WO2022089528A1 - 主动发声系统的虚拟发动机转速控制方法及主动发声系统 - Google Patents

主动发声系统的虚拟发动机转速控制方法及主动发声系统 Download PDF

Info

Publication number
WO2022089528A1
WO2022089528A1 PCT/CN2021/127011 CN2021127011W WO2022089528A1 WO 2022089528 A1 WO2022089528 A1 WO 2022089528A1 CN 2021127011 W CN2021127011 W CN 2021127011W WO 2022089528 A1 WO2022089528 A1 WO 2022089528A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
engine speed
virtual engine
speed
shift
Prior art date
Application number
PCT/CN2021/127011
Other languages
English (en)
French (fr)
Inventor
曹蕴涛
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022089528A1 publication Critical patent/WO2022089528A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0075Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method
    • F16H2061/009Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by a particular control method using formulas or mathematic relations for calculating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0218Calculation or estimation of the available ratio range, i.e. possible gear ratios, e.g. for prompting a driver with a display

Definitions

  • the present application relates to the technical field of active sound generation systems for electric vehicles, for example, to a virtual engine speed control method for an active sound generation system and an active sound generation system.
  • the electric vehicle active sound system adopts a single gear control strategy or a fixed engine speed and vehicle speed shift point control strategy, which will cause the virtual engine speed to jump.
  • the jump of the virtual engine speed will cause the jump of the sound frequency of the active sound system.
  • the above two speed control strategies have limited vehicle speed coverage, and the shifting feeling of drivers and passengers is unreal, and the driving experience is poor.
  • Embodiments of the present application provide a virtual engine speed control method for an active sound system and an active sound system.
  • an embodiment of the present application provides a virtual engine speed control method for an active sound system, including the following steps:
  • S1 Determine a virtual engine speed control strategy, where S1 includes:
  • step S13 determining the linear regression equation of the vehicle speed and the virtual engine speed under each gear according to the linear regression equation obtained in step S11;
  • S2 Control the speed of the virtual engine, wherein S2 includes:
  • an embodiment of the present application provides an active sound production system, where the active sound production system is configured to adopt the virtual engine speed control method of the active sound production system as described above.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, realizes the above-mentioned virtual engine speed of the active sound system Control Method.
  • 1 is a graph showing the relationship between the engine speed and the vehicle speed under the acceleration driving of the D gear under different constant accelerator pedal opening degrees provided by an embodiment of the present application;
  • Fig. 2 is the linear curve diagram of the engine speed and the accelerator pedal opening degree of the transmission shift point during the transmission upshift process under different constant accelerator pedal opening degrees provided by the embodiment of the present application;
  • Fig. 3 is the linear curve diagram of 2nd gear engine speed and vehicle speed provided by the embodiment of the present application.
  • Fig. 4 is the linear curve diagram of 3rd gear engine speed and vehicle speed provided by the embodiment of the present application.
  • Fig. 5 is the linear curve diagram of 4th gear engine speed and vehicle speed provided by the embodiment of the present application.
  • Fig. 6 is the linear curve diagram of 5th gear engine speed and vehicle speed provided by the embodiment of the present application.
  • Fig. 7 is the linear curve diagram of 6-speed engine speed and vehicle speed provided by the embodiment of the present application.
  • Fig. 8 is the linear curve diagram of 7th gear engine speed and vehicle speed provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a vehicle speed increment during acceleration driving and shifting of the D gear when the accelerator pedal opening is 20% according to an embodiment of the present application.
  • FIG. 10 is a graph of the vehicle speed increment in the D gear acceleration driving shifting process provided by the embodiment of the present application.
  • FIG. 11 is a linear graph of the vehicle speed and the engine speed at the 2nd gear shift point provided by the embodiment of the present application.
  • 13 is a linear graph of the vehicle speed and the engine speed at the 4th gear shift point provided by the embodiment of the present application;
  • 15 is a linear curve diagram of vehicle speed and engine speed at a 6-speed shift point provided by an embodiment of the present application.
  • FIG. 16 is a linear graph of the vehicle speed and the engine speed at the 7th gear shift point provided by the embodiment of the present application.
  • the terms “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “inner”, “outer”, etc. indicate the orientation or positional relationship based on the attached
  • the orientation or positional relationship shown in the figure, or the orientation or positional relationship that the product of the application is usually placed in use, is only for the convenience of describing the application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, construct and operate in a specific orientation.
  • the terms “first”, “second”, “third”, etc. are only used to differentiate the description and should not be construed as indicating or implying relative importance.
  • “plurality” means two or more.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be a A mechanical connection can also be an electrical connection.
  • connection should be understood in combination with the actual situation.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the present embodiment discloses a virtual engine speed control method for an active sound system, including the following steps:
  • S1 determine the virtual engine speed control strategy, S1 includes:
  • step S13 determining the linear regression equation of the vehicle speed and the virtual engine speed under each gear according to the linear regression equation obtained in step S11;
  • S2 Control the speed of the virtual engine.
  • S2 includes:
  • the virtual engine speed control is executed according to the shift control strategy; when the vehicle speed increases, and the virtual engine speed is greater than the current accelerator pedal opening
  • the current gear is kept unchanged; when the vehicle speed v decreases, the current gear is kept unchanged.
  • the speed ratio between the virtual engine and the vehicle speed is locked, so that the virtual engine speed is slowly accelerated or decelerated in a continuously changing manner, so as to avoid the sound frequency of the active sound system caused by the jump of the virtual speed.
  • the jump phenomenon can be enhanced to enhance the driving experience of the shift control strategy of the active sound system of the electric vehicle.
  • the present embodiment discloses a virtual engine speed control method for an active sound system, including the following steps:
  • S01 determine the relationship between the engine speed, vehicle speed and accelerator pedal opening of the internal combustion engine vehicle, where S01 includes:
  • the engine speed sensor, vehicle speed sensor, and accelerator pedal opening sensor are arranged to test the engine speed, vehicle speed, and accelerator pedal opening of the test sample vehicle, and the above test signals are connected to the same data. It is collected in the front-end test equipment, so as to ensure the synchronous acquisition of these test signals and the setting of the sampling frequency during the test process.
  • the transmission gear of the test vehicle is set to D gear (driving gear), and the accelerator pedal opening is fixed at 20%, 40%, 60%, 80%, 100%, etc. respectively.
  • the entire acceleration process can cover all the engine speed shift points of the transmission as much as possible under multiple working conditions.
  • the engine speed, vehicle speed, accelerator pedal are synchronously collected. Opening, transmission gear signal.
  • the engine speed will be sequentially switched from 1st gear when the vehicle accelerates from the vehicle to a higher speed.
  • the engine speed will change from a higher engine speed in the current gear to a lower engine speed in the next gear after a short actual change.
  • This higher engine speed and vehicle speed are the shift points for the two gears.
  • the shift points are also different.
  • v22, v31, v32, v41, v42, v51, v52, v61, v62, v71 represent different vehicle speed values.
  • ⁇ i _j represents the vehicle speed increment
  • i represents the original gear before the upshift
  • j represents the accelerator pedal opening
  • step S011 The relationship between the vehicle speed and the engine speed can be analyzed at the shift point position.
  • S1 determine the virtual engine speed control strategy, S1 includes:
  • the vehicle speed v and the accelerator pedal opening P in the virtual engine speed control strategy are obtained from the CAN (Controller Area Network, Controller Area Network) bus of the vehicle.
  • the virtual engine speed control strategy refers to the specific change process and changes in which the system controls the virtual engine speed to change with parameters such as vehicle speed and accelerator pedal opening when the electric vehicle active sound system simulates the engine sound. law.
  • the active sound system controls the change of the simulated engine sound by controlling the speed of the virtual engine, which can more reasonably control the frequency change process of the simulated engine sound.
  • the speed of the virtual engine may be controlled through a virtual engine speed control strategy.
  • S1 determine the virtual engine speed control strategy, S1 includes:
  • the vehicle speed v and the accelerator pedal opening P in the virtual engine speed control strategy are obtained from the CAN bus of the vehicle.
  • step S11 Obtain a linear regression equation of the virtual engine speed and the vehicle speed in multiple gears.
  • step S11 according to the linear regression equation of engine speed and vehicle speed in multiple gears of the internal combustion engine vehicle in step S012, a linear regression equation of virtual engine speed and vehicle speed in multiple gears is obtained.
  • Virtual engine speed in multiple virtual gears g The relationship with the vehicle speed v:
  • step S12 the vehicle speed increments of a plurality of shift points are acquired.
  • the size of the vehicle speed increment in the shifting process between adjacent gears is set.
  • S14 Divide the accelerator pedal opening into a plurality of accelerator pedal opening intervals, and acquire the virtual engine speed of the shift point in each accelerator pedal opening interval.
  • accelerator pedal opening intervals (0, 20%), (20%, 40%], (40%, 60%], (60%, 80%], ( 80%, 100%], the virtual engine speed of the shift point position
  • P of the accelerator pedal opening range is as follows:
  • P can take the maximum value of the accelerator pedal opening interval, represents the virtual engine speed of the shift point position, a represents the slope, b represents the intercept, and the virtual engine speeds of the shift point positions corresponding to multiple accelerator pedal opening intervals are:
  • the active sound system performs virtual engine speed control according to the following three working conditions, such as:
  • the lowest point of a certain gear refers to, in a certain accelerator pedal opening interval, in the process of completing the shifting operation, generally switching from the highest speed and the highest virtual speed of the current gear to the lowest speed of the next gear. and the lowest virtual engine speed, as shown in the switching process from 2nd to 3rd gear in Figure 9, switching to the lowest vehicle speed position of 3rd gear, which is the lowest point of 3rd gear.
  • the speed is a virtual speed
  • the gear is a virtual gear
  • the virtual engine speed control is executed according to the shift control strategy; when the vehicle speed increases, and the virtual engine speed is greater than the current accelerator pedal opening
  • the current gear is kept unchanged; when the vehicle speed v decreases, the current gear is kept unchanged.
  • the speed ratio between the virtual engine and the vehicle speed is locked, so that the virtual engine speed is slowly accelerated or decelerated in a continuously changing manner, so as to avoid the sound frequency of the active sound system caused by the jump of the virtual speed.
  • the jump phenomenon can be enhanced to enhance the driving experience of the shift control strategy of the active sound system of the electric vehicle.
  • This embodiment also discloses an active sound system, which adopts the above-mentioned virtual engine speed control method of the active sound system; the active sound system generates a synthetic sound corresponding to the virtual engine speed in real time according to the control of the virtual engine speed.
  • the virtual engine speed control method of the active sound system and the active sound system can be applied to electric vehicles.
  • This embodiment also provides a computer-readable storage medium storing a computer program, where the computer program is used to execute the above method.
  • the storage medium may be a non-transitory storage medium.
  • non-transitory computer-readable storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a RAM, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本申请实施例公开了一种主动发声系统的虚拟发动机转速控制方法及主动发声系统;控制方法包括:步骤1、确定虚拟发动机转速控制策略,步骤1包括:获取多个挡位下虚拟发动机转速与车速的线性回归方程;获取多个换挡点的车速增量;确定每个挡位下,车速与虚拟发动机转速的线性回归方程;步骤2、对虚拟发动机转速进行控制,步骤2包括:响应于车速增加,且虚拟发动机转速小于等于当前加速踏板开度区间的换挡点的虚拟发动机转速,按照换挡控制策略执行虚拟发动机转速控制;响应于车速增加,且虚拟发动机转速大于当前加速踏板开度区间的换挡点的虚拟发动机转速,保持当前的挡位不变;响应于车速减小,保持当前挡位不变。

Description

主动发声系统的虚拟发动机转速控制方法及主动发声系统
本申请要求在2020年10月28日提交中国专利局、申请号为202011173584.4的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车的主动发声系统技术领域,例如涉及一种主动发声系统的虚拟发动机转速控制方法及主动发声系统。
背景技术
在传统内燃机汽车的动态行驶过程中,变速器整个升挡过程引发的车内发动机阶次声音在相邻挡位之间的切换是体现汽车品牌标志的重要特征之一,经过百年的发展迭代与不断的技术创新,不同汽车品牌的汽车的声音已成为各自的一个特色,成为影响消费者购车意愿的重要因素之一。
电动汽车主动发声系统采用单一挡位的控制策略或者采用固定的发动机转速和车速换挡点的控制策略,会使得虚拟发动机的转速出现跳变。虚拟发动机转速的跳变会引起主动发声系统声音频率的跳变现象。上述两种转速控制策略车速覆盖范围有限,驾乘人员的换挡感觉不真实,驾驶体验感较差。
发明内容
本申请实施例提供一种主动发声系统的虚拟发动机转速控制方法及主动发声系统。
第一方面,本申请实施例提供一种主动发声系统的虚拟发动机转速控制方法,包括如下步骤:
S1、确定虚拟发动机转速控制策略,其中,S1包括:
S11、获取多个挡位下虚拟发动机转速与车速的线性回归方程;
S12、获取多个换挡点的车速增量;
S13、根据步骤S11获取的线性回归方程确定每个挡位下,车速与虚拟发动机转速的线性回归方程;
S14、将加速踏板开度划分为多个加速踏板开度区间,获取每个加速踏板开度区间内,换挡点的虚拟发动机转速;
S2、对虚拟发动机转速进行控制,其中,S2包括:
S21、响应于车速v增加,且虚拟发动机转速小于等于当前加速踏板开度区 间的换挡点的虚拟发动机转速,按照换挡控制策略执行虚拟发动机转速控制;
S22、响应于车速v增加,且虚拟发动机转速大于当前加速踏板开度区间的换挡点的虚拟发动机转速,保持当前的挡位不变;
S23、响应于车速v减小,保持当前挡位不变。
第二方面,本申请实施例提供一种主动发声系统,所述主动发声系统设置为采用了如上所述的主动发声系统的虚拟发动机转速控制方法。
第三方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的主动发声系统的虚拟发动机转速控制方法。
附图说明
图1是本申请实施例提供的不同恒定加速踏板开度下D挡加速行驶下发动机转速与车速的关系曲线图;
图2是本申请实施例提供的不同恒定加速踏板开度下变速器升挡过程中变速器换挡点的发动机转速与加速踏板开度的线性曲线图;
图3是本申请实施例提供的2挡发动机转速与车速的线性曲线图;
图4是本申请实施例提供的3挡发动机转速与车速的线性曲线图;
图5是本申请实施例提供的4挡发动机转速与车速的线性曲线图;
图6是本申请实施例提供的5挡发动机转速与车速的线性曲线图;
图7是本申请实施例提供的6挡发动机转速与车速的线性曲线图;
图8是本申请实施例提供的7挡发动机转速与车速的线性曲线图;
图9是本申请实施例提供的加速踏板开度为20%时D挡加速行驶换挡过程车速增量示意图;
图10是本申请实施例提供的D挡加速行驶换挡过程中车速增量的曲线图;
图11是本申请实施例提供的2挡换挡点车速与发动机转速的线性曲线图;
图12是本申请实施例提供的3挡换挡点车速与发动机转速的线性曲线图;
图13是本申请实施例提供的4挡换挡点车速与发动机转速的线性曲线图;
图14是本申请实施例提供的5挡换挡点车速与发动机转速的线性曲线图;
图15是本申请实施例提供的6挡换挡点车速与发动机转速的线性曲线图;
图16是本申请实施例提供的7挡换挡点车速与发动机转速的线性曲线图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行描述。通常在附图中描述和示出的本申请实施例的组件可以以不同的配置来布置和设计。
基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,术语“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接。对于本领域的普通技术人员而言,可以结合实际情况理解上述术语在本申请中的含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
实施例一
本实施例公开了一种主动发声系统的虚拟发动机转速控制方法,包括如下步骤:
S1、确定虚拟发动机转速控制策略,S1包括:
S11、获取多个挡位下虚拟发动机转速与车速的线性回归方程;
S12、获取多个换挡点的车速增量;
S13、根据步骤S11获取的线性回归方程确定每个挡位下,车速与虚拟发动机转速的线性回归方程;
S14、将加速踏板开度划分为多个加速踏板开度区间,获取每个加速踏板开度区间内,换挡点的虚拟发动机转速;
S2、对虚拟发动机的转速进行控制,S2包括:
S21、响应于车速v增加,且虚拟发动机转速小于等于当前加速踏板开度区间的换挡点的虚拟发动机转速,按照换挡控制策略执行虚拟发动机转速控制;
S22、响应于车速v增加,且虚拟发动机转速大于当前加速踏板开度区间的换挡点的虚拟发动机转速,保持当前的挡位不变;
S23、响应于车速v减小,保持当前挡位不变。
当车速增加,且虚拟发动机转速小于等于当前加速踏板开度区间的换挡点的虚拟发动机转速时,按照换挡控制策略执行虚拟发动机转速控制;当车速增加,且虚拟发动机转速大于当前加速踏板开度区间的换挡点的虚拟发动机转速时,则保持当前的挡位不变;当车速v减小时,保持当前挡位不变。这三种不同工况下虚拟发动机转速的换挡控制方法,能够覆盖电动汽车所有运行工况,不仅能够在正常加速行驶工况下,实现虚拟发动机转速的换挡控制操作,同时还可以在极限加速行驶和减速行驶工况下,以锁定虚拟发动机与车速之间速比的方式,使得虚拟发动机转速以连续变化的方式缓慢加速或者减速,避免因虚拟转速的跳变导致主动发声系统声音频率的跳变现象,从而能够增强电动汽车主动发声系统换挡控制策略的驾驶体验。
实施例二
本实施例公开了一种主动发声系统的虚拟发动机转速控制方法,包括如下步骤:
S01、确定内燃机汽车的发动机转速、车速和加速踏板开度的关系,其中,S01包括:
S0011、不同恒定加速踏板开度下D挡加速行驶车辆主要参数测试准备。
针对待测传统内燃机试验样车,布置发动机转速传感器、车速传感器、加速踏板开度传感器分别用于测试试验样车的发动机转速、车速、加速踏板开度,并将上述测试信号接入到同一数据采集前端测试设备中,从而能够保证在测试过程中,这些测试信号的同步采集以及采样频率的设置。
S0012、不同恒定加速踏板开度下D挡加速行驶车辆主要参数测试。
在室外水平光滑的沥青路面上,将试验样车的变速器挡位置于D挡(行车档),分别将加速踏板开度固定在20%、40%、60%、80%、100%等开度下进行加速行驶操作,在道路允许行驶的限制车速下,使得多个工况下整个加速过程能够尽量覆盖变速器所有发动机转速换挡点,在上述测试过程中,同步采集发动机转速、车速、加速踏板开度、变速器挡位信号。
在一实施例中,就变档点而言,以传统内燃机汽车为例,当变速器非CVT无级变速器时,汽车从汽车加速行驶到较高车速的过程中,发动机转速会从1挡顺序切换至2挡、3挡直至最高挡位,在挡位切换过程中,发动机转速会从当前挡位的一个较高发动机转速,经过一个较短的实际变化至下一个挡位较低的发动机转速,这个较高的发动机转速以及车速就是两个挡位的换挡点。当加速踏板开度不同时,换挡点也是不同的。
S0013、不同恒定加速踏板开度下D挡加速行驶发动机转速变化分析。
根据测试得到的发动机转速、车速、加速踏板开度、变速器挡位数据,分析并绘制出在不同加速踏板开度和变速器挡位下,发动机转速随车速的变化曲线,如图1所示。
S011、获取每个加速踏板开度区间内,变速器升挡过程中换挡点的发动机转速与加速踏板开度的线性回归方程。
分析不同恒定加速踏板开度下变速器升挡过程中发动机转速换挡位置。将不同恒定加速踏板开度下变速器升挡过程中的发动机转速换挡时的发动机转速和加速踏板开度数据进行统计汇总,如图2所示,并针对所有的变速器换挡点的数据进行线性回归分析,得到变速器升挡过程中换挡点的发动机转速与加速踏板开度的线性回归方程:r switch=a×P+b,其中,P代表加速踏板开度,r switch代表换挡点位置的发动机转速,a表示该线性回归方程的斜率,b表示该回归曲线与横坐标轴的截距。该线性回归方程的判定系数R 2=0.97,说明发动机转速与加速踏板开度存在强相关的线性关系,也就是说在相同的加速踏板开度下D挡加速行驶,变速器升挡过程将在相同的发动机转速位置附近进行换挡,同时换挡位置的发动机转速与加速踏板开度呈线性关系。根据加速踏板开度大小以及回归方程公式即可计算出当前加速踏板开度下对应的换挡点位置发动机转速大小。
S012、获取多个挡位下发动机转速与车速的线性回归方程。
可分析相同挡位下发动机转速与车速变化关系。由图1可知,在相同的变速器挡位下,发动机转速与车速呈线性关系,与加速踏板开度没有关系。根据 所采集的多个挡位下的发动机转速和车速数据,通过回归分析方法确定每个挡位下发动机转速和车速之间的线性关系,得到固定挡位下发动机转速与车速的线性回归方程,2挡、3挡、4挡、5挡、6挡及7挡下发动机转速与车速的回归方程分别为:r 2=a 2ν 2+b 2,r 3=a 3ν 3+b 3,r 4=a 4ν 4+b 4,r 5=a 5ν 5+b 5,r 6=a 6ν 6+b 6,r 7=a 7ν 7+b 7,其中ν i代表第i挡车速,r i代表第i挡发动机转速,a i表示第i挡线性回归方程的斜率,b i表示回归曲线的与横坐标轴的截距。可参考图3-图8,回归方程的判定系数R 2均为1.00,表明在某一固定挡位下,变速器速比固定不变,发动机转速与车速呈线性关系,与加速踏板开度无关。
S013、获取换挡过程中车速增量与挡位之间的回归方程。
可分析升挡过程中发动机转速切换前后车速增量变化。试验样车在D挡某一加速踏板开度下加速行驶过程中,当变速器挡位从某一挡位切换至下一个挡位时,发动机转速较大幅度地迅速衰减至某一值,同时车速出现了小幅度的增加,如图9所示,根据多个加速踏板开度下D挡加速行驶的测试结果,统计出不同加速踏板开度和不同挡位之间切换的车速增量,如表1所示,将表格1中的速度增量和挡位数据绘制成散点图,并进行回归分析,得到如图10所示的换挡过程车速增量与变速器挡位之间的回归曲线和回归方程:Δν=cg -d,其中Δν为该挡位下换挡前后车速增量,g为换挡前变速器挡位,c为幂函数的幅值系数,d为幂数的绝对值。由判定系数为R 2=0.98可知,该回归方程具有高置信度,表明每个挡位下对应的发动机转速切换前后车速的增量Δν可根据该幂函数回归方程计算出,与加速踏板开度大小无关。
图9中,v22,v31,v32,v41,v42,v51,v52,v61,v62,v71表示不同的车速值。
表1升挡过程发动机转速切换前后车速增量统计表
Figure PCTCN2021127011-appb-000001
Δνi _j表示车速增量,i表示升挡前原始挡位,j表示加速踏板开度。
S014、获取不同加速踏板开度区间内,每个挡位下车速与换挡点的发动机 转速的线性回归方程。
可分析换挡点位置车速与发动机转速的关系。根据步骤S011所述,换挡点位置发动机转速与加速踏板开度呈线性关系,即换挡点位置发动机转速可表示为r switch=a×P+b,根据所采集的多个挡位下的发动机转速和车速的数据,通过回归分析方法确定多个挡位下车速和发动机转速之间的线性关系,得到固定挡位下车速与发动机转速的线性回归方程,2挡、3挡、4挡、5挡、6挡及7挡下发动机转速与车速的回归方程分别为:ν 22=c 2r switch+d 232=c 3r switch+d 342=c 4r switch+d 452=c 5r switch+d 562=c 6r switch+d 672=c 7r switch+d 7,其中r switch代表换挡点位置发动机转速,ν i2代表第i挡换挡点位置对应的车速,c i表示第i挡线性回归方程的斜率,d i表示回归曲线的与横坐标轴的截距。多个挡位换挡点位置车速与发动机转速的回归分析结果如图11-16所示,判定系数为R 2=1.00可知,回归方程具有高置信度。
S1、确定虚拟发动机转速控制策略,S1包括:
S10、虚拟发动机转速控制策略中的车速v和加速踏板开度P从车辆的CAN(Controller Area Network,控制器局域网络)总线获得。虚拟发动机转速由车速v和挡位确定;本实施例中的虚拟挡位g具有6个挡位,g=1,2,3,4,5,6。
S014、获取不同加速踏板开度区间内,每个挡位下车速与换挡点的发动机转速的线性回归方程。
分析换挡点位置的车速与发动机转速的关系。根据步骤S011所述,换挡点位置的发动机转速与加速踏板开度呈线性关系,即换挡点位置的发动机转速可表示为r switch=a×P+b,根据所采集的多个挡位下的发动机转速和车速数据,通过回归分析方法确定每个挡位下车速和发动机转速之间的线性关系,得到固定挡位下车速与发动机转速的线性回归方程,2挡、3挡、4挡、5挡、6挡、7挡发动机转速与车速回归方程分别为:ν 22=c 2r switch+d 232=c 3r switch+d 342=c 4r switch+d 452=c 5r switch+d 562=c 6r switch+d 672=c 7r switch+d 7,其中r switch代表换挡点位置的发动机转速,ν i2代表第i挡换挡点位置对应的车速,c i表示第i挡线性回归方程的斜率,d i表示回归曲线的与横坐标轴的截距。多个挡位下换挡点位置的车速与发动机转速的回归分析结果如图11-16所示。
在一实施例中,虚拟发动机转速控制策略,是指,在电动汽车主动发声系统模拟发动机声音的情况下,系统控制虚拟发动机转速随车速和加速踏板开度等参数而变化的具体变化过程和变化规律。主动发声系统通过控制虚拟发动机 转速的方式来控制系统模拟的发动机声音的变化,可更加合理的控制模拟的发动机声音的频率变化过程。
在一实施例中,可通过虚拟发动机转速控制策略,对虚拟发动机的转速进行控制。
S1、确定虚拟发动机转速控制策略,S1包括:
S10、虚拟发动机转速控制策略中的车速v和加速踏板开度P从车辆的CAN总线获得。虚拟发动机转速
Figure PCTCN2021127011-appb-000002
由车速v和挡位确定;本实施例中的虚拟挡位g具有6个挡位,g=1,2,3,4,5,6。
S11、获取多个挡位下虚拟发动机转速与车速的线性回归方程。例如,在步骤S11中,根据步骤S012中的内燃机车辆的多个挡位下发动机转速与车速的线性回归方程,获取多个挡位下虚拟发动机转速与车速的线性回归方程。多个虚拟挡位g下虚拟发动机转速
Figure PCTCN2021127011-appb-000003
与车速v的关系:
g=1时,
Figure PCTCN2021127011-appb-000004
g=2时,
Figure PCTCN2021127011-appb-000005
g=3时,
Figure PCTCN2021127011-appb-000006
g=4时,
Figure PCTCN2021127011-appb-000007
g=5时,
Figure PCTCN2021127011-appb-000008
g=6时,
Figure PCTCN2021127011-appb-000009
S12、获取多个换挡点的车速增量。
例如,在步骤S12中,根据步骤S013中的分析结果,获取多个换挡点的车速增量。根据步骤S013中的分析结果设置相邻挡位之间换挡过程中车速增量大小,当1→2(自1换档至2挡)时,车速增量△v 1→2=△v 12km/h;当2→3时,△v 2→3=△v 23km/h;当3→4时,△v 3→4=△v 34km/h;当4→5时,△v 4→5=△v 45km/h;当5→6时,△v 5→6=△v 56km/h。
S13、根据步骤S11中的线性回归方程确定每个挡位下,车速与虚拟发动机转速的线性回归方程;
g=1时,
Figure PCTCN2021127011-appb-000010
g=2时,
Figure PCTCN2021127011-appb-000011
g=3时,
Figure PCTCN2021127011-appb-000012
g=4时,
Figure PCTCN2021127011-appb-000013
g=5时,
Figure PCTCN2021127011-appb-000014
g=6时,
Figure PCTCN2021127011-appb-000015
S14、将加速踏板开度划分为多个加速踏板开度区间,获取每个加速踏板开度区间内,换挡点的虚拟发动机转速。
在一实施例中,划分为五个加速踏板开度区间,分别为(0,20%]、(20%,40%]、(40%,60%]、(60%,80%]、(80%,100%],换挡点位置的虚拟发动机转速大小
Figure PCTCN2021127011-appb-000016
与所处于的加速踏板开度区间的最大值P之间的关系如下:
Figure PCTCN2021127011-appb-000017
其中,P可取加速踏板开度区间的最大值,
Figure PCTCN2021127011-appb-000018
代表换挡点位置的虚拟发动机转速,a表示斜率,b表示截距,多个加速踏板开度区间对应的换挡点位置的虚拟发动机转速分别为:
1)(0,20%]加速踏板开度区间,换挡点位置的虚拟发动机转速为
Figure PCTCN2021127011-appb-000019
2)(20%,40%]加速踏板开度区间,换挡点位置的虚拟发动机转速为
Figure PCTCN2021127011-appb-000020
3)(40%,60%]加速踏板开度区间,换挡点位置的虚拟发动机转速为
Figure PCTCN2021127011-appb-000021
4)(60%,80%]加速踏板开度区间,换挡点位置的虚拟发动机转速为
Figure PCTCN2021127011-appb-000022
5)(80%,100%]加速踏板开度区间,换挡点位置的虚拟发动机转速为
Figure PCTCN2021127011-appb-000023
S2、对虚拟发动机转速进行控制。
根据车速v和虚拟发动机转速
Figure PCTCN2021127011-appb-000024
的变化,主动发声系统按照以下三种工况进行虚拟发动机转速控制,例如包括:
S21、当车速v增加,且虚拟发动机转速小于等于当前加速踏板开度区间的换挡点的虚拟发动机转速时,则按照换挡控制策略执行虚拟发动机转速控制;例如:
1)如果加速踏板开度∈(0,20%],车速v从0开始加速,虚拟转速(即虚拟发动机转速)按照1挡速比进行控制,即g=1,
Figure PCTCN2021127011-appb-000025
直至当前加速踏板开度对应区间的换挡点位置虚拟转速达到
Figure PCTCN2021127011-appb-000026
同时根据步骤S014中的公式计算出换挡点位置对应的车速
Figure PCTCN2021127011-appb-000027
2)继续加速,将进行1→2(自1档换至2档)换挡操作,2挡对应的车速为(v switch+△v 12)km/h,在此基础上,根据2挡速比计算出对应的虚拟转速大小,从1挡换挡点线性过渡至2挡最低点从而完成1→2换挡操作;
其中,某档的最低点是指,在某一个加速踏板开度区间内,完成换挡操作 的过程中,一般是从当前挡位的最高车速和最高虚拟转速切换至下一个挡位的最低车速和最低虚拟发动机转速,如图9中2挡至3挡的切换过程,切换到3挡的最低车速位置,即为3档的最低点。
3)虚拟转速按照2挡速比进行控制,即g=2,
Figure PCTCN2021127011-appb-000028
在此过程中系统实时更新换挡点虚拟转速,如果此时加速踏板开度∈(20%,40%],换挡点位置虚拟转速为
Figure PCTCN2021127011-appb-000029
系统以2挡速比加速行驶至该换挡点位置虚拟转速,同时根据步骤S014中的公式计算出换挡点位置对应的车速
Figure PCTCN2021127011-appb-000030
Figure PCTCN2021127011-appb-000031
4)继续加速,将进行2→3(自2档换至3档)换挡操作,3挡对应的车速为(v switch+△v 23)km/h,在此基础上,根据3挡速比计算出对应的虚拟转速大小,从2挡换挡点线性过渡至3挡最低点从而完成2→3换挡操作;
5)虚拟转速按照3挡速比进行控制,即g=3,
Figure PCTCN2021127011-appb-000032
在此过程中系统实时更新换挡点虚拟转速,如果此时加速踏板开度∈(40%,60%],换挡点位置虚拟转速为
Figure PCTCN2021127011-appb-000033
系统以3挡速比加速行驶至该换挡点位置虚拟转速
Figure PCTCN2021127011-appb-000034
同时根据步骤S014中的公式计算出换挡点位置对应的车速
Figure PCTCN2021127011-appb-000035
Figure PCTCN2021127011-appb-000036
6)继续加速,将进行3→4换挡操作,4挡对应的车速为(v switch+△v 34)km/h,在此基础上,根据4挡速比计算出对应的虚拟转速大小,从3挡换挡点线性过渡至4挡最低点从而完成3→4换挡操作;
7)虚拟转速按照4挡速比进行控制,即g=4,
Figure PCTCN2021127011-appb-000037
在此过程中系统实时更新换挡点虚拟转速,如果此时加速踏板开度∈(60%,80%],换挡点位置虚拟转速为
Figure PCTCN2021127011-appb-000038
系统以4挡速比加速行驶至该换挡点位置虚拟转速
Figure PCTCN2021127011-appb-000039
同时根据步骤S014中的公式计算出换挡点位置对应的车速
Figure PCTCN2021127011-appb-000040
Figure PCTCN2021127011-appb-000041
8)继续加速,将进行4→5换挡操作,5挡对应的车速为(v switch+△v 45)km/h,在此基础上,根据5挡速比计算出对应的虚拟转速大小,从4挡换挡点线性过渡至5挡最低点从而完成4→5换挡操作;
9)虚拟转速按照5挡速比进行控制,即g=5,
Figure PCTCN2021127011-appb-000042
在此过程中系统实时更新换挡点虚拟转速,如果此时加速踏板开度∈(80%,100%],换挡点位置虚拟转速为
Figure PCTCN2021127011-appb-000043
系统以5挡速比加速行驶至该换挡点位置虚拟转速
Figure PCTCN2021127011-appb-000044
同时根据步骤S014中的公式计算出换挡点位置对应的车速
Figure PCTCN2021127011-appb-000045
10)继续加速,将进行5→6换挡操作,6挡对应的车速为(v switch+△v 56)km/h,在此基础上,根据6挡速比计算出对应的虚拟转速大小,从5挡换挡点线性过渡至6挡最低点从而完成5→6换挡操作;
11)之后,虚拟转速按照6挡速比进行控制,即g=6,
Figure PCTCN2021127011-appb-000046
直至最高车速。
S22、当车速v增加,且虚拟发动机转速(即虚拟转速
Figure PCTCN2021127011-appb-000047
)大于当前加速踏板开度区间的换挡点的虚拟发动机转速时,即当车速v增加,且虚拟转速
Figure PCTCN2021127011-appb-000048
Figure PCTCN2021127011-appb-000049
即处于低加速踏板开度、高虚拟转速工况,则保持虚拟挡位g不变,即
Figure PCTCN2021127011-appb-000050
与v的关系保持不变,使得
Figure PCTCN2021127011-appb-000051
以连续变化的方式缓慢加速,避免出现虚拟转速的跳变。
S23、当车速v减小,则保持虚拟挡位g不变,即
Figure PCTCN2021127011-appb-000052
与v的关系保持不变,使得
Figure PCTCN2021127011-appb-000053
以连续变化的方式减速,避免出现虚拟转速的跳变。
在一实施例中,虚拟发动机转速控制策略中,转速为虚拟转速,挡位为虚拟挡位。
当车速增加,且虚拟发动机转速小于等于当前加速踏板开度区间的换挡点的虚拟发动机转速时,按照换挡控制策略执行虚拟发动机转速控制;当车速增加,且虚拟发动机转速大于当前加速踏板开度区间的换挡点的虚拟发动机转速时,则保持当前的挡位不变;当车速v减小时,保持当前挡位不变。这三种不同工况下虚拟发动机转速的换挡控制方法,能够覆盖电动汽车所有运行工况,不仅能够在正常加速行驶工况下,实现虚拟发动机转速的换挡控制操作,同时还可以在极限加速行驶和减速行驶工况下,以锁定虚拟发动机与车速之间速比的方式,使得虚拟发动机转速以连续变化的方式缓慢加速或者减速,避免因虚拟转速的跳变导致主动发声系统声音频率的跳变现象,从而能够增强电动汽车主动发声系统换挡控制策略的驾驶体验。
本实施例还公开了一种主动发声系统,采用上述的主动发声系统的虚拟发动机转速控制方法;主动发声系统依据虚拟发动机转速的控制实时产生与虚拟发动机转速相对应的合成声音。
对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需对所有的实施方式予以穷举。
在一实施例中,主动发声系统的虚拟发动机转速控制方法及主动发声系统,可应用于电动汽车。
本实施例还提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序用于执行上述方法。
存储介质可以是非暂态(non-transitory)存储介质。
上述实施例方法中的全部或部分流程可以通过计算机程序来执行相关的硬件来完成的,该程序可存储于一个非暂态计算机可读存储介质中,该程序在执行时,可包括如上述方法的实施例的流程,其中,该非暂态计算机可读存储介质可以为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或RAM等。

Claims (14)

  1. 一种主动发声系统的虚拟发动机转速控制方法,包括如下步骤:
    步骤1(S1)、确定虚拟发动机转速控制策略,其中,步骤1(S1)包括:
    步骤11(S11)、获取多个挡位下虚拟发动机转速与车速的线性回归方程;
    步骤12(S12)、获取多个换挡点的车速增量;
    步骤13(S13)、根据步骤11(S11)获取的线性回归方程确定每个挡位下,车速与虚拟发动机转速的线性回归方程;
    步骤14(S14)、将加速踏板开度划分为多个加速踏板开度区间,获取每个加速踏板开度区间内,换挡点的虚拟发动机转速;
    步骤2(S2)、对虚拟发动机的转速进行控制,其中,步骤2(S2)包括:
    步骤21(S21)、响应于车速v增加,且虚拟发动机转速小于等于当前加速踏板开度区间的换挡点的虚拟发动机转速,按照换挡控制策略执行虚拟发动机转速控制;
    步骤22(S22)、响应于车速v增加,且虚拟发动机转速大于当前加速踏板开度区间的换挡点的虚拟发动机转速,保持当前的挡位不变;
    步骤23(S23)、响应于车速v减小,保持当前挡位不变。
  2. 根据权利要求1所述的主动发声系统的虚拟发动机转速控制方法,还包括步骤01(S01),确定内燃机汽车的发动机转速、车速和加速踏板开度的关系,其中,步骤01(S01)包括:
    步骤011(S011)、获取每个加速踏板开度区间内,变速器升挡过程中换挡点的发动机转速与加速踏板开度的线性回归方程;
    步骤012(S012)、获取多个挡位下发动机转速与车速的线性回归方程;
    步骤013(S013)、获取换挡过程中车速增量与挡位之间的回归方程;
    步骤014(S014)、获取不同加速踏板开度区间内,每个挡位下车速与换挡点的发动机转速的线性回归方程。
  3. 根据权利要求2所述的主动发声系统的虚拟发动机转速控制方法,步骤01(S01)中在步骤011(S011)之前,还包括:获得不同加速踏板开度和挡位下,发动机转速随车速变化的曲线。
  4. 根据权利要求3所述的主动发声系统的虚拟发动机转速控制方法,其中,在步骤11(S11)中,根据步骤012(S012),获取多个挡位下虚拟发动机转速与车速的线性回归方程。
  5. 根据权利要求4所述的主动发声系统的虚拟发动机转速控制方法,其中,在步骤12(S12)中,根据步骤013(S013),获取多个换挡点的车速增量。
  6. 根据权利要求5所述的主动发声系统的虚拟发动机转速控制方法,其中,在步骤14(S14)中,根据步骤011(S011)获取的线性回归方程,获取每个加速踏板开度区间内,换挡点的虚拟发动机转速。
  7. 根据权利要求6所述的主动发声系统的虚拟发动机转速控制方法,还包括:加速踏板开度均匀划分有5个加速踏板开度区间,车辆设置有6个虚拟挡位;其中,步骤21(S21)中,按照换挡控制策略执行虚拟发动机转速控制包括:
    响应于加速踏板开度P∈(0,20%],车速v从0开始加速,虚拟发动机转速按照1挡速比进行控制,直至当前加速踏板开度对应区间的换挡点位置虚拟发动机转速达到
    Figure PCTCN2021127011-appb-100001
    同时根据步骤014(S014)获取的线性回归方程计算出1挡的换挡点位置对应的车速v switch
    继续加速,将进行自1档换至2档的换挡操作,2挡对应的车速为(v switch+△v 12)km/h,△v 12表示1档换至2档的车速增量;其中,进行自1档换至2档的换挡操作,包括:根据2挡速比计算出对应的虚拟发动机转速,从1挡换挡点线性过渡至2挡最低点从而完成自1档换至2档的换挡操作;
    虚拟发动机转速按照2挡速比进行控制,主动发声系统实时更新换挡点虚拟发动机转速,响应于加速踏板开度P∈(20,40%],2挡换挡点位置虚拟发动机转速为
    Figure PCTCN2021127011-appb-100002
    主动发声系统以2挡速比加速行驶至2挡换挡点位置虚拟发动机转速
    Figure PCTCN2021127011-appb-100003
    同时根据步骤014(S014)获取的线性回归方程计算出2挡的换挡点位置对应的车速,将v switch的数值更新为2挡的换挡点位置对应的车速;
    继续加速,将进行自2档换至3档的换挡操作,3挡对应的车速为(v switch+△v 23)km/h,△v 23表示2档换至3档的车速增量;其中,进行自2档换至3档的换挡操作,包括:根据3挡速比计算出对应的虚拟发动机转速,从2挡换挡点线性过渡至3挡最低点从而完成自2档换至3档的换挡操作;
    虚拟发动机转速按照3挡速比进行控制,主动发声系统实时更新换挡点虚拟发动机转速,响应于加速踏板开度P∈(40,60%],3挡换挡点位置虚拟发动机转速为
    Figure PCTCN2021127011-appb-100004
    主动发声系统以3挡速比加速行驶至3挡换挡点位置虚拟发动机转速
    Figure PCTCN2021127011-appb-100005
    同时根据步骤014(S014)获取的线性回归方程计算出3挡的换挡点位置对应的车速,将v switch的数值更新为3挡的换挡点位置对应的车速;
    继续加速,将进行自3档换至4档的换挡操作,4挡对应的车速为(v switch+△v 34)km/h,△v 34表示3档换至4档的车速增量;其中,进行自3档换至4档的 换挡操作,包括:根据4挡速比计算出对应的虚拟发动机转速,从3挡换挡点线性过渡至4挡最低点从而完成自3档换至4档的换挡操作;
    虚拟发动机转速按照4挡速比进行控制,主动发声系统实时更新换挡点虚拟发动机转速,响应于加速踏板开度P∈(60,80%],4挡换挡点位置虚拟发动机转速为
    Figure PCTCN2021127011-appb-100006
    主动发声系统以4挡速比加速行驶至4挡换挡点位置虚拟发动机转速
    Figure PCTCN2021127011-appb-100007
    同时根据步骤014(S014)获取的线性回归方程计算出4挡的换挡点位置对应的车速,将v switch的数值更新为4挡的换挡点位置对应的车速;
    继续加速,将进行自4档换至5档的换挡操作,5挡对应的车速为(v switch+△v 45)km/h,△v 45表示4档换至5档的车速增量;其中,进行自4档换至5档的换挡操作,包括:根据5挡速比计算出对应的虚拟发动机转速,从4挡换挡点线性过渡至5挡最低点从而完成自4档换至5档的换挡操作;
    虚拟发动机转速按照5挡速比进行控制,主动发声系统实时更新换挡点虚拟发动机转速,响应于加速踏板开度P∈(80,100%],5挡换挡点位置虚拟发动机转速为
    Figure PCTCN2021127011-appb-100008
    主动发声系统以5挡速比加速行驶至5挡换挡点位置虚拟发动机转速
    Figure PCTCN2021127011-appb-100009
    同时根据步骤014(S014)获取的线性回归方程计算出5挡的换挡点位置对应的车速,将v switch的数值更新为5挡的换挡点位置对应的车速;
    继续加速,将进行自5档换至6档的换挡操作,6挡对应的车速为(v switch+△v 56)km/h,△v 56表示5档换至6档的车速增量;其中,进行自5档换至6档的换挡操作,包括:根据6挡速比计算出对应的虚拟发动机转速,从5挡换挡点线性过渡至6挡最低点从而完成自5档换至6档的换挡操作;
    之后,虚拟发动机转速按照6挡速比进行控制,直至最高车速。
  8. 根据权利要求7所述的主动发声系统的虚拟发动机转速控制方法,还包括:虚拟发动机转速控制策略中的车速和加速踏板开度从车辆的控制器局域网络CAN总线获得。
  9. 根据权利要求2所述的主动发声系统的虚拟发动机转速控制方法,其中,在步骤11(S11)中,根据步骤012(S012),获取多个挡位下虚拟发动机转速与车速的线性回归方程。
  10. 根据权利要求2所述的主动发声系统的虚拟发动机转速控制方法,其中,在步骤12(S12)中,根据步骤013(S013),获取多个换挡点的车速增量。
  11. 根据权利要求2所述的主动发声系统的虚拟发动机转速控制方法,其中, 在步骤14(S14)中,根据步骤011(S011)获取的线性回归方程,获取每个加速踏板开度区间内,换挡点的虚拟发动机转速。
  12. 一种主动发声系统,所述主动发声系统设置为采用了如权利要求1-11中任一项所述的主动发声系统的虚拟发动机转速控制方法。
  13. 根据权利要求12所述的主动发声系统,还包括:所述主动发声系统依据虚拟发动机转速的控制实时产生与虚拟发动机转速相对应的合成声音。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-11中任一项所述的主动发声系统的虚拟发动机转速控制方法。
PCT/CN2021/127011 2020-10-28 2021-10-28 主动发声系统的虚拟发动机转速控制方法及主动发声系统 WO2022089528A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011173584.4 2020-10-28
CN202011173584.4A CN112228549B (zh) 2020-10-28 2020-10-28 主动发声系统虚拟发动机转速控制方法及主动发声系统

Publications (1)

Publication Number Publication Date
WO2022089528A1 true WO2022089528A1 (zh) 2022-05-05

Family

ID=74109652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127011 WO2022089528A1 (zh) 2020-10-28 2021-10-28 主动发声系统的虚拟发动机转速控制方法及主动发声系统

Country Status (2)

Country Link
CN (1) CN112228549B (zh)
WO (1) WO2022089528A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112228549B (zh) * 2020-10-28 2022-04-08 中国第一汽车股份有限公司 主动发声系统虚拟发动机转速控制方法及主动发声系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080060861A1 (en) * 2006-09-12 2008-03-13 Andrew Baur Entertainment vehicle that simulates a vehicle with an internal combustion engine and multiple gear ratios
CN109664817A (zh) * 2017-10-17 2019-04-23 现代自动车株式会社 实时发动机声音再生方法及使用该方法的车辆
CN111746396A (zh) * 2020-06-28 2020-10-09 中国第一汽车股份有限公司 内燃机汽车发动机转速变化分析方法及主动发声系统
CN111746397A (zh) * 2020-06-28 2020-10-09 中国第一汽车股份有限公司 电动汽车主动发声系统转速控制方法及车辆
CN112228549A (zh) * 2020-10-28 2021-01-15 中国第一汽车股份有限公司 主动发声系统虚拟发动机转速控制方法及主动发声系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301224B2 (ja) * 2005-02-16 2009-07-22 トヨタ自動車株式会社 自動車およびその制御方法
CN103836180B (zh) * 2012-11-22 2015-12-23 广州汽车集团股份有限公司 换档控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080060861A1 (en) * 2006-09-12 2008-03-13 Andrew Baur Entertainment vehicle that simulates a vehicle with an internal combustion engine and multiple gear ratios
CN109664817A (zh) * 2017-10-17 2019-04-23 现代自动车株式会社 实时发动机声音再生方法及使用该方法的车辆
CN111746396A (zh) * 2020-06-28 2020-10-09 中国第一汽车股份有限公司 内燃机汽车发动机转速变化分析方法及主动发声系统
CN111746397A (zh) * 2020-06-28 2020-10-09 中国第一汽车股份有限公司 电动汽车主动发声系统转速控制方法及车辆
CN112228549A (zh) * 2020-10-28 2021-01-15 中国第一汽车股份有限公司 主动发声系统虚拟发动机转速控制方法及主动发声系统

Also Published As

Publication number Publication date
CN112228549B (zh) 2022-04-08
CN112228549A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
EP2491547B1 (en) System for simulated multi-gear vehicle sound generation
WO2022062572A1 (zh) 基于多维度的换挡控制方法、装置、车辆及介质
KR101459451B1 (ko) 운전패턴 학습을 통한 차량 능동제어 방법 및 시스템
EP2766590A1 (de) Verfahren und vorrichtung zum erkennen von drehzahl-/drehmomentschwankungen in einer antriebsvorrichtung
CN111746397B (zh) 电动汽车主动发声系统转速控制方法及车辆
WO2022089528A1 (zh) 主动发声系统的虚拟发动机转速控制方法及主动发声系统
WO2022089529A1 (zh) 虚拟发动机转速控制方法、主动发声系统及汽车
CN102207193B (zh) 一种dct自动变速器急踩油门时的换档控制方法
US9410618B2 (en) Adaptive shift scheduling system
CN104386058A (zh) 一种基于amt变速箱提高起步平顺性的控制方法
KR101469670B1 (ko) 차량 운전 모드를 이용한 크루즈 제어 속도 조절 장치 및 방법
CN111457083A (zh) 一种自动换挡控制方法、系统及汽车
CN110701298A (zh) 一种自动换挡的控制方法、装置、车辆和存储介质
CN111365449A (zh) 一种具有换挡拨片的自动变速器手动模式控制方法
CN112406698A (zh) 一种电动汽车主动发声系统转速控制方法及车辆
CN111746396B (zh) 内燃机汽车发动机转速变化分析方法及主动发声系统
JPH06117528A (ja) 車両用自動変速装置
CN110735919A (zh) 一种换挡提示方法及系统
CN112431922B (zh) 一种变速箱换挡的控制方法及系统
KR20200072268A (ko) 차량 운행 패턴 결정 방법
JP2008111510A (ja) 自動変速機の変速制御装置
US8972132B2 (en) Method of controlling a transmission of a vehicle
US8612105B2 (en) System for control of a gearbox
DE102016102052A1 (de) System und Verfahren zur Steuerung eines Motors eines Fahrzeuges mit Handschaltgetriebe
DE102020109808A1 (de) Bremskraftsteuerungsvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885255

Country of ref document: EP

Kind code of ref document: A1