WO2022089661A1 - 换热装置和空调器 - Google Patents

换热装置和空调器 Download PDF

Info

Publication number
WO2022089661A1
WO2022089661A1 PCT/CN2021/132780 CN2021132780W WO2022089661A1 WO 2022089661 A1 WO2022089661 A1 WO 2022089661A1 CN 2021132780 W CN2021132780 W CN 2021132780W WO 2022089661 A1 WO2022089661 A1 WO 2022089661A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
passage
tube group
refrigerant
exchange passage
Prior art date
Application number
PCT/CN2021/132780
Other languages
English (en)
French (fr)
Inventor
罗荣邦
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022089661A1 publication Critical patent/WO2022089661A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers

Definitions

  • the present application relates to the technical field of air conditioner heat exchange, for example, to a heat exchange device and an air conditioner.
  • the paths of the heat exchange pipelines through which the refrigerant flows in the heat exchange device are opposite in direction and have the same length.
  • the heat exchanger in the outdoor unit of the air conditioner As an example.
  • the air conditioner When the air conditioner is in the cooling operation state, it works as a condenser. Since the heat exchange section has a subcooling requirement at this time, generally, the heat exchanger is connected in series after the heat exchanger. There is a subcooler; and because a subcooler is installed after the heat exchanger of the outdoor unit of the air conditioner, when the air conditioner is in heating operation, it works as an evaporator.
  • the refrigerant before the refrigerant flows through the heat exchange pipeline, it will The refrigerant first flows through the subcooler, at this time, the refrigerant passing through the subcooler will cause a large pressure loss in the refrigerant pipeline.
  • Embodiments of the present disclosure provide a heat exchange device and an air conditioner to solve the problem of large pressure loss in the refrigerant pipeline caused by the refrigerant passing through the subcooler in a heating operation state.
  • the heat exchange device includes a first heat exchange passage, a second heat exchange passage, a shunt passage, a third heat exchange passage, and a first one-way valve and a second one-way valve;
  • the second heat exchange The passage is connected in parallel with the first heat exchange passage;
  • the first heat exchange passage comprises at least two heat exchange branches connected in parallel;
  • the second heat exchange passage comprises a first pipe section and a second pipe section connected in series;
  • the third heat exchange passage is connected in parallel with the second pipe section and the branch passage of the second heat exchange passage;
  • the first one-way valve is arranged on the first pipe section of the second heat exchange passage,
  • the conduction direction of a one-way valve is limited to flow from the series node of the second pipe section and the first pipe section to the parallel node of the second heat exchange passage and the first heat exchange passage;
  • the second one-way valve is arranged in the shunt passage, the second The conduction direction of the one-way valve is defined
  • the air conditioner includes the above-mentioned heat exchange device.
  • the air conditioner can be realized in the cooling and heating operation states.
  • the paths through which the refrigerant flows are different.
  • the heat exchange device is installed on the outdoor unit of the air conditioner, so that during the cooling operation of the air conditioner, the refrigerant passes through the first heat exchange passage and the second pipe section of the second heat exchange passage in sequence.
  • the refrigerant is split through the first heat exchange passage, the second pipe section of the second heat exchange passage and the third heat exchange passage , forming a parallel passage, thereby effectively reducing the pressure loss in the refrigerant pipeline, thereby ensuring the heat exchange effect of the air conditioner.
  • FIG. 1 is a schematic structural diagram of a heat exchange device provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another heat exchange device provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of another heat exchange device provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another heat exchange device provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a heat exchange tube group provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another heat exchange tube group provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another heat exchange tube group provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another heat exchange tube group provided by an embodiment of the present disclosure.
  • orientations or positional relationships indicated by the terms “upper”, “lower”, “inner”, “middle”, “outer”, “front”, “rear”, etc. are based on the orientations shown in the drawings or Positional relationship. These terms are primarily used to better describe the embodiments of the present disclosure and embodiments thereof, and are not intended to limit the fact that the indicated device, element, or component must have a particular orientation, or be constructed and operated in a particular orientation. In addition, some of the above-mentioned terms may be used to express other meanings besides orientation or positional relationship. For example, the term “on” may also be used to express a certain attachment or connection relationship in some cases. For those of ordinary skill in the art, the specific meanings of these terms in the embodiments of the present disclosure can be understood according to specific situations.
  • connection may be a fixed connection, a detachable connection, or a unitary construction; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediary, or two devices, elements or Internal connectivity between components.
  • connection may be a fixed connection, a detachable connection, or a unitary construction; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediary, or two devices, elements or Internal connectivity between components.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B three relationships.
  • an embodiment of the present disclosure provides a heat exchange device including a first heat exchange passage 100, a second heat exchange passage 200, a split passage 400, a third heat exchange passage 300, and a first one-way passage
  • the conduction direction of the first one-way valve 500 is limited to flow from the series node of the second pipe section 220 and the first pipe section 210 to the second heat exchange passage 200 and the first heat exchange passage 100
  • the second one-way valve 600 is arranged in the split passage 400, and the conduction direction of the second one-way valve 600 is limited
  • the first heat exchange passage 100 , the second heat exchange passage 200 , the split passage 400 , the third heat exchange passage 300 , the first one-way valve 500 and the second one-way passage can be passed through.
  • the design of the valve 600 realizes that the paths through which the refrigerant flows are different when the air conditioner is in cooling operation and heating operation.
  • the refrigerant passes through the first heat exchange passage 100, the second pipe section 220 of the second heat exchange passage 200, and the third heat exchange passage 300 in turn to achieve condensation and subcooling; and during the heating operation of the air conditioner, the refrigerant is divided Through the first heat exchange passage 100, the second pipe section 220 of the second heat exchange passage 200, and the third heat exchange passage 300, a parallel passage is formed, thereby effectively reducing the pressure loss in the refrigerant pipeline, thereby ensuring the air conditioner heat transfer effect.
  • the heat exchange device can be installed in the air conditioner outdoor unit of the air conditioner as a heat exchanger to exchange heat with the air in the outdoor environment as an outdoor heat exchanger.
  • the embodiment of the present disclosure takes the installation of the heat exchange device on the outdoor unit of the air conditioner as an example, and other embodiments of the present application may also install the heat exchange device in other equipment for heat exchange.
  • an air conditioner has at least two functions of heating and cooling, that is to say, the air conditioner includes a cooling operation mode and a heating operation mode.
  • the indoor heat exchanger in the indoor unit of the air conditioner acts as the evaporator
  • the outdoor heat exchanger in the outdoor unit of the air conditioner acts as the condenser.
  • the refrigerant in the outdoor heat exchanger working as a condenser flowing from the liquid inlet of the outdoor heat exchanger to the liquid outlet of the outdoor heat exchanger, the refrigerant condensing and releasing heat gradually changes from a gaseous state to a liquid state.
  • the mass and flow rate of the refrigerant in the refrigerant pipeline are unchanged. Since the specific volume of the gaseous refrigerant is several times that of the liquid refrigerant, the outdoor heat exchanger will With the flow of the refrigerant, the volume of the refrigerant gradually decreases, resulting in a gradual decrease in the flow rate of the refrigerant.
  • the heat transfer coefficient is proportional to the 0.8th power of the flow rate W of the refrigerant. It can be seen that when the refrigerant flows to the liquid outlet of the outdoor heat exchanger, its flow rate is lower than that of the liquid inlet of the outdoor heat exchanger, and the heat transfer coefficient is also reduced, resulting in poor heat transfer effect.
  • the specific volume of gaseous refrigerant is several times that of liquid refrigerant.
  • the specific volume of saturated vapor at 40°C is 0.01003m 3 /kg
  • the specific volume of saturated liquid is 0.00106m 3 /kg
  • the specific volume of the gaseous state is 9.5 times that of the liquid state, which means that the density of the liquid state is 9.5 times that of the gaseous state.
  • the cost of the subcooler is not only high, but also the structure design of the subcooler connected in series with the liquid outlet of the outdoor heat exchanger.
  • the refrigerant flows along the opposite path, that is, the refrigerant entering the outdoor unit of the air conditioner will first pass through the subcooler and then through the outdoor heat exchanger, which will lead to an increase in the pressure loss of the system.
  • the heat exchanger efficiency of the air conditioner decreases under hot conditions.
  • a low-temperature and low-pressure refrigerant circulates in the heat exchange pipeline of the outdoor heat exchanger. If the distribution is uneven, the heat exchange pipeline with a small air volume will be prone to frosting, and the frosting will further deteriorate the heat exchange effect of the heat exchange pipeline at that place, making the frosting more and more serious.
  • the heat exchange device provided by the present application is installed in the outdoor unit of the air conditioner, and can replace the heat exchanger and the subcooler in the related art.
  • the first heat exchange passage 100 then flows through the second pipe section 220 of the second heat exchange passage 200 , then flows through the third heat exchange passage 300 , and finally flows out of the heat exchange device from the fourth flow node 704 .
  • the refrigerant circulation process can not only ensure the heat exchange process of condensation and heat release, because the refrigerant passes through the three heat exchange passages in sequence, the refrigerant flows through the second pipe section 220 of the second heat exchange passage 200 and the third heat exchange passage 300.
  • the process can be used as the subcooling stage of the heat exchange of the outdoor unit of the air conditioner, so that the refrigerant is fully cooled in the outdoor unit of the air conditioner to reach a lower temperature, thereby ensuring the heat exchange efficiency and heat exchange effect of the air conditioner under refrigeration conditions.
  • the refrigerant enters the heat exchange device from the fourth flow node 704, and passes through the first heat exchange passage 100, the second pipe section 220 of the second heat exchange passage 200, and the third heat exchange passage 300, respectively, to flow from the The first flow node 701 flows out of the heat exchange device.
  • the second pipe section 220 and the third heat exchange passage 300 of the second heat exchange passage 200 through which the refrigerant flows are connected in parallel with the first heat exchange passage 100.
  • the flow path of the refrigerant is not connected to the refrigeration system.
  • the reverse flow of the same refrigerant circulation path is achieved, but the refrigerant flow of multiple circulation paths is realized through the arrangement of the first check valve 500 and the second check valve 600, forming a parallel passage and shortening the refrigerant flow.
  • the length of the pipeline can not only effectively reduce the pressure loss of the refrigerant passing through the second pipe section 220 of the second heat exchange passage 200 and the third heat exchange passage 300 in the reverse direction, but also increase the outdoor pressure without causing additional pressure loss.
  • the heat exchange area of the heat exchanger improves the heat exchange effect of the air conditioner; under the low temperature heating condition, the heat exchange path can be made more uniform, and the frosting phenomenon of the heat exchange pipeline on the outdoor side can be effectively alleviated.
  • the complexity of the system is effectively reduced, and the assembly of the air conditioner is facilitated in the production process; the installation space is reduced, and the space utilization rate inside the air conditioner is improved; It can not only realize the subcooling effect on the condenser, but also reduce the pressure loss in the refrigerant pipeline of the evaporator, so as to improve the heat exchange efficiency.
  • the refrigerant pipeline on which the heat exchange device is installed is taken as the refrigerant main circuit 710; the connection node between the refrigeration main circuit and the first heat exchange passage 100 is taken as the first flow node 701; the first heat exchange passage 100 is taken as the first flow node 701; The connection node with the split passage 400 is taken as the second flow node 702; the connection node between the first pipe section 210 and the second pipe section 220 of the second heat exchange passage 200 is taken as the third flow node 703; the third heat exchange passage 300 is connected with The connection node of the refrigerant main circuit 710 serves as the fourth flow node 704 .
  • the conduction direction of the first check valve 500 is the direction from the third flow node 703 to the first flow node 701 ; the conduction direction of the second check valve 600 is the flow direction from the fourth flow node 704 to the second flow node 704 .
  • the direction of the flow node 702 is the direction of the flow node 702 .
  • the first heat exchange passage 100 includes a first heat exchange tube group 101; the second pipe section 220 of the second heat exchange passage 200 includes a second heat exchange tube group 201 having a plurality of heat exchange tubes; the third heat exchange tube Passage 300 includes a subcooling tube bank 730 having a plurality of heat exchange tubes.
  • the heat exchange device further includes a first heat exchange tube group 101, a second heat exchange tube group 201 and a subcooling tube group 730; wherein, the first heat exchange tube group 101 is arranged in the first heat exchange passage 100;
  • the heat pipe group 201 is disposed in the second pipe section 220 of the second heat exchange passage 200 ; the subcooling pipe group 730 is disposed in the third heat exchange passage 300 .
  • the heat exchange device is installed in the refrigerant main circuit 710 of the outdoor unit of the air conditioner as an example.
  • the heat exchange device acts as the condenser of the heat exchange system.
  • the refrigerant in the refrigerant main circuit 710 enters the heat exchange device through the first flow node 701 .
  • the refrigerant flows to the first flow node 701.
  • the first pipe section 210 of the second heat exchange path 200 is provided There is a first one-way valve 500, the conduction direction of the first one-way valve 500 is the direction from the third flow node 703 to the first flow node 701, and the refrigerant cannot flow from the first flow node 701 to the third flow node 703.
  • the direction passes through the first pipe section 210 of the second heat exchange passage 200 ; the other is the first heat exchange passage 100 , and the refrigerant can flow from the first flow node 701 to the second flow node 702 through the first heat exchange passage 100 .
  • the refrigerant flows to the second flow node 702. At this time, there are two flow paths communicating with the second flow node 702, and one is the branch passage 400. However, since the branch passage 400 is provided with the second check valve 600, The conduction direction of the second one-way valve 600 is the direction from the fourth flow node 704 to the second flow node 702, and the refrigerant cannot pass through the branch passage 400 in the direction from the second flow node 702 to the fourth flow node 704; One is the second pipe section 220 of the second heat exchange passage 200 , and the refrigerant may flow from the second flow node 702 to the third flow node 703 through the second pipe section 220 of the second heat exchange passage 200 .
  • the refrigerant flows to the third flow node 703.
  • the flow node 701 is applied with a pressure that the refrigerant cannot pass through in the reverse direction.
  • the refrigerant cannot pass through the first pipe section 210 of the second heat exchange passage 200 along the direction of the third flow node 703 toward the first flow node 701;
  • the refrigerant can flow from the third circulation node 703 through the third heat exchange passage 300 to the fourth circulation node 704 , and then flow out of the heat exchange device through the fourth circulation node 704 and enter the refrigerant main circuit 710 .
  • the flow path of the refrigerant passing through the heat exchange device is as follows: the refrigerant enters the heat exchange device from the first flow node 701, and passes through the first heat exchange passage 100, the second pipe section 220 of the second heat exchange passage 200 and the third heat exchange passage in sequence. 300, and finally flows to the fourth flow node 704, and then flows out of the heat exchange device from the fourth flow node 704.
  • the refrigerant passes through the heat exchange action of the first heat exchange tube group 101, the second heat exchange tube group 201 and the subcooling tube group 730 in sequence, so that the refrigerant is fully cooled in the outdoor unit of the air conditioner to achieve a lower temperature, so as to ensure the heat exchange efficiency and achieve a better heat exchange effect.
  • the heat exchange device acts as the evaporator of the heat exchange system.
  • the refrigerant in the refrigerant main circuit 710 enters the heat exchange device through the fourth flow node 704 .
  • the refrigerant flows to the fourth flow node 704.
  • the refrigerant can flow to the third heat exchange passage 300 through the third heat exchange passage 300.
  • Circulation node 703 since the conduction direction of the first check valve 500 is the direction from the third flow node 703 to the first flow node 701 , the refrigerant can pass through the second flow node 703 in the direction from the third flow node 703 to the first flow node 701 .
  • the first pipe section 210 of the heat exchange passage 200 flows to the first flow node 701 . In this way, the refrigerant can pass through the fourth flow node 704 and the flow path of the first pipe section 210 of the third heat exchange passage 300 and the second heat exchange passage 200 in sequence as the first path.
  • the other flow path communicating with the fourth flow node 704 is the shunt path 400 ; since the shunt path 400 is provided with the second one-way valve 600 , the conduction direction of the second one-way valve 600 is from the fourth flow node 704 to the flow direction In the direction of the second flow node 702 , the refrigerant may pass through the branch passage 400 along the direction of the fourth flow node 704 to the second flow node 702 .
  • there are two flow paths communicating with the second flow node 702 one is the first heat exchange path 100 , and the refrigerant can flow to the first flow node 701 via the first heat exchange path 100 . In this way, the refrigerant can pass through the fourth flow node 704 in sequence through the branch passage and the flow path of the first heat exchange passage 100 as the second path.
  • the other flow path communicating with the second flow node 702 is the second heat exchange passage 200; at this time, the refrigerant can first pass through the second pipe section 220 of the second heat exchange passage 200 from the second flow node 702 to reach the third flow passage
  • the node 703 passes through the first pipe section 210 of the second heat exchange passage 200 along the direction from the third flow node 703 to the first flow node 701 to flow to the first flow node 701 .
  • the refrigerant can pass through the fourth flow node 704 and pass through the flow path 400, the second pipe section 220 of the second heat exchange passage 200, and the first pipe section 210 of the second heat exchange passage 200 in sequence as the third path. .
  • the refrigerant passes through the heat exchange device through the first path, the second path and the third path respectively, forming three parallel paths, shortening the length of the pipeline through which the refrigerant flows, and effectively reducing the reverse passage of the refrigerant.
  • the pressure loss of the second pipe section 220 of the second heat exchange passage 200 and the third heat exchange passage 300 increases the heat exchange area of the outdoor heat exchanger and ensures the heat exchange efficiency without causing additional pressure loss. A better heat exchange effect is achieved; under low temperature heating conditions, the frosting phenomenon of the heat exchange pipeline on the outdoor side is effectively alleviated.
  • the first heat exchange tube group 101 includes at least two heat exchange branches connected in parallel; the first heat exchange tube group 101 may include a first heat exchange branch 110 and a second heat exchange branch 120 .
  • the refrigerant can pass through the first heat exchange branch 110 and the second heat exchange branch 120 respectively to form a parallel path no matter in the cooling condition or the heating condition, which increases the number of tubes used for heat exchange.
  • the contact area between the road and the air is improved, so as to improve the heat exchange efficiency of the heat exchange device and achieve a better heat exchange effect.
  • the first heat exchange branch 110 , the second heat exchange branch 120 , the second heat exchange tube group 201 and the subcooling tube group 730 may be arranged in different areas in the housing of the outdoor unit of the air conditioner.
  • the installation position of the first heat exchange branch 110 is regarded as the first area
  • the installation position of the second heat exchange branch 120 is regarded as the second area
  • the installation position of the second heat exchange tube group 201 is regarded as the third area.
  • the installation position of the tube group 730 serves as the fourth area. In this way, not only the space utilization rate in the casing of the outdoor unit of the air conditioner can be improved, but also the heat exchange efficiency in each area can be improved.
  • each heat exchange branch includes one or more rows of heat exchange tubes connected in series.
  • a row of heat exchange tubes connected in series can form a row of fins for heat exchange, and multiple rows of heat exchange tubes connected in series can form multiple rows of fins for heat exchange.
  • the arrangement of the segments is not specifically limited here.
  • each heat exchange branch may be provided with a heat exchange tube group, and as shown in FIGS. 5-8 , the heat exchange tube group may include a plurality of heat exchange tubes 720 connected in series.
  • the plurality of heat exchange tubes 720 can be distributed in a single row, and are sequentially connected in series to form a heat exchange tube group with a single row arrangement structure.
  • a plurality of heat exchange tubes 720 may be distributed in a double row, and a heat exchange tube group with a double row arrangement structure is formed in series in sequence.
  • the plurality of heat exchange tubes 720 can be distributed in double rows, some of which are connected in series and the other in series, and then the two parts of the tube groups are connected in parallel to form a double-row arrangement of heat exchange tube groups.
  • the heat exchange tubes 720 may be connected in series with the adjacent heat exchange tubes 720, or may be connected in series with the non-adjacent heat exchange tubes 720.
  • connection mode of the plurality of heat exchange tubes 720 in the subcooling tube group 730 may be the same as that of the heat exchange tube group, or a connection mode different from that of the heat exchange tube group, which is not specifically limited here. .
  • the plurality of heat exchange tubes 720 of the subcooling tube group 730 are connected in series.
  • the subcooling tube groups 730 connected in series can increase the length of the subcooling section through which the refrigerant passes, so that the refrigerant can be fully cooled in the outdoor unit of the air conditioner and reach a lower temperature, thereby ensuring heat exchange.
  • high efficiency, achieving better heat exchange effect
  • the subcooling tube group 730 connected in series is used as one of the parallel paths, which can increase the heat exchange of the heat exchange device without causing additional pressure loss.
  • the thermal area ensures the heat exchange efficiency and achieves a better heat exchange effect.
  • the number of heat exchange tubes 720 of the second heat exchange tube group 201 is less than or equal to the number of heat exchange tubes 720 of the first heat exchange tube group 101; the number of heat exchange tubes 720 of the second heat exchange tube group 201 is less than or equal to The number of heat exchange tubes 720 of the subcooling tube group 730 .
  • the refrigerant can be sufficiently cooled in the subcooling tube group 730 to improve the cooling efficiency; under the heating condition, the flow rates of the refrigerants passing through the first path and the third path can be equalized, It can better realize multi-path shunt, reduce pressure loss and improve heating efficiency.
  • the first heat exchange tube group 101 , the second heat exchange tube group 201 and the subcooling tube group 730 may form a single-row arrangement structure.
  • the first heat exchange tube group 101, the second heat exchange tube group 201, and the subcooling tube group 730 are installed in the casing of the outdoor unit of the air conditioner in sequence, so as to reduce the distance from the air outlet of the fan to the air outlet of the air conditioner. Improve heat exchange efficiency.
  • the first heat exchange tube group 101 , the second heat exchange tube group 201 and the subcooling tube group 730 may also form a multi-column arrangement structure.
  • arranging the first heat exchange tube group 101, the second heat exchange tube group 201, and the subcooling tube group 730 in parallel in the casing of the outdoor unit of the air conditioner can reduce the space occupied by the heat exchange device in the casing of the outdoor unit of the air conditioner , improve the utilization rate of the space inside the air conditioner outdoor unit casing.
  • the first heat exchange tube group 101 may include two sets of double-row heat exchange tube groups, and the first group of double-row heat exchange tube groups may be as shown in FIG. 7 , the heat exchange tubes 720 of the first heat exchange tube group In series, the heat exchange tubes 720 of the second row of heat exchange tubes are connected in series in sequence, and the first row of heat exchange tubes and the second row of heat exchange tubes are in series; the liquid inlet and outlet of the double row of heat exchange tubes It is arranged on one side, and the series node of the two rows of heat exchange tube groups is arranged on the other side.
  • the second group of double-row heat exchange tube groups can be shown in FIG. 6 .
  • the heat exchange tubes 720 of the first row of heat exchange tubes are connected in series in sequence, the heat exchange tubes 720 of the second row of heat exchange tubes are connected in series in sequence, and the first row of heat exchange tubes are connected in series.
  • the heat pipe group is connected in series with the second row of heat exchange pipe groups; the liquid inlet end and the liquid outlet end of the double-row heat exchange pipe group are arranged on one side, and the series node of the two rows of heat exchange pipe groups is arranged on the other side.
  • the heat exchange tube group shown in Figure 6 can also be used as the first group of double-row heat exchange tube groups; the heat exchange tube group shown in Figure 7 can be used as the second group of double-row heat exchange tube groups. In this way, the heat exchange efficiency of the first heat exchange tube group 101 can be improved, thereby achieving a better heat exchange effect.
  • Embodiments of the present disclosure provide an air conditioner, including the above-mentioned heat exchange device.
  • the heat exchange device is installed on the outdoor unit of the air conditioner, instead of the outdoor heat exchanger and the subcooler, and can pass through the first heat exchange passage 100 , the second heat exchange passage 200 , and the branch passage 400
  • the design of the third heat exchange passage 300 and the first one-way valve 500 and the second one-way valve 600 realizes that the refrigerant flows through different paths in the cooling and heating operation states of the air conditioner, so that it can be used in cooling and cooling.
  • the refrigerant passes through the first heat exchange passage 100, the second pipe section 220 of the second heat exchange passage 200, and the third heat exchange passage 300 in sequence to achieve condensation and subcooling;
  • the refrigerant flows through the first heat exchange passage 100, the second pipe section 220 of the second heat exchange passage 200 and the third heat exchange passage 300 to form a parallel passage, thereby effectively reducing the pressure loss in the refrigerant pipeline, thereby ensuring The heat exchange effect of the air conditioner.
  • the heat exchange device can also be installed in the indoor unit of the air conditioner, and in the cooling condition, the refrigerant enters the heat exchange device from the fourth flow node 704; and in the heating condition, the refrigerant flows from the fourth circulation node 704 A flow node 701 enters the heat exchange device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种换热装置,包括第一换热通路(100)、第二换热通路(200)、分流通路(400)、第三换热通路(300)以及第一单向阀(500)和第二单向阀(600);第一换热通路(100)包括至少两条并联连接的换热支路;第二换热通路(200)与第一换热通路(100)并联连接;第二换热通路(200)包括串联连接的第一管段(210)和第二管段(220);分流通路(400)串联连接于第二管段(220);第三换热通路(300)与第二管段(220)和分流通路(400)并联连接;第一单向阀(500)设置于第二换热通路(200)的第一管段(210);第二单向阀(600)设置于分流通路(400)。在制冷运行时,制冷剂依次通过第一换热通路(100)、第二管段(220)以及第三换热通路(300),实现冷凝和过冷作用;在制热运行时,制冷剂分流通过第一换热通路(100)、第二管段(220)以及第三换热通路(300),有效减小压力损失。

Description

换热装置和空调器
本申请基于申请号为202022427617.5、申请日为2020年10月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调热交换技术领域,例如涉及一种换热装置和空调器。
背景技术
目前,空调器在制冷运行过程和制热运行过程中,制冷剂在换热装置中所流经的换热管路的路径是方向相反长度相同的。以空调室外机中的换热器为例,在空调器处于制冷运行状态下,其作为冷凝器工作,由于此时该换热段具有过冷需求,一般地,在该换热器后串联连接有过冷器;而由于在空调室外机的换热器后设置有过冷器,待空调器处于制热运行时,其作为蒸发器工作,此时制冷剂流经换热管路前,会先流经该过冷器,此时制冷剂通过过冷器会造成制冷剂管路内压力损失较大的问题。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供一种换热装置和空调器,以解决在制热运行状态下,制冷剂通过过冷器造成制冷剂管路内压力损失较大的问题。
在一些实施例中,所述换热装置包括第一换热通路、第二换热通路、分流通路、第三换热通路以及第一单向阀和第二单向阀;第二换热通路与第一换热通路并联连接;第一换热通路包括至少两条并联连接的换热支路;第二换热通路包括串联连接的第一管段和第二管段;分流通路串联连接于第二换热通路的第二管段;第三换热通路与第二换热通路的第二管段和分流通路并联连接;第一单向阀设置于第二换热通路的第一管段,第一单向阀的导通方向限定为由第二管段与第一管段的串联节点流向第二换热通路与第一换热通路的并联节点;第二单向阀设置于分流通路,第二单向阀的导通方向限定为 由分流通路与第三换热通路的并联节点流向分流通路与第二换热通路的串联节点。
在一些实施例中,所述空调器包括上述的换热装置。
本公开实施例提供的换热装置和空调器,可以实现以下技术效果:
通过第一换热通路、第二换热通路、分流通路、第三换热通路以及第一单向阀和第二单向阀的设计,实现空调器在制冷运行和制热运行状态下,制冷剂所流经的路径不同,将该换热装置安装于空调室外机,使其在空调器的制冷运行过程中,制冷剂依次通过第一换热通路、第二换热通路的第二管段以及第三换热通路,实现冷凝和过冷作用;而在空调器的制热运行过程中,制冷剂分流通过第一换热通路、第二换热通路的第二管段以及第三换热通路,形成并联通路,从而有效减小制冷剂管路内的压力损失,进而保证了空调器的换热效果。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个换热装置的结构示意图;
图2是本公开实施例提供的另一个换热装置的结构示意图;
图3是本公开实施例提供的另一个换热装置的结构示意图;
图4是本公开实施例提供的另一个换热装置的结构示意图;
图5是本公开实施例提供的一个换热管组的结构示意图;
图6是本公开实施例提供的另一个换热管组的结构示意图;
图7是本公开实施例提供的另一个换热管组的结构示意图;
图8是本公开实施例提供的另一个换热管组的结构示意图。
附图标记:
100、第一换热通路;101、第一换热管组;110、第一换热支路;120、第二换热支路;200、第二换热通路;201、第二换热管组;210、第一管段;220、第二管段;300、第三换热通路;400、分流通路;500、第一单向阀;600、第二单向阀;710、制冷剂总路;701、第一流通节点;702、第二流通节点;703、第三流通节点;704、第四流通节点;720、换热管;730、过冷管组。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
本公开实施例中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开实施例及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开实施例中的具体含义。
另外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
结合图1-4所示,本公开实施例提供一种换热装置,包括第一换热通路100、第二 换热通路200、分流通路400、第三换热通路300以及第一单向阀500和第二单向阀600;第二换热通路200与第一换热通路100并联连接;第二换热通路200包括串联连接的第一管段210和第二管段220;分流通路400串联连接于第二换热通路200的第二管段220;第三换热通路300与第二换热通路200的第二管段220和分流通路400并联连接;第一单向阀500设置于第二换热通路200的第一管段210,第一单向阀500的导通方向限定为由第二管段220与第一管段210的串联节点流向第二换热通路200与第一换热通路100的并联节点;第二单向阀600设置于分流通路400,第二单向阀600的导通方向限定为由分流通路400与第三换热通路300的并联节点流向分流通路400与第二换热通路200的串联节点。
采用本公开实施例提供的换热装置,能够通过第一换热通路100、第二换热通路200、分流通路400、第三换热通路300以及第一单向阀500和第二单向阀600的设计,实现空调器在制冷运行和制热运行状态下,制冷剂所流经的路径不同,将该换热装置安装于空调室外机,使其在空调器的制冷运行过程中,制冷剂依次通过第一换热通路100、第二换热通路200的第二管段220以及第三换热通路300,实现冷凝和过冷作用;而在空调器的制热运行过程中,制冷剂分流通过第一换热通路100、第二换热通路200的第二管段220以及第三换热通路300,形成并联通路,从而有效减小制冷剂管路内的压力损失,进而保证了空调器的换热效果。
文本中,换热装置可以作为换热器安装于空调器的空调室外机,作为室外换热器与室外环境中的空气进行热交换。本公开实施例以将换热装置安装于空调室外机为例,本申请的其他实施例也可以将换热装置安装于其他设备中用于热交换。
一般地,空调器至少具有制热和制冷两类功能,也就是说空调器包括制冷运行工况和制热运行工况。在制冷运行工况下,空调室内机中的室内换热器作为蒸发器,空调室外机中的室外换热器作为冷凝器。作为冷凝器工作的室外换热器中的制冷剂由室外换热器进液口流至室外换热器出液口的过程中,制冷剂冷凝放热逐渐由气态变为液态。根据流动的连续性原理,沿着制冷剂流动方向,制冷剂管路内制冷剂的质量和流量是不变的,由于气态制冷剂的比容是液态制冷剂的数倍,在室外换热器中随着制冷剂的流动,制冷剂的体积逐渐变小,导致制冷剂的流速也逐渐降低。又根据制冷剂在管内的做紊流流动的换热系数方程α=Bf*W0.8/D0.2,换热系数与制冷剂的流速W的0.8次方成正比。可知,制冷剂流至室外换热器出液口时,其流速较之于室外换热器进液口降低,换热系数也随之降低,从而导致换热效果变差。
这里,关于气态制冷剂的比容是液态制冷剂的数倍,以制冷剂R410A为例,40℃时饱和蒸汽比容为0.01003m 3/kg,饱和液体的比容为0.00106m 3/kg,气态比容为液态的9.5倍,也就是说液态密度是气态密度的9.5倍。
在相关技术中,为了应对在制冷工况下,室外换热器由于制冷剂由气态变为液态而导致的制冷剂流速下降影响换热效果的问题,通常采用在室外换热器出液口串联一过冷器,以改善前述情况。
在采用增设过冷器的实现过程中,发现过冷器不仅成本较高,而且,在室外换热器的出液口串联过冷器的结构设计,当空调器在制热工况下,制冷剂沿相反的路径流通,即进入空调室外机的制冷剂会先经过过冷器,再经过室外换热器,这样,会导致系统压损增加,该过程将抵消一部分换热性能,使在制热工况下空调器的换热器效率下降。此外,当空调器处于低温制热状态下,室外换热器的换热管路内流通低温低压的制冷剂,在换热管路外,由于风机驱动气流通过换热管路的过程中,风量分布不均,会发生风量较小的换热管路容易发生结霜现象,结霜又会进一步使该处换热管路换热的换热效果变差,使结霜越来越严重。
本申请提供的换热装置安装于空调室外机,可以替代前述相关技术中的换热器和过冷器,在制冷工况下,制冷剂从第一流通节点701进入换热装置,先流经第一换热通路100,而后流经第二换热通路200的第二管段220,再流经第三换热通路300,最后从第四流通节点704流出换热装置。该制冷剂流通过程既可以保证冷凝放热的换热过程,由于制冷剂依次经过三段换热通路,制冷剂流经第二换热通路200的第二管段220和第三换热通路300的过程可以作为空调室外机换热的过冷阶段,从而使制冷剂在空调室外机充分冷却,达到较低的温度,从而保证空调器在制冷工况下的换热效率和换热效果。
在制热工况下,制冷剂从第四流通节点704进入换热装置,分别经由第一换热通路100、第二换热通路200的第二管段220以及第三换热通路300,以从第一流通节点701流出换热装置。此时,制冷剂流经的第二换热通路200的第二管段220和第三换热通路300是与第一换热通路100并联连接的,此时制冷剂的流通路径并非是与制冷工况下相同的制冷剂流通路径的反向流通,而是通过第一单向阀500和第二单向阀600的设置实现多条流通路径的制冷剂分流,形成并联通路,缩短制冷剂流经的管路长度,不仅有效降低制冷剂反向通过第二换热通路200的第二管段220和第三换热通路300的压力损失,在不造成额外的压力损失的情况下,增加了室外换热器的换热面积,提高了空调 器的换热效果;在低温制热工况下,还可以使换热通路更均匀,有效缓解处于室外侧的换热管路的结霜现象。
采用本公开实施例提供的换热装置,有效减小系统的复杂程度,便于空调器生产过程中的装配;减小安装空间,提高空调器内部的空间利用率;同时考虑到制冷工况和制热工况的需求,既可以实现对冷凝器的过冷作用,又可以减小蒸发器的制冷剂管路内的压力损失,以提高换热效率。
本文中,将换热装置所安装于的制冷剂管路作为制冷剂总路710;将制冷总路与第一换热通路100的连接节点作为第一流通节点701;将第一换热通路100与分流通路400的连接节点作为第二流通节点702;将第二换热通路200的第一管段210和第二管段220的连接节点作为第三流通节点703;将第三换热通路300与制冷剂总路710的连接节点作为第四流通节点704。其中,第一单向阀500的导通方向即为由第三流通节点703流向第一流通节点701的方向;第二单向阀600的导通方向即为由第四流通节点704流向第二流通节点702的方向。
可选地,第一换热通路100包括第一换热管组101;第二换热通路200的第二管段220包括具有多个换热管的第二换热管组201;第三换热通路300包括具有多个换热管的过冷管组730。即,换热装置还包括第一换热管组101、第二换热管组201和过冷管组730;其中,第一换热管组101设置于第一换热通路100;第二换热管组201设置于第二换热通路200的第二管段220;过冷管组730设置于第三换热通路300。
本公开实施例以换热装置安装于空调室外机的制冷剂总路710为例。
在系统运行制冷工况的情况下,换热装置作为换热系统的冷凝器。制冷剂总路710中的冷媒由第一流通节点701进入换热装置。
制冷剂流至第一流通节点701,此时,与第一流通节点701连通的流路有两条,一条为第二换热通路200,但由于第二换热通路200的第一管段210设置有第一单向阀500,第一单向阀500的导通方向为由第三流通节点703流向第一流通节点701的方向,制冷剂不能沿第一流通节点701向第三流通节点703的方向通过第二换热通路200的第一管段210;另一条为第一换热通路100,制冷剂可以由第一流通节点701,通过第一换热通路100,流通至第二流通节点702。
制冷剂流至第二流通节点702,此时,与第二流通节点702连通的流路有两条,一条为分流通路400,但是由于该分流通路400设置有第二单向阀600,第二单向阀600的导通方向为由第四流通节点704流向第二流通节点702的方向,制冷剂不能沿第二流 通节点702向第四流通节点704的方向通过分流通路400;另一条为第二换热通路200的第二管段220,制冷剂可以由第二流通节点702,通过第二换热通路200的第二管段220,流通至第三流通节点703。
制冷剂流至第三流通节点703,此时,与第三流通节点703连通的流路有两条,一条为第二换热通路200的第一管段210,但是制冷剂总路710在第一流通节点701施加有制冷剂不能反向通过的压力,因此,制冷剂不能沿第三流通节点703向第一流通节点701方向通过第二换热通路200的第一管段210;另一条为第三换热通路300,制冷剂可以由第三流通节点703,通过第三换热通路300,流通至第四流通节点704,进而由第四流通节点704流出换热装置,进入制冷剂总路710。
制冷剂通过换热装置的流通路径为:制冷剂由第一流通节点701进入换热装置,依次通过第一换热通路100、第二换热通路200的第二管段220和第三换热通路300,最后流通至第四流通节点704,进而由第四流通节点704流出换热装置。
在制冷工况下,制冷剂依次经过第一换热管组101、第二换热管组201和过冷管组730的换热作用,使制冷剂在空调室外机充分冷却,达到较低的温度,从而保证了换热效率,实现了较好的换热效果。
在系统运行制热工况的情况下,换热装置作为换热系统的蒸发器。制冷剂总路710中的冷媒由第四流通节点704进入换热装置。
制冷剂流至第四流通节点704,此时,与第四流通节点704连通的流路有两条,一条为第三换热通路300,制冷剂可以经由第三换热通路300流至第三流通节点703。此时,由于第一单向阀500的导通方向为由第三流通节点703流向第一流通节点701的方向,制冷剂可以沿第三流通节点703向第一流通节点701的方向通过第二换热通路200的第一管段210,流通至第一流通节点701。这样,可以将制冷剂由第四流通节点704,依次通过第三换热通路300和第二换热通路200的第一管段210的流通路径作为第一路径。
与第四流通节点704连通的另一条流路为分流通路400;由于分流通路400设置有第二单向阀600,第二单向阀600的导通方向为由第四流通节点704流向第二流通节点702的方向,制冷剂可以沿第四流通节点704向第二流通节点702的方向通过分流通路400。此时,与第二流通节点702连通的流路有两条,一条为第一换热通路100,制冷剂可以经由第一换热通路100流至第一流通节点701。这样,可以将制冷剂由第四流通节点704,依次通过分路通路和第一换热通路100的流通路径作为第二路径。
与第二流通节点702连通的另一条流路为第二换热通路200;此时,制冷剂可以由第二流通节点702先通过第二换热通路200的第二管段220,到达第三流通节点703,再沿第三流通节点703向第一流通节点701的方向通过第二换热通路200的第一管段210,流通至第一流通节点701。这样,可以将制冷剂由第四流通节点704,依次通过分流通路400、第二换热通路200的第二管段220和第二换热通路200的第一管段210的流通路径作为第三路径。
在制热工况下,制冷剂分别经由第一路径、第二路径和第三路径通过换热装置,形成三条并联通路,缩短制冷剂流经的管路长度,有效降低制冷剂反向通过第二换热通路200的第二管段220和第三换热通路300的压力损失,在不造成额外的压力损失的情况下,增加了室外换热器的换热面积,保证了换热效率,实现了较好的换热效果;有效缓解在低温制热工况下,处于室外侧的换热管路的结霜现象。
可选地,第一换热管组101包括至少两条并联连接的换热支路;第一换热管组101可以包括第一换热支路110和第二换热支路120。这样,无论是在制冷工况还是制热工况下,制冷剂都可以分别通过第一换热支路110和第二换热支路120,形成并联通路,提高了用于换热的管路与空气的接触面积,从而提高换热装置的换热效率,实现更好的换热效果。
可选地,第一换热支路110、第二换热支路120、第二换热管组201和过冷管组730可以设置于空调室外机壳体内的不同区域。其中,将第一换热支路110的设置位置作为第一区域,第二换热支路120的设置位置作为第二区域,第二换热管组201的设置位置作为第三区域,过冷管组730的设置位置作为第四区域。这样,不仅可以提高空调室外机壳体内的空间利用率,还可以提高各区域内的换热效率。
可选地,每条换热支路包括一排或多排串联连接的换热管。其中,一排串联连接的换热管可以形成一排用于换热的管片,多排串联连接的换热管可以形成多排用于换热的管片。这里对管片的排布方式不做具体限定。
可选地,每条换热支路可以设置有一换热管组,结合图5-8所示,换热管组可以包括多个串联连接的换热管720。
如图5所述,多个换热管720可以形成单排分布,依次串联形成一单列排布结构的换热管组。
如图6和图7所示,多个换热管720可以形成双排分布,依次串联形成双列排布结构的换热管组。
如图8所示,多个换热管720可以形成双排分布,其中一部分串联连通,另一部分串联连通,再将两部分管组并联连通形成双列排布结构的换热管组。其中,换热管720可以与位置相邻的换热管720串联连接,也可以与位置不相邻的换热管720串联连接。
可选地,过冷管组730中的多个换热管720的连接方式可以选择与换热管组相同的连接方式,也可以选择与换热管组不同的连接方式,这里不做具体限定。
可选地,过冷管组730的多个换热管720为串联连接。这样,在制冷工况下,串联连接的过冷管组730可以增加制冷剂所通过的过冷段的长度,使制冷剂在空调室外机充分冷却,达到较低的温度,从而保证了换热效率,实现了较好的换热效果;在制热工况下,串联连接的过冷管组730作为其中一条并联路径,可以在不造成额外的压力损失的情况下,增加换热装置的换热面积,保证了换热效率,实现了较好的换热效果。
可选地,第二换热管组201的换热管720数量小于或等于第一换热管组101的换热管720数量;第二换热管组201的换热管720数量小于或等于过冷管组730的换热管720数量。这样,在制冷工况下,可以使制冷剂在过冷管组730实现充分的冷却,提高制冷效率;在制热工况下,可以使第一路径和第三路径通过的制冷剂流量相当,更好实现多路径分流,降低压力损失,提高制热效率。
可选地,第一换热管组101、第二换热管组201以及过冷管组730可以构成单列排布结构。这样,将第一换热管组101、第二换热管组201、过冷管组730依次首尾排列安装于空调室外机的壳体内,可以减小风机出风至空调器出风口的距离,提高换热效率。
可选地,第一换热管组101、第二换热管组201以及过冷管组730也可以构成多列排布结构。这样,将第一换热管组101、第二换热管组201、过冷管组730并列设置于空调室外机的壳体内,可以减小换热装置所占用的空调室外机壳体内的空间,提高空调室外机壳体内空间的利用率。
可选地,第一换热管组101可以包括两组双排换热管组,第一组双排换热管组可以如图7所示,第一排换热管组的换热管720依次串联,第二排换热管组的换热管720依次串联,第一排换热管组与第二排换热管组串联;该双排换热管组的进液端和出液端设置于一侧,两排换热管组的串联节点设置于另一侧。第二组双排换热管组可以如图6所示,第一排换热管组的换热管720依次串联,第二排换热管组的换热管720依次串联,第一排换热管组与第二排换热管组串联;该双排换热管组的进液端和出液端设置于一侧,两排换热管组的串联节点设置于另一侧。这里,也可以将如图6所示的换热管组作 为第一组双排换热管组;将如图7所示的换热管组作为第二组双排换热管组。这样,可以提高第一换热管组101的换热效率,从而实现了更好的换热效果。
本公开实施例提供一种空调器,包括如上述的换热装置。
采用本公开实施例提供的空调器,将换热装置安装于空调室外机,代替室外换热器和过冷器,能够通过第一换热通路100、第二换热通路200、分流通路400、第三换热通路300以及第一单向阀500和第二单向阀600的设计,实现空调器在制冷运行和制热运行状态下,制冷剂所流经的路径不同,使其在制冷工况下,制冷剂依次通过第一换热通路100、第二换热通路200的第二管段220以及第三换热通路300,实现冷凝和过冷作用;而在制热工况下,制冷剂分流通过第一换热通路100、第二换热通路200的第二管段220以及第三换热通路300,形成并联通路,从而有效减小制冷剂管路内的压力损失,进而保证了空调器的换热效果。
可选地,该换热装置也可以安装于空调室内机中,在制冷工况下,使制冷剂从第四流通节点704进入换热装置;而在制热工况下,使制冷剂从第一流通节点701进入换热装置。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开的实施例并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种换热装置,其特征在于,包括:
    第一换热通路,包括至少两条并联连接的换热支路;
    第二换热通路,与第一换热通路并联连接;所述第二换热通路包括串联连接的第一管段和第二管段;
    分流通路,串联连接于所述第二换热通路的第二管段;
    第三换热通路,与所述第二换热通路的第二管段和所述分流通路并联连接;
    第一单向阀,设置于所述第二换热通路的第一管段,所述第一单向阀的导通方向限定为由所述第二管段与所述第一管段的串联节点流向所述第二换热通路与所述第一换热通路的并联节点;
    第二单向阀,设置于所述分流通路,所述第二单向阀的导通方向限定为由所述分流通路与所述第三换热通路的并联节点流向所述分流通路与所述第二换热通路的串联节点。
  2. 根据权利要求1所述的换热装置,其特征在于,每条所述换热支路包括一排或多排串联连接的换热管。
  3. 根据权利要求1所述的换热装置,其特征在于,所述第三换热通路包括具有多个换热管的过冷管组。
  4. 根据权利要求3所述的换热装置,其特征在于,所述过冷管组的多个换热管为串联连接。
  5. 根据权利要求3所述的换热装置,其特征在于,
    所述第一换热通路包括设置于所述换热支路的第一换热管组;
    所述第二换热通路的第二管段包括具有多个换热管的第二换热管组。
  6. 根据权利要求5所述的换热装置,其特征在于,所述第二换热管组的换热管数量小于或等于所述第一换热管组的换热管数量。
  7. 根据权利要求5所述的换热装置,其特征在于,所述第二换热管组的换热管数量小于或等于所述过冷管组的换热管数量。
  8. 根据权利要求5所述的换热装置,其特征在于,所述第一换热管组、第二换热管组以及过冷管组构成单列排布结构。
  9. 根据权利要求5所述的换热装置,其特征在于,所述第一换热管组、第二换热管组以及过冷管组构成多列排布结构。
  10. 一种空调器,其特征在于,包括如权利要求1至9任一项所述的换热装置。
PCT/CN2021/132780 2020-10-27 2021-11-24 换热装置和空调器 WO2022089661A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022427617.5 2020-10-27
CN202022427617.5U CN214039044U (zh) 2020-10-27 2020-10-27 换热装置和空调器

Publications (1)

Publication Number Publication Date
WO2022089661A1 true WO2022089661A1 (zh) 2022-05-05

Family

ID=77354967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132780 WO2022089661A1 (zh) 2020-10-27 2021-11-24 换热装置和空调器

Country Status (2)

Country Link
CN (1) CN214039044U (zh)
WO (1) WO2022089661A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214039044U (zh) * 2020-10-27 2021-08-24 青岛海尔空调器有限总公司 换热装置和空调器
CN113932493A (zh) * 2021-09-19 2022-01-14 青岛海尔空调器有限总公司 分液器、换热器、制冷循环系统、空调器
CN114508797B (zh) * 2022-01-28 2024-05-10 青岛海尔空调电子有限公司 热交换装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307578A (en) * 1980-04-16 1981-12-29 Atlantic Richfield Company Heat exchanger efficiently operable alternatively as evaporator or condenser
JP2008121984A (ja) * 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd 熱交換器ユニット
CN101776356A (zh) * 2009-01-14 2010-07-14 珠海格力电器股份有限公司 换热器
CN103148543A (zh) * 2011-12-07 2013-06-12 珠海格力电器股份有限公司 室外换热装置及空调系统
US20160033179A1 (en) * 2014-08-01 2016-02-04 Lg Electronics Inc. Air conditioner
KR20160050248A (ko) * 2014-10-29 2016-05-11 엘지전자 주식회사 공기 조화기 및 그 제어방법
CN105865008A (zh) * 2016-04-14 2016-08-17 上海交通大学 换热工质流向与流路数目同步变化的热泵型空调换热器
CN206919454U (zh) * 2017-04-28 2018-01-23 青岛海尔空调器有限总公司 用于空调装置的换热器及空调装置
CN214039044U (zh) * 2020-10-27 2021-08-24 青岛海尔空调器有限总公司 换热装置和空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307578A (en) * 1980-04-16 1981-12-29 Atlantic Richfield Company Heat exchanger efficiently operable alternatively as evaporator or condenser
JP2008121984A (ja) * 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd 熱交換器ユニット
CN101776356A (zh) * 2009-01-14 2010-07-14 珠海格力电器股份有限公司 换热器
CN103148543A (zh) * 2011-12-07 2013-06-12 珠海格力电器股份有限公司 室外换热装置及空调系统
US20160033179A1 (en) * 2014-08-01 2016-02-04 Lg Electronics Inc. Air conditioner
KR20160050248A (ko) * 2014-10-29 2016-05-11 엘지전자 주식회사 공기 조화기 및 그 제어방법
CN105865008A (zh) * 2016-04-14 2016-08-17 上海交通大学 换热工质流向与流路数目同步变化的热泵型空调换热器
CN206919454U (zh) * 2017-04-28 2018-01-23 青岛海尔空调器有限总公司 用于空调装置的换热器及空调装置
CN214039044U (zh) * 2020-10-27 2021-08-24 青岛海尔空调器有限总公司 换热装置和空调器

Also Published As

Publication number Publication date
CN214039044U (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2022089661A1 (zh) 换热装置和空调器
AU740183B2 (en) Heat exchanger
CN216694082U (zh) 换热器和空调器
EP3156752B1 (en) Heat exchanger
WO2015004720A1 (ja) 熱交換器、及び空気調和機
CN105247309A (zh) 用于风冷式冷却器的热交换器
JP2006284134A (ja) 熱交換器
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP4845987B2 (ja) 冷暖房空調システム
JP2005127529A (ja) 熱交換器
WO2023115956A1 (zh) 蛇形管微通道换热器、空调器
US20130067949A1 (en) De-super heater chiller system with contra flow and refrigerating fan grill
CN216592327U (zh) 蛇形管微通道换热器、空调器
EP3734190B1 (en) Heat exchanger and refrigeration cycle device
CN205505509U (zh) 换热器组件及具有其的空调系统
WO2017042940A1 (ja) 熱交換器
TWI557385B (zh) 冷熱多功熱泵設備
CN201302336Y (zh) 一种新型换热器及安装有该换热器的空调机
TWI634305B (zh) Heat exchanger and air conditioner
CN112944741A (zh) 用于冷水机组的液滴蒸发装置及冷水机组
US20230228466A1 (en) Condenser, air conditioner outdoor unit, and air-conditioning system
CN215336705U (zh) 空调器
CN216716398U (zh) 空调器
CN110806129A (zh) 一种环路热管
CN218296215U (zh) 换热器及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885387

Country of ref document: EP

Kind code of ref document: A1