WO2022090524A1 - Revetement a base de pyrrole pour la protection contre la corrosion - Google Patents

Revetement a base de pyrrole pour la protection contre la corrosion Download PDF

Info

Publication number
WO2022090524A1
WO2022090524A1 PCT/EP2021/080226 EP2021080226W WO2022090524A1 WO 2022090524 A1 WO2022090524 A1 WO 2022090524A1 EP 2021080226 W EP2021080226 W EP 2021080226W WO 2022090524 A1 WO2022090524 A1 WO 2022090524A1
Authority
WO
WIPO (PCT)
Prior art keywords
anticorrosive coating
coating
mass
layer
present
Prior art date
Application number
PCT/EP2021/080226
Other languages
English (en)
Inventor
Amir Rahmani
Stéphanie BRUYERE
Original Assignee
Nof Metal Coatings Europe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nof Metal Coatings Europe filed Critical Nof Metal Coatings Europe
Publication of WO2022090524A1 publication Critical patent/WO2022090524A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/142Auto-deposited coatings, i.e. autophoretic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4476Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications comprising polymerisation in situ
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/792Post-treatment doping with low-molecular weight dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof

Definitions

  • the present invention relates to a black coating process with good anti-corrosion properties thanks to the application of a polymer layer obtained from a solution containing pyrrole monomer deposited by electro-polymerization, the substrates coated with such a coating, as well as the use of the substrates thus coated.
  • US 2008305341 discloses a process for coating metal surfaces with an anti-corrosion composition which contains a conductive polymer and a dispersion which contains the conductive polymer mainly or entirely in particulate form, as well as a binder system.
  • the object of the present invention proposes a solution having many advantages and improved technical characteristics compared to this known state of the art.
  • the object of the present invention relates to a process for the anticorrosive coating of at least one metallic and/or conductive or semi-conductive surface comprising the following successive steps:
  • step (b) electro-polymerization is applied to the product resulting from step (a), and
  • said at least one metallic and/or conductive surface, treated according to steps (a) and (b), is recovered, characterized in that the anticorrosive coating is a continuous film of poly-pyrroles.
  • the object of the present invention also relates to an anticorrosive coating that can be obtained according to the present invention.
  • the object of the present invention also relates to a product comprising a metallic and/or conductive surface coated with an anticorrosive coating according to the present invention.
  • anticorrosive coating it is understood in the context of the present invention either an anticorrosive coating process or a coating product anticorrosive, the product resulting from the process in this context.
  • the purpose of the coating is to improve the surface anticorrosive properties of a treated object.
  • the coating obtained reduces the alteration of the object treated by chemical reaction with an oxidant.
  • metal surface it is understood in the context of the present invention one of the surfaces of the treated object having at least one layer of metal.
  • conductive surface it is understood in the context of the present invention a surface which conducts electricity.
  • semiconductor surface it is understood in the context of the present invention a surface which has the characteristics of a semiconductor, that is to say an electrically insulating material, but which can contribute to an electric current, even weakly.
  • silicon is a typical semiconductor material.
  • Silicon carbide, germanium or gallium arsenide are known to be semiconductor materials.
  • a semiconductor material is a material having a band gap (between the valence band and the conduction band) less than or equal to 4 eV, preferably less than or equal to 3 eV, more preferably less or equal to 2 eV, even more preferably less than or equal to 1 eV, such as less than or equal to 0.9 eV, 0.8 eV, 0.7 eV, 0.6 eV, or less than or equal to 0, 5eV.
  • pyrrole monomer it is understood in the context of the present invention a compound having in its structure a C4H5N ring, i.e. a pyrrole nucleus, and capable of polymerizing when it is placed in the presence of a current electric.
  • electro-polymerization it is understood in the context of the present invention a polymerization induced by electricity.
  • a polymerization in the context of the present invention means, as commonly accepted in the art, the chemical reaction in which several molecules react with each other to form larger molecules, for example in the form of a linear or branched series repeating patterns.
  • continuous film it is understood in the context of the present invention a continuous layer of product on the object to be covered with a coating. This is in the context of the present invention possible by electropolymerization which ensures continuity of the electric flow at the level of the object to be covered with a coating. Preferably, the continuous film does not reveal any bare surface of the object to be covered.
  • the method according to the present invention makes it possible to display resistance against corrosion by barrier effect for metal parts of different geometries.
  • the method according to the present invention allows rapid application (cycle of a few minutes for example).
  • the process according to the present invention makes it possible to provide a coating having chemical resistance to solvents, acids and bases, such as for example hydrochloric acid (e.g. 1 mol/L or at 37%), sulfuric acid (e.g. 95%), sodium hydroxide (e.g. 1 mol/L), methylethylacetone, or even water.
  • hydrochloric acid e.g. 1 mol/L or at 37%)
  • sulfuric acid e.g. 95%)
  • sodium hydroxide e.g. 1 mol/L
  • methylethylacetone methylethylacetone
  • the coating according to the present invention has a particular aesthetics and may have a particular black appearance.
  • the coating according to the present invention may be in the form of a specific black, matte and smooth layer.
  • One of the notable advantages of the present invention is that the process and therefore the coating can also be used in the field of electricity and electronics (such as parts or sensors of electric cars).
  • the object of the present invention relates in particular to an anticorrosive coating method as described herein, characterized in that said anticorrosive coating produces a maximum value of 40 in the laboratory color space, determined in accordance with EN ISO 11664-4.
  • a black coloring means a coloring which produces a coating on the coated substrate, which advantageously has a maximum value of 40 in the Lab colorimetric space, also called CIELAB colorimetric space.
  • the L*a*b color space measurement is measured according to EN ISO 11664-4.
  • the object of the present invention relates to an anticorrosive coating process according to the present invention, characterized in that the electropolymerization is produced by anaphoresis.
  • Anaphoresis is the movement towards the anode, under the influence of an electric field, of electrically charged particles.
  • an anticorrosive coating method according to the present invention can be characterized in that the anticorrosive coating comprises less than 5% by mass of grains whose diameter is greater than 200 micrometers, preferentially the anticorrosive coating is free of distinguishable grains.
  • the anticorrosive coating comprises less than 5% by mass of grains whose diameter is greater than 150 micrometers.
  • the anticorrosive coating comprises less than 5% by mass of grains whose diameter is greater than 100 micrometers.
  • the anticorrosive coating comprises less than 5% by mass of grains whose diameter is greater than 50 micrometers.
  • the anticorrosive coating comprises less than 4% by mass of grains whose diameter is greater than 200 micrometers.
  • the anticorrosive coating comprises less than 3% by mass of grains whose diameter is greater than 200 micrometers.
  • the anticorrosive coating comprises less than 2% by mass of grains whose diameter is greater than 200 micrometers.
  • the anticorrosive coating comprises less than 1% by mass of grains whose diameter is greater than 200 micrometers.
  • the anticorrosive coating comprises less than 4% by mass of grains whose diameter is greater than 150 micrometers.
  • the anticorrosive coating comprises less than 3% by mass of grains whose diameter is greater than 150 micrometers.
  • the anticorrosive coating comprises less than 2% by mass of grains whose diameter is greater than 150 micrometers.
  • the anticorrosive coating comprises less than 1% by mass of grains whose diameter is greater than 150 micrometers.
  • the anticorrosive coating comprises less than 4% by mass of grains whose diameter is greater than 100 micrometers.
  • the anticorrosive coating comprises less than 3% by mass of grains whose diameter is greater than 100 micrometers.
  • the anticorrosive coating comprises less than 2% by mass of grains whose diameter is greater than 100 micrometers.
  • the anticorrosive coating comprises less than 1% by mass of grains whose diameter is greater than 100 micrometers.
  • the anticorrosive coating comprises less than 4% by mass of grains whose diameter is greater than 50 micrometers.
  • the anticorrosive coating comprises less than 3% by mass of grains whose diameter is greater than 50 micrometers.
  • the anticorrosive coating comprises less than 2% by mass of grains whose diameter is greater than 50 micrometers.
  • the anticorrosive coating comprises less than 1% by mass of grains whose diameter is greater than 50 micrometers.
  • the anticorrosive coating process according to the present invention can be characterized in that step (b) of electropolymerization is carried out in the presence of at least one additive, such as a dopant, preferably a combination of at least two additives, such as at least two dopants.
  • at least one additive such as a dopant, preferably a combination of at least two additives, such as at least two dopants.
  • additives make it possible to adjust the properties of the finished anti-corrosion coating or the processing properties of the liquid composition.
  • Ammonium molybdate for example, is a corrosion-retardant additive.
  • the additive is an anti-corrosion additive such as a corrosion inhibitor, a corrosion passivator, or even an anti-corrosion dopant (called “dopant” in the context of the present invention).
  • a corrosion inhibitor aims to limit or block the phenomenon of corrosion.
  • a corrosion inhibitor is preferably a reducer with a low oxidation-reduction potential, in order to be oxidized before observing the oxidation of the substrate.
  • a corrosion inhibitor according to the present invention can for example be chosen from nitrite ions, molybdate ions, chromate ions, phosphate ions, tungstate ions and benzoate ions.
  • Molybdates are so-called passivating corrosion inhibitors, i.e. they promote the formation of a layer of iron oxide on the surface of the substrate, in the presence of oxygen.
  • the solution used in the process according to the invention containing pyrrole also comprises at least two dopants.
  • the solution used in the process according to the invention containing pyrrole also comprises at least two dopants and at least one corrosion inhibitor.
  • ammonium molybdate as a corrosion inhibitor is particularly effective when it is employed with the solution used in the method according to the invention containing pyrrole and in addition at least two dopants .
  • the solution used in the process according to the invention containing pyrrole does not include sodium molybdate.
  • the solution used in the process according to the invention containing pyrrole also comprises at least two dopants and at least one corrosion inhibitor which is not sodium molybdate.
  • the solution used in the process according to the invention containing pyrrole further comprises:
  • the passivation of a metal surface can also be achieved by the use of acids, such as nitric acid, citric acid or phosphoric acid.
  • the passivation of a metal on the surface can also be carried out by electrolytic deposition of metals and/or metal alloys, such as zinc, nickel, copper, silver or zinc-nickel.
  • the anticorrosion dopant is a product that will exacerbate the anticorrosive properties of other products included in the coating or on the surface of the metal likely to be corroded.
  • Anticorrosion dopants are used to obtain the electrical neutrality of the polymer chain, and thus control the final properties of the coating, such as its adhesion to the substrate or its electrical properties. Indeed, the oxidation of the polymer backbone induces the inclusion of anionic dopants as counterions.
  • An anticorrosion dopant according to the present invention can be chosen from the list consisting of "Tiron” (1,2-dihydroxybenzene-3,5-disulphonic acid), sodium salicylate, sodium dodecyl sulphate, sodium tartrate, sodium oxalate, oxalic acid and molybdates such as ammonium molybdate or sodium molybdate.
  • the anticorrosive coating method according to the present invention can be characterized in that the dopant or the combination of dopants comprises sodium salicylate and/or sodium tartrate.
  • the proportions by mass of Dopant 1: Dopant 2 are between 1: 5 by mass and 5: 1 by mass, for example between 1 : 2 by mass and 2:1 by mass, or even between 1:1.5 by mass and 1.5:1 by mass, such as between 1:1.44 by mass and 1.44:1 by mass.
  • the combination of dopant is a combination of sodium tartrate: sodium salicylate whose proportions by mass are between 1:5 by mass and 5:1 by mass, for example between 1 : 2 by mass and 2:1 by mass, or even between 1:1.5 by mass and 1.5:1 by mass, such as between 1:1.44 by mass and 1.44:1 by mass.
  • the anticorrosive coating process according to the present invention can be characterized in that the solution containing pyrrole monomer also comprises at least one corrosion inhibitor (i.e. additional) such as ammonium molybdate as corrosion inhibitor or dopant.
  • at least one corrosion inhibitor i.e. additional
  • ammonium molybdate as corrosion inhibitor or dopant.
  • the anticorrosive coating process according to the present invention can be characterized in that the solution containing pyrrole monomer also comprises at least ammonium molybdate as a corrosion inhibitor or dopant.
  • the anticorrosive coating process according to the present invention may or may not include the addition of a resin (for example in aqueous phase such as an acrylic resin) in or on the coating.
  • a resin for example in aqueous phase such as an acrylic resin
  • the anticorrosive coating process according to the present invention may or may not include the addition of a resin (for example in aqueous phase such as an acrylic resin) in the solution containing pyrrole monomer.
  • a resin for example in aqueous phase such as an acrylic resin
  • the coating solution according to the present invention may comprise from 25% to 75% polypyrrole, from 5% to 30% of a first dopant (such as sodium tartrate or sodium salicylate), 5 % to 25% of a possible second dopant (such as sodium tartrate or sodium salicylate), from 3% to 20% of a corrosion inhibitor (such as ammonium molybdate), the percentages being expressed in mass relative to the total mass of the compounds in the base layer.
  • a first dopant such as sodium tartrate or sodium salicylate
  • a possible second dopant such as sodium tartrate or sodium salicylate
  • a corrosion inhibitor such as ammonium molybdate
  • the coating solution according to the present invention may comprise from 5% to 30% of polypyrrole, from 1% to 10% of a first dopant (such as sodium tartrate or sodium salicylate), 1 % to 10% of a possible second dopant (such as sodium tartrate or sodium salicylate), from 0.5% to 6% of a corrosion inhibitor (such as ammonium molybdate), from 25 % to 75% of resin (such as an organic resin, for example acrylic), from 3% to 75% of silica.
  • a first dopant such as sodium tartrate or sodium salicylate
  • a possible second dopant such as sodium tartrate or sodium salicylate
  • a corrosion inhibitor such as ammonium molybdate
  • resin such as an organic resin, for example acrylic
  • a wetting agent can be added as an additive to facilitate recovery of the coating on the substrate.
  • Such a wetting agent may be chosen from the list consisting of a surfactant, such as fatty alcohols containing for example more than eight carbon atoms, or even fatty alcohol esters.
  • the anticorrosive coating process according to the present invention can be characterized in that one or more additional surface treatments are carried out previously or successively to steps (a), (b) and/or ( c) to obtain a multilayer coating.
  • the use of a multilayer system allows a marked improvement in the anticorrosion properties of a pyrrole-based coating as cited in the literature and in particular in the salt spray test.
  • this invention makes it possible to obtain a coating in a few minutes (time saving), possibly without cooking (ecological), with an aesthetic appearance (cosmetic). The thickness is greatly reduced compared to a conventional paint system.
  • a final coat of resin type such as a polyurethane (PU)
  • PU polyurethane
  • the object of the present invention relates to an anticorrosive coating process according to the present invention, characterized in that at least one layer of the coating comprises at least one binder and/or silica particles, said silica particles possibly be obtained for example from silane derivatives.
  • the object of the present invention relates to an anticorrosive coating process according to the present invention, characterized in that at least one layer of the coating comprises at least one binder and/or silica particles, said silica particles being obtainable for example from silane derivatives, in which the silica layer is a layer of polypyrrole containing silica obtained by electropolymerization.
  • At least two layers can be of identical formulation, with for example at least one layer of different formulation inserted between the two layers of identical formulation.
  • the coating according to the present invention comprises at least one layer comprising polypyrrole, sodium tartrate, sodium salicylate and ammonium molybdate.
  • the coating according to the present invention comprises at least two layers comprising polypyrrole, sodium tartrate, sodium salicylate and ammonium molybdate.
  • the coating according to the present invention comprises at least one base layer (adhering to the support to be coated) comprising polypyrrole, sodium tartrate, sodium salicylate and ammonium molybdate and a second layer comprising polypyrrole, sodium tartrate, sodium salicylate and ammonium molybdate, it being possible for these two layers to be separated by at least one layer of composition different from them, called intermediate layer.
  • composition of the interlayer according to the present invention may include polypyrrole, sodium tartrate, sodium salicylate, ammonium molybdate, acrylic resin and silica.
  • the coating according to the present invention comprises at least one layer comprising polypyrrole, sodium tartrate, sodium salicylate, ammonium molybdate, acrylic resin and silica .
  • the amount of polypyrrole in a layer of the coating can be between 5% and 85% by mass relative to the total mass of the compounds in the layer of the coating.
  • the amount of a first dopant (such as sodium tartrate) in a layer of the coating can be between 1% and 30% by mass relative to the total mass of the compounds in the layer of the coating.
  • the amount of a second dopant (such as sodium salicylate) in a layer of the coating can be between 1% and 25% by mass relative to the total mass of the compounds in the layer of the coating.
  • the amount of a corrosion inhibitor (such as ammonium molybdate) in a layer of the coating can be between 0.5% and 20% by mass relative to the total mass of the compounds in the layer of the coating. coating.
  • the amount of resin (such as an organic resin, for example acrylic), if any, in a layer of the coating can be between 10% and 75% by mass relative to the total mass of the compounds in the layer of the coating.
  • the amount of silica, if any, in a layer of the coating can be between 3% and 75% by mass relative to the total mass of the compounds in the layer of the coating.
  • the coating according to the present invention may be a multilayer whose layers may have identical or different formulas vis-à-vis each other, with or without baking.
  • the coating according to the present invention can be a multilayer making it possible to improve the anticorrosion and/or mechanical properties of a substrate.
  • the coating according to the present invention may be a multilayer comprising 3 layers (layers (1), (2) and (3)):
  • a base layer (directly in contact with the support) comprising 25% to 75% polypyrrole, 5% to 30% of a first dopant (such as sodium tartrate or sodium salicylate) , 5% to 25% of a possible second dopant (such as sodium tartrate or sodium salicylate), from 3% to 20% of a corrosion inhibitor (such as ammonium molybdate), the percentages being expressed in mass relative to the total mass of the compounds in the base layer;
  • a first dopant such as sodium tartrate or sodium salicylate
  • a possible second dopant such as sodium tartrate or sodium salicylate
  • a corrosion inhibitor such as ammonium molybdate
  • an intermediate layer (above or directly above the base layer) comprising from 5% to 30% of polypyrrole, from 1% to 10% of a first dopant (such as sodium tartrate or sodium salicylate), 1% to 10% of a possible second dopant (such as sodium tartrate or sodium salicylate), 0.5% to 6% corrosion inhibitor (such as ammonium molybdate), 25% to 75% resin (such as an organic resin, for example acrylic), from 3% to 75% silica, the percentages being expressed by mass relative to the total mass of the compounds in the coating layer;
  • a first dopant such as sodium tartrate or sodium salicylate
  • a possible second dopant such as sodium tartrate or sodium salicylate
  • 0.5% to 6% corrosion inhibitor such as ammonium molybdate
  • 25% to 75% resin such as an organic resin, for example acrylic
  • silica such as an organic resin, for example acrylic
  • an appearance layer (above or directly above the intermediate layer) comprising from 25% to 75% of polypyrrole, from 5% to 30% of a first dopant (such as tartrate of sodium or sodium salicylate), 5% to 25% of a possible second dopant (such as sodium tartrate or sodium salicylate), from 3% to 20% of a corrosion inhibitor (such as molybdate ammonium) the percentages being expressed by mass relative to the total mass of the compounds in the appearance layer.
  • a first dopant such as tartrate of sodium or sodium salicylate
  • a possible second dopant such as sodium tartrate or sodium salicylate
  • a corrosion inhibitor such as molybdate ammonium
  • the first layer is obtained using a solution containing pyrrole, dopants (sodium tartrate and salicylate) and ammonium molybdate.
  • This layer is applied as an adhesion primer and improves the adhesion of the coating to the substrate, the presence of ammonium molybdate in the solution (electrolyte) improves the appearance of the final coating of the part.
  • This layer is obtained by immersing two electrodes in the application bath.
  • the cathode serves as a reference electrode and is made of stainless steel.
  • the anode is considered as the working electrode, therefore the part to be coated (such as a rolled steel plate, treated screw, metal plate, GEOMET® plate - i.e. an object covered with a first classic anticorrosive layer -, etc.).
  • An electric current with a density between 4mA/cm 2 and 100mA/cm 2 , preferably between 16 mA/cm 2 and 48mA/cm 2 is generated using a rectifier for a period of 30 seconds , for the application of the first coat.
  • a rectifier for a period of 30 seconds
  • the second layer is obtained using a bath containing pyrrole, dopants (sodium tartrate and salicylate), ammonium molybdate, colloidal silica, and an acrylic resin.
  • colloidal silica in the aqueous phase and of acrylic resin in the bath (electrolyte) is necessary to obtain a sufficiently insulating and adherent layer to form a barrier effect against corrosion.
  • This second layer is applied using the same rectifier under the same conditions, a longer application time (2x30 seconds) is necessary when applying the second layer, in order to obtain a good distribution and homogeneity of the torque.
  • Rinsing with deionized water is necessary between each application cycle to remove excess silica and resin generated during application and to promote a surface condition and appearance conducive to the deposition of the third and final layer.
  • the application of the third coat is similar to that of the first coat, and is done from the same bath. This third coat provides the desired matte and smooth appearance.
  • the silica deposited on the substrate gives a whitish appearance to the coating
  • this last layer is used for the aesthetic aspect but, can also contribute to the improvement of the anticorrosion properties because the presence of a corrosion inhibitor (ammonium molybdate type).
  • the final thickness of the coating may be less than or equal to 100 microns (pm), preferably less than or equal to 50 ⁇ m, 40 ⁇ m, 30 ⁇ m or even less than or equal to 25 ⁇ m, for example of the order of 20pm ( ⁇ 3pm).
  • the final thickness of the coating is around 30 microns ( ⁇ 5 ⁇ m).
  • Ref. A coating whose bath contains zinc, aluminium, silane-titanate binder, stabilizing additives, surfactants, anti-corrosion agents in a water/organic solvent mixture.
  • Ref. A is a commercial product sold under the name GEOMET® 321.
  • Table 1 coating on cold-rolled steel plate coated with "GEOMET® 321" (Ref. A).
  • Coatings without ammonium molybdate have a gray black appearance and a slightly rough surface compared to the coating with 1% ammonium molybdate which has a matte black appearance and a smooth surface.
  • the thickness of the polypyrrole film applied is of the order of 12 ⁇ m and this for the same conditions mentioned above.
  • the film applied to a metal substrate of the LAF (cold rolled steel) type consists of a pyrrole-based film and dopants (in a single layer).
  • the proposed formula makes it possible to obtain a black pyrrole-based coating.
  • the anti-corrosion properties of the coating are limited and due to the absence of pigments or additives that can provide better protection in terms of corrosion.
  • total bath the quantity of the total bath (addition of deionized water, dopants and pyrrole monomer).
  • TS is 1.3% and SS is 0.9%, i.e. a ratio of TS:SS of 1:0, 7.
  • SS is 0.9%, i.e. a ratio of TS:SS of 1:0, 7.
  • a resin in particular organic typically allows (application by bar or by immersion) to deposit a thin layer, sufficiently insulating, but not too much, in order to form an insulating physical barrier against corrosive ions.
  • - layer 1 is a bonding layer on the support of formula 1 comprising polypyrrole, dopants (here TS and SS at 0.06 mol/L - molar concentration of each dopant, i.e. a mass proportion of TS:SS of 1:0.7), a corrosion inhibitor (here ammonium molybdate, for example at 1% by mass);
  • - layer 2 is a so-called barrier layer of formula 2 comprising polypyrrole, dopants (here TS and SS in a mass ratio of TS:SS of 1:0.7), a corrosion inhibitor (here ammonium molybdate for example at 1% by mass), colloidal silica (4% by mass) and acrylic resin (15% by mass).
  • a 300 gram solution can contain 3 g of ammonium molybdate, 12 g of colloidal silica and 45 g of acrylic resin.
  • - layer 3 is a so-called appearance layer of formula 1 which may include the same compounds as those of layer 1, or even be identical to layer 1.
  • the coating has good resistance against abrasion, indeed the plate resists 120 passages (test called "TABER") under the most severe conditions before a slight appearance of the metal as described above. -below.
  • Figure 1 depicts two polypyrrole coatings, the left one containing ammonium molybdate and the right one not containing ammonium molybdate).
  • Figure 2 shows a multilayer comprising three layers 1, 2 and 3 on a support, which can be metallic and / or conductor or semiconductor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

La présente invention concerne un procédé de revêtement anticorrosif d'au moins une surface métallique et/ou conductrice comprenant les étapes successives suivantes :- (a) ladite au moins une surface métallique et/ou conductrice ou semi-conductrice est traitée par une solution contenant du monomère de pyrrole; - (b) une électro-polymérisation est appliquée au produit issu de l'étape (a), et- (c) ladite au moins une surface métallique et/ou conductrice, traitée selon les étapes (a) et (b), est récupérée,caractérisé en ce que le revêtement anticorrosif est un film continu de polypyrroles;le revêtement anticorrosif susceptible d'être obtenu par ce procédé; etle produit comprenant une surface métallique et/ou conductrice revêtue d'un tel revêtement anticorrosif.

Description

REVETEMENT A BASE DE PYRROLE POUR LA PROTECTION CONTRE LA
CORROSION
[1 ] DOMAINE DE L’INVENTION
[2] La présente invention concerne un procédé de revêtement noir avec de bonnes propriétés anticorrosion grâce à l’application d’une couche polymère obtenue à partir d’une solution contenant du monomère de pyrrole déposée par électro-polymérisation, les substrats revêtus d'un tel revêtement, ainsi que l'utilisation des substrats ainsi revêtus.
[3] ARRIERE-PLAN TECHNOLOGIQUE
[4] Il existe sur le marché de nombreuses substances de la classe des polymères en particulier électriquement conducteurs, notamment à base de polyaniline. Toutefois, dans de nombreuses applications comme par exemple dans la protection contre la corrosion des surfaces métalliques, une couche solide ou une couche mince formée de polymères conducteurs ne s'est pas révélée efficace.
[5] En particulier, l'introduction de polymères conducteurs dans une matrice organique est cependant difficile à réaliser sans introduire de particules qui, lors du mélange ou du mouillage par des forces de cisaillement (souvent dites de broyage), intensifient le brassage et la distribution des polymères conducteurs dans une matrice.
[6] De nombreux types de particules inorganiques et organiques, notamment des pigments pouvant être utilisés à l’état enrobé, comme par exemple enrobé par un revêtement, sont utilisés pour améliorer les propriétés anticorrosion.
[7] Ainsi, S.Nan (« improvement of polypyrrole coatings films for corrosion protection of zinc-coated AZ91 D alloy » - Hokkaido University ; 2014) rapporte l’utilisation de molybdate de sodium à des concentrations variant de 1 mM à 10mM, utilisé dans une solution de pyrrole contenant du tartrate de sodium pour une application en système bicouche avec des conditions d’application qui varient entre 1 mA. cm-2 et 15 mA.cnr2 sur des alliages à base de magnésium électro-zingué.
[8] O. Gari (« multilayered polypyrrole-Si-02 composite coatings for functionnalization of stainless steel : characterization and corrosion protection behavior » ; 2015) rapporte l’utilisation de particules de SiÛ2 améliorant les propriétés anticorrosion d’un revêtement à base de pyrrole sur base d’acier inoxydable.
[9] Pour sa part, US 2008305341 divulgue un procédé de revêtement de surfaces métalliques avec une composition anticorrosion qui contient un polymère conducteur et une dispersion qui contient le polymère conducteur principalement ou entièrement sous forme particulaire, ainsi qu’un système de liant.
[10] Toutefois ces différentes solutions comprennent des désavantages, voire des déficiences. Par exemple, l’homogénéité des films obtenus n’est pas satisfaisante.
[11 ] L’objet de la présente invention propose une solution présentant de nombreux avantages et caractéristiques techniques améliorées par rapport à cet état de la technique connu.
[12] RESUME DE L’INVENTION
[13] L’objet de la présente invention concerne un procédé de revêtement anticorrosif d’au moins une surface métallique et/ou conductrice ou semi-conductrice comprenant les étapes successives suivantes :
- (a) ladite au moins une surface métallique et/ou conductrice ou semi- conductrice est traitée par une solution contenant du monomère de pyrrole ;
- (b) une électro-polymérisation est appliquée au produit issu de l’étape (a), et
- (c) ladite au moins une surface métallique et/ou conductrice, traitée selon les étapes (a) et (b), est récupérée, caractérisé en ce que le revêtement anticorrosif est un film continu de poly-pyrroles.
[14] L’objet de la présente invention concerne également un revêtement anticorrosif susceptible d’être obtenu selon la présente invention.
[15] L’objet de la présente invention concerne aussi un produit comprenant une surface métallique et/ou conductrice revêtue d’un revêtement anticorrosif selon la présente invention.
[16] DEFINITIONS
[17] Par « revêtement anticorrosif », il est compris dans le contexte de la présente invention ou bien un procédé de revêtement anticorrosif ou un produit de revêtement anticorrosif, le produit étant issu du procédé dans ce contexte. Le revêtement a pour but d’améliorer les propriétés anticorrosives de surface d’un objet traité. Ainsi le revêtement obtenu diminue l’altération de l’objet traité par réaction chimique avec un oxydant.
[18] Par « surface métallique », il est compris dans le contexte de la présente invention l’une des surfaces de l’objet traité présentant au moins une couche de métal.
[19] Par « surface conductrice », il est compris dans le contexte de la présente invention une surface qui conduit l’électricité.
[20] Par « surface semi-conductrice », il est compris dans le contexte de la présente invention une surface qui a les caractéristiques d’un semi-conducteur, c’est-à-dire un matériau électriquement isolant, mais qui peut contribuer à un courant électrique et ce même faiblement. Par exemple, le silicium est un matériau semi-conducteur typique. Le carbure de silicium, le germanium ou encore l’arséniure de gallium sont connus pour être des matériaux semi-conducteurs. Dans le cadre de la présente invention, un matériau semi-conducteur est un matériau présentant une bande interdite (entre la bande de valence et la bande de conduction) inférieure ou égale à 4 eV, préférentiellement inférieure ou égale à 3 eV, plus préférentiellement inférieure ou égale à 2 eV, encore plus préférentiellement inférieure ou égale à 1 eV, telle qu’inférieure ou égale à 0,9 eV, 0,8 eV, 0,7 eV, 0,6 eV, ou inférieure ou égale à 0,5 eV.
[21 ] Par « monomère de pyrrole », il est compris dans le contexte de la présente invention un composé présentant dans sa structure un cycle C4H5N, soit un noyau pyrrole, et susceptible de polymériser lorsqu’il est mis en présence d’un courant électrique.
[22] Par « électro-polymérisation », il est compris dans le contexte de la présente invention une polymérisation induite par électricité. Une polymérisation dans le contexte de la présente invention désigne, comme communément admis dans l’art, la réaction chimique dans laquelle plusieurs molécules réagissent les unes avec les autres pour former des molécules plus grosses, par exemple sous forme d’une suite linéaire ou ramifiée de motifs de répétition.
[23] Par « film continu », il est compris dans le contexte de la présente invention une couche de produit continue sur l’objet à recouvrir d’un revêtement. Ceci est dans le contexte de la présente invention possible par l’électropolymérisation qui assure une continuité du flux électrique au niveau de l’objet à recouvrir d’un revêtement. De manière préférée, le film continu ne laisse apparaître aucune surface nue de l’objet à recouvrir.
[24] Par « susceptible d’être obtenu », il est compris dans le contexte de la présente invention que le produit obtenu par le procédé de l’invention peut également être obtenu par d’autre(s) procédé(s).
[25] DESCRIPTION DETAILLEE
[26] Le procédé et le revêtement obtenu selon la présente invention présentent plusieurs avantages.
[27] Par exemple, le procédé selon la présente invention permet d’afficher une résistance contre la corrosion par effet barrière pour des pièces métalliques de différentes géométries.
[28] En outre, le procédé selon la présente invention permet une application rapide (cycle de quelques minutes par exemple).
[29] Le procédé selon la présente invention permet de fournir un revêtement présentant une résistance chimique aux solvants, acides et bases, comme par exemple l’acide chlorhydrique (e.g. 1 mol/L ou à 37%), l’acide sulfurique (e.g. 95%), la soude (e.g. 1 mol/L), la méthyléthylacétone, ou encore l’eau.
[30] Le revêtement obtenu permet de garantir la stabilité de l’objet ainsi recouvert.
[31 ] De plus, le revêtement selon la présente invention présente un esthétisme particulier et peut présenter un aspect noir particulier. En effet, le revêtement selon la présente invention peut se présenter sous la forme d’une couche spécifique noire, mat et lisse.
[32] L’un des avantages notables de la présente invention est que le procédé et donc le revêtement peuvent également être utilisés dans le domaine de l’électrique et l’électronique (telle que des pièces ou capteurs de voitures électriques).
[33] L’objet de la présente invention concerne de manière particulière un procédé de revêtement anticorrosif tel que décrit présentement, caractérisé en ce que ledit revêtement anticorrosif produit une valeur maximale de 40 dans l’espace colorimétrique de laboratoire, déterminée conformément à la norme EN ISO 11664-4.
[34] Au sens de la présente invention, une coloration noire signifie une coloration qui produit un revêtement sur le substrat recouvert, qui a avantageusement une valeur maximale de 40 dans l'espace colorimétrique Lab, également appelé espace colorimétrique CIELAB. La mesure de l'espace colorimétrique L * a * b est mesurée selon EN ISO 11664-4. Dans le cadre de la présente invention, le paramètre "L" avec lequel la luminosité (une valeur entre 0 = noir et 100 = blanc) est exprimée est d'une importance particulière. L peut donc avoir une valeur inférieure ou égale à 40, de préférence inférieure ou égale à 35, inférieure ou égale à 30, inférieure ou égale à 25, inférieure ou égale à 20, ou préférentiellement inférieure ou égale à 15).
[35] De manière avantageuse, l’objet de la présente invention concerne un procédé de revêtement anticorrosif selon la présente invention, caractérisé en ce que l’électro- polymérisation est produite par anaphorèse.
[36] Une anaphorèse est le déplacement vers l’anode, sous l’influence d’un champ électrique de particules chargées électriquement.
[37] Dans un mode de réalisation particulier, un procédé de revêtement anticorrosif selon la présente invention peut être caractérisé en ce que le revêtement anticorrosif comprend moins de 5% en masse de grains dont le diamètre est supérieur à 200 micromètres, préférentiellement le revêtement anticorrosif est exempt de grains distinguables.
[38] De manière préférée, le revêtement anticorrosif comprend moins de 5% en masse de grains dont le diamètre est supérieur à 150 micromètres.
[39] De manière préférée, le revêtement anticorrosif comprend moins de 5% en masse de grains dont le diamètre est supérieur à 100 micromètres.
[40] De manière préférée, le revêtement anticorrosif comprend moins de 5% en masse de grains dont le diamètre est supérieur à 50 micromètres.
[41 ] De manière préférée, le revêtement anticorrosif comprend moins de 4% en masse de grains dont le diamètre est supérieur à 200 micromètres.
[42] De manière préférée, le revêtement anticorrosif comprend moins de 3% en masse de grains dont le diamètre est supérieur à 200 micromètres. [43] De manière préférée, le revêtement anticorrosif comprend moins de 2% en masse de grains dont le diamètre est supérieur à 200 micromètres.
[44] De manière préférée, le revêtement anticorrosif comprend moins de 1 % en masse de grains dont le diamètre est supérieur à 200 micromètres.
[45] De manière préférée, le revêtement anticorrosif comprend moins de 4% en masse de grains dont le diamètre est supérieur à 150 micromètres.
[46] De manière préférée, le revêtement anticorrosif comprend moins de 3% en masse de grains dont le diamètre est supérieur à 150 micromètres.
[47] De manière préférée, le revêtement anticorrosif comprend moins de 2% en masse de grains dont le diamètre est supérieur à 150 micromètres.
[48] De manière préférée, le revêtement anticorrosif comprend moins de 1 % en masse de grains dont le diamètre est supérieur à 150 micromètres.
[49] De manière préférée, le revêtement anticorrosif comprend moins de 4% en masse de grains dont le diamètre est supérieur à 100 micromètres.
[50] De manière préférée, le revêtement anticorrosif comprend moins de 3% en masse de grains dont le diamètre est supérieur à 100 micromètres.
[51] De manière préférée, le revêtement anticorrosif comprend moins de 2% en masse de grains dont le diamètre est supérieur à 100 micromètres.
[52] De manière préférée, le revêtement anticorrosif comprend moins de 1 % en masse de grains dont le diamètre est supérieur à 100 micromètres.
[53] De manière préférée, le revêtement anticorrosif comprend moins de 4% en masse de grains dont le diamètre est supérieur à 50 micromètres.
[54] De manière préférée, le revêtement anticorrosif comprend moins de 3% en masse de grains dont le diamètre est supérieur à 50 micromètres.
[55] De manière préférée, le revêtement anticorrosif comprend moins de 2% en masse de grains dont le diamètre est supérieur à 50 micromètres.
[56] De manière préférée, le revêtement anticorrosif comprend moins de 1 % en masse de grains dont le diamètre est supérieur à 50 micromètres.
[57] De manière préférée, le procédé de revêtement anticorrosif selon la présente invention peut être caractérisé en ce que l’étape (b) d’électro-polymérisation est effectuée en présence d’au moins un additif, tel qu’un dopant, préférentiellement une combinaison d’au moins deux additifs, tels qu’au moins deux dopants.
[58] De manière générale, les additifs permettent d’ajuster les propriétés du revêtement anticorrosion fini ou les propriétés de traitement de la composition liquide. Le molybdate d’ammonium est par exemple un additif ralentissant la corrosion.
[59] De manière avantageuse l’additif est un additif anticorrosion tel qu’un inhibiteur de corrosion, un passivant de corrosion, ou encore un dopant anticorrosion (appelé « dopant » dans le cadre de la présente invention).
[60] Un inhibiteur de la corrosion a pour objectif de limiter ou de bloquer le phénomène de corrosion. Un inhibiteur de la corrosion est préférentiellement un réducteur avec un potentiel d’oxydo-réduction bas, afin d’être oxydé avant d’observer l’oxydation du substrat. Un inhibiteur de corrosion selon la présente invention peut par exemple être choisi parmi les ions nitrites, les ions molybdates, les ions chromâtes, les ions phosphates, les ions tungstates et les ions benzoates.
[61 ] Les molybdates sont des inhibiteurs dits passivant de corrosion, c’est-à-dire qu’ils favorisent la formation d’une couche d’oxyde de fer sur la surface du substrat, en présence d’oxygène.
[62] Dans un mode de réalisation particulier, la solution utilisée dans le procédé selon l’invention contenant du pyrrole comprend en outre au moins deux dopants.
[63] Dans un mode de réalisation particulier, la solution utilisée dans le procédé selon l’invention contenant du pyrrole comprend en outre au moins deux dopants et au moins un inhibiteur de corrosion.
[64] Les tests selon la présente invention ont révélé que le molybdate d’ammonium comme inhibiteur de corrosion est particulièrement efficace lorsqu’il est employé avec la solution utilisée dans le procédé selon l’invention contenant du pyrrole et en outre au moins deux dopants.
[65] Dans un mode de réalisation particulier, la solution utilisée dans le procédé selon l’invention contenant du pyrrole ne comprend pas de molybdate de sodium.
[66] Dans un mode de réalisation particulier, la solution utilisée dans le procédé selon l’invention contenant du pyrrole comprend en outre au moins deux dopants et au moins un inhibiteur de corrosion qui n’est pas le molybdate de sodium. [67] Dans un mode de réalisation particulier, la solution utilisée dans le procédé selon l’invention contenant du pyrrole comprend en outre :
- au moins deux dopants ;
- au moins un inhibiteur de corrosion ; et
- des particules de silices.
[68] Dans un mode de réalisation particulier, la passivation d’un métal en surface peut aussi être réalisée par l’emploi d’acides, tels que l’acide nitrique, l’acide citrique ou l’acide phosphorique.
[69] Dans un autre mode de réalisation particulier, la passivation d’un métal en surface peut aussi être réalisée par un dépôt électrolytique de métaux et/ou d’alliages métalliques, tels que du zinc, du nickel, du cuivre, de l’argent ou du zinc-nickel.
[70] Le dopant anticorrosion est un produit qui va exacerber les propriétés anticorrosives d’autres produits inclus dans le revêtement ou à la surface du métal susceptible d’être corrodé. Les dopants anticorrosion sont utilisés pour obtenir la neutralité électrique de la chaine polymérique, et ainsi contrôler les propriétés finales du revêtement, telles que son adhésion au substrat ou ses propriétés électriques. En effet, l’oxydation du squelette polymère induit l’inclusion de dopants anioniques comme contre-ions. Un dopant anticorrosion selon la présente invention peut être choisi dans la liste consistant en du « Tiron » (acide 1 ,2 dihydroxybenzéne-3,5- disulphonique), du salicylate de sodium, du dodécylsulfate de sodium, du tartrate de sodium, l’oxalate de sodium, l’acide oxalique et des molybdates tels que le molybdate d’ammonium ou le molybdate de sodium.
[71 ] Certains produits cités ici, tels que le molybdate d’ammonium, peuvent être considérés comme des dopants ou des inhibiteurs de corrosion car ils peuvent assumer les deux fonctions. L’homme du métier n’aura aucune difficulté à distinguer la/les fonction(s) de ces produits, par exemple par ses connaissances générales ou si besoin en effectuant un test comparatif entre eux.
[72] Ainsi, dans un mode de réalisation particulier, le procédé de revêtement anticorrosif selon la présente invention peut être caractérisé en ce que le dopant ou la combinaison de dopants comprend du salicylate de sodium et/ou du tartrate de sodium. [73] De manière préférée, lorsque le dopant est un mélange de deux dopants de natures différentes, les proportions en masse de Dopant 1 : Dopant 2 sont comprises entre 1 : 5 en masse et 5 : 1 en masse, par exemple comprises entre 1 : 2 en masse et 2 : 1 en masse, voire comprises entre 1 : 1 ,5 en masse et 1 ,5 : 1 en masse, telles que comprises entre 1 : 1 ,44 en masse et 1 ,44 :1 en masse.
[74] Dans un mode de réalisation particulier, la combinaison de dopant est une combinaison de tartrate de sodium : salicylate de sodium dont les proportions en masse sont comprises entre 1 : 5 en masse et 5 : 1 en masse, par exemple comprises entre 1 : 2 en masse et 2 : 1 en masse, voire comprises entre 1 : 1 ,5 en masse et 1 ,5 : 1 en masse, telles que comprises entre 1 : 1 ,44 en masse et 1 ,44 :1 en masse.
[75] Avantageusement, le procédé de revêtement anticorrosif selon la présente invention peut être caractérisé en ce que la solution contenant du monomère de pyrrole comprend également au moins un inhibiteur de corrosion (i.e. additionnel) tel que le molybdate d’ammonium en tant qu’inhibiteur de corrosion ou dopant.
[76] Ainsi, le procédé de revêtement anticorrosif selon la présente invention peut être caractérisé en ce que la solution contenant du monomère de pyrrole comprend également au moins du molybdate d’ammonium en tant qu’inhibiteur de corrosion ou dopant.
[77] De manière avantageuse, le procédé de revêtement anticorrosif selon la présente invention peut comprendre ou pas l’addition d’une résine (par exemple en phase aqueuse telle qu’une résine acrylique) dans ou sur le revêtement.
[78] De manière avantageuse, le procédé de revêtement anticorrosif selon la présente invention peut comprendre ou pas l’addition d’une résine (par exemple en phase aqueuse telle qu’une résine acrylique) dans la solution contenant du monomère de pyrrole.
[79] Ainsi, la solution de revêtement selon la présente invention peut comprendre de 25% à 75% de polypyrrole, de 5% à 30% d’un premier dopant (tel que le tartrate de sodium ou le salicylate de sodium), 5% à 25% d’un éventuel second dopant (tel que le tartrate de sodium ou le salicylate de sodium), de 3% à 20% d’un inhibiteur de corrosion (tel que le molybdate d’ammonium), les pourcentages étant exprimés en masse par rapport à la masse totale des composés dans la couche de base. [80] Ainsi, la solution de revêtement selon la présente invention peut comprendre de 5% à 30% de polypyrrole, de 1 % à 10% d’un premier dopant (tel que le tartrate de sodium ou le salicylate de sodium), 1 % à 10% d’un éventuel second dopant (tel que le tartrate de sodium ou le salicylate de sodium), de 0,5% à 6% d’un inhibiteur de corrosion (tel que le molybdate d’ammonium), de 25% à 75% de résine (telle qu’une résine organique par exemple acrylique), de 3% à 75% de silice.
[81 ] De manière avantageuse, un agent mouillant peut être ajouté comme additif pour faciliter le recouvrement du revêtement sur le substrat.
[82] Un tel agent mouillant peut-être choisi dans la liste consistant en un tensioactif, tel que des alcools gras contenant par exemple plus de huit atomes de carbones, ou encore des esters d’alcool gras.
[83] De manière encore plus avantageuse, le procédé de revêtement anticorrosif selon la présente invention peut être caractérisé en ce qu’un ou plusieurs traitements de surface supplémentaires sont effectués précédemment ou successivement aux étapes (a), (b) et/ou (c) pour obtenir un revêtement multicouche. L’utilisation d’un système multicouche permet une nette amélioration des propriétés anticorrosion d’un revêtement à base de pyrrole comme citée dans la littérature et notamment au test du brouillard salin. En comparaison avec des techniques classiques de protection contre la corrosion, cette invention permet d’obtenir un revêtement en quelques minutes (gain de temps), éventuellement sans cuisson (écologique), avec un aspect esthétique (cosmétique). L’épaisseur est fortement réduite par rapport à un système de peinture classique. En fonction de la brillance voulue, une dernière couche de type résine, tel qu’un polyuréthane (PU), peut être appliquée, elle renforcera en outre les performances anticorrosion par effet barrière, mais nécessitera alors une cuisson de l’ordre de 150 °C (i.e. entre 100°C et 200°C, ou encore entre 125°C et 175°C).
[84] L’objet de la présente invention concerne un procédé de revêtement anticorrosif selon la présente invention, caractérisé en ce qu’au moins une couche du revêtement comprend au moins un liant et/ou des particules de silice, lesdites particules de silice pouvant être obtenues par exemple à partir de dérivés de silane.
[85] En particulier, l’objet de la présente invention concerne un procédé de revêtement anticorrosif selon la présente invention, caractérisé en ce qu’au moins une couche du revêtement comprend au moins un liant et/ou des particules de silice, lesdites particules de silice pouvant être obtenues par exemple à partir de dérivés de silane, dans laquelle la couche de silice est une couche de polypyrrole contenant de la silice obtenue par électropolymérisation.
[86] Dans le cas d’un multicouches selon la présente invention, au moins deux couches peuvent être de formulation identique, avec par exemple au moins une couche de formulation différente insérée entre les deux couches de formulation identique.
[87] Dans un mode de réalisation particulier le revêtement selon la présente invention comprend au moins une couche comprenant du polypyrrole, du tartrate de sodium, du salicylate de sodium et du molybdate d’ammonium.
[88] Dans un mode de réalisation particulier le revêtement selon la présente invention comprend au moins deux couches comprenant du polypyrrole, du tartrate de sodium, du salicylate de sodium et du molybdate d’ammonium.
[89] Dans un mode de réalisation particulier le revêtement selon la présente invention comprend au moins une couche de base (adhérant au support à recouvrir) comprenant du polypyrrole, du tartrate de sodium, du salicylate de sodium et du molybdate d’ammonium et une seconde couche comprenant du polypyrrole, du tartrate de sodium, du salicylate de sodium et du molybdate d’ammonium, ces deux couches pouvant être séparées par au moins une couche de composition différente de celles- ci, appelée couche intermédiaire.
[90] La composition de la couche intermédiaire selon la présente invention peut comprendre du polypyrrole, du tartrate de sodium, du salicylate de sodium, du molybdate d’ammonium, de la résine acrylique et de la silice.
[91 ] Ainsi, dans un mode de réalisation particulier le revêtement selon la présente invention comprend au moins une couche comprenant du polypyrrole, du tartrate de sodium, du salicylate de sodium, du molybdate d’ammonium, de la résine acrylique et de la silice.
[92] La quantité de polypyrrole dans une couche du revêtement peut être comprise entre 5% et 85% en masse par rapport à la masse totale des composés dans la couche du revêtement. [93] La quantité d’un premier dopant (tel que le tartrate de sodium) dans une couche du revêtement peut être comprise entre 1 % et 30% en masse par rapport à la masse totale des composés dans la couche du revêtement.
[94] La quantité d’un second dopant (tel que le salicylate de sodium) dans une couche du revêtement peut être comprise entre 1 % et 25% en masse par rapport à la masse totale des composés dans la couche du revêtement.
[95] La quantité d’un inhibiteur de corrosion (tel que le molybdate d’ammonium) dans une couche du revêtement peut être comprise entre 0,5% et 20% en masse par rapport à la masse totale des composés dans la couche du revêtement.
[96] La quantité de résine (telle qu’une résine organique par exemple acrylique), le cas échéant, dans une couche du revêtement peut être comprise entre 10% et 75% en masse par rapport à la masse totale des composés dans la couche du revêtement.
[97] La quantité de silice, le cas échéant, dans une couche du revêtement peut être comprise entre 3% et 75% en masse par rapport à la masse totale des composés dans la couche du revêtement.
[98] Le revêtement selon la présente invention peut être un multicouche dont les couches peuvent être de formules identiques ou différentes les unes vis-à-vis des autres, avec ou sans cuisson.
[99] Ainsi, le revêtement selon la présente invention peut être un multicouche permettant d’améliorer les propriétés anticorrosion et/ou mécaniques d’un substrat.
[100] De manière particulière, le revêtement selon la présente invention peut être un multicouche comprenant 3 couches (couches (1 ), (2) et (3)) :
- (1 ) une couche de base (directement en contact avec le support) comprenant de 25% à 75% de polypyrrole, de 5% à 30% d’un premier dopant (tel que le tartrate de sodium ou le salicylate de sodium), 5% à 25% d’un éventuel second dopant (tel que le tartrate de sodium ou le salicylate de sodium), de 3% à 20% d’un inhibiteur de corrosion (tel que le molybdate d’ammonium) les pourcentages étant exprimés en masse par rapport à la masse totale des composés dans la couche de base ;
- (2) une couche intermédiaire (au-dessus ou directement au-dessus de la couche de base) comprenant de 5% à 30% de polypyrrole, de 1 % à 10% d’un premier dopant (tel que le tartrate de sodium ou le salicylate de sodium), 1 % à 10% d’un éventuel second dopant (tel que le tartrate de sodium ou le salicylate de sodium), de 0,5% à 6% d’un inhibiteur de corrosion (tel que le molybdate d’ammonium), de 25% à 75% de résine (telle qu’une résine organique par exemple acrylique), de 3% à 75% de silice les pourcentages étant exprimés en masse par rapport à la masse totale des composés dans la couche du revêtement ;
- (3) une couche d’aspect (au-dessus ou directement au-dessus de la couche intermédiaire) comprenant de 25% à 75% de polypyrrole, de 5% à 30% d’un premier dopant (tel que le tartrate de sodium ou le salicylate de sodium), 5% à 25% d’un éventuel second dopant (tel que le tartrate de sodium ou le salicylate de sodium), de 3% à 20% d’un inhibiteur de corrosion (tel que le molybdate d’ammonium) les pourcentages étant exprimés en masse par rapport à la masse totale des composés dans la couche d’aspect.
[101 ] Dans le cas d’un système multicouche l’aspect noir mat, sans cuisson, et ayant des performances de protection au brouillard salin de l’ordre de 250 heures (selon la norme ISO9227 ; mars 2017), la première couche est obtenue à l’aide d’une solution contenant du pyrrole, des dopants (tartrate et salicylate de sodium) et du molybdate d’ammonium. Cette couche est appliquée en tant que primaire d’adhésion et permet d’améliorer l’adhérence du revêtement sur le substrat, la présence de molybdate d’ammonium dans la solution (électrolyte) améliore l’aspect de la recouvrance finale de la pièce.
[102] L’obtention de cette couche se fait par immersion de deux électrodes dans le bain d’application. La cathode sert d’électrode de référence et est composée d’acier inoxydable. L’anode quant à elle est considérée comme l’électrode de travail, donc la pièce à revêtir (telle qu’une plaque d’acier laminé, vis traitée, plaque métallique, plaque de GEOMET® - i.e. un objet recouvert d’une première couche anticorrosive classique -, etc.).
[103] Un courant électrique d’une densité comprise entre 4mA/cm2 et 100mA/cm2, préférentiellement entre 16 mA/cm2 et 48mA/cm2 est généré à l’aide d’un redresseur pendant une durée de 30 secondes, pour l’application de la première couche. Une fois la première couche obtenue, un rinçage à l’aide d’eau désionisée est préconisé pour enlever toute trace d’impuretés dues éventuellement à la suroxydation du monomère à la surface du revêtement. [104] La deuxième couche est obtenue à l’aide d’un bain contenant du pyrrole, des dopants (tartrate et salicylate de sodium), du molybdate d’ammonium, de la silice colloïdale, et d’une résine acrylique. La présence de silice colloïdale en phase aqueuse et de résine acrylique dans le bain (électrolyte) est nécessaire à l’obtention d’une couche suffisamment isolante et adhérente pour former un effet barrière contre la corrosion. Cette deuxième couche est appliquée à l’aide du même redresseur dans les mêmes conditions, un temps d’application plus long (2x30secondes) est nécessaire lors de l’application de la deuxième couche, afin d’obtenir une bonne répartition et homogénéité du couple silice colloïdale/résine. Un rinçage à l’aide d’eau désionisée est nécessaire entre chaque cycle d’application pour enlever l’excès de silice et de résine engendré lors de l’application et afin de favoriser un état et un aspect de surface propice au dépôt de la troisième et dernière couche.
[105] L’application de la troisième couche est similaire à celle de la première couche, et se fait à partir du même bain. Cette troisième couche permet d’obtenir l’aspect mat et lisse recherché.
[106] Lors de l’application de la deuxième couche, la silice déposée sur le substrat donne un aspect blanchâtre au revêtement, cette dernière couche est utilisée pour l’aspect esthétique mais, peut aussi contribuer à l’amélioration des propriétés anticorrosion du fait de la présence d’un inhibiteur de corrosion (type molybdate d’ammonium).
[107] L’épaisseur finale du revêtement peut être inférieure ou égale à 100 microns (pm), préférentiellement inférieure ou égale à 50 pm, 40 pm, 30 pm ou encore inférieure ou égale à 25 pm, par exemple de l’ordre de 20 pm (±3 pm).
[108] De manière préférée, l’épaisseur finale du revêtement est de l’ordre de 30 microns (±5 pm).
[109] EXEMPLES
[110] 1 . Application sur plaque revêtue de « GEOMET »
[111 ] Plusieurs essais d’application d’une solution contenant du pyrrole, des dopants, et du molybdate d’ammonium ont été réalisés sur des plaques revêtues. Selon le type de revêtement le pyrrole s’applique plus ou moins uniformément sur la surface de la plaque revêtue.
[112] a. Revêtement préalable
[113] Le revêtement préalable ayant été testé est :
[114] - Réf. A : revêtement dont le bain contient du zinc, de l’aluminium, du liant silane-titanate, des additifs stabilisants, des tensioactifs, des agents anticorrosion dans un mélange eau/solvants organiques. Réf. A est un produit commercial vendu sous le nom de GEOMET® 321 .
[115] Ainsi, des essais d’application sur une plaque (acier laminé à froid) revêtue ont été réalisés. Les conditions d’application du revêtement de la plaque sont détaillées ci-dessous.
[116] Tableau 1 : revêtement sur plaque acier laminé à froid revêtue de « GEOMET® 321 » (Réf. A).
[117] [Tableau 1 ]
Figure imgf000017_0001
minutes avec une densité de courant d’environ 34 mA/cm2 Les résultats sont donnés ci-dessous.
[119] b. Essais avec une formule avec/sans molybdate d’ammonium :
[120] Des essais d’application d’une solution de pyrrole contenant ou pas du molybdate d’ammonium ont été réalisés sur une base de réf. : A d’une épaisseur de [121 ] On remarque que les deux revêtements (avec ou sans molybdate d’ammonium) présentent une bonne homogénéité et un recouvrement correct, néanmoins des différences en termes d’aspects sont observées.
[122] Les revêtements sans molybdate d’ammonium présentent un aspect noir gris et une surface légèrement rugueuse par rapport au revêtement avec 1 % de molybdate d’ammonium qui lui présente un aspect noir mat et une surface lisse. L’épaisseur du film de polypyrroles appliqué est de l’ordre de 12 pm et cela pour les mêmes conditions citées auparavant.
[123] 2. Application sur substrat métallique
[124] Le film appliqué sur un substrat métallique de type LAF (acier laminé à froid) consiste en un film à base de pyrrole et des dopants (en monocouche).
[125] La formule proposée permet l’obtention d’un revêtement noir à base de pyrrole. Les propriétés anticorrosion du revêtement sont limitées et dues à l’absence de pigments ou d’additifs pouvant apporter une meilleure protection en termes de corrosion.
[126] Tableau 2 : application sur substrat métallique
[127] [Tableau 2]
Figure imgf000018_0001
[129] Dans le tableau 2, « bain total » : la quantité du bain total (addition de l’eau désionisée, des dopants et du monomère de pyrrole).
[130] Dans le tableau 2, en pourcentage par rapport à la quantité de bain total (1800g), TS est de 1 ,3% et SS est de 0,9%, soit un ratio de TS : SS de 1 : 0,7. [131 ] Les performances anticorrosion d’un revêtement à base de pyrrole avec dopant sur substrat métallique sont effectives jusqu’à 24 h au brouillard salin pour une épaisseur de 10 pm environ.
[132] 3. Film à base de pyrrole comprenant des dopants et de la résine (monocouche) sur un substrat métallique de type LAF (acier laminé à froid) :
[133] Une résine (en particulier organique) permet classiquement (application à la barre ou par immersion) de déposer une fine couche, suffisamment isolante, mais pas trop, afin de former une barrière physique isolante contre les ions corrosifs.
[134] Différentes résines ont ainsi été testées (principalement des résines en phase aqueuse) avec du pyrrole, ainsi que différents modes d’application (exemple : mélange de résine dans le bain, immersion de la plaque revêtue dans la résine en post traitement... ).
[135] Toutefois, pour obtenir via ce système des performances mécaniques acceptables et acceptables au brouillard salin, une cuisson finale (par exemple 150°C) a été nécessaire.
[136] Des tests d’immersion dans une solution aqueuse contenant une résine type acrylique (par exemple Prohere® A03002) cuits à différentes températures (sans atteindre la température de cuisson) ont été réalisés. Les résultats au brouillard salin n’étaient pas satisfaisants et ont même montré une apparition de rouille rouge au bout de 48 heures dans certains cas.
[137] Différents essais supplémentaires sans cuisson ont été réalisés avec des résines et du pyrrole ; certains résultats étaient très satisfaisants pour quelques-uns en termes de tenue anticorrosion mais pas reproductibles (écart entre chaque résultat au brouillard salin) : pour des plaques appliquées avec la même formule des écarts d’environ 300h ont été observés ce qui rend la formule peu robuste et par conséquent non exploitable.
[138] Ajouter de la résine par des techniques classiques d’application ne donne pas satisfaction, alors que dans les conditions de la présente invention (i.e. film continu de poly-pyrroles obtenu par cuisson ici), des résultats acceptables ont été obtenus. [139] 4. Film à base de pyrrole, comprenant des dopants et du molybdate d’ammonium (monocouche) :
[140] L’ajout d’un inhibiteur de corrosion tel que le molybdate d’ammonium dans le bain (électrolyte) de référence a, entre autres, permis d’améliorer l’aspect du revêtement et ainsi obtenir un revêtement mat et lisse (figure 1 : à gauche, film de polypyrroles contenant 1 % de molybdate d’ammonium, et à droite, film de polypyrroles sans molybdate d’ammonium).
[141 ] Le tableau 3 ci-dessous montre les deux compositions ayant permis la comparaison.
[142] [Tableau s]
Figure imgf000020_0001
[143] Tartrate de sodium : TS
[144] Salicylate de sodium : SS
[145] Les pourcentages sont des pourcentages massiques.
[146] 5. Film à base de pyrrole comprenant des dopants, du molybdate d’ammonium et de la résine (monocouche) :
[147] Un essai supplémentaire en ajoutant une résine acrylique a été fait après avoir ajouté un taux optimal de molybdate d’ammonium.
[148] Du molybdate d’ammonium (0,8% en masse) et de la résine acrylique « Pliotec » (1 % en masse) ont été ajoutés à la formulation du tableau 4 ci-dessus (représentant 98,2% en masse). [149] T rois solutions identiques contenant du pyrrole, des dopants (tartrate de sodium TS et salicylate de sodium SS en une proportion de TS : SS = 1 : 0,82), du molybdate d’ammonium et une résine (monocouche) et ont été préparées et toutes les trois testées (afin de s’assurer de la répétabilité).
[150] Les conditions d’application des trois solutions pour obtenir les revêtements sont les suivantes :
[151 ] - concentration (ratio molaire pyrrole : dopant) : 10
[152] - densité de courant (mA/cm2) : 48
[153] - temps d’application (secondes) : 30
[154] - bain total (T°C) : 20
[155] - épaisseur (pm) : 12
[156] - densité de charge (C/cm2) : 1 ,5
[157] Dans les trois cas, il n’a pas été observé d’agglomération dans le bain.
[158] Les résultats en termes de brouillard salin sont satisfaisants : une amélioration des propriétés anticorrosion au niveau du brouillard salin a été observée avec une tenue de 72 heures qui est répétable à chaque essai.
[159] 6. Film à base de pyrrole comprenant des dopants du molybdate d’ammonium, de la résine et de la silice colloïdale (multicouches)
[160] Ces essais portent sur l’élaboration d’un système multicouche à base de polypyrrole sans cuisson, dont la couche centrale permet l’obtention des propriétés anticorrosion recherchées.
[161 ] Pour se faire, différents essais ont été menés afin d’obtenir les propriétés recherchées.
[162] Le système multicouche est schématisé en figure 2, où il peut être vu :
- la couche 1 est une couche d’accroche sur le support de formule 1 comprenant du polypyrrole, des dopants (ici TS et SS à 0,06 mol/L - concentration molaire de chaque dopant, soit une proportion massique de TS : SS de 1 : 0,7), un inhibiteur de corrosion (ici du molybdate d’ammonium par exemple à 1 % en masse) ; - la couche 2 est une couche dite barrière de formule 2 comprenant du polypyrrole, des dopants (ici TS et SS en un ratio massique de TS : SS de 1 : 0,7), un inhibiteur de corrosion (ici du molybdate d’ammonium par exemple à 1 % en masse), de la silice colloïdale (4% en masse) et de la résine acrylique (15% en masse). Ainsi une solution de 300 grammes peut contenir 3 g de molybdate d’ammonium, 12 g de silice colloïdale et 45 g de résine acrylique.
- la couche 3 est une couche dite d’aspect de formule 1 pouvant comprendre les mêmes composés que ceux de la couche 1 , voire être identique à la couche 1 .
[163] En plus des résultats anticorrosion, le revêtement présente une bonne résistance contre l’abrasion, en effet la plaque résiste à 120 passages (test dit « TABER ») dans les conditions les plus sévères avant une légère apparition du métal comme décrits ci-dessous.
[164] Condition expérimentale des essais d’abrasion :
[165] Nombre de passages : 120 passages avant apparition d’un point de métal
[166] Vitesse : 45 cycles / min
[167] Pression 5,05 kg
[168] Pastilles : abrasives
[169] FIGURES
[170] [Fig.1 ] La figure 1 représente deux revêtements de polypyrrole, celui de gauche contenant du molybdate d’ammonium et celui de droite ne contenant pas de molybdate d’ammonium).
[171 ] [Fig.2] La figure 2 représente un multicouches comprenant trois couches 1 , 2 et 3 sur un support, pouvant être métallique et/ou conducteur ou semiconducteur.
[172] Bien entendu la présente invention n’est pas limitée aux seuls modes de réalisation décrits ci-avant à titre d’exemples non limitatifs mais en englobe tous les modes de réalisation similaires ou équivalents.

Claims

REVENDICATIONS
[Revendication 1 ] Procédé de revêtement anticorrosif d’au moins une surface métallique et/ou conductrice ou semi-conductrice comprenant les étapes successives suivantes :
- (a) ladite au moins une surface métallique et/ou conductrice ou semi- conductrice est traitée par une solution contenant du monomère de pyrrole ;
- (b) une électro-polymérisation est appliquée au produit issu de l’étape (a), et
- (c) ladite au moins une surface métallique et/ou conductrice, traitée selon les étapes (a) et (b), est récupérée, caractérisé en ce que le revêtement anticorrosif est un film continu de poly-pyrroles.
[Revendication 2] Procédé de revêtement anticorrosif selon la revendication 1 caractérisé en ce que ledit revêtement anticorrosif produit une valeur maximale de 40 dans l’espace colorimétrique de laboratoire, déterminée conformément à la norme EN ISO 11664-4.
[Revendication 3] Procédé de revêtement anticorrosif selon la revendication 1 ou 2 caractérisé en ce que l’électro-polymérisation est produite par anaphorèse.
[Revendication 4] Procédé de revêtement anticorrosif selon l’une quelconque des revendications précédentes caractérisé en ce que le revêtement anticorrosif comprend moins de 5% en masse de grains dont le diamètre est supérieur à 200 micromètres, préférentiellement le revêtement anticorrosif est exempt de grains distinguables.
[Revendication 5] Procédé de revêtement anticorrosif selon l’une quelconque des revendications précédentes caractérisé en ce que l’étape (b) d’électro-polymérisation est effectuée en présence d’au moins un additif, tel qu’un dopant, préférentiellement une combinaison d’au moins deux additifs, tels qu’au moins deux dopants.
[Revendication 6] Procédé de revêtement anticorrosif selon la revendication 5 caractérisé en ce que le dopant ou la combinaison de dopants comprend du salicylate de sodium et/ou du tartrate de sodium.
[Revendication 7] Procédé de revêtement anticorrosif selon l’une quelconque des revendications précédentes caractérisé en ce que la solution contenant du monomère de pyrrole comprend également un inhibiteur de corrosion tel que du molybdate d’ammonium.
[Revendication 8] Procédé de revêtement anticorrosif selon l’une quelconque des revendications précédentes caractérisé en ce qu’un ou plusieurs traitements de surface supplémentaires sont effectués précédemment ou successivement aux étapes (a), (b) et/ou (c) pour obtenir un revêtement multicouche.
[Revendication 9] Procédé de revêtement anticorrosif selon l’une quelconque des revendications précédentes caractérisé en ce qu’au moins une couche du revêtement comprend au moins un liant et/ou des particules de silice, lesdites particules de silice pouvant être obtenues par exemple à partir de dérivés de silane.
[Revendication 10] Revêtement anticorrosif obtenu selon l’une quelconque des revendications précédentes.
[Revendication 11 ] Produit comprenant une surface métallique et/ou conductrice ou semi-conductrice revêtue d’un revêtement anticorrosif selon la revendication 10.
PCT/EP2021/080226 2020-10-30 2021-10-30 Revetement a base de pyrrole pour la protection contre la corrosion WO2022090524A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2011172A FR3115717A1 (fr) 2020-10-30 2020-10-30 Revêtement à base de pyrrole pour la protection contre la corrosion
FRFR2011172 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022090524A1 true WO2022090524A1 (fr) 2022-05-05

Family

ID=75339802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/080226 WO2022090524A1 (fr) 2020-10-30 2021-10-30 Revetement a base de pyrrole pour la protection contre la corrosion

Country Status (2)

Country Link
FR (1) FR3115717A1 (fr)
WO (1) WO2022090524A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0659794A1 (fr) * 1993-12-21 1995-06-28 Sollac Procédé et bain de dépôt électrolytique de polypyrrole sur une surface de métal oxydable par électropolymérisation
EP1227135A2 (fr) * 2001-01-11 2002-07-31 Ferrao de Paiva Martins, José Inácio Procédé et bain électrolytique pour l' obtention par électropolymérisation d' un revêtement homogène et adhérent du polypyrrole sur des surfaces de métaux oxydables
US20080305341A1 (en) 2004-08-03 2008-12-11 Waldfried Plieth Process for Coating Metallic Surfaces With an Anti-Corrosive Coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0659794A1 (fr) * 1993-12-21 1995-06-28 Sollac Procédé et bain de dépôt électrolytique de polypyrrole sur une surface de métal oxydable par électropolymérisation
EP1227135A2 (fr) * 2001-01-11 2002-07-31 Ferrao de Paiva Martins, José Inácio Procédé et bain électrolytique pour l' obtention par électropolymérisation d' un revêtement homogène et adhérent du polypyrrole sur des surfaces de métaux oxydables
US20080305341A1 (en) 2004-08-03 2008-12-11 Waldfried Plieth Process for Coating Metallic Surfaces With an Anti-Corrosive Coating

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GRARI O. ET AL: "Multilayered polypyrrole-SiO2 composite coatings for functionalization of stainless steel: Characterization and corrosion protection behavior", PROGRESS IN ORGANIC COATINGS, vol. 88, 13 July 2015 (2015-07-13), NL, pages 48 - 53, XP055825635, ISSN: 0300-9440, DOI: 10.1016/j.porgcoat.2015.06.019 *
SHENG NAN ET AL: "Improvement of polypyrrole films for corrosion protection of zinc-coated AZ91D alloy", PROGRESS IN ORGANIC COATINGS, vol. 77, no. 11, 16 July 2014 (2014-07-16), NL, pages 1724 - 1734, XP055825612, ISSN: 0300-9440, DOI: 10.1016/j.porgcoat.2014.05.014 *

Also Published As

Publication number Publication date
FR3115717A1 (fr) 2022-05-06

Similar Documents

Publication Publication Date Title
CA2975370C (fr) Traitement anti-corrosif d'une tole par solution d'acides amines
FR2475565A1 (fr) Peinture anticorrosion a pigments metalliques
EP0161129B1 (fr) Composition de revêtement anti-corrosin, procédé pour sa mise en oeuvre et éléments de boulonnerie revêtus
EP3146001B1 (fr) Composition liante, procede de fabrication d'un revetement de protection sacrificielle contre la corrosion mettant en oeuvre ladite composition et support revetu d'un tel revetement
FR2517703A1 (fr) Plaque d'acier a surface traitee et a couches multiples comportant une couche qui renferme du zinc
CA2975375C (fr) Traitement anti-corrosif d'une tole par solution d'acides amines
CA2975360C (fr) Traitement anti-corrosif d'une tole par solution d'acides amines
EP1485519B1 (fr) Composition et procede de revetement de substrat metallique
FR3082528A1 (fr) Composition aqueuse et procede de traitement de surface d'une piece en alliage d'aluminium mettant en œuvre une telle composition
WO2022090524A1 (fr) Revetement a base de pyrrole pour la protection contre la corrosion
EP3757251B1 (fr) Composition pour le traitement de surface d'un substrat métallique et procédé de traitement de surface mettant en oeuvre une telle composition
EP2766508B1 (fr) Procédé de traitement anticorrosion d'un substrat métallique solide
WO2001023639A1 (fr) Revetement et procede de traitement anticorrosion de pieces metalliques
EP1373597B1 (fr) Procede de traitement par carboxylatation de surfaces metalliques
FR2867199A1 (fr) Procede pour l'obtention d'un substrat mettalique comportant un revetement protecteur
EP2294142B1 (fr) Procédé de revêtement d'une surface métallique par une couche hybride
WO2013054066A1 (fr) Procédé de traitement anticorrosion d'un substrat métallique solide et substrat métallique susceptible d'être obtenu par un tel procédé
FR3090694A1 (fr) Solution de traitement anticorrosion et utilisations
CA2380304A1 (fr) Procede et composition de traitement anti-corrosion d'un substrat metallique prealablement protege par une couche de revetement a base de zinc
EP3414360B1 (fr) Élaboration d'un traitement anti-corrosion par voie sol-gel
FR2655060A1 (fr) Procede et compositions pour l'amelioration de la resistance a la corosion de metaux et d'alliages.
EP0097116A1 (fr) Procédé de fabrication d'une peinture anti-corrosion et peinture obtenue selon ce procédé
FR2604187A1 (fr) Composition de ferrophosphore ayant des proprietes ameliorees de conductivite et de resistance a la passivation
EP0170541B1 (fr) Composition pigmentaire destinée à la protection cathodique de surfaces métalliques contre la corrosion, ainsi que son procédé de préparation
WO2022023685A1 (fr) Composition et utilisation de cette composition pour la formation d'un revêtement de type sol-gel sur une surface métallique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21805439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21805439

Country of ref document: EP

Kind code of ref document: A1