の3次元形状を求める方法がある。
 さらに、所謂3次元LIDARを使用することで、車両の位置情報がなくとも対象物の3次元形状を求めることができる。
特開2017-001638号公報 特開2017-196948号公報 国際公開第2008/099915号
 図1は、先頭車両の前面に設置されたセンサによる計測の一例を示す概略図であり、図2は、先頭車両の上部に設置されたセンサによる計測の一例を示す概略図である。
 図1のように、輸送用車両102の先頭車両の前面に設置されたセンサ群で対象物の3次元形状を計測した場合には、対象物の限られた部分の形状しか計測することができない。
 また、図2のように、車両上部に周囲環境観測部107のセンサ群を設置することで、対象物の計測領域を拡大する方法もあるが、センサ群が高所に設置されることになり、センサ群のメンテナンスが難しいなどの問題がある。
 本発明はこの点を考慮してなされたもので、鉄道沿線設備の異常を多視点から確認できる軌道輸送システム、軌道輸送システムの制御方法および沿線設備形状計測システムを提供することを目的とする。
 上記課題を解決するために、本発明の代表的な軌道輸送システムの一つは、列車に設置され、既知の沿線設備を含む列車走行中の周囲環境を観測して周囲環境観測データを取得する周囲環境観測部と、軌道上の複数の位置で取得した沿線設備を含む複数の周囲環境観測データをレールの軌道に基づいて重ね合わせて沿線設備の3次元形状を求める沿線設備形状計測システムと、を備える。
 本発明により、鉄道沿線設備を多視点から確認することができ、鉄道沿線設備の異常を早期に検知することができる軌道輸送システム、軌道輸送システムの制御方法および沿線設備形状計測システムを提供できる。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
先頭車両の前面に設置されたセンサによる計測の一例を示す概略図である。 先頭車両の上部に設置されたセンサによる計測の一例を示す概略図である。 軌道輸送システムの構成の一例を示す図である。 自己位置推定システムと沿線設備形状計測システムの構成の一例を示す図である。 障害物検知システムの処理手順の一例を示すフローチャートである。 センサの設置の一例を示す図である。 障害物検知システムの旋回軌道走行時の側方境界検出領域の検知の一例を示す図である。 自己位置推定システムの処理手順の一例を示すフローチャートである。 自己位置推定システムによるレール検知の一例を示す図である。 自己位置推定システムによる車両姿勢の推定の一例を示す図である。 輸送用車両が走行する周囲環境の一例を示す図である。 周囲環境計測データの一例を示す図である。 周囲環境計測データと周囲環境地図データとのマッチングの一例(マッチング前)を示す図である。 周囲環境計測データと周囲環境地図データとのマッチングの一例(マッチング後)を示す図である。 自動車における周囲環境計測データと周囲環境地図データとのマッチングの一例(マッチング前)を示す図である。 自動車における周囲環境計測データと周囲環境地図データとのマッチングの一例(マッチング後)を示す図である。 沿線設備形状計測システムの処理手順の一例を示すフローチャートである。 沿線設備形状計測システムで使用する周囲環境計測データを取得する周囲環境観測の一例(1)を示す図である。 沿線設備形状計測システムで使用する周囲環境計測データを取得する周囲環境観測の一例(2)を示す図である。 沿線設備形状計測システムで使用する周囲環境計測データを取得する周囲環境観測の一例(3)を示す図である。 沿線設備形状計測システムで使用する周囲環境計測データを取得する周囲環境観測の一例(4)を示す図である。 沿線設備形状計測システムで使用する周囲環境計測データの一例(1)を示す図である。 沿線設備形状計測システムで使用する周囲環境計測データの一例(2)を示す図である。 沿線設備形状計測システムで使用する周囲環境計測データの一例(3)を示す図である。 沿線設備形状計測システムで使用する周囲環境計測データの一例(4)を示す図である。 沿線設備形状計測システムで使用する沿線設備データベースの一例を示す図である。 沿線設備形状計測システムにおける周囲環境計測データと沿線設備とのマッチングを示す図である。 前方に設置されたセンサで観測した周囲環境計測データの一例を示す図である。 後方に設置されたセンサで観測した周囲環境計測データの一例を示す図である。 前方に設置されたセンサで観測した周囲環境計測データと後方に設置されたセンサで観測した周囲環境計測データによる沿線設備形状の計測の一例を示す図である。 輸送用車両運転制御部の処理手順の一例を示すフローチャートである。 実施例2における沿線設備形状計測システムの構成の一例を示す図である。
 以下、実施の形態について図面を参照して説明する。
 図3は、軌道輸送システムの構成の一例を示す図である。
 本実施例では、輸送用車両102と自己位置推定システム101、周囲環境観測部107、障害物検知システム103、沿線設備形状計測システム104とから構成された、軌道輸送システム100に関して説明する。
(軌道輸送システム100の構成と各構成要素の役割)
 まず、図3を用いて、軌道輸送システム100の構成と各構成要素の役割を説明する。
 輸送用車両102は軌道に沿って走行する旅客や貨物を輸送する車両である。
 周囲環境観測部107は、輸送用車両102の前方および後方に設置され、輸送用車両102の周囲にある物体の位置や形状、色や反射強度などを取得する装置であり、カメラやレーザレーダ、あるいはミリ波レーダーなどから構成される。
 障害物検知システム103は、自己位置推定システム101から取得した輸送用車両102の位置・姿勢情報133に基づき、障害物の検知を行うシステムである。
 障害物検知システム103が、輸送用車両102の走行に支障をきたす障害物を検知した場合、障害物検知システム103から輸送用車両102に障害物の存在に関する情報が送られ、輸送用車両102は緊急停止する。
 障害物検知システム103は、検知範囲設定データベース123と監視エリア設定処理部111と検知対象情報データベース112と側方境界監視部114と前方境界監視部113と障害物検知部115から構成される。
 監視エリア設定処理部111は、自己位置推定システム101で推定した輸送用車両の位置・姿勢情報133に対応する障害物検知範囲138を検知範囲設定データベース123から取得し、障害物を検知する障害物監視エリアを設定する。
 検知範囲設定データベース123には、例えば、建築限界内を検知範囲として登録し、ホーム付近や保守作業を行うエリアを例外的に検知しないエリアとして登録することなどが考えられる。
 側方境界監視部114と前方境界監視部113は、カメラやレーザレーダ、あるいはミリ波レーダーなどを用いて、障害物監視エリアの側方境界と前方境界に設定した境界検出領域139、140の障害物を検知する機能を持つ。ここで、側方境界監視部114と前方境界監視部113は、障害物検知センサとして、周囲環境観測部107のセンサを用いてもよい。
 検知対象情報データベース112には、事前にある値以上の検出率をもつ既存物(レールや標識等)の位置とその反射率を記録することができる。
 障害物検知部115は、側方境界監視部114と前方境界監視部113での監視結果144、143に基づき、障害物監視エリア内の障害物を検知することができる。
 障害物検知部115は、輸送用車両102の運行に支障をきたす障害物を検知した場合、輸送用車両102の輸送用車両制駆動部106に「障害物:あり」の情報を伝達する。
 図4は、自己位置推定システム101と沿線設備形状計測システム104の構成の一例を示す図である。
 自己位置推定システム101は、観測データ選別処理部116と車両姿勢推定処理部117、周囲環境データ座標変換処理部118、周囲環境地図生成処理部119、周囲環境地図データベース120、スキャンマッチング自己位置推定処理部121とから構成される。
 自己位置推定システム101は、周囲環境観測部107で取得した周囲環境観測データ130および外部座標系で定義された周囲環境地図データベース120や3次元レール軌道データベース108に基づき、外部座標系での輸送用車両102の位置・姿勢をスキャンマッチングにより推定するシステムである。
 観測データ選別処理部116は、周囲環境観測部107で観測した周囲環境観測データ130から、レール観測データ147を選別することができる。
 車両姿勢推定処理部117は、レール観測データ147と、3次元レール軌道データベース108から取得したレール位置情報137とから輸送用車両102の姿勢を推定することができる。
 周囲環境データ座標変換処理部118は、周囲環境観測データ130を、輸送用車両102に固定された車両座標系から、車両姿勢150を用いて、周囲環境地図データベース120、3次元レール軌道データベース108が定義された外部座標系に変換して、周囲環境計測データ151とすることができる(以下、外部座標系に変換された周囲環境観測データを、「周囲環境計測データ」と表記することがある。)。
 スキャンマッチング自己位置推定処理部121は、車両姿勢149を保ちながら、レール位置情報137を用いて、3次元レール軌道データベース108に記録された軌道上を移動させつつ、周囲環境計測データ151と、周囲環境地図データベース120に記録された周囲環境地図データ153とをマッチングすることで車両の自己位置を推定することができる。その際、沿線設備データベース110に記録された沿線設備情報136を用いてもよい。
 周囲環境地図生成処理部119は、周囲環境計測データ152から周囲環境地図データ153を生成することができる。
 沿線設備形状計測システム104は、3次元レール軌道データベース108と沿線設備形状計測処理部109、沿線設備データベース110とから構成される。
 沿線設備形状計測システム104は、スキャンマッチング自己位置推定処理部121からの外部座標系に変換された沿線設備の点群データに基づき、沿線設備形状計測処理部109にて沿線設備の3次元形状を計測し、沿線設備データベース110に記録する。
 3次元レール軌道データベース108には、レール計測データ132を記録することができる。
 沿線設備形状計測処理部109は、周囲環境計測データ131と、レール形状モデル134と、沿線設備情報135とから、周囲環境計測データ131内の沿線設備を検出し、沿線設備の3次元形状モデルを作成することができる。
 沿線設備データベース110には、沿線設備が検出された周囲環境計測データ131と、沿線設備の3次元形状モデルとを記録することができる。
 輸送用車両102は、輸送用車両運転制御部105と輸送用車両制駆動部106とから構成される。
 輸送用車両運転制御部105は、輸送用車両102の制駆動指令を生成する装置であり、ATO装置(自動列車運転装置)が例として挙げられる。生成した輸送用車両制駆動指令146は輸送用車両制駆動部106に伝えられる。
 輸送用車両運転制御部105は、位置と速度で定義される目標走行パターンに沿って、輸送用車両102が走行するように、制駆動指令を生成することができる。図3には示さないが、目標走行パターンに沿って走行するために、輸送用車両102の位置と速度を検知する機能を内部に有する。
 目標走行パターンの生成にあたっては、予め分かっている輸送用車両102の加減速度と走行区間の制限速度に基づくパターンを基本とする。そのうえで、輸送用車両102の位置と、輸送用車両102の最大減速度とから、輸送用車両102の許容最高速度を算出し、輸送用車両102の目標走行パターンに反映させる。
 輸送用車両制駆動部106は、輸送用車両運転制御部105から取得する輸送用車両制駆動指令146に基づき、輸送用車両102を制駆動する。輸送用車両制駆動部106の具体的装置の例としては、インバータ、モータ、摩擦ブレーキなどが挙げられる。
 また、輸送用車両制駆動部106には障害物検知部115から障害物検知情報145が入力されている。輸送用車両102が駅停止中で、障害物検知情報145の内容が「障害物:あり」となった場合には、制動状態とし、発進できないようにする。輸送用車両102が駅間走行中で、障害物検知情報145の内容が「障害物:あり」となった場合には、最大減速度で制動し、輸送用車両102を停止させる。
 以上が、軌道輸送システム100の構成と各構成要素の役割の説明である。
(障害物検知システム103の動作)
 次に障害物検知システム103の動作を説明する。図5は、障害物検知システム103により実行される処理手順の一例を示すフローチャートである。
 ステップ201~205で輸送用車両102に対する停止指示を作成する。本処理は障害物検知センサのセンシング周期ごとに実行される。
 ステップ201では、自己位置推定システム101から障害物検知範囲138の取得に必要な輸送用車両102の現在の位置・姿勢133を取得する。
 ステップ202では、ステップ201で取得した輸送用車両の現在位置に対応する障害物検知範囲138から、障害物監視エリアを設定する。
 例えば、建築限界を障害物監視エリアの側方境界として設定し、輸送用車両の停止可能距離を障害物監視エリアの進行方向境界と設定することなどが考えられる。
 ステップ203では、障害物検知センサから障害物監視エリアの境界に設定した境界検出領域139,140における障害物に関するセンサ情報を取得し、障害物監視エリアに障害物が存在するか否かを判断する。ステップ203で障害物が存在するか否かを判定した結果、障害物が存在すると判定された場合はステップ204に進む。障害物が存在しないと判定された場合はステップ205に進む。
 側方境界検出領域139の幅は、その領域に侵入すると想定される障害物の大きさと最大移動速度と、障害物検知センサのセンシング周期とを考慮し、障害物が境界内に入る際に少なくとも1回以上検出できる幅とする。
 この側方境界検出領域139の幅は、例えば、駅では、ホームで待つ乗客を想定して数cm~数十cm(さらに具体的には10cm)に設定し、踏み切り付近では自動車等の横切りを想定して広く(例えば1m)設定するなど、輸送用車両102の現在位置に応じて変更することが望ましい。
 図6は、センサの設置の一例を示す図である。
 側方境界検出領域155の側方障害物の有無を検出するセンサとしては、側方境界検出領域155の形状が、幅数十cm、奥行き百m超の長方形であることを考慮し、図6のように、左右の側方境界検出領域155を検出できるように、輸送用車両102の前方左右の高い位置に前方下向きに設置した2台のLIDARである検出器201、202を使用することができる。ここで、側方境界検出領域155内の検出結果が、検知対象情報データベース112に登録された側方検知対象情報141と比べて、以下の(条件1)~(条件3)のいずれかを満たすとき、障害物が侵入したと判断する。
 (条件1)側方境界検出領域155の既知の検出点が検出されない。(条件2)側方境界検出領域155の検出点の位置が既知の検出点の位置と異なる。(条件3)側方境界検出領域155の検出点の反射率が既知の検出点の反射率と異なる。
 ここで、輸送用車両102の速度が大きくなるにつれて輸送用車両102の停止距離が延び、障害物監視エリアが拡大する。遠距離にある検知対象のレーザーの反射率が小さい場合には、条件1によって障害物が侵入したと誤って判断する恐れがある。このため、例えば、許容される走行可能速度を抑えなくてはならなくなる。
 そこで、許容される走行可能速度を抑えるようなことを避けるため、次の(対処1)、(対処2)を考える。
 (対処1)側方境界検出領域155にある、ある値以上の検出率をもつ既存物(レールや標識等)の位置のみを検出対象とする。(対処2)側方境界検出領域155に、ある値以上の検出率をもつ物体を検出対象として設置する。例えば、反射率が高い物や汚れが付きにくい物などは、検出率が高い。
 いずれの場合も、事前に検出対象の位置とその反射率を検知対象情報データベース112に記録し、現在の輸送用車両102の位置における側方境界検出領域155に検出対象の位置が含まれる場合のみ、その検出対象を障害物侵入の判断に用いる。
 図7は、障害物検知システムの旋回軌道走行時の側方境界検出領域の検知の一例を示す図である。
 図6や図7で複数の直線で示したように、障害物検知センサとしてマルチレイヤ型LIDARを使用した場合には、複数レイヤにまたがる側方境界検出領域155上の検出点を使用することで、曲線軌道のように、境界が曲線となる場合にも障害物の侵入を判断することができる。
 図7には、マルチレイヤ型LIDARから照射される各検出レイヤによる路面検出点を点線で示しているが、側方境界検出領域155a、155b上を通る検出レイヤは車両からの距離によって異なり、障害物の侵入を判断するには、それらの複数レイヤの検出点を監視する。
 このとき、LIDARの検出点が側方境界検出領域155上にある場合でも、その検出点とLIDARを結ぶ直線(レーザーの光路)が側方境界検出領域155外を通る場合には、障害物の侵入の判断には使用しない。これは、側方境界検出領域155外の物体による誤検知を防ぐためである。
 なお、側方境界検出領域155の検出では、ステレオカメラ、ミリ波レーダー、レーザー距離計を複数使用したり、それらのセンサを自動雲台に取り付けて側方境界検出領域155を走査したりしてもよい。
 前方境界検出領域156の前方障害物の有無を検出するセンサとしては、狭角の単眼カメラ(赤外線を含む)やステレオカメラ、ミリ波レーダー、LIDAR、レーザー距離計などが考えられる。
 これらの種類が異なる複数のセンサを使用し、いずれかのセンサの検出結果(色、検知位置や距離、レーザーやミリ波の反射強度)が、検知対象情報データベース112に登録された検知対象情報141、142と異なることをもって、障害物が監視エリアに存在すると判断してもよい。そのようにすると、種類が異なる複数のセンサの検知結果を使用することで検知率をあげることができる。あるいは、検出結果のANDを用いることにより、誤検知率を下げることができる。
 前方境界検出領域156の検出では、検知対象情報データベース112に登録された検知対象が遠方にあって検知できないことがあるため、検知対象情報データベース112に登録された検知対象情報142以外の物を検出したとき、障害物が存在すると判断する。
 ステップ203において障害物が存在すると判定された場合は、輸送用車両102を停止させる必要があるため、ステップ204で障害物検知情報145を作成する。一方、障害物が存在しないと判定された場合はステップ205に進む。
 ステップ205では、障害物監視エリアにおける障害物検知情報145を輸送用車両102に送信する。
 以上が、障害物検知システム103の動作の説明である。
(自己位置推定システム101の動作)
 次に自己位置推定システム101の動作を説明する。図8は、自己位置推定システム101により実行される処理手順の一例を示すフローチャートである。
 ステップ401~405で輸送用車両の自己位置を推定する。本処理は周囲環境観測部107の観測周期ごとに実行される。
 ステップ401では、周囲環境観測部107で観測した周囲環境観測データ130を取得する。
 図9は、自己位置推定システムによるレール検知の一例を示す図である。
 ステップ402では、ステップ401で取得した周囲環境観測データ130から、図9のレール観測データ147を選別する。
 図9のレール観測データ147は、レールの形状や反射率のほか、レールとして検出されたデータが1つの平面をなすことを利用して選別することができる。
 図10は、自己位置推定システムによる車両姿勢の推定の一例を示す図である。
 ステップ403では、図10のように、レール観測データ147から求めたレール表面がなす平面Rと、3次元レール軌道データベース108から取得したレール位置情報137とから輸送用車両102の姿勢を推定する。輸送用車両102の姿勢は、3次元レール軌道データベース108が定義された外部座標系Σに対する輸送用車両102の傾きを意味する。
 ここで、3次元レール軌道データベース108には、左右のレール上を通る3次元点群データとそれらの反射率が記録されている。
 ステップ404では、周囲環境観測データ130を、輸送用車両102に固定された車両座標系Σから、ステップ403で推定した車両姿勢150を用いて、周囲環境地図データベース120、3次元レール軌道データベース108が定義された外部座標系Σに変換して、周囲環境計測データ151とする。
 ステップ405では、ステップ403で推定した車両姿勢149を保ちながら、3次元レール軌道データベース108に記録された軌道上を移動させつつ、ステップ404で座標変換して算出した周囲環境計測データ151と、周囲環境地図データベース120に記録された周囲環境地図データ153とをマッチングすることで車両の自己位置を推定する。
 図11は、輸送用車両が走行する周囲環境の一例を示す図であり、図12は、周囲環境計測データの一例を示す図である。
 例えば図11の周囲環境をマルチレイヤ型LIDARで観測すると、ステップ404において、図12のような外部座標系Σで定義された点群データ151を取得できる。
 図13および図14は、周囲環境計測データと周囲環境地図データとのマッチングの一例を示す図であり、図15および図16は、自動車における周囲環境計測データと周囲環境地図データとのマッチングの一例を示す図である。
 自動車のように、特定の軌道に沿って走行しない場合には、図15、図16のように、任意の方向に移動させながら周囲環境計測データ151と周囲環境地図データ153との相関をとり、その相関値が最も高い位置(図16)を自己位置として求める必要がある。一方、ここでは軌道上を走行する輸送用車両であることから、図13のレール軌道185上を移動させながら周囲環境計測データ151と周囲環境地図データ153との相関をとり、その相関値が最も高い位置(図14)を自己位置として求めればよい。またこのとき、推定した自己位置が常に軌道上にあり、GNSSを用いた場合のマルチパスの影響のように、推定した自己位置が軌道から外れることを防ぐことができる。
 以上が、自己位置推定システム101の動作の説明である。
(沿線設備形状計測システム104の動作)
 次に沿線設備形状計測システム104の動作を説明する。図17は、沿線設備形状計測システム104により実行される処理手順の一例を示すフローチャートである。
 ステップ501~505で沿線設備の形状を計測する。本処理は周囲環境観測部107の観測周期ごとに実行される。
 図18ないし図21は、沿線設備形状計測システムで使用する周囲環境計測データを取得する周囲環境観測の一例を示す図であり、図22ないし図25は、沿線設備形状計測システムで使用する周囲環境計測データの一例を示す図である。
 ステップ501では、外部座標系に変換された周囲環境計測データ131を自己位置推定システム101から取得し、周囲環境計測データ131に対して、3次元レール軌道データベース108から取得したレール形状モデル134とマッチングすることで、周囲環境計測データ131のレール軌道185に対する相対位置を算出する。ここで、レール軌道185に対する相対位置は、レール軌道185上に原点173をとった相対位置座標系、もしくは、レールに対する距離/姿勢で定義する。例えば、図18~図21の位置で取得した周囲環境計測データ131は、図22~図25のようなレール軌道185上に原点173をとった座標系Σで定義することができる。
 ステップ502では、沿線設備データベース110から取得した沿線設備情報(位置/姿勢、3次元形状、色、反射率)135に基づき、周囲環境計測データ131から沿線設備171を検出する。なお、沿線設備の位置/姿勢は、必ずしも外部座標系での位置/姿勢である必要はなく、レールに対する距離や姿勢でもよい。
 図26は、沿線設備形状計測システムで使用する沿線設備データベースの一例を示す図である。
 ステップ503では、検出された沿線設備171毎に、図26のように、その沿線設備171が検出された周囲環境計測データ131を沿線設備データベース110に記録する。
 図27は、沿線設備形状計測システムにおける周囲環境計測データと沿線設備とのマッチングを示す図である。
 ステップ504では、図27のように、沿線設備171毎に記録された、沿線設備データベース110内の複数の周囲環境計測データ131に対して、ステップ501で推定したレールに対する相対位置を保ちながらレール軌道185上を移動させて沿線設備171の3次元形状とマッチングをとり、沿線設備171の3次元形状モデルを作成する。ここで、周囲環境計測データ131間のマッチングには、ICPアルゴリズムを用いることができる。このとき、沿線設備171の計測データ172により大きな重みづけをすることで、沿線設備171の3次元形状モデルの精度を向上させる。
 すなわち、沿線設備形状計測システムは、軌道上の複数の位置で取得した沿線設備を含む複数の周囲環境計測データをレール軌道に基づいて重ね合わせて沿線設備の3次元形状を求める。より具体的には、沿線設備形状計測システムは、周囲環境計測データに含まれるレールの計測データとレールの形状モデルとのマッチングおよび周囲環境計測データに含まれる沿線設備の計測データと沿線設備の形状とのマッチングに基づいて、沿線設備を含む複数の周囲環境観測データを重ね合わせて沿線設備の3次元形状を求める。
 図28は、前方に設置されたセンサで観測した周囲環境計測データの一例を示す図であり、図29は、後方に設置されたセンサで観測した周囲環境計測データの一例を示す図であり、図30は、前方に設置されたセンサで観測した周囲環境計測データと後方に設置されたセンサで観測した周囲環境計測データによる沿線設備形状の計測の一例を示す図である。
 先頭車両から周囲環境を観測した図28と、最後尾車両から周囲環境を観測した図29とのマッチングでは、周囲環境計測データ131間にマッチングするデータが少ないため、先頭車両および最後尾車両から周囲環境を観測した周囲環境計測データ131と沿線設備データベース内の複数の周囲環境計測データ131とのマッチングにより大きな重みづけ行い、図30のように沿線設備171の3次元形状モデルを求める。
 ステップ505では、作成した沿線設備171の3次元形状モデルを沿線設備データベース110に記録する。
 以上が、沿線設備形状計測システム104の動作の説明である。
(輸送用車両運転制御部105の動作)
 次に、輸送用車両運転制御部105の動作を説明する。図31は、輸送用車両運転制御部により実行される処理手順の一例を示すフローチャートである。ここでは、障害物検知情報145が、輸送用車両102の制動の必要性に関する情報を含み、輸送用車両運転制御部が、障害物検知情報145に基づき輸送用車両102の制駆動を制御する例を説明する。
 ステップ300~315で輸送用車両の運転を制御する。本処理は、一定周期で実行される。
 ステップ300では、輸送用車両運転制御部105が輸送用車両在線位置を取得する。
 ステップ301では、輸送用車両102が駅に停車中か否かを判定する。当該判定は、輸送用車両運転制御部105が保持する輸送用車両102の位置と速度からなされる。具体的には、位置が駅近傍であり、速度がゼロであれば駅に停車中と判定する。
 ステップ301で停車中と判定された場合は、ステップ302において、輸送用車両102が現在停車中の駅を発車する予定の時刻(輸送用車両発車予定時刻)を取得する。輸送用車両発車予定時刻は、運行管理システム(図示せず)から取得してもよい。
 ステップ303では、現在時刻が輸送用車両発車予定時刻を過ぎているか否か判定する。過ぎていない場合、本処理フローを抜ける。過ぎていた場合、ステップ304に進む。
 ステップ304では、輸送用車両102が発車準備を完了しているか否か判定する。発車準備の例として、車両ドア閉状態の確認などが挙げられる。未完了の場合は、本処理フローを抜ける。発車準備が完了している場合は、ステップ305に進む。
 ステップ305では、障害物検知部115から障害物検知情報145を取得する。
 ステップ306では、障害物検知情報145から軌道上に障害物が存在するか否かを判定する。障害物が存在しないと判定された場合はステップ307に進む。
 ステップ306で障害物が存在すると判定された場合は、発車を見合わせる必要があるため、本処理フローを抜ける。
 ステップ307では、輸送用車両制駆動指令146を算出し、輸送用車両制駆動部106に送信する。具体的にはここでは駅を発車するために力行指令を送信する。
 続くステップ308では、輸送用車両102が発車したタイミングと、これから走行する駅間の予定走行時分とから、次駅の予定到着時刻(輸送用車両到着予定時刻)を計算し、運行管理システム(図示せず)に送信する。
 次に、ステップ301で輸送用車両102が駅停車中でない場合の処理(ステップ311~ステップ315)を説明する。
 ステップ311では、監視エリア内の障害物検知情報145を障害物検知システム103から取得する。
 ステップ312では、障害物検知情報145に基づき輸送用車両102の制動の必要性を判定し、制動する必要有と判定された場合はステップ314に進む。障害物が存在しない、あるいは制動する必要がないと判定された場合はステップ313に進む。
 ステップ313では、輸送用車両制駆動指令146を算出し、輸送用車両制駆動部106に送信する。具体的にはここでは、まず輸送用車両102の位置と、予め定められた目標走行パターンに基づいて目標速度を算出する。そして、輸送用車両102の速度が目標速度となるように比例制御などで制駆動指令146を算出する。
 ステップ314では、輸送用車両制動指令146を算出し、輸送用車両制駆動部106に送信する。具体的にはここでは、輸送用車両102を最大減速度で減速させ停止させるよう制動指令を算出して、本処理フローを抜ける。
 ステップ315では、輸送用車両102のその時点での位置と速度から、輸送用車両102が次駅に到着する時刻を推定し、運行管理システム(図示せず)に送信する。
 以上が、輸送用車両運転制御部105の動作の説明である。
 以上が、軌道輸送システム100の説明である。
 本実施例においては、前方に設置されたセンサで観測した周囲環境計測データと後方に設置されたセンサで観測した周囲環境計測データにより沿線設備の形状を計測するため、沿線設備の全周に近い3次元形状モデルを作成できる。
 また、作成した沿線設備の3次元形状モデルと沿線設備の設計データとのずれに基づいて沿線設備の異常を検知することができる。
 本実施例は、実施例1における沿線設備形状計測システム104において、輸送用車両102の外部座標系での自己位置を求めることなく、沿線設備形状を計測するものである。
 図32は、実施例2における沿線設備形状計測システム104の構成の一例を示す図である。
 沿線設備形状計測システム104は、3次元レール軌道データベース108と列車編成情報データベース180、移動量推定処理部183、沿線設備形状計測処理部109、沿線設備データベース110とから構成される。
 沿線設備形状計測システム104では、移動量推定処理部183で推定した列車移動量184と、列車編成情報データベース180に記録された列車編成情報181と3次元レール軌道データベース108に記録されたレール形状モデル134に基づき沿線設備の点群データから、沿線設備形状計測処理部109にて沿線設備の3次元形状を計測し、沿線設備データベース110に記録する。
 移動量推定処理部183は、周囲環境観測データ182と沿線設備情報136に基づき推定列車移動量184を求めることができる。
 沿線設備形状計測処理部109は、レール形状モデル134と列車編成情報181と推定列車移動量184と沿線設備情報135とから、周囲環境観測データ182内の沿線設備を検出し、沿線設備の3次元形状モデルを作成することができる。
 沿線設備形状計測処理部109は、レール形状モデル134(レールの軌道)と列車編成情報181(列車の長さ)と推定列車移動量184(列車の速度)から、前方に設置されたセンサで沿線設備を観測してから後方に設置されたセンサで同一の沿線設備を観測するまでの時間を算出して、周囲環境観測データ182内の沿線設備の検出に用いることができる。
 すなわち、沿線設備形状計測システムは、列車の速度と列車の長さから同一物と推測される沿線設備を含む複数の周囲環境観測データを重ね合わせて沿線設備の3次元形状を求める。より具体的には、沿線設備形状計測システムは、列車の速度とレールの軌道と列車の編成に基づいて、同一物を推測する。
 本実施例により、トンネルなどの外部座標系での自己位置推定が困難な環境においても、沿線設備の形状計測が可能となる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
100・・・軌道輸送システム 
101・・・自己位置推定システム 
102・・・輸送用車両 
103・・・障害物検知システム 
104・・・沿線設備形状計測システム
105・・・輸送用車両運転制御部 
106・・・輸送用車両制駆動部 
107・・・周囲環境観測部
108・・・3次元レール軌道データベース
109・・・沿線設備形状計測処理部
110・・・沿線設備データベース
111・・・監視エリア設定処理部
112・・・検知対象情報データベース
113・・・前方境界監視部
114・・・側方境界監視部
115・・・障害物検知部
116・・・観測データ選別処理部
117・・・車両姿勢推定処理部
118・・・周囲環境データ座標変換処理部
119・・・周囲環境地図生成処理部
120・・・周囲環境地図データベース
121・・・スキャンマッチング自己位置推定処理部
123・・・検知範囲設定データベース
130・・・周囲環境観測データ
131・・・周囲環境計測データ
132・・・レール計測データ
133・・・輸送用車両の位置・姿勢情報
134・・・レール形状モデル
135・・・沿線設備情報
136・・・沿線設備情報
137・・・レール位置情報
138・・・障害物検知範囲
139・・・側方境界検出領域
140・・・前方境界検出領域
141・・・側方検知対象情報
142・・・前方検知対象情報
143・・・側方境界監視結果
144・・・前方境界監視結果
145・・・障害物検知情報
146・・・輸送用車両制駆動指令
147・・・レール観測データ
149・・・車両姿勢
150・・・車両姿勢
151・・・周囲環境計測データ
152・・・周囲環境計測データ
153・・・周囲環境地図データ
155・・・側方境界検出領域
156・・・前方境界検出領域
171・・・沿線設備
172・・・沿線設備計測データ
173・・・レール軌道上に設定した周囲環境計測データ原点
180・・・列車編成情報データベース
181・・・列車編成情報
182・・・周囲環境観測データ
183・・・移動量推定処理部
184・・・推定列車移動量
185・・・レール軌道

Claims (15)

  1.  列車に設置され、既知の沿線設備を含む列車走行中の周囲環境を観測して周囲環境観測データを取得する周囲環境観測部と、
     軌道上の複数の位置で取得した前記沿線設備を含む複数の前記周囲環境観測データをレールの軌道に基づいて重ね合わせて前記沿線設備の3次元形状を求める沿線設備形状計測システムと、
     を備える軌道輸送システム。
  2.  請求項1に記載の軌道輸送システムであって、
     前記沿線設備形状計測システムは、前記周囲環境観測データに含まれる前記レールの観測データと前記レールの形状モデルとのマッチングおよび前記周囲環境観測データに含まれる前記沿線設備の計測データと前記沿線設備の形状とのマッチングに基づいて、前記沿線設備を含む複数の前記周囲環境観測データを重ね合わせて前記沿線設備の3次元形状を求める、
     軌道輸送システム。
  3.  請求項1または請求項2に記載の軌道輸送システムであって、
     前記周囲環境観測部は、前記列車の前方と後方に設置される、
     軌道輸送システム。
  4.  請求項3に記載の軌道輸送システムであって、
     前記沿線設備形状計測システムは、前記列車の速度と前記列車の長さから同一物と推測される前記沿線設備を含む複数の前記周囲環境観測データを重ね合わせて前記沿線設備の3次元形状を求める、
     軌道輸送システム。
  5.  請求項4に記載の軌道輸送システムであって、
     前記沿線設備形状計測システムは、前記列車の速度と前記レールの軌道と前記列車の編成に基づいて、前記同一物を推測する、
     軌道輸送システム。
  6.  列車に設置される周囲環境観測部と、沿線設備形状計測システムと、を備える軌道輸送システムの制御方法であって、
     周囲環境観測部が、既知の沿線設備を含む列車走行中の周囲環境を観測して周囲環境観測データを取得するステップと、
     沿線設備形状計測システムが、軌道上の複数の位置で取得した前記沿線設備を含む複数の前記周囲環境観測データをレールの軌道に基づいて重ね合わせて前記沿線設備の3次元形状を求めるステップと、
     を有する軌道輸送システムの制御方法。
  7.  請求項6に記載の軌道輸送システムの制御方法であって、
     前記沿線設備の3次元形状を求めるステップは、前記周囲環境観測データに含まれる前記レールの観測データと前記レールの形状モデルとのマッチングおよび前記周囲環境観測データに含まれる前記沿線設備の計測データと前記沿線設備の形状とのマッチングに基づいて、前記沿線設備を含む複数の前記周囲環境観測データを重ね合わせて前記沿線設備の3次元形状を求めるステップである、
     軌道輸送システムの制御方法。
  8.  請求項6または請求項7に記載の軌道輸送システムの制御方法であって、
     前記周囲環境観測部は、前記列車の前方と後方に設置される、
     軌道輸送システムの制御方法。
  9.  請求項8に記載の軌道輸送システムの制御方法であって、
     前記沿線設備の3次元形状を求めるステップは、前記列車の速度と前記列車の長さから同一物と推測される前記沿線設備を含む複数の前記周囲環境観測データを重ね合わせて前記沿線設備の3次元形状を求めるステップである、
     軌道輸送システムの制御方法。
  10.  請求項9に記載の軌道輸送システムの制御方法であって、
     前記沿線設備の3次元形状を求めるステップは、前記列車の速度と前記レールの軌道と前記列車の編成に基づいて、前記同一物を推測するステップである、
     軌道輸送システムの制御方法。
  11.  軌道上の複数の位置で取得した既知の沿線設備を含む複数の周囲環境観測データをレールの軌道に基づいて重ね合わせて前記沿線設備の3次元形状を求める、
     沿線設備形状計測システム。
  12.  請求項11に記載の沿線設備形状計測システムであって、
     前記周囲環境観測データに含まれる前記レールの観測データと前記レールの形状モデルとのマッチングおよび前記周囲環境観測データに含まれる前記沿線設備の計測データと前記沿線設備の形状とのマッチングに基づいて、前記沿線設備を含む複数の前記周囲環境観測データを重ね合わせて前記沿線設備の3次元形状を求める、
     沿線設備形状計測システム。
  13.  請求項11または請求項12に記載の沿線設備形状計測システムであって、
     前記周囲環境観測データは、列車の前方と後方に設置される周囲環境観測部により取得される、
     沿線設備形状計測システム。
  14.  請求項13に記載の沿線設備形状計測システムであって、
     前記列車の速度と前記列車の長さから同一物と推測される前記沿線設備を含む複数の前記周囲環境観測データを重ね合わせて前記沿線設備の3次元形状を求める、
     沿線設備形状計測システム。
  15.  請求項14に記載の沿線設備形状計測システムであって、
     前記列車の速度と前記レールの軌道と前記列車の編成に基づいて、前記同一物を推測する、
     沿線設備形状計測システム。
PCT/JP2021/038244 2020-10-28 2021-10-15 軌道輸送システム、軌道輸送システムの制御方法および沿線設備形状計測システム WO2022091817A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21885936.1A EP4238852A1 (en) 2020-10-28 2021-10-15 Rail transportation system, method for controlling rail transportation system, and trackside facility shape measurement system
US18/250,588 US20230415800A1 (en) 2020-10-28 2021-10-15 Rail transportation system, method for controlling rail transportation system, and trackside facility shape measurement system
AU2021371394A AU2021371394B2 (en) 2020-10-28 2021-10-15 Rail transportation system, method for controlling rail transportation system, and trackside facility shape measurement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020180352A JP7461275B2 (ja) 2020-10-28 2020-10-28 軌道輸送システム、軌道輸送システムの制御方法および沿線設備形状計測システム
JP2020-180352 2020-10-28

Publications (1)

Publication Number Publication Date
WO2022091817A1 true WO2022091817A1 (ja) 2022-05-05

Family

ID=81382608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038244 WO2022091817A1 (ja) 2020-10-28 2021-10-15 軌道輸送システム、軌道輸送システムの制御方法および沿線設備形状計測システム

Country Status (5)

Country Link
US (1) US20230415800A1 (ja)
EP (1) EP4238852A1 (ja)
JP (1) JP7461275B2 (ja)
AU (1) AU2021371394B2 (ja)
WO (1) WO2022091817A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099915A1 (ja) 2007-02-16 2008-08-21 Mitsubishi Electric Corporation 道路地物計測装置、地物識別装置、道路地物計測方法、道路地物計測プログラム、計測装置、計測方法、計測プログラム、計測位置データ、計測端末装置、計測サーバ装置、作図装置、作図方法、作図プログラムおよび作図データ
JP2017001638A (ja) 2015-06-16 2017-01-05 西日本旅客鉄道株式会社 画像処理を利用した列車位置検出システムならびに画像処理を利用した列車位置および環境変化検出システム
JP2017196948A (ja) 2016-04-26 2017-11-02 株式会社明電舎 電車設備の三次元計測装置及び三次元計測方法
WO2019138716A1 (ja) * 2018-01-10 2019-07-18 株式会社日立製作所 画像合成システムおよび画像合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099915A1 (ja) 2007-02-16 2008-08-21 Mitsubishi Electric Corporation 道路地物計測装置、地物識別装置、道路地物計測方法、道路地物計測プログラム、計測装置、計測方法、計測プログラム、計測位置データ、計測端末装置、計測サーバ装置、作図装置、作図方法、作図プログラムおよび作図データ
JP2017001638A (ja) 2015-06-16 2017-01-05 西日本旅客鉄道株式会社 画像処理を利用した列車位置検出システムならびに画像処理を利用した列車位置および環境変化検出システム
JP2017196948A (ja) 2016-04-26 2017-11-02 株式会社明電舎 電車設備の三次元計測装置及び三次元計測方法
WO2019138716A1 (ja) * 2018-01-10 2019-07-18 株式会社日立製作所 画像合成システムおよび画像合成方法

Also Published As

Publication number Publication date
US20230415800A1 (en) 2023-12-28
JP7461275B2 (ja) 2024-04-03
AU2021371394A1 (en) 2023-06-22
JP2022071407A (ja) 2022-05-16
EP4238852A1 (en) 2023-09-06
AU2021371394B2 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
US11124207B2 (en) Optical route examination system and method
Bohren et al. Little ben: The ben franklin racing team's entry in the 2007 DARPA urban challenge
US11270130B2 (en) Route inspection system
CN112489416A (zh) 使用来自交通镜中的信息用于自动化驾驶
WO2019244425A1 (ja) 障害物検知システム及び障害物検知方法
JP6090190B2 (ja) 移動体管理装置
JP7181754B2 (ja) 軌道走行車両の障害物検知システムおよび障害物検知方法
WO2022091817A1 (ja) 軌道輸送システム、軌道輸送システムの制御方法および沿線設備形状計測システム
KR20230031344A (ko) 자동차를 둘러싼 영역 내 장애물을 검출하기 위한 시스템 및 방법
JP6052194B2 (ja) 移動体管理装置
WO2021044707A1 (ja) 周辺観測システム、周辺観測プログラムおよび周辺観測方法
JP7348881B2 (ja) 障害物検知システム、障害物検知方法および自己位置推定システム
US20220011774A1 (en) Method for driverless transfer of a vehicle over a route within a closed area
US10713503B2 (en) Visual object detection system
JP7132740B2 (ja) 物体検知システム
KR102433595B1 (ko) 철도차량 스마트 유지보수용 자율주행 기반 무인 운송 장치
Franke et al. Towards holistic autonomous obstacle detection in railways by complementing of on-board vision with UAV-based object localization
US20210380119A1 (en) Method and system for operating a mobile robot
JP2020172230A (ja) 位置検知方法及び位置検知システム
US20240059310A1 (en) Method for controlling drive-through and apparatus for controlling drive-through
CN116700249A (zh) 一种调车自动驾驶方法、系统、设备、存储介质及其产品
JP2022071407A5 (ja)
JP2023007548A (ja) 画像処理装置および画像処理方法
CN117642645A (zh) 用于定位机动车辆的方法和定位装置以及机动车辆
JP2020203634A (ja) 監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885936

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2021371394

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021885936

Country of ref document: EP

Effective date: 20230530

ENP Entry into the national phase

Ref document number: 2021371394

Country of ref document: AU

Date of ref document: 20211015

Kind code of ref document: A