WO2022089376A1 - 多频融合基站天线及通信设备 - Google Patents

多频融合基站天线及通信设备 Download PDF

Info

Publication number
WO2022089376A1
WO2022089376A1 PCT/CN2021/126162 CN2021126162W WO2022089376A1 WO 2022089376 A1 WO2022089376 A1 WO 2022089376A1 CN 2021126162 W CN2021126162 W CN 2021126162W WO 2022089376 A1 WO2022089376 A1 WO 2022089376A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
sub
antennas
base station
coupling
Prior art date
Application number
PCT/CN2021/126162
Other languages
English (en)
French (fr)
Inventor
苏巾槐
张海伟
王敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022089376A1 publication Critical patent/WO2022089376A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Definitions

  • the embodiments of the present application relate to the technical field of communication equipment, and in particular, to a multi-frequency fusion base station antenna and communication equipment.
  • radio waves are required to transmit information to complete the work of the entire system.
  • Antennas are the basic devices used to transmit or receive radio waves in these systems.
  • the antennas in communication equipment need to cover more and more frequency bands.
  • most base station antennas integrate different frequency bands in 3G, 4G, and 5G to ensure that a base station can send and receive wireless signals in different frequency bands.
  • multi-frequency fusion base station antennas emerge as the times require.
  • the multi-frequency fusion base station antenna is to arrange the antenna arrays of different frequency bands on the same antenna port, and due to the space limitation of the antenna port, some high-frequency antennas are usually arranged below the low-frequency antenna to save the antenna cost. space size.
  • the energy radiated by the high-frequency antenna can easily stimulate its induced current on the low-frequency antenna, and the induced current is radiated twice and superimposed with the energy radiated by the high-frequency antenna, which makes the low-frequency antenna to The electromagnetic wave signal of the high-frequency antenna causes strong interference.
  • the embodiments of the present application provide a multi-frequency fusion base station antenna and communication equipment, which solve the problem that in the traditional multi-frequency fusion base station antenna, the energy radiated by the high-frequency antenna can easily excite the induced current on the low-frequency antenna, and the induced current is radiated twice, And superimposed with the energy radiated by the high-frequency antenna, so that the low-frequency antenna causes strong interference to the electromagnetic wave signal of the high-frequency antenna.
  • Embodiments of the present application provide a multi-frequency fusion base station antenna, including a ground plate and at least one antenna unit;
  • the antenna unit includes a first antenna and a plurality of second antennas arranged in an array, the frequency band of the first antenna is lower than the frequency band of the second antenna, and the first antenna is located on the side of the plane where the plurality of second antennas are located away from the ground plate above;
  • the first antenna includes a first additional antenna and four first sub-antennas, wherein a line between two of the first sub-antennas intersects with a line between the other two of the first sub-antennas, so The two of the first sub-antennas and the other two of the first sub-antennas are respectively used to carry currents with orthogonal polarization directions;
  • the first additional antennas include four a part and a second part connected between two adjacent first parts, the four first sub-antennas are all located in the annular space enclosed by the first additional antennas, each of the first sub-antennas
  • the second part includes a main body part and a connection part connected to both ends of the main body part, one end of the connection part is connected with the first part, and the main body part The distance from the ground plate is equal to the distance between the first portion and the ground plate.
  • the main body portion and the first portion of the first additional antenna are set to have a height difference with respect to the ground plate, so that the second portion formed by the main body portion and the connecting portion can have a three-dimensional structure, so that the frequency band is relatively high.
  • the two beams of working currents with the same polarization direction in the two second antennas excite the two beams of induced currents on the same second part, and the phase directions of the two beams of induced currents are exactly opposite, and the two cancel each other out, thereby effectively reducing the Even eliminate the induced current excited by the second antenna on the first additional antenna, further reduce or even eliminate the induced current excited by the second antenna on the first antenna, so as to ensure the induced current while ensuring the bandwidth of the first antenna
  • the radiation energy of the second antenna will not interfere with the electromagnetic wave energy of the second antenna itself, realize the decoupling effect of the high-frequency fusion base station antenna, and ensure that the radiation performance of the second antenna in the higher frequency band is not affected.
  • the first additional antennas are arranged around the outer circumference of the four first sub-antennas, and each first sub-antenna is coupled and fed with the corresponding part of the first additional antenna, thereby increasing the size of the first additional antenna.
  • the radiation bandwidth of the antenna, and the first additional antenna forms a continuous ring structure, so that through the coupling and feeding of each first sub-antenna, a stable induced current is formed on the first additional antenna, thereby ensuring the radiation performance of the entire first antenna.
  • the antenna unit further includes a fixing seat
  • the fixing seat is horizontally arranged above the side of the second antenna away from the ground plate, and the first antenna is arranged on the surface of the side of the fixing seat away from the second antenna.
  • the structural stability of an antenna itself prevents deformation of the first antenna and ensures that the radiation performance of the first antenna is not affected.
  • the side of the fixing base facing away from the second antenna is provided with four bosses at intervals around the central axis, and each boss protrudes in a direction away from the second antenna;
  • the boss divides the side surface of the fixed seat away from the second antenna into a first surface and a second surface, the second surface is the top surface of the boss, the four main parts are respectively arranged on the corresponding second surface, and the four first The sub-antenna and the four first parts are all disposed on the first surface, and one end of the connecting part extends from the second surface to the first surface along the side wall of the boss.
  • a boss is arranged on the side of the fixing base away from the second antenna, and the main body of the second part is arranged on the top surface of the boss, that is, the second surface, so that the connection part of the second part can be along the
  • the side wall of the protruding platform extends to the first surface and is connected with the first part, so that the connecting part and the main part of the second part are stably arranged on the intersecting surface, so as to ensure the stability of the three-dimensional structure formed by the second part, and then realize Stable cancellation of the induced current excited by the second antenna on the second part ensures the decoupling effect between the first antenna and the second antenna.
  • the corners at both ends of the side wall of the boss along the thickness direction are formed as arc chamfers
  • the connecting portion is configured in an arc-shaped structure conforming to the arc chamfering.
  • the connecting portion of the second part is set to an arc-shaped structure to ensure that the connecting portion is matched with the arc chamfer on the side wall of the boss, so that the connecting portion is closely attached to the side of the boss.
  • the corners of the wall improve the structural stability of the connecting part and prevent the connecting part from moving in the orthogonal direction, thereby not only ensuring the structural stability of the second three-dimensional part, but also ensuring that the first sub-antenna is coupled and fed to the first sub-antenna. Stability of induced currents on additional antennas.
  • the connection portion by setting the connection portion to be an arc structure, the bandwidth of the first antenna is further widened, and impedance matching is also facilitated.
  • At least part of the main body portion is an arc-shaped structure that is bent in a direction away from the first sub-antenna.
  • the distance between the main body part and the first sub-antenna is increased, and the first sub-antenna is ensured
  • the radiated energy will not interfere with the working current on the main body, that is, to prevent the occurrence of excessive coupling between the first sub-antenna and the first additional antenna, and to ensure that the electromagnetic wave performance of the first antenna formed by the second additional antenna and the first sub-antenna is more stable;
  • the above structure increases the perimeter of the first additional antenna, thereby increasing the bandwidth of the first antenna.
  • the radius of curvature of the arc structure of the main body portion is equal or unequal everywhere, so as to simplify the structural arrangement of the main body portion and improve the manufacturing efficiency of the first additional antenna.
  • a first coupling portion extends from the first portion in a direction away from the second antenna, and a second coupling portion extends from the first sub-antenna in a direction away from the second antenna, and the first coupling portion extends away from the second antenna. Both the first part and the second coupling part protrude from the plane where the first part and the first sub-antenna are located;
  • the first coupling part and the second coupling part are opposite and arranged at an interval, and the first coupling part and the second coupling part are coupled and fed.
  • the first coupling portion and the second coupling portion are respectively extended on the first portion and the first sub-antenna in a direction away from the second antenna, and the first coupling portion and the second coupling portion are both protruded from the first portion and the second coupling portion.
  • the plane where the first sub-antenna is located is arranged, and the coupling and feeding are realized through the first coupling part and the second coupling part, so that the surface-to-surface coupling between the first part and the first sub-antenna is realized, and the first part and the first sub-antenna are increased. Therefore, the coupling and feeding effect between the first additional antenna and the first sub-antenna is improved, and the bandwidth of the first antenna is increased.
  • first coupling part and the second coupling part protruding from the plane where the first part and the first sub-antenna are located, it is also convenient to increase the coupling area of the first coupling part and the second coupling part.
  • Increasing the extension height of the first coupling part and the second coupling part can increase the coupling area of the first coupling part and the second coupling part, so as to realize flexible adjustment of coupling and good impedance matching, which is beneficial to broadband Implementation of the antenna.
  • an extension portion is formed on a side of the first sub-antenna facing the first portion, the extension portion extends toward the first portion, and the second coupling portion is connected to the extension portion.
  • an extension portion extending toward the first portion is provided on the first sub-antenna, and the second coupling portion is provided on the extension portion, so as to ensure stable coupling between the second coupling portion and the first coupling portion,
  • the arrangement of the second coupling part is convenient, and the structural stability of the second coupling part on the first sub-antenna is improved at the same time.
  • both the first coupling part and the second coupling part include a plurality of bending parts arranged in sequence along the horizontal direction, and the bending parts opposite to the first coupling part and the second coupling part are parallel to each other set up.
  • the first coupling part and the second coupling part are further increased when the horizontal extension lengths of the first coupling part and the second coupling part are constant.
  • the opposite area of the first coupling section and the second coupling section increases, thereby increasing the coupling area between the first coupling section and the second coupling section, thereby improving the coupling and feeding effect between the first additional antenna and the first sub-antenna.
  • the opposite surfaces of the first coupling portion and the second coupling portion are arc surfaces with the same bending direction.
  • the coupling area between the first coupling part and the second coupling part is increased, and the first coupling part and the second coupling part are simplified.
  • the arrangement structure of the first coupling part and the second coupling part improves the manufacturing efficiency of the first antenna.
  • each of the first sub-antennas is a ring structure.
  • each first sub-antenna in the first antenna is set as a ring structure, so that in the second antenna with a relatively high frequency band, the two second antennas in the two second antennas with the same polarization direction are excited by two working currents.
  • the phase directions of the two induced currents in the same first sub-antenna are exactly opposite, and the two are canceled, thereby effectively reducing or even eliminating the induced current excited by the second antenna on the first sub-antenna, thereby reducing or even eliminating the first sub-antenna.
  • the two antennas excite the induced current on the first antenna to ensure that the radiated energy of the induced current will not interfere with the electromagnetic wave energy of the second antenna itself. The radiation performance of the antenna is not affected.
  • each second antenna is a quadrilateral structure
  • each first sub-antenna is a circular ring structure or an elliptical ring structure.
  • the cross-section of the second antenna is a quadrilateral structure
  • the induced current value excited by the second antenna on the first sub-antenna is reduced. , to further ensure that the radiation energy of the induced current will not interfere with the electromagnetic wave energy of the second antenna itself, and ensure that the radiation performance of the second antenna is not disturbed.
  • each antenna unit the number of the second antennas is 4, and the 4 second antennas are arranged in a matrix;
  • the central axis of the first antenna coincides with the central axis of the square enclosed by the four second antennas.
  • the central axis of the first antenna is set to coincide with the central axis of the square enclosed by the four second antennas to ensure that the first antenna is located in the central area of the square structure enclosed by the four second antennas, thereby It is avoided that a part of the second antenna is excessively shielded by the first antenna to cause serious coupling.
  • a plurality of antenna units are arranged on the ground plate;
  • a plurality of antenna units are arranged in an array.
  • multiple antenna units are arranged on the ground plane to further improve the radiation intensity of the multi-frequency fusion base station antenna.
  • the multi-frequency fusion base station antenna further includes a plurality of third antennas
  • the frequency band of the third antenna is lower than the frequency band of the first antenna, and the third antenna is located above the side of the first antenna away from the second antenna.
  • a third antenna is arranged above every 4 antenna units, and the center axis of the third antenna is the same as that of the second antenna.
  • the central axes of the square enclosed by the four antenna elements coincide.
  • the third antenna by arranging the third antenna above the side of the first antenna away from the second antenna, while realizing the tri-frequency fusion of the base station antenna, the horizontal occupation size of the third antenna in the multi-frequency fusion base station antenna is saved, and at the same time
  • the antenna elements of the three frequency bands share one antenna port, thereby realizing the miniaturization and weight reduction of the multi-frequency fusion base station antenna.
  • the center axis of the third antenna to coincide with the center axis of the square enclosed by the 4 antenna elements, it is ensured that the third antenna is located in the center area of the square structure enclosed by the 4 antenna elements, thereby avoiding the third antenna Excessive shading of the first antenna and even the second antenna in individual antenna units prevents severe coupling between high and low frequencies.
  • Embodiments of the present application further provide a communication device, including a radio frequency circuit and the above-mentioned multi-frequency fusion base station antenna, where the radio frequency circuit is electrically connected to the multi-frequency fusion base station antenna.
  • the induced current excited by the high frequency antenna on the low frequency antenna is reduced or even eliminated, and the induced current is guaranteed.
  • the high-frequency radiation energy will not interfere with the electromagnetic wave energy of the high-frequency antenna itself, realize the decoupling effect of the high-frequency fusion base station antenna, ensure that the radiation performance of the antenna in the higher frequency band is not affected by the antenna in the lower frequency band, and realize the communication equipment to the network. stable signal transmission and reception.
  • FIG. 1 is a schematic structural diagram of a multi-frequency fusion base station antenna provided in an embodiment of the present application
  • Fig. 2 is the top view of Fig. 1;
  • Fig. 3 is the assembly diagram of the first antenna and the ground plate in Fig. 1;
  • Fig. 5 is the first kind of partial structure schematic diagram at I place in Fig. 4;
  • Fig. 6 is the first structural representation of the second part in Fig. 4;
  • Fig. 7 is the induced current pattern after the second part in Fig. 4 is excited by the working current with the same polarization direction in the two second antennas;
  • Fig. 8 is the assembly diagram of the first antenna and the fixed seat in Fig. 4;
  • Fig. 9 is the partial structure schematic diagram of Fig. 8.
  • Fig. 10 is the second structure schematic diagram of the second part in Fig. 4;
  • Fig. 11 is the third structure schematic diagram of the second part in Fig. 4;
  • Fig. 12 is the fourth kind of structural representation of the second part in Fig. 4;
  • Fig. 13 is the fifth structure schematic diagram of the second part in Fig. 4;
  • Fig. 14 is the sixth structural schematic diagram of the second part in Fig. 4.
  • Fig. 15 is the seventh structural schematic diagram of the second part in Fig. 4.
  • FIG. 16 is a schematic structural diagram of four first sub-antennas in FIG. 4;
  • Fig. 17 is the induced current pattern after the first sub-antenna in Fig. 16 is excited by the working current in the +45° polarization direction in the two second antennas;
  • Fig. 18 is the induced current pattern after the first sub-antenna in Fig. 16 is excited by the working current in the -45° polarization direction in the two second antennas;
  • FIG. 19 is a schematic diagram of the first structure of the four first sub-antennas in FIG. 4;
  • FIG. 20 is a schematic diagram of the second structure of the four first sub-antennas in FIG. 4;
  • FIG. 21 is a schematic diagram of the third structure of the four first sub-antennas in FIG. 4;
  • Fig. 22 is the second kind of partial structure schematic diagram at I place in Fig. 4;
  • Fig. 23 is the third partial structure schematic diagram at I place in Fig. 4;
  • Fig. 24 is a 3D vertical coupling effect diagram in Fig. 4.
  • FIG. 25 is another schematic structural diagram of a multi-frequency fusion base station antenna provided by an embodiment of the present application.
  • Figure 26 is an exploded view of Figure 25;
  • Figure 27 is a top view of Figure 25;
  • FIG. 28 is a radiation effect diagram of the antenna of FIG. 25 .
  • the multi-frequency fusion base station antenna is to arrange the antenna arrays of different frequency bands on the same antenna surface.
  • the antennas of different frequency bands share one antenna surface.
  • the antennas of different frequency bands are arranged on the same ground plane, so The number of antenna ports of the base station is saved, so that the overall size of the base station antenna can be reduced, the weight of the base station antenna is also reduced, and the overall cost of the antenna is reduced.
  • the antenna of the higher frequency band is arranged below the lower frequency band when the multi-frequency fusion base station antenna is specifically set up.
  • a C-band antenna is set on the ground plane of the multi-frequency fusion base station antenna.
  • the H-band antenna that is, the C-band antenna and the H-band antenna
  • a two-band fusion base station antenna is formed.
  • the C-band antennas are arranged in an array on one side of the ground plate, and the H-band antenna arrays are arranged above the side of the C-band antennas away from the ground plate to save the occupied size of the multi-frequency fusion base station antenna in the horizontal direction.
  • a C-band antenna refers to an antenna with a radiation or reception frequency of 3300MHz-3800MHz
  • an H-band antenna refers to an antenna with a radiation or reception frequency of 1690MHz-2690MHz.
  • multiple C-band antennas arranged in an array will radiate or receive electromagnetic wave signals of 3300MHz-3800MHz
  • multiple H-band antennas arranged in an array will radiate or receive 1690MHz- 2690MHz electromagnetic wave signal, in other words, in a multi-frequency such as a two-frequency fusion base station antenna, the antennas of different frequency bands will radiate or receive electromagnetic waves of the corresponding frequency respectively without interfering with each other.
  • the H-band antenna since the H-band antenna is set above the C-band antenna, the electromagnetic wave energy radiated by the C-band antenna will be coupled to the radiation arm of the H-band antenna, and an induced current will be excited on the H-band antenna, and the induced current will undergo secondary radiated and superimposed with the radiated energy of the C-band antenna, that is, the H-band antenna has a "blocking" effect on the C-band antenna, which makes the H-band antenna cause strong interference to the electromagnetic wave signal of the C-band antenna.
  • the pattern of the C-band antenna Distortion occurs, which affects the radiation performance of the C-band antenna, for example, the gain of the C-band antenna is greatly reduced.
  • the mutual coupling between the low-frequency antenna and the high-frequency antenna is serious, which causes the low-frequency antenna to cause strong interference to the electromagnetic wave signal of the high-frequency antenna, thus seriously affecting the radiation performance of the low-frequency antenna.
  • Embodiments of the present application provide a multi-frequency fusion base station antenna and communication equipment.
  • the main body part and the first part of the first additional antenna in the first antenna can be set to have a height difference with respect to the ground plate, the main body part and the connection can be made
  • the second part formed by the two parts has a three-dimensional structure, so that in the second antenna with a relatively high frequency band, two beams of working currents with the same polarization direction in the two second antennas excite two beams of induced currents on the same second part
  • the phase directions of the two antennas are exactly opposite, and the two cancel each other out, thereby effectively reducing or even eliminating the induced current excited by the second antenna on the first additional antenna, and further reducing or even eliminating the induced current excited by the second antenna on the first antenna. Therefore, while ensuring the bandwidth of the first antenna, it is ensured that the radiation energy of the induced current will not interfere with the electromagnetic wave energy of the second antenna itself. The radiation performance of the antenna is not affected.
  • FIG. 1 is a schematic structural diagram of a multi-frequency fusion base station antenna provided in an embodiment of the present application.
  • an embodiment of the present application provides a multi-frequency fusion base station antenna, which includes a ground plate 100 and at least one antenna unit.
  • the grounding plate 100 may be a metal plate such as a grounded copper plate, a printed circuit board is integrated on the grounding plate 100 , and a plurality of conductors are drawn from the printed circuit board, and some conductors are drawn out to each antenna unit as feed lines 500 . On, feed the antenna in the antenna unit.
  • each antenna unit includes a first antenna 300 and a plurality of second antennas 200 arranged in an array, the frequency band of the first antenna 300 is lower than the frequency band of the second antenna 200, and the first antenna 300 is located in multiple The plane on which the second antenna 200 is located is above the side away from the ground plane 100 .
  • a plurality of second antennas 200 are arrayed on the ground plate 100 , and at the same time, the printed circuit board on the ground plate 100 is electrically connected to the second antenna 200 to feed the second antenna 200 and realize the second antenna 200 Horizontal polarization and orthogonal polarization of the operating current.
  • the specific feeding position and feeding method of the second antenna 200 reference may be made directly to the content of the prior art.
  • the number of the second antennas 200 may be appropriate values such as 4, 6, and 8, which may be adjusted according to actual needs.
  • four second antennas 200 may be arranged on the ground plate 100 , and the four second antennas 200 are arranged in a matrix, so as to reasonably utilize the space in the length direction and the width direction of the ground plate 100 .
  • FIG. 2 is a top view of FIG. 1
  • FIG. 3 is an assembly view of the first antenna and the ground plate in FIG. 1 . 1 to 3
  • the first antenna 300 in the embodiment of the present application is disposed above the side of the plane where the second antenna 200 is located away from the ground plate 100 , for example, the second antenna 200 is located between the first antenna 300 and the ground plate 100, and the first antenna 300 and the second antenna 200 are spaced apart.
  • the central axis of the first antenna 300 may be the same as the 4 The central axes of the square enclosed by the two second antennas 200 are coincident, so as to ensure that the first antenna 300 is located in the central area of the square structure enclosed by the four second antennas 200 , thereby preventing part of the second antennas 200 from being over-exposed by the first antenna 300 . Severe coupling occurs due to occlusion.
  • FIG. 4 is a schematic structural diagram of the first antenna in FIG. 3 .
  • the first antenna 300 includes four first sub-antennas 310 , wherein the connection line between the two first sub-antennas 310 intersects with the connection line between the other two first sub-antennas 310 , wherein two of the first sub-antennas 310 intersect.
  • the first sub-antenna 310 and the other two first sub-antennas 310 are respectively used to carry currents with orthogonal polarization directions.
  • the four first sub-antennas 310 are arranged in a matrix on a plane parallel to the ground plate 100. In this way, the midpoints of the four first sub-antennas 310 are sequentially connected to form a square structure, which is located in one pair of the square structures.
  • the two first sub-antennas 310 on the diagonal line are used to carry currents with the same polarization direction
  • the two first sub-antennas 310 located on the other diagonal line of the square structure are used to carry currents with the same polarization direction
  • the polarization directions of the currents on the first sub-antennas 310 located on the two diagonals are orthogonal. For example, two first sub-antennas 310 on one of the diagonals are used to carry +45° polarized current, and two first sub-antennas 310 on the other diagonal are used to carry -45° polarized current. current.
  • the balun structure 400 may be vertically arranged on the grounding plate 100 during the specific setting, wherein the bottom end of the balun structure 400 is fixed on the grounding plate 100 , and the top end of the balun structure 400 extends to The plane where the first antenna 300 is located is electrically connected to the four first sub-antennas 310 .
  • the two feed lines 500 drawn from the printed circuit board couple the current signal to the balun structure 400, and the top of the balun structure 400 is electrically connected to the four first sub-antennas 310, so as to feed the current signal on the balun structure 400. into the four first sub-antennas 310 to realize feeding of the four first sub-antennas 310 .
  • the balun structure 400 includes two parts arranged in a cross, one of the feeding lines 500 is used to feed the working current with a polarization direction of +45° to one of the parts, and the other feeding line 500 is used to feed the working current with a polarization direction of +45° to one of the parts.
  • the other part is fed with a working current with a polarization direction of -45°.
  • one of the top ends of the balun structure 400 is electrically connected to the two first sub-antennas 310 on one of the diagonal lines, so that the two first sub-antennas 310 are fed with a working current whose polarization direction is +45°
  • the top of another part of the balun structure 400 is electrically connected to the two first sub-antennas 310 on the other diagonal, so that the two first sub-antennas 310 are fed with a working current with a polarization direction of -45°, thereby
  • the two first sub-antennas 310 on one of the diagonals are orthogonal to the current polarization directions on the two first sub-antennas 310 on the other diagonal.
  • the first antenna 300 in this embodiment of the present application may further include a first additional antenna 320 .
  • the first additional antenna 320 includes four first parts 321 and four second parts 322, the four first parts 321 are arranged in sequence along the circumferential direction, and two adjacent first parts 321 are connected by the second parts 322, that is, That is to say, the adjacent ends of the four first parts 321 are connected by the second part 322 , so that the first additional antenna 320 forms a continuous annular structure, and the four first sub-antennas 310 are all located around the first additional antenna 320 In the annular space formed, in other words, the four first parts 321 and the four second parts 322 of the first additional antenna 320 are arranged around the outer circumference of all the first sub-antennas 310 in the circumferential direction.
  • FIG. 5 is a schematic diagram of the first partial structure at I in FIG. 4 .
  • each first sub-antenna 310 is coupled and fed with a corresponding first portion 321, for example, four first sub-antennas 310 are coupled and fed with respective adjacent first portions 321, respectively,
  • an induced current is generated on the first additional antenna 320, thereby radiating an electromagnetic wave signal with a certain bandwidth.
  • each first sub-antenna 310 is coupled to one of the first parts 321 for feeding, the four first parts 321 generate induced currents in the same polarization direction as the corresponding first sub-antenna 310 .
  • the polarization directions of the induced currents of the two first parts 321 coupled with the two first sub-antennas 310 whose polarization directions are +45° are +45°
  • the polarization directions of the other two first sub-antennas 310 whose polarization directions are -45° are +45°.
  • the polarization directions of the induced currents of the other two first parts 321 coupled by one sub-antenna 310 are -45°, so that the +45° polarization and the -45° polarization of the induced currents on the first additional antenna 320 are realized.
  • the two first sub-antennas 310 with a polarization direction of +45° are located on one of the diagonals of the square enclosed by the four first sub-antennas 310, and the other two with a polarization direction of -45°
  • the first sub-antenna 310 is located on the other diagonal of the square enclosed by the four first sub-antennas 310, then on the first additional antenna 320, the polarization direction of the two first parts 321 in one of the diagonals is +45 °, and the polarization directions of the other two first parts 321 at the other diagonal are -45°.
  • the first additional antennas 320 are arranged around the outer circumference of the four first sub-antennas 310, and each of the first sub-antennas 310 and the corresponding part of the first additional antenna 320 are coupled and fed, thereby increasing the size of the antenna. Radiation bandwidth of the first antenna 300 .
  • the first additional antenna 320 is formed into a continuous ring structure, so that a stable induced current is formed on the first additional antenna 320 through the coupling and feeding of each of the first sub-antennas 310 , thereby ensuring the radiation performance of the entire first antenna 300 .
  • FIG. 6 is a schematic diagram of the first structure of the second part in FIG. 4 . 3 , 4 and 6 , for example, when the second part 322 of the first additional antenna 320 is specifically set, it may include a main body part 3221 and a connecting part 3222 connected to both ends of the main body part 3221 , wherein the connection One end of the part 3222 is connected to the first part 321, and the distance between the main part 3221 and the ground plate 100 is not equal to the distance between the first part 321 and the ground plate 100, that is, the main part 3221 and the first part 321 are opposite Due to the height difference of the ground plate 100 , the main body portion 3221 and the connecting portions 3222 connected at both ends thereof form a three-dimensional structure, that is, the second portion 322 of the first additional antenna 320 has a three-dimensional structure.
  • the embodiment of the present application regards the first additional antenna 320 and the first sub-antenna 310 as a planar structure, that is, the thicknesses of the first additional antenna 320 and the first sub-antenna 310 are ignored.
  • the distance between the main body portion 3221 and the grounding plate 100 refers to the vertical distance between the plane where the main body portion 3221 is located and the plane where the grounding plate 100 is located.
  • the distance between the first portion 321 and the grounding plate 100 refers to the The vertical distance between the plane where the first part 321 is located and the plane where the grounding plate 100 is located.
  • the grounding plate 100 taking the grounding plate 100 as a reference, there is a height difference between the plane where the main body part 3221 is located and the plane where the first part 321 is located.
  • the connecting parts 3222 at both ends of the main body part 3221 extend from the plane where the main body part 3221 is located to the plane where the first part 321 is located, so that the second part 322 formed by the main body part 3221 and the connecting part 3222 has a three-dimensional structure.
  • the main body 3221 is located on the first plane above the x-y plane, the first part 321 is located on the second plane above the x-y plane, and the second plane is lower than the first plane.
  • the connecting portion 3222 extends from the first plane to the second plane along the z direction, so that the second portion 322 formed by the main portion 3221 and the connecting portion 3222 forms a three-dimensional structure (as shown in FIG. 6 ). Meanwhile, since the connecting portion 3222 extends from the high first plane to the low second plane along the z direction, the second portion 322 protrudes away from the ground plate 100 from the plane where the first portion 321 is located.
  • the first plane where the body portion 3221 is located may be lower than the second plane where the first portion 321 is located, and the connecting portion 3222 extends from the lower first plane to the higher second plane (not shown in the figure).
  • the second portion 322 formed by the main body portion 3221 and the connecting portion 3222 is also formed into a three-dimensional structure, and the second portion 322 is recessed from the plane where the first portion 321 is located toward the ground plate 100 .
  • the first sub-antenna 310 and the first part 321 are located on the same plane.
  • FIG. 7 is an induced current pattern of the second part in FIG. 4 after being excited by working currents with the same polarization directions in the two second antennas.
  • the first additional antenna 320 is disposed above the plane where the plurality of second antennas 200 are located, when the plurality of second antennas 200 radiate electromagnetic wave energy, the antennas above the plurality of second antennas 200 will The induced current is excited on the first additional antenna 320, and since the four second parts 322 of the first additional antenna 320 are all three-dimensional structures, two working currents with the same polarization direction on the two second antennas 200 are excited to On each second part 322 , the phase directions of the corresponding two induced currents (shown by e and f in FIG.
  • the phases of the two induced currents from the +45°-polarized working currents on the two second antennas 200 to any one of the second parts 322 are opposite, so that the two +45°-polarized working currents are excited to the second part
  • the two induced currents on 322 cancel each other out.
  • the phases of the two induced currents on any one of the second parts 322 from the -45°-polarized working currents on the two second antennas 200 are opposite, so that the two -45°-polarized working currents are excited to the second part 322 with opposite phases.
  • the two induced currents on the two parts 322 cancel each other out.
  • the two second antennas 200 are excited by two beams of working currents with the same polarization direction to the second part. If the values of the induced currents on the 322 are equal, the induced currents excited by the two working currents with the same polarization directions to the second part 322 will completely cancel; and if any two second antennas 200 and one of the second parts If the distances between 322 are not equal, then the two beams of the second antenna 200 with the same polarization direction of the working current stimulate the induced current value on the second part 322 is not equal, then the two beams of the same polarization direction of the working current The induced current excited to the second part 322 will be partially offset, thereby weakening the total induced current value excited by the plurality of second antennas 200 on the first antenna 300, ensuring that the radiated energy of the induced current will not affect the first antenna 300.
  • the electromagnetic wave energy of the second antenna 200 will be partially offset, thereby weakening the total induced current value excited by the plurality of second antennas 200 on
  • the main body portion 3221 and the first portion 321 of the second portion 322 are set to have a height difference relative to the ground plate 100 , so that the second portion 322 of the first additional antenna 320 has a three-dimensional structure.
  • the phase directions of the two induced currents excited on the same second part 322 by the two working currents with the same polarization directions in the two second antennas 200 are exactly opposite, and the two are canceled, so that the effective Reduce or even eliminate the induced current excited by the second antenna 200 on the first additional antenna 320, and further reduce or even eliminate the induced current excited by the second antenna 200 on the first antenna 300, thereby ensuring the bandwidth of the first antenna 300.
  • it is ensured that the radiated energy of the induced current will not interfere with the electromagnetic wave energy of the second antenna 200 itself, so as to realize the decoupling effect of the high and low frequency fusion base station antenna.
  • FIG. 8 is an assembly diagram of the first antenna and the fixing base in FIG. 4
  • FIG. 9 is a partial structural schematic diagram of FIG. 8
  • the antenna unit of the embodiment of the present application may further include a fixing base 600
  • the fixing base 600 is horizontally arranged above the side of the second antenna 200 away from the ground plate 100
  • the first antenna 300 is arranged on the fixing base 600 is one side surface facing away from the second antenna 200
  • the fixing base 600 in the embodiment of the present application may be an insulating member such as plastic.
  • the fixing base 600 in the embodiment of the present application may be fixed on the top of the balun 400 to improve the stability of the fixing base 600 above the grounding plate 100 .
  • the fixing base 600 and the balun 400 may be connected in a detachable manner such as snap connection or screw connection, so as to facilitate the removal of the first antenna 300 .
  • a mounting slot that matches the structural layout of the first antenna 300 may be opened on the fixing base 600 , and the first sub-antenna 310 and the first additional antenna 320 of the first antenna 300 are embedded in the corresponding mounting slots , so as to simplify the assembly efficiency between the first antenna 300 and the fixing base 600 , and at the same time facilitate the disassembly and assembly of the first antenna 300 .
  • the first antenna 300 may also be adhered to the fixing base 600 .
  • the first antenna 300 and the fixing base 600 can also be formed by two-color injection molding, so that the first antenna 300 and the fixing base 600 are formed into one piece, so as to enhance the connection between the first antenna 300 and the fixing base 600 In order to prevent the first antenna 300 from coming off the surface of the fixing base 600 .
  • the fixing base 600 by arranging the fixing base 600 above the second antenna 200 and setting the first antenna 300 on the side surface of the fixing base 600 away from the second antenna 200 , not only the stability of the first antenna 300 above the second antenna 200 is improved, The stability is improved, the structural stability of the first antenna 300 is improved, the deformation of the first antenna 300 is prevented, and the radiation performance of the first antenna 300 is not affected.
  • the side of the fixing base 600 facing away from the second antenna 200 in the embodiment of the present application may be provided with four bosses at intervals around the central axis 610 , and each boss 610 protrudes in a direction away from the second antenna 200 .
  • the boss 610 can divide the surface of the side of the fixing base 600 away from the second antenna 200 into a first surface 620 and a second surface 630 , wherein the second surface 630 is the boss 610
  • the first surface 620 is the remaining surface of the side of the fixing base 600 facing away from the second antenna 200 .
  • the four main body parts 3221 are respectively disposed on the corresponding second surface 630 , in other words, the four main body parts 3221 are respectively disposed on the top surface of the corresponding boss 610 , the four first sub-antennas 310 and the four first parts 321 Both are disposed on the first surface 620 , and one end of the connecting portion 3222 extends from the second surface 630 to the first surface 620 along the sidewall of the boss 610 .
  • a part of the area of the fixing seat 600 facing the second antenna 200 can be recessed to the side away from the second antenna 200 , and the part of the area is formed on the fixing seat The side of 600 facing away from the second antenna 200 is protruded, thereby forming a boss 610 .
  • a protruding part may be additionally provided directly on the side surface of the fixing base 600 facing away from the second antenna 200 .
  • the main body part 3221 and the connecting part 3222 for fixing the second part 322 may be additionally provided directly on the side surface of the fixing base 600 facing away from the second antenna 200 .
  • the boss 610 is arranged on the side of the fixing base 600 away from the second antenna 200, and the main body 3221 of the second part 322 is arranged on the top surface of the boss 610, that is, the second surface 630.
  • the connecting part 3222 of the two parts 322 can extend to the first surface 620 along the side wall of the boss 610 and be connected with the first part 321 , so that the connecting part 3222 and the main part 3221 of the second part 322 are stably disposed on the intersecting surface , to ensure the stability of the three-dimensional structure formed by the second part 322 , thereby realizing the stable cancellation of the induced current excited by the second antenna 200 on the second part 322 , and ensuring the solution between the first antenna 300 and the second antenna 200 coupling effect.
  • the corners at both ends of the side wall of the boss 610 along the thickness direction may be formed into arc chamfers to facilitate injection molding of the fixing seat 600 .
  • the corners at both ends of the side wall of the boss 610 in the thickness direction specifically refer to the connection corners between the top surface and the side surface of the boss 610 and the connection corners between the side surface of the boss 610 and the first surface 620 .
  • the connecting portion 3222 of the embodiment of the present application is configured in an arc-shaped structure that matches the above-mentioned arc chamfering, so as to ensure that the connecting portion 3222 and the arc on the side wall of the boss 610 are inverted.
  • the corners fit together, so that the connecting portion 3222 is closely attached to the corner of the side wall of the boss 610, which improves the structural stability of the connecting portion 3222, prevents the connecting portion 3222 from moving in the vertical direction, and not only ensures the three-dimensional
  • the structural stability of the second part 322 also ensures the stability of the induced current coupled and fed by the first sub-antenna 310 to the first additional antenna 320 .
  • the arc chamfer formed by the connection corner between the top surface and the side surface of the boss 610 is curved in a direction away from the boss 610 , and the arc chamfer formed by the connection corner between the side surface of the boss 610 and the first surface 620 is toward The boss 610 is internally curved.
  • the connecting portion 3222 of the second portion 322 may include two arc-shaped structures, wherein one arc-shaped structure matches the arc chamfer of the connecting corner of the top surface and the side surface of the boss 610 , Another arc-shaped structure matches the arc chamfer of the connecting corner between the side surface of the boss 610 and the first surface 620 , so that the entire connecting portion 3222 can fully fit with the corners at both ends of the side wall of the boss 610 .
  • FIG. 10 is a schematic diagram of the second structure of the second part in FIG. 4 .
  • the connecting portion 3222 may also be an arc-shaped structure that is bent in the same direction.
  • the connecting portion 3222 is an arc-shaped structure that is curved toward the direction close to the boss 610 .
  • FIG. 11 is a schematic diagram of a third structure of the second part in FIG. 4
  • FIG. 12 is a schematic diagram of a fourth structure of the second part in FIG. 4
  • the connecting portion 3222 is also a flat bending structure, one end of the connecting portion 3222 is connected to the main body portion 3221 on the boss 610 , and the other end of the connecting portion 3222 is connected to the first The first portion 321 on a surface 620 is attached.
  • the connecting portion 3222 includes a vertical portion that is perpendicular to the first surface 620 and a horizontal portion that is parallel to the second surface 630 .
  • the connecting portion 3222 may also include an inclined portion disposed on the first surface 620 obliquely. and parallel to the horizontal portion of the second surface 630 . The distance between the top end of the inclined portion and the side wall of the boss 610 is smaller than the distance between the bottom end of the inclined portion and the side wall of the boss 610 .
  • FIG. 13 is a schematic diagram of the fifth structure of the second part in FIG. 4
  • FIG. 14 is a schematic diagram of the sixth structure of the second part in FIG. 4
  • FIG. 15 is a schematic diagram of the seventh structure of the second part in FIG. 4 .
  • at least a part of the main body portion 3221 in this embodiment of the present application may be configured as an arc-shaped structure that is bent in a direction away from the first sub-antenna 310 .
  • the main body portion 3221 includes a first sub-body portion 3221a, a second sub-body portion 3221b and a third sub-body portion 3221c which are connected in sequence, wherein the second sub-body portion 3221b is located in the first sub-body portion Between 3221a and the third sub-body portion 3221c, one end of the first sub-body portion 3221a is connected to the connecting portion 3222, the other end of the first sub-body portion 3221a is connected to one end of the second sub-body portion 3221b, and the third sub-body portion One end of the 3221c is connected to the other connecting portion 3222, and the other end of the third sub-body portion 3221c is connected to the other end of the second sub-body portion 3221b.
  • the second sub-body portion 3221b may be set as an arc-shaped structure that is bent in a direction away from the first sub-antenna 310 , and the first sub-body portion 3221a and the third sub-body portion 3221c are both The linear structure extends from one end of the second sub-body portion 3221b toward the direction close to the first sub-antenna 310 .
  • the distance between the main body portion 3221 and the first sub-antenna 310 is increased, and the first sub-antenna 310 is ensured.
  • the radiated energy on one sub-antenna 310 will not interfere with the induced current on the main body portion 3221 , that is, the over-coupling of the first sub-antenna 310 and the first additional antenna 320 is prevented, and the formation of the second additional antenna and the first sub-antenna 310 is ensured.
  • the electromagnetic wave performance of the first antenna 300 is more stable; on the other hand, the above structure increases the perimeter of the first additional antenna 320 , thereby increasing the bandwidth of the first antenna 300 .
  • the curvature radius of the arc structure of the main body portion 3221 is equal or unequal everywhere, so as to simplify the structural arrangement of the main body portion 3221 and improve the manufacturing efficiency of the first additional antenna 320 .
  • the arc-shaped structure of the main body portion 3221 is a semi-circular structure with equal radius of curvature (as shown in FIG. 13 ).
  • the arc structure of the main body portion 3221 may also be a semi-elliptical structure with unequal curvature radii (as shown in FIG. 14 and FIG. 15 ).
  • the first sub-body part 3221a and the third sub-body part 3221c can be respectively connected to both ends of the long axis of the semi-elliptical structure.
  • the first sub-body part 3221c The sub-body portion 3221a and the third sub-body portion 3221c may be respectively connected at both ends of the short axis of the semi-elliptical structure.
  • the first additional antenna 320 may be an integral piece formed in one piece. Specifically, the first sub-body portion 3221a, the second sub-body portion 3221b and the third sub-body portion 3221c of the main body portion 3221 are integrally formed as one piece. Meanwhile, the main body portion 3221 and the connecting portion 3222 of the second portion 322 are also integrally formed into one piece, so that the structure of the first additional antenna 320 can be simplified and the radiation performance of the first additional antenna 320 can be ensured.
  • FIG. 16 is a schematic structural diagram of the four first sub-antennas in FIG. 4 .
  • the four first sub-antennas 310 in this embodiment of the present application are all ring-shaped structures.
  • Fig. 17 is the induced current pattern after the first sub-antenna in Fig. 16 is excited by the working current in the +45° polarization direction of the two second antennas
  • Fig. 18 is the first sub-antenna in Fig. 16 subjected to two second antennas The induced current pattern after excitation by the working current in the -45° polarization direction. Referring to FIG. 1 , FIG. 17 and FIG.
  • first sub-antennas 310 are arranged above the plane where the multiple second antennas 200 are located, which makes the multiple second antennas 200 radiate electromagnetic wave energy , an induced current will be excited on each of the first sub-antennas 310 above it, and because the first sub-antennas 310 are in an end-to-end ring structure, the two second antennas 200 with the same polarization direction
  • the beam induced currents are excited to each first sub-antenna 310, and the phase directions of the corresponding two beams of induced currents are just opposite, so that the induced currents excited by the two electromagnetic wave energies with the same polarization directions to the first sub-antenna 310 are mutually exclusive. cancel, thereby weakening the induced current value excited by the second antenna 200 to the first antenna 300 , thereby realizing the decoupling effect between the first antenna 300 and the second antenna 200 .
  • the phases of the two induced currents on any one of the first sub-antennas 310 excited by the +45°-polarized working currents on the two second antennas 200 are opposite, so that the two +45°-polarized currents have opposite phases.
  • the two induced currents (shown as a and b in FIG. 17 ) excited by the working current of the first sub-antenna 310 cancel each other out.
  • the phases of the two induced currents on any one of the first sub-antennas 310 driven by the -45° polarized working currents on the two second antennas 200 are opposite, so that the two -45° polarized currents have opposite phases.
  • the two induced currents (shown by c and d in FIG. 18 ) that are excited by the working current of the first sub-antenna to the first sub-antenna 310 cancel each other out.
  • the two beams of the second antennas 200 with the same polarization direction have different induced current values excited to the first sub-antenna 310, then the two beams of polarization
  • the induced current excited by the working current in the same direction to the first sub-antenna 310 will be partially canceled, thereby weakening the total induced current value excited by the plurality of second antennas 200 on the first antenna 300, ensuring the induced current.
  • the radiation energy will not cause great interference to the electromagnetic wave energy of the second antenna 200 itself, so as to ensure the radiation performance of the second antenna 200 .
  • the first antenna 300 above the second antenna 200 is set to a ring structure, so that in the second antenna 200 with a relatively high frequency band, the two second antennas 200 have the same polarization direction.
  • the phase directions of the two induced currents excited by the two beams of working currents on the same first sub-antenna 310 are exactly opposite, and the two are canceled, thereby effectively reducing or even eliminating the induction of the second antenna 200 on the first sub-antenna 310.
  • the decoupling effect ensures that the radiation performance of the second antenna 200 in the higher frequency band is not affected.
  • FIG. 19 is a schematic diagram of the first structure of the four first sub-antennas in FIG. 4
  • FIG. 20 is a schematic diagram of the second structure of the four first sub-antennas in FIG. 4
  • FIG. 21 is a schematic diagram of the four first sub-antennas in FIG. 4 Schematic diagram of the third structure.
  • the cross section of each second antenna 200 is a quadrilateral structure, for example, each second antenna 200 is a cube structure.
  • the antennas 310 all have a circular ring structure or an elliptical ring structure.
  • the first sub-antenna 310 is less likely to sense the electromagnetic waves radiated by the second antenna 200, thereby reducing the The two antennas 200 excite the induced current value on the first sub-antenna 310, further ensuring that the radiation energy of the induced current will not interfere with the electromagnetic wave energy of the second antenna 200 itself, and ensure that the radiation performance of the second antenna 200 is not disturbed.
  • the end points of each of the first sub-antennas 310 on the long axis may all face the same position
  • the end points of each of the first sub-antennas 310 located on the long axis face the center point of the square structure surrounded by the four first sub-antennas 310 .
  • the long axes of the four first sub-antennas 310 may be sequentially connected to form a quadrilateral structure, for example, when the four first sub-antennas 310 When arranged in a matrix, the long axes of the four first sub-antennas 310 may be sequentially connected to form a square structure.
  • the embodiment of the present application does not specifically limit the arrangement of the first sub-antennas 310 of the four elliptical ring structures.
  • the first part 321 of the first additional antenna 320 and the first sub-antenna 310 are coupled and fed in the embodiment of the present application, the first part 321 of the first additional antenna 320 is directed away from the second antenna 200
  • a first coupling portion 3211 may be extended, and a second coupling portion 311 may be extended from the first sub-antenna 310 in a direction away from the second antenna 200 .
  • the part 3211 is coupled to the second coupling part 311 for feeding.
  • the first coupling portion 3211 protrudes from the plane where the first portion 321 is located, and the second coupling portion 3211 protrudes from the plane where the first sub-antenna 310 is located.
  • the first part 321 and the first sub-antenna 310 are located on the same plane above the ground plate 100 , for example, when the ground plate 100 is located on the same plane When it is on the x-y plane, the first part 321 and the first sub-antenna 310 are both located on the second plane above the x-y plane, and the second plane is parallel to the x-y plane, and both the first coupling part 3211 and the second coupling part 311 protrude
  • the plane where the first part 321 and the first sub-antenna 310 are located that is, the first coupling part 3211 and the second coupling part 311 both protrude from the second plane, and the first coupling part 3211 and the second coupling part 311 are facing away from the ground plate 100 bulges out on one side.
  • the first coupling part 3211 and the second coupling part 311 may be perpendicular to the above-mentioned second plane, that is, the plane where the first coupling part 3211 and the second coupling part 311 and the first part 321 and the first sub-antenna 310 are located (ie, the second plane), the included angle is 90°.
  • the first coupling part 3211 and the second coupling part 311 extend obliquely upward from the plane (eg, the second plane) where the first part 321 and the first sub-antenna 310 are located, that is, the first
  • the angle between the coupling part 3211 and the second coupling part 311 and the second plane is an acute angle, for example, the angle between the first coupling part 3211 and the second coupling part 311 and the second plane can be 45°, 60°, Appropriate angle values such as 80°.
  • the first coupling portion 3211 and the second coupling portion 311 are respectively extended on the first portion 321 and the first sub-antenna 310 in a direction away from the second antenna 200, and the first coupling portion 3211 and the second coupling portion are coupled
  • Each part 311 protrudes from the plane where the first part 321 and the first sub-antenna 310 are located, and the coupling and feeding are realized through the first coupling part 3211 and the second coupling part 311, and the first additional antenna 320 and the first sub-antenna 310 are realized.
  • the surface-to-surface coupling between the first part 321 and the first sub-antenna 310 in this embodiment of the present application increases the coupling area between the first part 321 and the first sub-antenna 310, thereby improving the The coupling feeding effect between the first additional antenna 320 and the first sub-antenna 310 is improved, and the bandwidth of the first antenna 300 is increased.
  • planar coupling means that the area opposite the first part 321 and the first sub-antenna 310 is the coupling part, and the coupling part and the first part 321 and the first sub-antenna 310 are on the same horizontal plane, then the first part The coupling mode between 321 and the first sub-antenna 310 is only line-line coupling, the coupling area is small, and the coupling effect is poor.
  • first coupling part 3211 and the second coupling part 311 perpendicular to the plane where the first part 321 and the first sub-antenna 310 are located, it is also convenient to increase the coupling area of the first coupling part 3211 and the second coupling part 311 For example, only by increasing the extension height of the first coupling part 3211 and the second coupling part 311, the coupling area of the first coupling part 3211 and the second coupling part 311 can be increased, so as to realize flexible adjustment of the coupling and realize Good impedance matching is beneficial to the realization of broadband antennas.
  • an extension portion 312 may be formed on the side of the first sub-antenna 310 facing the first portion 321 , the extension portion 312 extends toward the first portion 321 , and the second coupling portion 311 is connected to the extension portion 312 above, to ensure stable coupling between the second coupling part 311 and the first coupling part 3211 .
  • an extension 312 is formed on the side of the first sub-antenna 310 facing the first part 321, which facilitates the setting of the second coupling part 311 and improves the second Structural stability of the coupling portion 311 on the first sub-antenna 310 .
  • the extension portion 312 may be configured as a fan-shaped structure with a large end and a small end, wherein the small end of the extension portion 312 is connected to the first sub-section.
  • the large end of the extension part 312 is connected to the second coupling part 311, so that the two ends of the second coupling part 311 in the horizontal direction can extend to both sides of the large end of the extension part 312, thereby increasing the second coupling part 311.
  • the side surface of the coupling part 311 increases the coupling area between the second coupling part 311 and the first coupling part 3211 .
  • the horizontal direction of the second coupling part 311 or the first coupling part 3211 refers to the direction in which the second coupling part 311 or the first coupling part 3211 is parallel to the plane where the first sub-antenna 310 is located, then the second coupling part 311 Alternatively, the horizontal extension length of the first coupling portion 3211 refers to the extension length of the second coupling portion 311 or the first coupling portion 3211 in the horizontal direction.
  • the first coupling part 3211 and the second coupling part 311 may each include a plurality of bending parts arranged in sequence along the horizontal direction, and the first coupling part 3211 is opposite to the second coupling part 311 The bends are set parallel to each other.
  • FIG. 22 is a schematic diagram of the second partial structure at I in FIG. 4 .
  • the first coupling part 3211 and the second coupling part 311 are arranged to include a plurality of bending parts, extending horizontally between the first coupling part 3211 and the second coupling part 311
  • the relative area between the first coupling part 3211 and the second coupling part 311 is further increased, thereby increasing the coupling area between the first coupling part 3211 and the second coupling part 311, and further improving the first coupling part 3211 and the second coupling part 311.
  • the coupling feeding effect between the additional antenna 320 and the first sub-antenna 310 are examples of the additional antenna 320 and the first sub-antenna 310 .
  • the first coupling portion 3211 and the second coupling portion 311 can be sequentially provided with three bending portions along the horizontal direction (as shown in FIG. 5 ).
  • the first coupling portion 3211 as an example, the two bent portions at both ends are bent toward the direction close to the first sub-antenna 310, and the included angle between the bent portion in the middle and the bent portion on either side is an obtuse angle
  • the structure of the second coupling part 311 is the same as that of the first coupling part 3211
  • the second coupling part 311 and the bending part of the first coupling part 3211 with the same bending direction are arranged opposite and parallel to each other.
  • the first coupling part 3211 and the second coupling part 311 can also be provided with four bending parts in sequence along the horizontal direction.
  • the four bending parts two adjacent bending parts are toward the Bending in opposite directions, for example, the four bending parts can be bent to form a shape similar to a "W", and the two bending parts located at the outermost end can be bent in a direction close to the first sub-antenna 310, that is, a "W" shape
  • the opening of faces the first sub-antenna 310 .
  • the embodiment of the present application does not specifically limit the number and direction of the bending portions of the first coupling portion 3211 and the second coupling portion 311 .
  • FIG. 23 is a schematic diagram of the third partial structure at I in FIG. 4 .
  • the opposite surfaces of the first coupling portion 3211 and the second coupling portion 311 are arc surfaces with the same bending direction.
  • both the first coupling part 3211 and the second coupling part 311 are arc structures that are curved in a direction away from the first sub-antenna 310 .
  • the surfaces facing the first coupling portion 3211 and the second coupling portion 311 are both set as arc-shaped surfaces with the same bending direction, thereby increasing the coupling area of the first coupling portion 3211 and the second coupling portion 311 while increasing the coupling area of the first coupling portion 3211 and the second coupling portion 311 , the arrangement structure of the first coupling part 3211 and the second coupling part 311 is simplified, thereby improving the manufacturing efficiency of the first antenna 300 .
  • the multi-frequency fusion base station antenna when only the first antenna 300 and the second antenna 200 are arranged on the ground plate 100, the multi-frequency fusion base station antenna is a two-frequency fusion antenna.
  • the first antenna 300 may be an H-band antenna
  • the second antenna 200 may be a C-band antenna.
  • FIG. 24 is an effect diagram of the 3D vertical coupling in FIG. 4 .
  • the solid line is a graph of echo damage-frequency of the H-band antenna (coupling in the vertical direction) of the embodiment of the present application
  • the dotted line is Graph of echo damage versus frequency for conventional planar coupling.
  • S11 bandwidth of the solid line is 800 MHz
  • the S11 bandwidth of the dotted line is 300 MHz.
  • the first sub-antenna 310 and the The first additional antennas 320 are coupled and fed in a vertical coupling manner, and the radiation bandwidth thereof is improved compared to the planar coupling structure.
  • the grounding plate 100 in this embodiment of the present application may be provided with multiple antenna units, and the multiple antenna units are arranged in an array to further improve the radiation bandwidth and radiation intensity of the multi-frequency fusion base station antenna.
  • the number of antenna elements may be 4, 6, or 8, etc. Wherein, when the number of antenna units is 4, the 4 antenna units are arranged in a matrix. When the number of antenna units is 6, the 6 antenna units are arranged in a 3*2 array.
  • the first antenna 300 having a three-dimensional structure has a smoother gain in the entire frequency band.
  • FIG. 25 is another schematic structural diagram of a multi-frequency fusion base station antenna provided by an embodiment of the present application
  • FIG. 26 is an exploded view of FIG. 25
  • the multi-frequency fusion base station antenna according to the embodiment of the present application may further include a plurality of third antennas 700 , the frequency band of the third antenna 700 is lower than the frequency band of the first antenna 300 , and the third antenna 700 is located in The first antenna 300 is above the side away from the second antenna 200 .
  • the first antenna 300 , the second antenna 200 and the third antenna 700 are spaced apart in a direction orthogonal to the ground plate 100 , and the second antenna 200 is located between the first antenna 300 and the third antenna 700 .
  • the structure of the third antenna 700 may be a low frequency antenna structure in the prior art, for example, the third antenna 700 is a square-shaped structure.
  • the third antenna 700 may be an L-band antenna.
  • the L-band antenna refers to an antenna with a radiation or reception frequency of 690MHz-960MHz.
  • the third antenna 700 by arranging the third antenna 700 above the side of the first antenna 300 away from the second antenna 200 , while realizing the tri-frequency fusion of the base station antenna, the level of the third antenna 700 in the multi-frequency fusion base station antenna is saved. Occupied size, at the same time, the antenna elements of the three frequency bands share one antenna surface, realizing the miniaturization and weight reduction of the multi-frequency fusion base station antenna.
  • FIG. 27 is a plan view of FIG. 25 .
  • a third antenna 700 can be arranged above every 4 antenna units, and the central axis of the third antenna 700 can be coincident with the central axis of the square enclosed by the 4 antenna units, so as to ensure the first
  • the three antennas 700 are located in the central area of the square structure enclosed by the four antenna units, so as to prevent the third antenna 700 from over-shielding the first antenna 300 and even the second antenna 200 in the individual antenna units, thereby preventing the occurrence of high and low frequencies. Severely coupled.
  • FIG. 28 is a radiation effect diagram of the antenna of FIG. 25 .
  • the multi-frequency fusion base station antenna according to the embodiment of the present application includes 4 antenna units and a third antenna 700
  • the first antenna 300 is an H-band antenna (4)
  • the second antenna 200 is a C-band antenna Antennas (16)
  • the third antenna 700 is an L-band antenna (1)
  • the curve j is the gain-radiation angle pattern of an ideal 4*4 C-band antenna (one of the columns C in Figure 25 is used for testing.
  • Band antenna, such as the pattern of the C-band antenna in the second column) at this time, the C-band antenna is not blocked by the H-band antenna, and the radiation performance of the C-band antenna is excellent when there is no obstruction.
  • the k curve is the gain-radiation angle pattern of the 4*4 C-band antenna under the occlusion of the traditional planar H-band antenna.
  • the pattern is significantly deteriorated, and the main lobe of the pattern is split.
  • the curve is the gain-radiation angle pattern of the 4*4 C-band antenna under the occlusion of the 3D (stereostructure) H-band antenna according to the embodiment of the application, the gain of the main lobe is improved by >2dB, and the bandwidth is improved by >30° , the main lobe depression is effectively repaired, indicating that the first antenna 300 of the three-dimensional structure in the multi-frequency fusion base station antenna of the embodiment of the present application has a good decoupling effect on the second antenna 200 below.
  • the embodiments of the present application include at least the following three technical points.
  • the first technical point the distance between the main body portion 3221 of the first additional antenna 320 and the ground plate 100 is not equal to the distance between the first portion 321 and the ground plate 100, so that the second The part 322 is formed into a three-dimensional structure to weaken the induced current value excited by the second antenna 200 to the first antenna 300, so as to realize the decoupling effect between the first antenna 300 and the second antenna 200;
  • the first part 321 of the first additional antenna 320 can extend a first coupling part 3211 in a direction away from the second antenna 200
  • the first sub-antenna 310 can extend in a direction away from the second antenna 200 with a second
  • the coupling part 311, and the coupling and feeding between the first sub-antenna 310 and the first additional antenna 320 are realized through the first coupling part 3211 and the second coupling part 311, and the first coupling part 3211 and the second coupling part 311 are both convex.
  • the plane setting where the first part 321 and the first sub-antenna 310 are located realizes the three-dimensional coupling feeding between the first additional antenna 320 and the first sub-antenna 310, that is, the plane between the first part 321 and the first sub-antenna 310 is realized. face coupling.
  • the four first sub-antennas 310 are all ring-shaped structures, which weakens the induced current value excited by the second antenna 200 to the first antenna 300 and realizes the solution between the first antenna 300 and the second antenna 200 coupling effect.
  • the current second technical point can be protected as an exclusive technical feature.
  • the third technical point can be protected as an exclusive technical feature.
  • Embodiments of the present application further provide a communication device, including a radio frequency circuit and the multi-frequency fusion base station antenna in any of the above examples, where the radio frequency circuit and the multi-frequency fusion base station antenna are electrically connected through a feeder.
  • the radio frequency circuit provides a signal source for the multi-frequency fusion base station antenna. Specifically, the radio frequency circuit feeds a signal current to the multi-frequency fusion base station antenna through the feeder, and then the multi-frequency fusion base station antenna sends the signal current to the multi-frequency fusion base station antenna in the form of electromagnetic waves. external transmission, thereby completing the transmission of the signal.
  • the communication device in this embodiment of the present application may also be a communication base station.
  • the induced current excited by the high frequency antenna on the low frequency antenna is reduced or even eliminated, and the induced current is guaranteed.
  • the high-frequency radiation energy will not interfere with the electromagnetic wave energy of the high-frequency antenna itself, realize the decoupling effect of the high-frequency fusion base station antenna, ensure that the radiation performance of the antenna in the higher frequency band is not affected by the antenna in the lower frequency band, and realize the communication equipment to the network. stable signal transmission and reception.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供一种多频融合基站天线及通信设备,多频融合基站天线包括接地板和至少一个天线单元;天线单元包括第一天线和多个呈阵列排布的第二天线,第一天线的频段低于第二天线的频段,且第一天线位于多个第二天线所在的平面远离接地板的一侧上方;第一天线包括第一附加天线,第一附加天线包括四个沿周向依次设置的第一部分和连接在相邻两个第一部分之间的第二部分,且第二部分的主体部与第一部分相对于接地板存在高度差,使得第二部分呈立体结构,使得频段相对较高的两个第二天线中,极化方向相同的两束工作电流激励在同一个第二部分上的两束感应电流发生抵消,确保了该感应电流的辐射能量不会对第二天线自身的电磁波能量造成干扰。

Description

多频融合基站天线及通信设备
本申请要求于2020年10月31日提交中国专利局、申请号为202011197056.2、申请名称为“多频融合基站天线及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信设备技术领域,特别涉及一种多频融合基站天线及通信设备。
背景技术
在无线电通信、广播电视、雷达以及航空航海的导航等工程系统中,都需要利用无线电波来传递信息以完成整个系统的工作,天线就是这些系统中用来发射或者接收无线电波的基本器件。
随着5G通信的发展,通信设备中的天线需要覆盖的频段越来越多,例如,大多数基站天线融合了3G、4G、5G中的不同频段,以保证一个基站能够收发不同频段的无线信号。为了保证基站天线的小型化和轻量化,多频融合基站天线应运而生。多频融合基站天线是将不同频段的天线阵列布置在同一个天线口面上,并且因天线口面的空间局限性,通常会有部分高频天线排布在低频天线的下方,以节约天线的空间尺寸。
然而,多频融合基站天线中,高频天线辐射的能量极易在低频天线上激励其感应电流,该感应电流二次辐射,并与高频天线辐射的能量进行叠加,这就使得低频天线对高频天线的电磁波信号造成强烈干扰。
发明内容
本申请实施例提供了多频融合基站天线及通信设备,解决了传统的多频融合基站天线中,高频天线辐射的能量极易在低频天线上激励其感应电流,该感应电流二次辐射,并与高频天线辐射的能量进行叠加,而使得低频天线对高频天线的电磁波信号造成强烈干扰的问题。
本申请实施例提供一种多频融合基站天线,包括接地板和至少一个天线单元;
天线单元包括第一天线和多个呈阵列排布的第二天线,第一天线的频段低于第二天线的频段,且第一天线位于多个第二天线所在的平面远离接地板的一侧上方;
所述第一天线包括第一附加天线和四个第一子天线,其中两个所述第一子天线之间的连线与另外两个所述第一子天线之间的连线相交,所述其中两个所述第一子天线与所述另外两个所述第一子天线分别用于承载极化方向正交的电流;所述第一附加天线包括四个沿周向依次设置的第一部分以及连接在相邻两个所述第一部分之间的第二部分,四个所述第一子天线均位于所述第一附加天线围成的环形空间内,每个所述第一子天线分别与对应的一个所述第一部分耦合馈电;所述第二部分包括主体部和连接 在所述主体部两端的连接部,所述连接部的一端与所述第一部分连接,所述主体部与所述接地板之间的距离和所述第一部分与所述接地板之间的距离相等。
本申请实施例通过将第一附加天线的主体部和第一部分设置为相对于接地板存在高度差,这样便可使主体部和连接部形成的第二部分呈立体结构,这样,频段相对较高的第二天线中,两个第二天线中极化方向相同的两束工作电流激励在同一个第二部分上的两束感应电流的相位方向正好相反,两者发生抵消,从而有效的减小甚至消除第二天线激励在第一附加天线上的感应电流,进一步减小甚至消除第二天线激励在第一天线上的感应电流,从而在保证第一天线的带宽的同时,确保了该感应电流的辐射能量不会对第二天线自身的电磁波能量造成干扰,实现高低频融合基站天线的解耦效果,保证较高频段的第二天线的辐射性能不受影响。同时,本申请实施例通过在四个第一子天线的外周绕设第一附加天线,并将每个第一子天线与第一附加天线相应的部分进行耦合馈电,从而增大了第一天线的辐射带宽,且第一附加天线形成连续的环形结构,从而通过各个第一子天线的耦合馈电,使得第一附加天线上形成稳定的感应电流,从而保证整个第一天线的辐射性能。
在一种可选的实现方式中,天线单元还包括固定座;
固定座水平设置在第二天线背离接地板的一侧上方,第一天线设置在固定座背离第二天线的一侧表面。
本申请实施例通过在第二天线上方设置固定座,并将第一天线设置固定座背离第二天线的一侧表面,不仅提高了第一天线在第二天线上方的稳固性,而且提高了第一天线自身的结构稳定性,防止第一天线发生变形,保证第一天线的辐射性能不受影响。
在一种可选的实现方式中,固定座背离第二天线的一侧绕中心轴线间隔设置有四个凸台,且每个凸台往远离第二天线的方向凸起;
凸台将固定座背离第二天线的一侧表面划分为第一表面和第二表面,第二表面为凸台的顶面,四个主体部分别设置在对应的第二表面,四个第一子天线和四个第一部分均设置在第一表面,连接部的一端从第二表面沿凸台的侧壁延伸至第一表面。
本申请实施例通过在固定座背离第二天线的一侧设置凸台,并将第二部分的主体部设置在凸台的顶面即第二表面上,这样,第二部分的连接部可沿着凸台的侧壁延伸至第一表面,并与第一部分连接,使得第二部分的连接部和主体部稳定地设置相交的表面上,保证第二部分形成的立体结构的稳固性,进而实现对第二天线激励在该第二部分上的感应电流的稳定抵消,保证第一天线与第二天线之间的解耦效果。
在一种可选的实现方式中,凸台的侧壁沿厚度方向的两端拐角均形成为圆弧倒角;
连接部被配置成与圆弧倒角相吻合的弧形结构。
本申请实施例通过将第二部分的连接部设置为弧形结构,以保证该连接部与凸台侧壁上的圆弧倒角吻合,从而使得该连接部紧密的贴合在凸台的侧壁拐角,提高了连接部的结构稳定性,避免连接部发生正交方向上的窜动,进而不仅确保了立体的第二部分的结构稳固性,而且保证第一子天线耦合馈电至第一附加天线上的感应电流的稳定性。同时,通过将连接部设置为弧形结构,进一步拓宽了第一天线的带宽,同时也有利于阻抗匹配。
在一种可选的实现方式中,主体部的至少部分为往远离第一子天线的方向弯曲的 弧形结构。
本申请实施例通过将主体部的至少部分设置为往远离第一子天线的方向弯曲的弧形结构,一方面增大了主体部与第一子天线之间的距离,保证第一子天线上的辐射能量不会干扰主体部上的工作电流,即防止第一子天线与第一附加天线过度耦合的情况发生,确保第二附加天线与第一子天线形成第一天线的电磁波性能更加稳定;另一方面,上述结构增大了第一附加天线的周长,从而提高了第一天线的带宽。
在一种可选的实现方式中,主体部的弧形结构的曲率半径处处相等或者不相等,以简化主体部的结构设置,提高了第一附加天线的制作效率。
在一种可选的实现方式中,第一部分往远离第二天线的方向延伸有第一耦合部,第一子天线往远离第二天线的方向延伸有第二耦合部,且所述第一耦合部与所述第二耦合部均凸出所述第一部分和所述第一子天线所在的平面设置;
第一耦合部与第二耦合部相对且间隔设置,第一耦合部与第二耦合部耦合馈电。
本申请实施例通过在第一部分和第一子天线上往远离第二天线的方向分别延伸第一耦合部和第二耦合部,并将第一耦合部和第二耦合部均凸出第一部分和第一子天线所在的平面设置,并通过第一耦合部和第二耦合部实现耦合馈电,使得第一部分和第一子天线之间实现面面耦合,增大了第一部分与第一子天线之间的耦合面积,从而提高了第一附加天线与第一子天线之间的耦合馈电效果,增大了第一天线的带宽。另外,通过将第一耦合部和第二耦合部凸出第一部分和第一子天线所在的平面设置,也便于该第一耦合部和第二耦合部的耦合面积的增大,例如,只需增大第一耦合部与第二耦合部的延伸高度,便可使得第一耦合部和第二耦合部的耦合面积得以增大,从而实现灵活调整耦合,实现良好的阻抗匹配,进而有利于宽带天线的实现。
在一种可选的实现方式中,第一子天线朝向第一部分的一侧形成有延伸部,延伸部往第一部分延伸,第二耦合部连接在延伸部上。
本申请实施例通过在第一子天线上设置往第一部分延伸的延伸部,并将第二耦合部设置在该延伸部上,以在保证第二耦合部与第一耦合部稳定耦合的同时,方便第二耦合部的设置,同时提高第二耦合部在第一子天线上的结构稳定性。
在一种可选的实现方式中,第一耦合部和的第二耦合部均包括沿水平方向依次设置的多个弯折部,且第一耦合部与第二耦合部相对的弯折部平行设置。
本申请实施例通过将第一耦合部和第二耦合部设置为包括多个弯折部,在第一耦合部和第二耦合部的水平延伸长度一定的情况下,进一步增大了第一耦合部与第二耦合部的相对的面积,从而增大了第一耦合部与第二耦合部的耦合面积,进而提高了第一附加天线与第一子天线之间的耦合馈电效果。
在一种可选的实现方式中,第一耦合部与第二耦合部相对的表面均为弯曲方向相同的弧形面。
本申请实施例通过将第一耦合部与第二耦合部相对的表面均设置为弯曲方向相同的弧形面,在增大第一耦合部与第二耦合部的耦合面积的同时,简化了第一耦合部与第二耦合部的设置结构,从而提高了第一天线的制作效率。
在一种可选的实现方式中,每个第一子天线均为环形结构。
本申请实施例通过将第一天线中的每个第一子天线设置为环形结构,这样,频段 相对较高的第二天线中,两个第二天线中极化方向相同的两束工作电流激励在同一个第一子天线的两束感应电流的相位方向正好相反,两者发生抵消,从而有效的减小甚至消除第二天线激励在第一子天线上的感应电流,进而减小甚至消除第二天线激励在第一天线上的感应电流,保证该感应电流的辐射能量不会对第二天线自身的电磁波能量造成干扰,实现高低频融合基站天线的解耦效果,保证较高频段的第二天线的辐射性能不受影响。
在一种可选的实现方式中,每个第二天线的横截面均为四边形结构,每个第一子天线均呈圆环结构或者椭圆环结构。
实际应用中,第二天线的横截面为四边形结构时,本申请实施例通过将第一子天线设置为圆环结构或者椭圆结构,减小第二天线激励在第一子天线上的感应电流值,进一步保证该感应电流的辐射能量不会对第二天线自身的电磁波能量造成干扰,保证第二天线的辐射性能不受干扰。
在一种可选的实现方式中,每个天线单元中,第二天线的数量为4个,4个第二天线呈矩阵排布;
第一天线的中心轴线与4个第二天线围成的正方形的中心轴线重合。
本申请实施例通过将第一天线的中心轴线设置为与4个第二天线围成的正方形的中心轴线重合,以确保第一天线位于4个第二天线围成的正方形结构的中心区域,从而避免部分第二天线受到第一天线的过分遮挡而发生严重耦合。
在一种可选的实现方式中,接地板上设置有多个天线单元;
多个天线单元呈阵列排布。
本申请实施例通过在接地板上设置多个天线单元,以进一步提高多频融合基站天线的辐射强度。
在一种可选的实现方式中,多频融合基站天线还包括多个第三天线;
第三天线的频段低于第一天线的频段,且第三天线位于第一天线远离第二天线的一侧上方,每4个天线单元上方设置一个第三天线,且第三天线的中心轴线与4个天线单元围成的正方形的中心轴线重合。
本申请实施例通过在第一天线背离第二天线的一侧上方设置第三天线,在实现基站天线的三频融合的同时,节约了第三天线在多频融合基站天线的水平占用尺寸,同时使得三个频段的天线振子共用一个天线口面,实现了多频融合基站天线的小型化以及轻量化。另外,通过将第三天线的中心轴线设置为与4个天线单元围成的正方形的中心轴线重合,以确保第三天线位于4个天线单元围成的正方形结构的中心区域,从而避免第三天线对个别天线单元中的第一天线甚至第二天线进行过分遮挡,从而防止发生高低频之间的严重耦合。
本申请实施例还提供了一种通信设备,包括射频电路及如上所述的多频融合基站天线,射频电路与多频融合基站天线电连接。
本申请实施例通过在通信设备内设置上述多频融合基站天线,在实现基站天线的小型化及轻量化的同时,减小甚至消除高频天线激励在低频天线上的感应电流,保证该感应电流的辐射能量不会对高频天线自身的电磁波能量造成干扰,实现高低频融合基站天线的解耦效果,保证较高频段的天线的辐射性能不受较低频段的天线影响,实 现通信设备对网络信号的稳定收发。
附图说明
图1是本申请实施例提供的多频融合基站天线的其中一种结构示意图;
图2是图1的俯视图;
图3是图1中第一天线与接地板的装配图;
图4是3中第一天线的结构示意图;
图5是图4中I处的第一种局部结构示意图;
图6是图4中第二部分的第一种结构示意图;
图7是图4中第二部分受到两个第二天线中极化方向相同的工作电流激励后的感应电流方向图;
图8是图4中第一天线与固定座的装配图;
图9是图8的部分结构示意图;
图10是图4中第二部分的第二种结构示意图;
图11是图4中第二部分的第三种结构示意图;
图12是图4中第二部分的第四种结构示意图;
图13是图4中第二部分的第五种结构示意图;
图14是图4中第二部分的第六种结构示意图;
图15是图4中第二部分的第七种结构示意图;
图16是图4中四个第一子天线的结构示意图;
图17是图16中第一子天线受到两个第二天线中+45°极化方向的工作电流激励后的感应电流方向图;
图18是图16中第一子天线受到两个第二天线中-45°极化方向的工作电流激励后的感应电流方向图;
图19是图4中4个第一子天线的第一种结构示意图;
图20是图4中4个第一子天线的第二种结构示意图;
图21是图4中4个第一子天线的第三种结构示意图;
图22是图4中I处的第二种局部结构示意图;
图23是图4中I处的第三种局部结构示意图;
图24是图4中3D垂直耦合效果图;
图25是本申请实施例提供的多频融合基站天线的另一种结构示意图;
图26是图25的爆炸图;
图27是图25的俯视图;
图28是图25的天线辐射效果图。
附图标记说明:
100-接地板;200-第二天线;300-第一天线;400-巴伦结构;500-馈电线;600-固定座;700-第三天线;
310-第一子天线;320-第一附加天线;610-凸台;620-第一表面;630-第二表面;
311-第二耦合部;312-延伸部;321-第一部分;322-第二部分;
3211-第一耦合部;3221-主体部;3222-连接部;
3221a-第一子主体部;3221b-第二子主体部;3221c-第三子主体部。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
目前,为了保证基站天线的小型化和轻量化,多频融合基站天线应运而生。多频融合基站天线是将不同频段的天线阵列布置在同一个天线口面上,换句话说,不同频段的天线共用一个天线口面,例如,不同频段的天线设置在同一个接地板上,从而节约基站的天线口面的数量,使得基站天线的总尺寸得以缩小,同时也减轻了基站天线的重量,降低了天线总体成本。
因天线口面的空间局限性,多频融合基站天线在具体设置时,较高频段的天线排布在较低频段的下方,例如,在多频融合基站天线的接地板上设置有C频段天线和H频段天线,即C频段天线和H频段天线共同形成两频融合基站天线。其中,C频段天线呈阵列排布在接地板的一侧表面,H频段天线阵列排布在C频段天线背离接地板的一侧上方,以节约多频融合基站天线在水平方向上的占用尺寸。
需要说明的是,C频段天线是指辐射或接收频率在3300MHz-3800MHz的天线,H频段天线是指辐射或接收频率在1690MHz-2690MHz的天线。
理想状态下,在上述两频融合基站天线中,呈阵列排布的多个C频段天线会辐射或者接收3300MHz-3800MHz的电磁波信号,呈阵列排布的多个H频段天线会辐射或者接收1690MHz-2690MHz的电磁波信号,换句话说,在多频例如两频融合基站天线中,不同频段的天线会各自辐射或者接收相应频率的电磁波,而不发生互相干涉。
然而,因H频段天线设置在C频段天线的上方,该C频段天线辐射的电磁波能量会耦合至H频段天线的辐射臂上,而在H频段天线上激励起感应电流,该感应电流进行二次辐射,并与C频段天线的辐射能量进行叠加,即H频段天线对C频段天线具有“遮挡”效应,使得H频段天线对C频段天线的电磁波信号造成强烈干扰,例如,C频段天线的方向图发生畸变,影响了C频段天线的辐射性能,例如,C频段天线的增益大大减小。
基于上述分析可知,在多频融合基站天线中,低频段天线与高频段天线之间的互耦严重,使得低频天线对高频天线的电磁波信号造成强烈干扰,从而严重影响了低频天线的辐射性能。
本申请实施例提供一种多频融合基站天线及通信设备,通过将第一天线中第一附加天线的主体部和第一部分设置为相对于接地板存在高度差,这样便可使主体部和连接部形成的第二部分呈立体结构,这样,频段相对较高的第二天线中,两个第二天线中极化方向相同的两束工作电流激励在同一个第二部分上的两束感应电流的相位方向正好相反,两者发生抵消,从而有效的减小甚至消除第二天线激励在第一附加天线上的感应电流,进一步减小甚至消除第二天线激励在第一天线上的感应电流,从而在保证第一天线的带宽的同时,确保了该感应电流的辐射能量不会对第二天线自身的电磁波能量造成干扰,实现高低频融合基站天线的解耦效果,保证较高频段的第二天线的辐射性能不受影响。
以下结合附图对本申请实施例的多频融合基站天线及通信设备的结构进行详细描述。
图1是本申请实施例提供的多频融合基站天线的其中一种结构示意图。参照图1所示,本申请实施例提供一种多频融合基站天线,包括接地板100和至少一个天线单元。实际应用中,接地板100可以是接地的铜板等金属板,在接地板100上集成有印刷电路板,该印刷电路板上会引出多个导线,部分导线作为馈电线500引出至每个天线单元上,对天线单元中的天线进行馈电。
参照图1所示,每个天线单元包括第一天线300和多个呈阵列排布的第二天线200,第一天线300的频段低于第二天线200的频段,且第一天线300位于多个第二天线200所在的平面远离接地板100的一侧上方。
例如,多个第二天线200阵列排布在接地板100上,同时,接地板100上的印刷电路板与第二天线200电连接,为第二天线200进行馈电,并实现第二天线200上工作电流的水平极化和正交极化。具体的第二天线200的馈电位置以及馈电方式可直接参照现有技术的内容。
本申请实施例中,第二天线200的数量可以为4个、6个、8个等合适的数值,具体可根据实际需要进行调整。例如,可以在接地板100上设置4个第二天线200,4个第二天线200呈矩阵排列,以合理利用接地板100的长度方向和宽度方向上的空间。
图2是图1的俯视图,图3是图1中第一天线与接地板的装配图。参照图1至图3所示,本申请实施例的第一天线300设置在第二天线200所在的平面背离接地板100的一侧上方,例如,第二天线200位于第一天线300与接地板100之间,且第一天线300与第二天线200间隔设置。
参照图2所示,在一些示例中,当每个天线单元中第二天线200的数量为4个,且4个第二天线200呈矩阵排布时,第一天线300的中心轴线可以与4个第二天线200围成的正方形的中心轴线重合,以确保第一天线300位于4个第二天线200围成的正方形结构的中心区域,从而避免部分第二天线200受到第一天线300的过分遮挡而发生严重耦合。
图4是3中第一天线的结构示意图。参照图4所示,第一天线300包括四个第一子天线310,其中两个第一子天线310之间的连线与另外两个第一子天线310之间的连线相交,其中两个第一子天线310与另外两个第一子天线310分别用于承载极化方向正交的电流。
示例性地,四个第一子天线310在平行于接地板100的平面上呈矩阵排列,这样,四个第一子天线310的中点依次连线形成正方形结构,位于正方形结构的其中一个对角线上的两个第一子天线310用于承载极化方向相同的电流,位于正方形结构的另一个对角线上的两个第一子天线310用于承载极化方向相同的电流,且位于两个对角线上的第一子天线310上电流的极化方向正交。例如,其中一个对角线上的两个第一子天线310用于承载+45°极化的电流,另外一个对角线上的两个第一子天线310用于承载-45°极化的电流。
参照图3和图4所示,具体设置时,可以在接地板100上垂直设置巴伦结构400,其中,巴伦结构400的底端固定在接地板100上,巴伦结构400的顶端延伸至第一天 线300所在的平面,并与四个第一子天线310电连接。印刷电路板上引出的两根馈电线500将电流信号耦合到巴伦结构400上,巴伦结构400的顶端与4个第一子天线310电连接,从而将巴伦结构400上的电流信号馈入4个第一子天线310上,实现对4个第一子天线310的馈电。
实际应用中,巴伦结构400包括交叉设置的两个部分,其中一根馈电线500用于向其中一个部分馈入极化方向为+45°的工作电流,另一根馈电线500用于向另一部分馈入极化方向为-45°的工作电流。其中,巴伦结构400的其中一个部分顶端与其中一个对角线上的两个第一子天线310电连接,从而向两个第一子天线310馈入极化方向为+45°的工作电流,巴伦结构400的另一部分顶端与另一对角线的两个第一子天线310电连接,从而向该两个第一子天线310馈入极化方向为-45°的工作电流,从而实现四个第一子天线310中,位于其中一个对角线上的两个第一子天线310与位于另一个对角线上的两个第一子天线310上的电流极化方向正交。
继续参照图4所示,本申请实施例的第一天线300还可以包括第一附加天线320。其中,第一附加天线320包括四个第一部分321和四个第二部分322,四个第一部分321沿周向依次设置,相邻两个第一部分321之间通过第二部分322连接,也即是说,四个第一部分321相邻的一端之间通过第二部分322连接,使得第一附加天线320形成连续的环状结构,四个第一子天线310均位于该第一附加天线320围成的环形空间内,换句话说,第一附加天线320的四个第一部分321和四个第二部分322沿周向绕设在所有第一子天线310的外周。
图5是图4中I处的第一种局部结构示意图。参照图4和图5所示,每个第一子天线310分别与对应的一个第一部分321耦合馈电,例如,四个第一子天线310分别与各自邻近的第一部分321进行耦合馈电,从而使得第一附加天线320上产生感应电流,进而辐射一定带宽的电磁波信号。
同时,参照图4所示,因每个第一子天线310与其中一个第一部分321耦合馈电,使得四个第一部分321产生与对应的第一子天线310的极化方向相同的感应电流。例如,与极化方向为+45°的两个第一子天线310耦合的两个第一部分321的感应电流的极化方向为+45°,与极化方向为-45°的另外两个第一子天线310耦合的另外两个第一部分321的感应电流的极化方向为-45°,从而实现第一附加天线320上感应电流的+45°极化和-45°极化。
基于上述可知,极化方向为+45°的两个第一子天线310位于四个第一子天线310围成的正方形的其中一个对角线上,极化方向为-45°的另外两个第一子天线310位于四个第一子天线310围成的正方形的另外一个对角线上,则第一附加天线320上,其中一个对角的两个第一部分321的极化方向为+45°,另外一个对角的两个第一部分321的极化方向为-45°。
本申请实施例通过在四个第一子天线310的外周绕设第一附加天线320,并将每个第一子天线310与第一附加天线320相应的部分进行耦合馈电,从而增大了第一天线300的辐射带宽。
另外,第一附加天线320形成为连续的环形结构,从而通过各个第一子天线310的耦合馈电,使得第一附加天线320上形成稳定的感应电流,从而保证整个第一天线 300的辐射性能。
图6是图4中第二部分的第一种结构示意图。参照图3、图4和图6所示,示例性,第一附加天线320的第二部分322在具体设置时,可以包括主体部3221和连接在主体部3221两端的连接部3222,其中,连接部3222的一端与第一部分321连接,且主体部3221与接地板100之间的距离和第一部分321与接地板100之间的距离不相等,也即是说,主体部3221和第一部分321相对于接地板100存在高度差,这就使得主体部3221和连接在其两端的连接部3222形成立体结构,即第一附加天线320的第二部分322呈立体结构。
需要说明的是,为了方便描述,本申请实施例将第一附加天线320以及第一子天线310均看做平面结构,即忽略第一附加天线320以及第一子天线310的厚度。主体部3221与接地板100之间的距离是指该主体部3221所在的平面与接地板100所在的平面之间的垂直距离,同样的,第一部分321与接地板100之间的距离是指该第一部分321所在的平面与接地板100所在的平面之间的垂直距离,这样,以接地板100为参照物,主体部3221所在的平面和第一部分321所在的平面之间存在高度差,连接在主体部3221两端的连接部3222便从主体部3221所在的平面延伸至第一部分321所在的平面,这就使得主体部3221和连接部3222形成的第二部分322呈立体结构。
参照图3所示,以接地板100位于x-y平面上为例,主体部3221位于x-y平面上方的第一平面上,第一部分321位于x-y平面上方的第二平面上,且第二平面低于第一平面,则连接部3222从第一平面沿z方向延伸至第二平面上,这样,主体部3221和连接部3222形成的第二部分322便形成为立体结构(如图6所示)。同时,因该连接部3222是从高的第一平面沿z方向延伸至低的第二平面上,则该第二部分322是从第一部分321所在的平面往背离接地板100的方向凸出。
当然,在一些示例中,主体部3221所在的第一平面可低于第一部分321所在的第二平面,则连接部3222便是从低的第一平面往高的第二平面延伸(图中未示出),这样,主体部3221和连接部3222形成的第二部分322也形成为立体结构,且该第二部分322是从第一部分321所在的平面往靠近接地板100的方向凹陷。
本申请实施例中,第一子天线310与第一部分321位于同一个平面上。
图7是图4中第二部分受到两个第二天线中极化方向相同的工作电流激励后的感应电流方向图。参照图7所示,本申请实施例中,因第一附加天线320设置在多个第二天线200所在平面的上方,这就使得多个第二天线200辐射电磁波能量时,会在其上方的第一附加天线320上激励起感应电流,而因第一附加天线320的四个第二部分322均为立体结构,则其中两个第二天线200上极化方向相同的两束工作电流激励到每个第二部分322上,其对应的两束感应电流(图7中e和f所示)的相位方向刚好相反,从而使得两个极化方向相同的电磁波能量激励到第二部分322上的感应电流相互抵消,进而减弱了第二天线200激励到第一天线300上的感应电流值,实现第一天线300与第二天线200之间的解耦效果。
例如,两个第二天线200上+45°极化的工作电流激励到任意一个第二部分322的两束感应电流的相位相反,使得两个+45°极化的工作电流激励到第二部分322上的两束感应电流相互抵消。同样的,两个第二天线200上-45°极化的工作电流激励到任意 一个第二部分322上的两束感应电流的相位相反,使得两个-45°极化的工作电流激励到第二部分322上的两束感应电流相互抵消。
可以理解的是,若任意两个第二天线200与其中一个第二部分322之间的距离相等,则这两个第二天线200上极化方向相同的两束工作电流激励到该第二部分322上的感应电流值相等,则这两个极化方向相同的工作电流激励到该第二部分322上的感应电流便会完全抵消;而若任意两个第二天线200与其中一个第二部分322之间的距离不相等,则这两束第二天线200上极化方向相同的工作电流激励到该第二部分322上的感应电流值不相等,则这两束极化方向相同的工作电流激励到该第二部分322上的感应电流便会实现部分抵消,从而减弱了多个第二天线200在第一天线300上激励的总感应电流值,保证该感应电流的辐射能量不会对第二天线200自身的电磁波能量造成大的干扰。
本申请实施例通过第二部分322的主体部3221和第一部分321设置为相对于接地板100存在高度差,使得第一附加天线320的第二部分322呈立体结构,这样,频段相对较高的第二天线200中,两个第二天线200中极化方向相同的两束工作电流激励在同一个第二部分322上的两束感应电流的相位方向正好相反,两者发生抵消,从而有效的减小甚至消除第二天线200激励在第一附加天线320上的感应电流,进一步减小甚至消除第二天线200激励在第一天线300上的感应电流,从而在保证第一天线300的带宽的同时,确保了该感应电流的辐射能量不会对第二天线200自身的电磁波能量造成干扰,实现高低频融合基站天线的解耦效果。
图8是图4中第一天线与固定座的装配图,图9是图8的部分结构示意图。参照图8和图9所示,本申请实施例的天线单元还可以包括固定座600,固定座600水平设置在第二天线200背离接地板100的一侧上方,第一天线300设置在固定座600背离第二天线200的一侧表面。其中,本申请实施例的固定座600可以为塑料等绝缘件。
参照图3和图8所示,本申请实施例的固定座600可以固定在巴伦400的顶端,以提高固定座600在接地板100上方的稳固性。可以理解的是,固定座600与巴伦400之间可通过卡接或者螺钉连接等可拆卸方式连接,以便于第一天线300的拆卸。
具体装配时,可以在固定座600上开设与第一天线300的结构布局相吻合的安装槽,第一天线300的第一子天线310以及第一附加天线320均嵌设在相应的安装槽内,以简化第一天线300与固定座600之间的装配效率,同时便于第一天线300的拆装。
当然,还可以将第一天线300粘接在固定座600上。在其他示例中,该第一天线300与固定座600还可以通过双色注塑成型,使得该第一天线300与固定座600成型成一体件,以增强第一天线300与固定座600之间的连接强度,避免第一天线300从固定座600的表面脱出。
本申请实施例通过在第二天线200上方设置固定座600,并将第一天线300设置固定座600背离第二天线200的一侧表面,不仅提高了第一天线300在第二天线200上方的稳固性,而且提高了第一天线300自身的结构稳定性,防止第一天线300发生变形,保证第一天线300的辐射性能不受影响。
参照图8所示,为了提高第一附加天线320的第二部分322的结构稳定性,本申请实施例的固定座600背离第二天线200的一侧绕中心轴线可以间隔设置有四个凸台 610,且每个凸台610均往远离第二天线200的方向凸起。
参照图9所示,为了方便描述,该凸台610可将固定座600背离第二天线200的一侧表面划分为第一表面620和第二表面630,其中,第二表面630为凸台610的顶面,第一表面620为该固定座600背离第二天线200的一侧的其余表面。四个主体部3221分别设置在对应的第二表面630上,换句话说,四个主体部3221分别设置在对应的凸台610的顶面,四个第一子天线310和四个第一部分321均设置在第一表面620上,连接部3222的一端从第二表面630沿凸台610的侧壁延伸至第一表面620。
其中,参照图8所示,该凸台610在具体设置时,可以是固定座600朝向第二天线200一侧的部分区域往远离第二天线200的一侧凹陷形成,该部分区域在固定座600背离第二天线200的一侧凸起,从而形成凸台610。
在一些示例中,还可以直接在固定座600背离第二天线200的一侧表面额外设置一凸出部(图中未示出),该凸出部作为凸台610,其顶面和侧面分别用于固定第二部分322的主体部3221以及连接部3222。
本申请实施例通过在固定座600背离第二天线200的一侧设置凸台610,并将第二部分322的主体部3221设置在凸台610的顶面即第二表面630上,这样,第二部分322的连接部3222可沿着凸台610的侧壁延伸至第一表面620,并与第一部分321连接,使得第二部分322的连接部3222和主体部3221稳定地设置相交的表面上,保证第二部分322形成的立体结构的稳固性,进而实现对第二天线200激励在该第二部分322上的感应电流的稳定抵消,保证第一天线300与第二天线200之间的解耦效果。
参照图9所示,实际应用中,可以将凸台610的侧壁沿厚度方向的两端拐角均形成为圆弧倒角,以便于固定座600的注塑成型。
需要说明的是,凸台610的侧壁沿厚度方向的两端拐角具体是指该凸台610的顶面与侧面的连接拐角以及该凸台610的侧面与第一表面620的连接拐角。
参照图6和图9所示,本申请实施例的连接部3222被配置成与上述圆弧倒角相吻合的弧形结构,以保证该连接部3222与凸台610侧壁上的圆弧倒角吻合,从而使得该连接部3222紧密的贴合在凸台610的侧壁拐角,提高了连接部3222的结构稳定性,避免连接部3222发生垂直方向上的窜动,进而不仅确保了立体的第二部分322的结构稳固性,而且保证第一子天线310耦合馈电至第一附加天线320上的感应电流的稳定性。
具体设置时,凸台610的顶面与侧面的连接拐角形成的圆弧倒角往远离凸台610的方向弯曲,凸台610的侧面与第一表面620的连接拐角形成的圆弧倒角往凸台610内部弯曲。
参照图9所示,基于此,第二部分322的连接部3222可以包括两个弧形结构,其中一个弧形结构与凸台610的顶面与侧面的连接拐角的圆弧倒角相吻合,另一个弧形结构与凸台610的侧面与第一表面620的连接拐角的圆弧倒角相吻合,从而使得整个连接部3222能够与凸台610侧壁的两端拐角充分贴合。
图10是图4中第二部分的第二种结构示意图。参照图10所示,在一些示例中,连接部3222还可以为一个往同一方向弯曲的弧形结构。例如,该连接部3222为往靠近凸台610的方向弯曲的弧形结构。
图11是图4中第二部分的第三种结构示意图,图12是图4中第二部分的第四种结构示意图。参照图11和图12所示,在其他示例中,连接部3222还为平面弯折结构,该连接部3222的一端与凸台610上的主体部3221连接,该连接部3222的另一端与第一表面620上的第一部分321连接。
例如,该连接部3222包括位于垂直于第一表面620的竖直部和平行于第二表面630的水平部,再例如,该连接部3222还可以包括倾斜设置在第一表面620上的倾斜部和平行于第二表面630的水平部。该倾斜部的顶端与凸台610侧壁之间的距离小于该倾斜部的底端与凸台610侧壁之间的距离。
图13是图4中第二部分的第五种结构示意图,图14是图4中第二部分的第六种结构示意图,图15是图4中第二部分的第七种结构示意图。参照图13至图15所示,本申请实施例的主体部3221的至少部分可以设置为往远离第一子天线310的方向弯曲的弧形结构。
例如,参照图13所示,主体部3221包括依次连接的第一子主体部3221a、第二子主体部3221b和第三子主体部3221c,其中,第二子主体部3221b位于第一子主体部3221a与第三子主体部3221c之间,第一子主体部3221a的一端与连接部3222连接,第一子主体部3221a的另一端与第二子主体部3221b的一端连接,第三子主体部3221c的一端与另一个连接部3222连接,第三子主体部3221c的另一端与第二子主体部3221b的另一端连接。
其中,参照图13至图15所示,第二子主体部3221b可以设置为往远离第一子天线310的方向弯曲的弧形结构,第一子主体部3221a和第三子主体部3221c均为直线结构,该直线结构从第二子主体部3221b的一端往靠近第一子天线310的方向延伸。
本申请实施例通过将主体部3221的至少部分设置为往远离第一子天线310的方向弯曲的弧形结构,一方面增大了主体部3221与第一子天线310之间的距离,保证第一子天线310上的辐射能量不会干扰主体部3221上的感应电流,即防止第一子天线310与第一附加天线320过度耦合的情况发生,确保第二附加天线与第一子天线310形成第一天线300的电磁波性能更加稳定;另一方面,上述结构增大了第一附加天线320的周长,从而提高了第一天线300的带宽。
其中,主体部3221的弧形结构的曲率半径处处相等或者不相等,以简化主体部3221的结构设置,提高了第一附加天线320的制作效率。
例如,主体部3221的弧形结构为曲率半径处处相等的半圆形结构(如图13所示)。
再例如,主体部3221的弧形结构也可以为曲率半径不相等的半椭圆形结构(如图14和图15所示)。其中,具体实现时,参照图14所示,第一子主体部3221a和第三子主体部3221c可以分别连接在该半椭圆形结构的长轴两端,当然,参照图15所示,第一子主体部3221a和第三子主体部3221c可以分别连接在该半椭圆形结构的短轴两端。
本申请实施例中,第一附加天线320可以为一体成型的一体件。具体而言,主体部3221的第一子主体部3221a、第二子主体部3221b及第三子主体部3221c为一体成型的一体件。同时,第二部分322的主体部3221和连接部3222也为一体成型的一体件,这样,可简化第一附加天线320的结构,同时确保第一附加天线320的辐射性能。
图16是图4中四个第一子天线的结构示意图。参照图16所示,本申请实施例的四个第一子天线310均为环形结构。
图17是图16中第一子天线受到两个第二天线中+45°极化方向的工作电流激励后的感应电流方向图,图18是图16中第一子天线受到两个第二天线中-45°极化方向的工作电流激励后的感应电流方向图。参照图1、图17和图18所示,本申请实施例中,四个第一子天线310设置在多个第二天线200所在平面的上方,这就使得多个第二天线200辐射电磁波能量时,会在其上方的每个第一子天线310上激励起感应电流,而因第一子天线310呈首尾相连的环状结构,则其中两个第二天线200上极化方向相同的两束感应电流激励到每个第一子天线310上,其对应的两束感应电流的相位方向刚好相反,从而使得两个极化方向相同的电磁波能量激励到第一子天线310上的感应电流相互抵消,进而减弱了第二天线200激励到第一天线300上的感应电流值,实现第一天线300与第二天线200之间的解耦效果。
例如,参照图17所示,两个第二天线200上+45°极化的工作电流激励到任意一个第一子天线310上的两束感应电流的相位相反,使得两个+45°极化的工作电流激励到第一子天线310上的两束感应电流(图17中a和b所示)相互抵消。同样的,参照图18所示,两个第二天线200上-45°极化的工作电流激励到任意一个第一子天线310上的两束感应电流的相位相反,使得两个-45°极化的工作电流激励到第一子天线310上的两束感应电流(图18中c和d所示)相互抵消。
可以理解的是,若任意两个第二天线200与其中一个第一子天线310之间的距离相等,则这两个第二天线200上极化方向相同的两束工作电流激励到该第一子天线310上的感应电流值相等,则这两个极化方向相同的工作电流激励到该第一子天线310上的感应电流便会完全抵消;而若任意两个第二天线200与其中一个第一子天线310之间的距离不相等,则这两束第二天线200上极化方向相同的工作电流激励到该第一子天线310上的感应电流值不相等,则这两束极化方向相同的工作电流激励到该第一子天线310上的感应电流便会实现部分抵消,从而减弱了多个第二天线200在第一天线300上激励的总感应电流值,保证该感应电流的辐射能量不会对第二天线200自身的电磁波能量造成大的干扰,保证第二天线200的辐射性能。
基于上述可知,本申请实施例通过将第二天线200上方的第一天线300设置为环形结构,这样,频段相对较高的第二天线200中,两个第二天线200中极化方向相同的两束工作电流激励在同一个第一子天线310的两束感应电流的相位方向正好相反,两者发生抵消,从而有效的减小甚至消除第二天线200激励在第一子天线310上的感应电流,进而减小甚至消除第二天线200激励在第一天线300上的感应电流,保证该感应电流的辐射能量不会对第二天线200自身的电磁波能量造成干扰,实现高低频融合基站天线的解耦效果,保证较高频段的第二天线200的辐射性能不受影响。
图19是图4中4个第一子天线的第一种结构示意图,图20是图4中4个第一子天线的第二种结构示意图,图21是图4中4个第一子天线的第三种结构示意图。参照图19至图21所示,实际应用中,每个第二天线200的横截面均为四边形结构,例如,每个第二天线200均为正方体结构,本申请实施中,每个第一子天线310均呈圆环结构或者椭圆环结构。
当第二天线200的横截面为四边形结构时,通过将第一子天线310设置为圆环结构或者椭圆结构,使得第一子天线310不易感应到第二天线200辐射的电磁波,从而减小第二天线200激励在第一子天线310上的感应电流值,进一步保证该感应电流的辐射能量不会对第二天线200自身的电磁波能量造成干扰,保证第二天线200的辐射性能不受干扰。
其中,参照图20所示,当第一子天线310为椭圆环结构时,四个第一子天线310在具体设置时,每个第一子天线310位于长轴的端点可以均朝向同一个位置,例如,当四个第一子天线310呈矩阵排布时,每个第一子天线310位于长轴的端点均朝向四个第一子天线310围成的正方形结构的中心点。
参照图21所示,在一些示例中,当第一子天线310为椭圆环结构时,四个第一子天线310的长轴可以依次连接成四边形结构,例如,当四个第一子天线310呈矩阵排布时,四个第一子天线310的长轴可以依次连接成正方形结构。本申请实施例具体不对四个椭圆环结构的第一子天线310的设置方式进行限制。
参照图5所示,本申请实施例的第一附加天线320的第一部分321与第一子天线310进行耦合馈电时,该第一附加天线320的第一部分321往远离第二天线200的方向可以延伸有第一耦合部3211,第一子天线310往远离第二天线200的方向可以延伸有第二耦合部311,第一耦合部3211与第二耦合部311相对且间隔设置,第一耦合部3211与第二耦合部311耦合馈电。
其中,参照图5所示,第一耦合部3211凸出该第一部分321所在的平面设置,第二耦合部3211凸出第一子天线310所在的平面设置。
需要说明的是,参照图2、图3和图4所示,本申请实施例中,第一部分321和第一子天线310位于接地板100上方的同一个平面上,例如,当接地板100位于x-y平面上时,则第一部分321和第一子天线310均位于x-y平面上方的第二平面上,且该第二平面平行于x-y平面,第一耦合部3211和第二耦合部311均凸出该第一部分321和第一子天线310所在的平面,即该第一耦合部3211和第二耦合部311均凸出第二平面,且第一耦合部3211和第二耦合部311往背离接地板100的一侧凸出。
其中,第一耦合部3211和第二耦合部311可以垂直于上述第二平面,也即是说,第一耦合部3211和第二耦合部311与第一部分321及第一子天线310所在的平面(即第二平面)之间的夹角为90°。
当然,在其他示例中,第一耦合部3211和第二耦合部311从第一部分321和第一子天线310所在的平面上(例如第二平面)倾斜往上延伸,也即是说,第一耦合部3211和第二耦合部311与第二平面之间夹角为锐角,例如,第一耦合部3211和第二耦合部311与第二平面之间的夹角可以是45°、60°、80°等合适的角度值。
本申请实施例通过在第一部分321和第一子天线310上往远离第二天线200的方向分别延伸第一耦合部3211和第二耦合部311,且将该第一耦合部3211和第二耦合部311均凸出第一部分321和第一子天线310所在的平面设置,并通过第一耦合部3211和第二耦合部311实现耦合馈电,实现了第一附加天线320与第一子天线310之间的立体耦合馈电。相比于传统的平面耦合方式,本申请实施例的第一部分321和第一子天线310之间实现面面耦合,增大了第一部分321与第一子天线310之间的耦合面积, 从而提高了第一附加天线320与第一子天线310之间的耦合馈电效果,增大了第一天线300的带宽。
需要说明的是,平面耦合方式是指第一部分321和第一子天线310相对的区域为耦合部,且该耦合部与该第一部分321和第一子天线310均处于同一水平面上,则第一部分321和第一子天线310的耦合方式仅为线线耦合,耦合面积小,耦合效果差。
另外,通过将第一耦合部3211和第二耦合部311垂直于第一部分321和第一子天线310所在的平面,也便于该第一耦合部3211和第二耦合部311的耦合面积的增大,例如,只需增大第一耦合部3211与第二耦合部311的延伸高度,便可使得第一耦合部3211和第二耦合部311的耦合面积得以增大,从而实现灵活调整耦合,实现良好的阻抗匹配,进而有利于宽带天线的实现。
参照图5所示,具体设置时,可以在第一子天线310朝向第一部分321的一侧形成有延伸部312,该延伸部312往第一部分321延伸,第二耦合部311连接在延伸部312上,保证第二耦合部311与第一耦合部3211稳定耦合。同时,因每个第一子天线310均为环形结构,因此,在第一子天线310朝向第一部分321的一侧形成有延伸部312,方便了第二耦合部311的设置,同时提高第二耦合部311在第一子天线310上的结构稳定性。
继续参照图5所示,为了增大第二耦合部311的水平延伸长度,该延伸部312可以设置为具有大端和小端的扇形结构,其中,该延伸部312的小端连接在第一子天线310上,该延伸部312的大端连接在第二耦合部311上,这样,该第二耦合部311沿水平方向的两端可以延伸至延伸部312大端的两侧,从而增大第二耦合部311的侧表面,从而增大第二耦合部311与第一耦合部3211的耦合面积。
需要说明的是,第二耦合部311或者第一耦合部3211的水平方向是指第二耦合部311或者第一耦合部3211平行于第一子天线310所在平面的方向,则第二耦合部311或者第一耦合部3211的水平延伸长度是指第二耦合部311或者第一耦合部3211沿水平方向上的延伸长度。
作为第一种可选的实现方式,第一耦合部3211和的第二耦合部311可以均包括沿水平方向依次设置的多个弯折部,且第一耦合部3211与第二耦合部311相对的弯折部平行设置。
图22是图4中I处的第二种局部结构示意图。参照图5和图22所示,本申请实施例通过将第一耦合部3211和第二耦合部311设置为包括多个弯折部,在第一耦合部3211和第二耦合部311的水平延伸长度一定的情况下,进一步增大了第一耦合部3211与第二耦合部311的相对的面积,从而增大了第一耦合部3211与第二耦合部311的耦合面积,进而提高了第一附加天线320与第一子天线310之间的耦合馈电效果。
具体实现时,该第一耦合部3211和的第二耦合部311沿水平方向可依次设置三个弯折部(如图5所示)。以第一耦合部3211为例,位于两端的两个弯折部往靠近第一子天线310的方向弯折,位于中间的弯折部与任意一侧的弯折部之间的夹角为钝角,第二耦合部311的结构与第一耦合部3211的结构一致,且第二耦合部311与第一耦合部3211弯折方向相同的弯折部相对且平行设置。
另外,参照图22所示,该第一耦合部3211和的第二耦合部311还可沿水平方向可 依次设置四个弯折部,四个弯折部中,相邻两个弯折部往相反方向弯折,例如,四个弯折部可以弯折形成类似“W”形状,且位于最外端的两个弯折部可往靠近第一子天线310的方向弯折,即“W”形状的开口朝向第一子天线310。
本申请实施例具体不对第一耦合部3211和第二耦合部311的弯折部的数量以及方向进行限制。
图23是图4中I处的第三种局部结构示意图。参照图23所示,作为第二种可选的实现方式,第一耦合部3211与第二耦合部311相对的表面均为弯曲方向相同的弧形面。例如,第一耦合部3211和第二耦合部311均为往远离第一子天线310的方向弯曲的圆弧结构。
本申请实施例通过将第一耦合部3211与第二耦合部311相对的表面均设置为弯曲方向相同的弧形面,在增大第一耦合部3211与第二耦合部311的耦合面积的同时,简化了第一耦合部3211与第二耦合部311的设置结构,从而提高了第一天线300的制作效率。
本申请实施例的多频融合基站天线中,当接地板100上仅设置第一天线300和第二天线200时,该多频融合基站天线为两频融合天线。其中,第一天线300可以为H频段天线,第二天线200可以为C频段天线。
图24是图4中3D垂直耦合效果图。参照图24所示,当本申请实施例的第一天线300为H频段天线时,实线为本申请实施例的H频段天线(垂直方向耦合)的回波损坏-频率的曲线图,虚线为传统的平面耦合的回波损坏-频率的曲线图。以S11(回波损耗)<-13dB带宽为例,实线的S11带宽为800MHz,虚线的S11带宽为300MHz,由此可见,本申请实施例的第一天线300中,第一子天线310与第一附加天线320之间通过垂直耦合方式进行耦合馈电,其辐射带宽相比于平面耦合结构得以提高。
本申请实施例的接地板100上可以设置有多个天线单元,多个天线单元呈阵列排布,以进一步提高多频融合基站天线的辐射带宽以及辐射强度。
例如,天线单元的数量可以为4个、6个或者8个等。其中,当天线单元的数量为4个时,4个天线单元呈矩阵排列。当天线单元的数量为6个时,6个天线单元呈3*2阵列排布。
另外,呈立体结构的第一天线300相比于平面天线,其在整个频段上的增益更加平滑。
图25是本申请实施例提供的多频融合基站天线的另一种结构示意图,图26是图25的爆炸图。参照图25和图26所示,本申请实施例的多频融合基站天线还可以包括多个第三天线700,第三天线700的频段低于第一天线300的频段,且第三天线700位于第一天线300远离第二天线200的一侧上方。例如,第一天线300、第二天线200及第三天线700沿正交于接地板100的方向间隔设置,且第二天线200位于第一天线300与第三天线700之间。
其中,第三天线700的结构可以为现有技术中的低频天线结构,例如,该第三天线700为田字形结构。另外,该第三天线700可以为L频段天线。
需要说明的是,L频段天线是指辐射或接收频率在690MHz-960MHz的天线。
本申请实施例通过在第一天线300背离第二天线200的一侧上方设置第三天线 700,在实现基站天线的三频融合的同时,节约了第三天线700在多频融合基站天线的水平占用尺寸,同时使得三个频段的天线振子共用一个天线口面,实现了多频融合基站天线的小型化以及轻量化。
图27是图25的俯视图。参照图27所示,具体设置时,每4个天线单元上方可以设置一个第三天线700,且第三天线700的中心轴线可以与4个天线单元围成的正方形的中心轴线重合,以确保第三天线700位于4个天线单元围成的正方形结构的中心区域,从而避免第三天线700对个别天线单元中的第一天线300甚至第二天线200进行过分遮挡,从而防止发生高低频之间的严重耦合。
图28是图25的天线辐射效果图。参照图28所示,当本申请实施例的多频融合基站天线包括4个天线单元和一个第三天线700,且第一天线300为H频段天线(4个),第二天线200为C频段天线(16个),第三天线700为L频段天线(1个)时,曲线j为理想的4*4的C频段天线的增益-辐射角度方向图(测试时是取图25中其中一列C频段天线,如第二列的C频段天线的方向图),此时,C频段天线没有受到H频段天线的遮挡,无遮挡情况下,C频段天线辐射性能优良。
k曲线为传统的平面H频段天线的遮挡下,4*4的C频段天线的增益-辐射角度方向图,该方向图出现了明显的恶化,方向图主瓣发生了分裂。
l曲线为本申请实施例的3D(立体结构)的H频段天线的遮挡下,4*4的C频段天线的增益-辐射角度方向图,主瓣的增益改善>2dB,波宽改善>30°,有效的修复了主瓣凹陷,表明当本申请实施例的多频融合基站天线中立体结构的第一天线300对下方的第二天线200具有良好的解耦效果。
需要说明的是,本申请实施例至少包括以下三个技术点。其中,第一个技术点:第一附加天线320的主体部3221与接地板100之间的距离和第一部分321与接地板100之间的距离不相等,使得该第一附加天线320的第二部分322形成为立体结构,以减弱第二天线200激励到第一天线300上的感应电流值,实现第一天线300与第二天线200之间的解耦效果;
第二个技术点:第一附加天线320的第一部分321往远离第二天线200的方向可以延伸有第一耦合部3211,第一子天线310往远离第二天线200的方向可以延伸有第二耦合部311,并通过第一耦合部3211和第二耦合部311实现第一子天线310与第一附加天线320之间的耦合馈电,且第一耦合部3211和第二耦合部311均凸出第一部分321和第一子天线310所在的平面设置,实现了第一附加天线320与第一子天线310之间的立体耦合馈电,即第一部分321和第一子天线310之间实现面面耦合。
第三个技术点:四个第一子天线310均为环形结构,减弱了第二天线200激励到第一天线300上的感应电流值,实现第一天线300与第二天线200之间的解耦效果。
以上三个技术点可以单独存在,其并不需要依赖其他技术点,例如,可以将目前的第二个技术点作为独权的技术特征加以保护。再例如,可以将第三个技术点作为独权的技术特征加以保护。
本申请实施例还提供了一种通信设备,包括射频电路及上述任一示例中的多频融合基站天线,该射频电路与多频融合基站天线通过馈线电连接。
其中,射频电路为多频融合基站天线提供信号源,具体而言,该射频电路通过馈 电线向多频融合基站天线馈入信号电流,继而多频融合基站天线将该信号电流以电磁波的方式向外发射,从而完成信号的传送。
需要说明的是,本申请实施例的通信设备还可以是通信基站。
本申请实施例通过在通信设备内设置上述多频融合基站天线,在实现基站天线的小型化及轻量化的同时,减小甚至消除高频天线激励在低频天线上的感应电流,保证该感应电流的辐射能量不会对高频天线自身的电磁波能量造成干扰,实现高低频融合基站天线的解耦效果,保证较高频段的天线的辐射性能不受较低频段的天线影响,实现通信设备对网络信号的稳定收发。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。

Claims (16)

  1. 一种多频融合基站天线,其特征在于,包括接地板和至少一个天线单元;
    所述天线单元包括第一天线和多个呈阵列排布的第二天线,所述第一天线的频段低于所述第二天线的频段,且所述第一天线位于多个所述第二天线所在的平面远离所述接地板的一侧上方;
    所述第一天线包括第一附加天线和四个第一子天线,其中两个所述第一子天线之间的连线与另外两个所述第一子天线之间的连线相交,所述其中两个所述第一子天线与所述另外两个所述第一子天线分别用于承载极化方向正交的电流;所述第一附加天线包括四个沿周向依次设置的第一部分以及连接在相邻两个所述第一部分之间的第二部分,四个所述第一子天线均位于所述第一附加天线围成的环形空间内,每个所述第一子天线分别与对应的一个所述第一部分耦合馈电;所述第二部分包括主体部和连接在所述主体部两端的连接部,所述连接部的一端与所述第一部分连接,所述主体部与所述接地板之间的距离和所述第一部分与所述接地板之间的距离不相等。
  2. 根据权利要求1所述的多频融合基站天线,其特征在于,所述天线单元还包括固定座;
    所述固定座水平设置在所述第二天线背离所述接地板的一侧上方,所述第一天线设置在所述固定座背离所述第二天线的一侧表面。
  3. 根据权利要求2所述的多频融合基站天线,其特征在于,所述固定座背离所述第二天线的一侧绕中心轴线间隔设置有四个凸台,且每个所述凸台均往远离所述第二天线的方向凸起;
    所述凸台将所述固定座背离所述第二天线的一侧表面划分为第一表面和第二表面,所述第二表面为所述凸台的顶面,四个所述主体部分别设置在对应的所述第二表面,四个所述第一子天线和四个所述第一部分均设置在所述第一表面,所述连接部的一端从所述第二表面沿所述凸台的侧壁延伸至所述第一表面。
  4. 根据权利要求3所述的多频融合基站天线,其特征在于,所述凸台的侧壁沿厚度方向的两端拐角均形成为圆弧倒角;
    所述连接部被配置成与所述圆弧倒角相吻合的弧形结构。
  5. 根据权利要求1-4任一项所述的多频融合基站天线,其特征在于,所述主体部的至少部分为往远离所述第一子天线的方向弯曲的弧形结构。
  6. 根据权利要求5所述的多频融合基站天线,其特征在于,所述主体部的弧形结构的曲率半径处处相等或者不相等。
  7. 根据权利要求1-6任一项所述的多频融合基站天线,其特征在于,所述第一部分往远离所述第二天线的方向延伸有第一耦合部,所述第一子天线往远离所述第二天线的方向延伸有第二耦合部,且所述第一耦合部与所述第二耦合部均凸出所述第一部分和所述第一子天线所在的平面设置;
    所述第一耦合部与所述第二耦合部相对且间隔设置,所述第一耦合部与所述第二耦合部耦合馈电。
  8. 根据权利要求7所述的多频融合基站天线,其特征在于,所述第一子天线朝向 所述第一部分的一侧形成有延伸部,所述延伸部往所述第一部分延伸,所述第二耦合部连接在所述延伸部上。
  9. 根据权利要求7或8所述的多频融合基站天线,其特征在于,所述第一耦合部和所述的第二耦合部均包括沿水平方向依次设置的多个弯折部,且第一耦合部与所述第二耦合部相对的所述弯折部平行设置。
  10. 根据权利要求7或8所述的多频融合基站天线,其特征在于,所述第一耦合部与所述第二耦合部相对的表面均为弯曲方向相同的弧形面。
  11. 根据权利要求1-10任一项所述的多频融合基站天线,其特征在于,每个所述第一子天线均为环形结构。
  12. 根据权利要求11所述的多频融合基站天线,其特征在于,每个所述第二天线的横截面均为四边形结构,每个所述第一子天线均呈圆环结构或者椭圆环结构。
  13. 根据权利要求1-12任一项所述的多频融合基站天线,其特征在于,每个所述天线单元中,所述第二天线的数量为4个,4个所述第二天线呈矩阵排布;
    所述第一天线的中心轴线与4个所述第二天线围成的正方形的中心轴线重合。
  14. 根据权利要求1-13任一项所述的多频融合基站天线,其特征在于,所述接地板上设置有多个天线单元;
    多个所述天线单元呈阵列排布。
  15. 根据权利要求14所述的多频融合基站天线,其特征在于,所述多频融合基站天线还包括多个第三天线;
    所述第三天线的频段低于所述第一天线的频段,且所述第三天线位于所述第一天线远离所述第二天线的一侧上方,每4个所述天线单元上方设置一个所述第三天线,且所述第三天线的中心轴线与4个所述天线单元围成的正方形的中心轴线重合。
  16. 一种通信设备,其特征在于,包括射频电路及如权利要求1-15任一项所述的多频融合基站天线,所述射频电路与所述多频融合基站天线电连接。
PCT/CN2021/126162 2020-10-31 2021-10-25 多频融合基站天线及通信设备 WO2022089376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011197056.2 2020-10-31
CN202011197056.2A CN114447602B (zh) 2020-10-31 2020-10-31 多频融合基站天线及通信设备

Publications (1)

Publication Number Publication Date
WO2022089376A1 true WO2022089376A1 (zh) 2022-05-05

Family

ID=81357945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126162 WO2022089376A1 (zh) 2020-10-31 2021-10-25 多频融合基站天线及通信设备

Country Status (2)

Country Link
CN (1) CN114447602B (zh)
WO (1) WO2022089376A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406188A (zh) * 2015-12-23 2016-03-16 安谱络(苏州)通讯技术有限公司 新型天线辐射单元及多频天线
CN206893796U (zh) * 2017-05-26 2018-01-16 华南理工大学 高异频隔离宽带双频基站天线阵列
US20180040956A1 (en) * 2015-02-17 2018-02-08 Gammanu Co., Ltd. Multi-band radiating element
CN107768808A (zh) * 2017-11-13 2018-03-06 广东通宇通讯股份有限公司 多频基站天线及应用于基站天线的反射件
CN109004340A (zh) * 2018-06-29 2018-12-14 华南理工大学 无外加滤波电路的宽带双极化基站滤波天线单元及其阵列
CN110416696A (zh) * 2018-04-26 2019-11-05 罗森伯格技术(昆山)有限公司 一种超宽带辐射单元

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431877B2 (en) * 2017-05-12 2019-10-01 Commscope Technologies Llc Base station antennas having parasitic coupling units
JP7000864B2 (ja) * 2018-01-05 2022-02-04 富士通株式会社 アンテナ装置、及び、無線通信装置
CN110504556B (zh) * 2019-08-27 2020-12-18 中信科移动通信技术有限公司 多频天线阵列
CN111525234A (zh) * 2020-06-02 2020-08-11 Oppo广东移动通信有限公司 双极化天线及客户前置设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180040956A1 (en) * 2015-02-17 2018-02-08 Gammanu Co., Ltd. Multi-band radiating element
CN105406188A (zh) * 2015-12-23 2016-03-16 安谱络(苏州)通讯技术有限公司 新型天线辐射单元及多频天线
CN206893796U (zh) * 2017-05-26 2018-01-16 华南理工大学 高异频隔离宽带双频基站天线阵列
CN107768808A (zh) * 2017-11-13 2018-03-06 广东通宇通讯股份有限公司 多频基站天线及应用于基站天线的反射件
CN110416696A (zh) * 2018-04-26 2019-11-05 罗森伯格技术(昆山)有限公司 一种超宽带辐射单元
CN109004340A (zh) * 2018-06-29 2018-12-14 华南理工大学 无外加滤波电路的宽带双极化基站滤波天线单元及其阵列

Also Published As

Publication number Publication date
CN114447602A (zh) 2022-05-06
CN114447602B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
US11575197B2 (en) Multi-band antenna having passive radiation-filtering elements therein
US8482471B2 (en) Hybrid multiple-input multiple-output antenna module and system of using the same
US8269682B2 (en) Multi-loop antenna module with wide beamwidth
WO2019213878A1 (zh) 毫米波天线阵元、阵列天线及通信产品
US9590313B2 (en) Planar dual polarization antenna
US8723751B2 (en) Antenna system with planar dipole antennas and electronic apparatus having the same
US9847582B2 (en) Wideband simultaneous transmit and receive (STAR) antenna with miniaturized TEM horn elements
JPH11150415A (ja) 多周波アンテナ
US11984673B2 (en) Omni-directional MIMO antenna
CN115173052B (zh) 一体化双频复合相控阵天线及相控阵雷达
CN108199146B (zh) 环形超宽带双极化基站天线单元及多频天线系统
CN115051142A (zh) 一种多频基站天线单元及通信设备
JPH07202562A (ja) プリントダイポールアンテナ
US20200411966A1 (en) Radiator, antenna and base station
JPH05243836A (ja) マイクロストリップアンテナ
US20080150806A1 (en) Multiple input multiple output antenna
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
WO2022089376A1 (zh) 多频融合基站天线及通信设备
JP2002252515A (ja) アンテナ装置
CN107845854B (zh) 复合天线
CN110011042B (zh) 小型线极化收发一体同频天线
EP4360162A1 (en) Dual-polarization antenna element for generation of millimeter-wave frequency radiation
WO2023078121A1 (zh) 天线和基站设备
CN219643109U (zh) 天线
JP6189206B2 (ja) 多周波共用アンテナ及びアンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885103

Country of ref document: EP

Kind code of ref document: A1