WO2022089211A1 - 一种画质调整方法及装置 - Google Patents

一种画质调整方法及装置 Download PDF

Info

Publication number
WO2022089211A1
WO2022089211A1 PCT/CN2021/123622 CN2021123622W WO2022089211A1 WO 2022089211 A1 WO2022089211 A1 WO 2022089211A1 CN 2021123622 W CN2021123622 W CN 2021123622W WO 2022089211 A1 WO2022089211 A1 WO 2022089211A1
Authority
WO
WIPO (PCT)
Prior art keywords
picture
color value
value
color
screen
Prior art date
Application number
PCT/CN2021/123622
Other languages
English (en)
French (fr)
Inventor
夏永霖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21884940.4A priority Critical patent/EP4216542A4/en
Publication of WO2022089211A1 publication Critical patent/WO2022089211A1/zh
Priority to US18/308,761 priority patent/US20230259320A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1446Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display display composed of modules, e.g. video walls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/77Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • G09F9/3026Video wall, i.e. stackable semiconductor matrix display modules
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/06Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using colour palettes, e.g. look-up tables
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/026Video wall, i.e. juxtaposition of a plurality of screens to create a display screen of bigger dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/14Solving problems related to the presentation of information to be displayed
    • G09G2340/145Solving problems related to the presentation of information to be displayed related to small screens

Definitions

  • the present application relates to the technical field of terminal display, and in particular, to an image quality adjustment method and device.
  • a plurality of small-sized display screens can be spliced into a large-sized display screen to provide users with a visual experience of a large-screen display effect.
  • the display effect of the spliced large-sized display screens is likely to be poor, especially the handover position of the small-sized display screens, which affects user viewing.
  • the present application actually provides an image quality adjustment method and device, which can support adjusting the image quality of multiple display screens in a splicing screen at one time, thereby helping to improve the image quality adjustment efficiency of the splicing screen.
  • a first aspect is an image quality adjustment method according to an embodiment of the application, which specifically includes: receiving a first event, where the first event is used to trigger adjustment of the image quality of a splicing screen, and the splicing screen includes at least a first event.
  • N reference pictures can be sent to the splicing screen, so that the entire display area of the splicing screen can be photographed when the reference picture and the splicing screen are displayed in a full screen as a whole. Therefore, compared with the prior art that the user needs to adjust the picture quality of each display screen in the splicing screen separately, it is possible to adjust the picture quality of each display screen in the splicing screen at one time.
  • the image quality of multiple displays can help to improve the efficiency of image quality adjustment on the splicing screen.
  • the first image quality adjustment parameter and the second image quality adjustment parameter may be generated in the following manner:
  • the first picture is divided into a first picture and a second picture, and the first picture is the picture displayed in the first display screen when the splicing screen displays the first reference picture in full screen as a whole,
  • the second picture is the picture displayed in the second display screen when the splicing screen as a whole displays the first reference picture in full screen;
  • first picture color value is used to indicate the overall color of the first picture
  • second picture color The value is used to indicate the overall color of the second picture
  • first border color value is used to indicate the color value of the first border in the first picture
  • second border color value is used to indicate the second border color value.
  • the color value of the second border in the picture, the first border and the second border are adjacent borders of the first picture and the second picture;
  • the first picture color value, the second picture color value, the first border color value and the second border color value, the first picture color value and the second picture color value are processed Adjusting so that after the first picture color value and the second picture color value are adjusted, the difference between the adjusted first picture color value and the adjusted second picture color value is smaller than the first picture color value.
  • the threshold value, the difference between the color values of the adjacent borders of the first picture and the second picture is smaller than the second threshold value, and the color value of the entire display area of the splicing screen is different from the color value of the first reference picture.
  • the difference between the color values is less than a third threshold;
  • the first picture quality adjustment parameter is obtained according to the color value of the first reference picture and the adjusted color value of the first picture
  • the first picture quality adjustment parameter is obtained according to the color value of the first reference picture and the adjusted first picture.
  • Two picture color values are obtained to obtain the second picture quality adjustment parameter.
  • the first image quality adjustment parameter includes an RGB value of the first reference picture and a first target RGB value, and the first target RGB value is based on the adjusted first RGB value.
  • the second picture quality adjustment parameter includes the RGB value of the first reference picture and the second target RGB value, and the second target RGB value is based on the adjusted second picture color value obtained. So as to facilitate implementation.
  • the RGB value of the reference picture may also be referred to as a standard RGB value.
  • the RGB value of the reference picture is the RGB value of pure red.
  • the color value of the first picture is an average value of color values of all image blocks in the first picture
  • the color value of the second picture is an average value of all the image blocks in the second picture.
  • the average value of color values is the average value of the color values of all image blocks on the first border
  • the second border color value is the color of all image blocks on the second border the average of the values. Therefore, the color value used to measure the overall color of the picture and the color value used to measure the color of a certain boundary of the picture are more in line with the actual situation.
  • the first picture color value may be based on the following manner The picture color value and the second picture color value are adjusted:
  • the difference between the second picture color value and the first picture color value is less than the first threshold, and the difference between the second border color value and the first border color is less than the the second threshold, then determine whether the difference between the color value of the entire display area of the splicing screen and the color value of the first reference picture is less than the third threshold;
  • the difference between the color value of the entire display area of the splicing screen and the color value of the first reference picture is not less than the third threshold, adjust the color value of the first picture according to the first step length , and re-execute the step of selecting the smaller value of the color value of the first picture and the color value of the second picture, until the color value of the entire display area of the splicing screen is the same as the color value of the first reference picture
  • the difference between is less than the third threshold.
  • the overall display effect of the splicing screen is more coordinated.
  • the second screen color value is adjusted according to the second step size, and the selection of the first screen color value and the second screen color value is performed again. Steps for the smaller of the picture color values. Therefore, after the different display screens of the splicing screen are adjusted according to the corresponding image quality adjustment parameters, the overall display effect of the splicing screen is optimal, rather than the optimal display effect of a single display screen.
  • the first image quality adjustment parameter is sent to the first display screen, so that the first display screen adjusts the image quality according to the first image quality adjustment parameter;
  • the second display screen sends the second image quality adjustment parameter, so that the second display screen adjusts the image quality according to the second image quality adjustment parameter.
  • the N is 64 or 125.
  • the 64 reference pictures are different, so that it is convenient to obtain multiple sets of image quality adjustment parameters for different display screens of the splicing screen.
  • the first reference picture is a standard color picture or a standard color scale picture.
  • the reliability of the obtained image quality adjustment parameters is improved.
  • the first event is a first power-on operation, an image quality adjustment operation, or an image quality adjustment time. Therefore, it is convenient to maintain the display effect of the splicing screen and improve the user experience.
  • the N reference pictures are generated, and the mosaic screen sends the N reference pictures.
  • N reference pictures may be obtained based on a corresponding reference picture generation algorithm.
  • a second aspect is an apparatus according to an embodiment of the present application, including a processing module and a communication module;
  • the communication module is configured to receive a first event, and the first event is used to trigger and adjust the picture quality of the splicing screen, and the splicing screen is a display screen composed of at least a first display screen and a second display screen;
  • the processing module is configured to, in response to the first event, trigger the communication module to send N reference pictures to the splicing screen, where the N reference pictures include the first reference picture, and the N is greater than or equal to a positive integer of 1;
  • the communication module is further configured to receive a first photo, which is a photo taken on the entire display area of the splicing screen when the splicing screen displays the first reference picture in a full screen as a whole;
  • the processing module is further configured to generate a first image quality adjustment parameter and a second image quality adjustment parameter according to the first reference picture and the first photo, and the first image quality adjustment parameter is used to adjust the The image quality of the first display screen, and the second image quality adjustment parameter is used to adjust the image quality of the second display screen.
  • the processing module is configured to generate, according to the first reference picture and the first photo, a first image quality adjustment parameter and a second image quality adjustment parameter in the following manner:
  • the processing module firstly divides the first photo into a first picture and a second picture, and the first picture is the first display when the splicing screen displays the first reference picture in full screen as a whole.
  • the picture displayed on the screen, and the second picture is the picture displayed in the second display screen when the splicing screen as a whole displays the first reference picture in full screen;
  • the processing module determines a first picture color value, a second picture color value, a first border color value and a second border color value, where the first picture color value is used to indicate the overall color of the first picture , the second picture color value is used to indicate the overall color of the second picture, the first border color value is used to indicate the color value of the first border in the first picture, and the second border color value a color value used to indicate a second boundary in the second picture, where the first boundary and the second boundary are adjacent boundaries of the first picture and the second picture;
  • the processing module compares the first picture color value and the second border color value
  • the second picture color value is adjusted so that after the first picture color value and the second picture color value are adjusted, there is a difference between the adjusted first picture color value and the adjusted second picture color value
  • the difference is less than the first threshold, the difference between the color values of the adjacent borders of the first picture and the second picture is less than the second threshold, and the color value of the entire display area of the splicing screen the difference between the color values of the first reference picture is less than a third threshold;
  • the processing module obtains the first picture quality adjustment parameter according to the color value of the first reference picture and the adjusted color value of the first picture, and obtains the first picture quality adjustment parameter according to the color value of the first reference picture and the adjusted color value of the first picture.
  • the adjusted color value of the second image is obtained to obtain the second image quality adjustment parameter.
  • the first image quality adjustment parameter includes an RGB value of the first reference picture and a first target RGB value, and the first target RGB value is based on the adjusted first RGB value.
  • the second picture quality adjustment parameter includes the RGB value of the first reference picture and the second target RGB value, and the second target RGB value is based on the adjusted second picture color value obtained.
  • the color value of the first picture is an average value of color values of all image blocks in the first picture
  • the color value of the second picture is an average value of all the image blocks in the second picture.
  • the average value of color values is the average value of the color values of all image blocks on the first border
  • the second border color value is the color of all image blocks on the second border the average of the values.
  • the processing module is configured to, according to the first picture color value, the second picture color value, the first border color value and the second border color value, based on the following The color value of the first picture and the color value of the second picture are adjusted in the following way:
  • the processing module first selects the smaller value of the first picture color value and the second picture color value
  • the processing module determines whether the difference between the color value of the second picture and the color value of the first picture is smaller than the color value of the first picture a threshold, and judging whether the difference between the second border color value and the first border color is less than the second threshold;
  • the processing module determines whether the difference between the color value of the entire display area of the splicing screen and the color value of the first reference picture is less than the third threshold;
  • the processing module If the difference between the color value of the entire display area of the splicing screen and the color value of the first reference picture is not less than the third threshold, the processing module, according to the first step, Adjust the color value, and re-execute the step of selecting the smaller value of the color value of the first picture and the color value of the second picture, until the color value of the entire display area of the splicing screen matches the first reference value The difference between the color values of the pictures is less than the third threshold.
  • the processing module is further configured to, if the difference between the color value of the second picture and the color value of the first picture is not less than the first threshold, and/or the The difference between the second border color value and the first border color is not less than the second threshold value, the second picture color value is adjusted according to the second step size, and the selection of the first border color is performed again. The step of the smaller of the picture color value and the second picture color value.
  • the communication module is further configured to send the first image quality adjustment parameter to the first display screen, so that the first display screen can pair with the first image quality adjustment parameter according to the first image quality adjustment parameter. Adjusting the picture quality; sending the second picture quality adjustment parameter to the second display screen, so that the second display screen adjusts the picture quality according to the second picture quality adjustment parameter.
  • the N is 64 or 125.
  • the first reference picture is a standard color picture or a standard color scale picture.
  • the first event is a first power-on operation, an image quality adjustment operation, or an image quality adjustment time.
  • the device is a device separated from the splicing screen, or the device is a chip integrated on the splicing screen.
  • a third aspect is an apparatus according to an embodiment of the application, the apparatus includes a memory, a processor, and a communication interface, wherein the memory stores one or more computer programs, and the one or more computer programs include instructions ; the processor is configured to execute the instruction and invoke the communication interface, so that the apparatus executes the method of the first aspect and any possible designs of the first aspect.
  • the memory, the processor, and the communication interface are coupled, and "coupled" in this embodiment of the present application means that the two components are directly or indirectly combined with each other.
  • the device is a host, separate from the splicing screen.
  • the device is a chip integrated on the splicing screen.
  • a fourth aspect is a computer-readable storage medium according to an embodiment of the present application.
  • the computer-readable storage medium includes a computer program, and when the computer program is run on an electronic device, the electronic device is made to perform the first aspect and the same. A method of any possible design of the first aspect.
  • a fifth aspect is a computer program according to an embodiment of the application, the computer program includes instructions, when the instructions are run on a computer, the computer is made to execute the first aspect and any possible design of the first aspect. method.
  • a sixth aspect is a system according to an embodiment of the present application, including a host, a splicing screen, and a color analyzer.
  • the host is configured to execute the method according to the first aspect and any possible designs of the first aspect.
  • the splicing screen is used to receive the reference picture from the host and display the reference picture as a whole in full screen.
  • Each display screen in the splicing screen receives the picture quality adjustment parameters from the host, and adjusts the picture quality according to the corresponding picture quality adjustment parameters.
  • the color analyzer is used to take pictures of the entire display area of the splicing screen when the splicing screen as a whole displays the reference picture in full screen, and send the photo to the host.
  • FIG. 1 is a schematic diagram of a splicing screen according to an embodiment of the application.
  • FIG. 2 is a schematic diagram of a system structure according to an embodiment of the application.
  • FIG. 3 is a schematic diagram of the entire display area of a splicing screen according to an embodiment of the application.
  • FIG. 4 is a schematic flowchart of an image quality adjustment method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of obtaining a color value of an image block according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another splicing screen according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a device according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of another apparatus according to an embodiment of the present application.
  • the cost of manufacturing large-sized displays is relatively high.
  • multiple small-sized display screens are spliced or combined to obtain a large-sized display screen.
  • the display screen 1, the display screen 2, the display screen 3 and the display screen 4 are combined to obtain a spliced screen, that is, a large-sized display screen.
  • the embodiments of the present application provide an image quality adjustment method, which can support adjusting the image quality of multiple display screens at one time, thereby helping to improve adjustment efficiency.
  • picture quality refers to picture quality, which may include indicators such as color, color accuracy, sharpness, saturation, brightness, or contrast that are used to measure picture quality. Therefore, adjusting the display
  • the picture quality of the screen may include adjusting the color, color accuracy, sharpness, saturation, or contrast of the display screen and other indicators used to measure the picture quality. The following is an example of adjusting the color of the display screen.
  • At least one refers to one or more.
  • “Plural” means two or more.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one (item) of the following” or its similar expression refers to any combination of these items, including any combination of single item (item) or plural item (item).
  • At least one (a) of a, b or c may represent: a, b, c, a and b, a and c, b and c, or a, b and c seven situations. where each of a, b, c can be an element itself, or a set containing one or more elements.
  • the display screen in the embodiment of the present application refers to a screen without splicing, for example, the display screen 1 , the display screen 2 , the display screen 3 or the display screen 4 shown in FIG. 1 .
  • the splicing screen in the embodiment of the present application may also be called a combined screen, which refers to a screen obtained by splicing or combining multiple display screens.
  • a splicing screen is composed of display screen 1, display screen 2, display screen 3 and display screen 4.
  • the color of the reference picture is a single color, that is, a solid color picture, for example, the color of the reference picture is red, green, blue, and the like.
  • the reference picture may be a standard color picture, a standard color scale picture, or the like.
  • FIG. 2 it is a system architecture diagram of an embodiment of the present application, including a splicing screen, a host, and a color analyzer.
  • the host and the splicing screen may be separated, or the host and the splicing screen may not be separated, which is not limited.
  • the splicing screen includes a display screen 1 , a display screen 2 , a display screen 3 and a display screen 4 .
  • the display screen 1 includes an image quality adjustment module 1
  • the display screen 2 includes an image quality adjustment module 2
  • the display screen 3 includes an image quality adjustment module 3
  • the display screen 4 includes an image quality adjustment module 4.
  • the image quality adjustment module 1 is used to adjust the image quality of the display screen 1
  • the image quality adjustment module 2 is used to adjust the image quality of the display screen 2
  • the image quality adjustment module 3 is used to adjust the image quality of the display screen 3
  • the image quality adjustment module 4 Used to adjust the picture quality of display 4.
  • the host is used to send a set of reference pictures to the splicing screen, generate the 3D-lut color adjustment table of each display screen of the splicing screen, and send the 3D-lut color adjustment table of each display screen to the corresponding display screen.
  • the 3D-lut color adjustment table includes a set of image quality adjustment parameters.
  • the number of a set of image quality adjustment parameters is the same as the number of a set of reference pictures. For example, if a group of reference pictures is N, the number of picture quality adjustment parameters in a group is N.
  • N is a positive integer greater than or equal to 1.
  • the value of N can be 64 or 125, etc.
  • the host sends a set of reference pictures to the splicing screen in response to the power-on operation. For example, after the user assembles the splicing screen, the host sends a set of reference pictures to the splicing screen in response to the first power-on operation. For another example, the host receives the user's operation to adjust the image quality of the display screen, and sends a set of reference pictures to the splicing screen.
  • the host includes an image generation module and an image quality adjustment tool.
  • the image generation module is used to send a set of reference pictures to the splicing screen.
  • a set of reference pictures may include N reference pictures, where N is a positive integer greater than or equal to 1.
  • the reference picture may be generated by the image generation module, or may be preset in the image generation module, which is not limited.
  • the image quality adjustment tool is used to generate the 3D-lut color adjustment table of each display screen of the splicing screen.
  • the color analyzer is used to take pictures of the entire display area of the splicing screen when the reference picture is displayed in full screen at a fixed position, obtain the picture when the splicing screen displays the reference picture in full screen, and send the picture to the host for generating picture quality adjustment parameters.
  • the splicing screen displays the reference picture in full screen
  • the splicing screen displays the reference picture in the entire display area (i.e. the shaded area shown in )
  • the splicing screen displays the reference picture as a whole
  • the reference picture is displayed in full screen on each display screen.
  • the reference picture is a standard blue picture
  • the shaded area shown in FIG. 3 appears blue.
  • the color analyzer takes pictures of the entire display area (ie, the shaded area) of the splicing screen shown in FIG. 3 .
  • the color analyzer may be a professional instrument, and may also be implemented by a camera phone and color analysis software, and the specific implementation manner of the color analyzer is not limited in this embodiment of the present application.
  • the host and the splicing screen can be connected in a wired manner or wirelessly, which is not limited.
  • the host and the color analyzer can also be connected in a wired manner or wirelessly, which is not limited.
  • the following describes the image quality adjustment method according to the embodiment of the present application in detail by taking a group of reference pictures including two reference pictures as an example with reference to the system architecture shown in FIG. 2 .
  • FIG. 4 is a schematic flowchart of an image quality adjustment method according to an embodiment of the present application, which specifically includes the following steps:
  • the host sends a reference picture group to the splicing screen.
  • the reference picture group is a group of reference pictures, and the reference picture group includes reference picture 1 and reference picture 2 as an example.
  • the host may send the reference picture group to the mosaic screen in response to the first event.
  • the first event may be a power-on operation, or an operation of adjusting the image quality of the display screen.
  • the host may also periodically send a reference picture group to the splicing screen to adjust the picture quality.
  • the period of image quality adjustment may be pre-configured before the device is extended, or may be set by the user according to their own needs, which is not limited.
  • the period of image quality adjustment may be three months, one month or half a year, etc., which is not limited.
  • the host may send the reference picture group to each display screen in the mosaic screen, or send the reference picture group to at least one display screen in the mosaic screen.
  • the splicing screen sequentially displays the reference picture 1 and the reference picture 2 in the reference picture group in full screen.
  • the splicing screen displays the reference pictures in full screen in sequence according to the sequence numbers of the reference pictures in the reference picture group from small to large.
  • the serial number of reference picture 1 is 1, and the serial number of reference picture 2 is 2.
  • the splicing screen first displays reference picture 1 in full screen, and then displays reference picture 2 in full screen.
  • the embodiments of the present application may also use other manners to display the reference pictures in the reference picture group.
  • the color analyzer takes a picture of the entire display area of the splicing screen at a fixed position, obtains the photo 1, and sends the photo 1 to the host;
  • the splicing screen displays the reference picture 2 in the full screen,
  • the color analyzer takes pictures of the entire display area of the splicing screen at a fixed position, obtains picture 2, and sends the picture 2 to the host.
  • the splicing screen displays the reference picture 1 in full screen
  • the user operates the color analyzer at a fixed position, so that the color analyzer responds to the user's operation and takes a picture of the entire display area of the splicing screen to obtain the photo 1.
  • the splicing screen displays the reference picture 2 in full screen
  • the user operates the color analyzer at a fixed position, so that the color analyzer responds to the user's operation to take pictures of the entire display area of the splicing screen.
  • the host sends a photographing instruction to the color analyzer, and the color analyzer receives the photographing instruction, and photographs the entire display area of the splicing screen at a fixed position every first time period.
  • the first duration may be a display interval of two adjacent reference pictures. Thus, no user action is required.
  • the host may send a photographing instruction to the color analyzer in response to displaying the reference picture in the reference picture group on the splicing screen, and the color analyzer receives the photographing instruction and takes a picture of the entire display area of the splicing screen at a fixed position.
  • the host in response to the splicing screen displaying the reference picture 1, the host sends a photographing instruction to the color analyzer.
  • the color analyzer receives the photographing instruction, and takes pictures of the entire display area of the splicing screen at a fixed position to obtain a photo of the entire display area of the splicing screen when the splicing screen displays the reference picture 1.
  • the host In response to displaying the reference picture 2 on the splicing screen, the host sends a photographing instruction to the color analyzer.
  • the color analyzer receives the photographing instruction, and takes pictures of the entire display area of the splicing screen at a fixed position to obtain a photo of the entire display area of the splicing screen when the splicing screen displays the reference picture 2.
  • the manner of triggering the color analyzer to take pictures of the entire display area of the splicing screen is not limited.
  • the host receives the photo 1, and according to the photo 1 and the reference picture 1, generates an image quality adjustment parameter 1 of each display screen of the splicing screen.
  • the host receives the photo 2, and generates the image quality adjustment parameter 2 of each display screen of the splicing screen according to the photo 2 and the reference picture 2.
  • the host sends a corresponding 3D-lut color adjustment table to each display screen of the splicing screen respectively.
  • each display screen of the splicing screen corresponds to a 3D-lut color adjustment table.
  • the 3D-lut color adjustment table of the display screen includes an image quality adjustment parameter 1 and an image quality adjustment parameter 2 of the display screen.
  • Each display screen of the splicing screen receives a corresponding 3D-lut color adjustment table, and adjusts the image quality accordingly according to the image quality adjustment parameters in the 3D-lut color adjustment table. Therefore, the splicing screen can adjust the image quality of multiple display screens at one time, which helps to improve the adjustment efficiency.
  • the host may also send multiple reference picture groups to the splicing screen in sequence, the number of pictures included in each reference picture group may be the same or different, and each reference picture group includes The colors of the pictures can be partly the same, partly different, or completely different, so that the splicing screen can adjust different picture quality parameters.
  • the host may send the first reference picture group and the second reference picture group to the splicing screen in sequence.
  • the first reference picture group includes standard red pictures, standard blue pictures, standard yellow pictures, and standard white pictures.
  • the second reference picture group includes standard black pictures, and standard green pictures.
  • the host will generate the picture quality adjustment parameter 1 of the display screen 1, the picture quality adjustment parameter 1 of the display screen 2, the picture quality adjustment parameter 1 of the display screen 3 and the picture quality adjustment parameter of the display screen 4 according to the photo 1 and the reference picture 1. 1
  • the picture quality adjustment parameters of the display screen generated by the host are introduced accordingly.
  • the host divides the photo 1 according to the display area of each display screen in the splicing screen, and obtains the picture 1, the picture 2, the picture 3 and the picture 4.
  • Screen 1 is the screen displayed in the display screen 1
  • screen 2 is the screen displayed in the screen screen 2
  • screen 3 is the screen displayed in the screen screen 3
  • screen 4 is the screen displayed in the screen screen 4.
  • Picture 1, Picture 2, Picture 3, and Picture 4 make up Photo 1.
  • the host extracts the color value of each image block (Block) in picture 1, extracts the color value of each block in picture 2, extracts the color value of each block in picture 3, and extracts the color value of each block in picture 4 value.
  • the color value of the Block can be the coordinates (L, a, b) of the Block in the Lab color space, where L represents the brightness of the Block, a represents the redness of the Block, and b represents the degree of redness of the Block.
  • L represents the brightness of the Block
  • a represents the redness of the Block
  • b represents the degree of redness of the Block.
  • the coordinates (L, a, b) in the Lab color space can be referred to as CIELab coordinates, or Lab coordinates, which is a nonlinear mapping to CIEXYZ coordinates, and has two properties: 1) Visual averageness, in Lab The Euclidean distance of two colors in the color space is approximately linear with the color difference perceived by the human eye. 2) Value symmetry, the value of L of CIELab coordinates is within [0, 100], and the values of a and b are within [-128, 128], which can be well normalized.
  • a block includes 32 ⁇ 32 pixels, each pixel includes 4 color channels RGBY, R represents the red channel, G represents the green channel, B represents the blue channel, and Y represents the yellow channel.
  • the host can extract the color value of a Block based on:
  • the host performs logarithmic and normalization preprocessing on all pixels in the block to obtain the preprocessing results. This makes it easy to observe the distribution of pixels in each channel, and the distribution is closer to symmetry.
  • CNN convolutional neural network
  • the structure of the CNN model in the example of this application may be a simplified version of the discriminator model in the Pix2pix model, and the CNN model may include a convolutional layer with a kernel size of 3 ⁇ 3+BatchNorm+ReLU layer, MaxPool (sampling rate and step size) is 2), AveragePool (sampling rate and step size are 4).
  • the above is only an example of extracting the color value of the Block.
  • the color value of the Block may also be extracted in other ways, which is not limited.
  • the host determines the color value of screen 1 and the color values of the four borders of screen 1 according to the color value of each block in screen 1; according to the color value of each block in screen 2, determines the color value of screen 2, And the color value of the four borders of picture 2; According to the color value of each Block in picture 3, determine the color value of picture 3, and the color value of the four borders of picture 3; According to the color value of each Block in picture 4 , determine the color value of screen 4 and the color values of the four borders of screen 4.
  • the color value of a picture is the average value of the color values of all blocks in the picture, which is used to represent the overall color of the picture
  • the color value of a border of the picture is the average of the color values of all blocks on this side of the picture. Value, the color used to characterize the border of the picture.
  • the host computer based on the color value of screen 1, the color value of the four borders of screen 1, the color value of screen 2, the color value of the four borders of screen 2, the color value of screen 3, the color value of the four borders of screen 3 value, the color value of picture 4, and the color value of the four borders of picture 4, respectively adjust the color value of picture 1, the color value of picture 2, the color value of picture 3, the color value of picture 4, so that the adjacent two
  • the difference between the color values of the two pictures is less than the threshold 1
  • the difference between the color values of the borders of two adjacent pictures is less than the threshold 2
  • the color value of the entire display area of the splicing screen is the same as the color value of the reference picture 1.
  • the difference between is less than threshold 3.
  • threshold 1, threshold 2, and threshold 3 may be preset according to actual requirements, for example, 0.5 ⁇ threshold 1 ⁇ 2.3, 0.5 ⁇ threshold 2 ⁇ 2.3, 0.5 ⁇ threshold 2 ⁇ 2.3, threshold 1, threshold 2, and threshold 3
  • the smaller the value of the less the human eye can perceive the color difference displayed by different display screens.
  • the difference ⁇ E12 between color value 1 and color value 2 can satisfy Expression 1:
  • the host generates the image quality adjustment parameters of the display screen 1 according to the color value of the adjusted screen 1, the color value of the adjusted screen 2, the color value of the adjusted screen, and the color value of the adjusted screen.
  • the image quality adjustment parameter of the display screen 1 includes a reference RGB value and a target RGB value.
  • the reference RGB value is the RGB value of the reference picture
  • the target RGB value is based on the adjusted image. A color value of 1 is obtained.
  • the host can transfer the adjusted color value of picture 1 from the Lab color space to the RGB color space to obtain the target RGB value.
  • the host can first convert the adjusted color value of screen 1 (that is, the Lab coordinates of screen 1) into coordinates (x1, y1, z1) in the XYZ color space, and then, according to (x1, y1, z1), through The interpolation calculation obtains the RGB coordinates corresponding to (x1, y1, z1) in the RGB color space, that is, the target RGB value.
  • the host may adjust the color value of picture 1, the color value of picture 2, the color value of picture 3, and the color value of picture 4 based on the following methods, so that the color values of two adjacent pictures are between the color values.
  • the difference is less than threshold 1
  • the difference between the color values of the borders of two adjacent pictures is less than threshold 2
  • the difference between the color value of the entire display area of the splicing screen and the color value of reference picture 1 is less than the threshold value 3:
  • Step 1 The host determines the first target picture from Picture 1, Picture 2, Picture 3 and Picture 4 according to the color value of Picture 1, the color value of Picture 2, the color value of Picture 3 and the color value of Picture 4. The difference between the color value of the target picture and the color value of the reference picture is the smallest.
  • Step 2 The host determines whether the pictures adjacent to the first target picture in picture 1, picture 2, picture 3 and picture 4 satisfy the judgment condition, if so, go to step 4, otherwise go to step 3.
  • the first target picture is the picture displayed in the display screen 2
  • the pictures adjacent to the first target picture are the picture 1 (the picture displayed in the display screen 1) and the picture 4 (the picture displayed in the display screen 4).
  • the host determines whether the screen 1 and screen 4 meet the judgment conditions. If the screen 1 and screen 4 meet the judgment conditions, step 4 is performed. If the screen 1 and/or screen 4 do not meet the judgment conditions, step 3 is performed.
  • the host can determine whether screen 1 meets the judgment conditions based on the following methods:
  • Step 3 The host computer adjusts the color value of the picture adjacent to the first target picture that does not meet the judgment condition according to the target step size, and then performs step 1 again.
  • the target step size can be 1, the host can increase or decrease a1 by 1, and increase or decrease b1 by 1, where , a1 is between -500 and 500, including -500 and 500, and b1 is between -200 and 200, including -200 and 200.
  • the target step size may be preset according to actual needs, and may be 1 or 2, which is not limited.
  • Step 4 The host determines the second target picture from the picture 1, picture 2, picture 3 and picture 4, and the second target picture is the picture other than the first target picture.
  • the difference between the color values of the reference picture and the reference picture is the smallest. screen.
  • Step 5 The host determines whether the pictures adjacent to the second target picture in picture 1, picture 2, picture 3 and picture 4 satisfy the judgment condition, if so, go to step 7, otherwise go to step 6.
  • Step 6 The host computer adjusts the color value of the picture adjacent to the second target picture that does not satisfy the judgment condition according to the target step size, and then performs step 1 again.
  • Step 7 If the host determines that picture 1, picture 2, picture 3 and picture 4 all meet the judgment conditions, then determine the color value of the entire display area of the splicing screen, and the color value of the entire display area of the splicing screen is the color value of picture 1, and the color value of picture 2. , the average value of the color value of picture 3 and the color value of picture 4.
  • Step 8 When the difference between the color value of the entire display area of the splicing screen and the color value of the reference picture 1 is less than the threshold value 3, the host stops the color value of the picture 1, the color value of the picture 2, the color value of the picture 3 and the color value of the picture 3. Adjustment of the color value of screen 4.
  • Step 1 is then performed again until the difference between the color value of the entire display area of the splicing screen and the color value of the reference picture 1 is less than the threshold value 3 .
  • the target step size can be 1, the host can add 1 or subtract 1 to a2, and add 1 or subtract 1 to b2, where a2 is between -500 and 500, including -500 and 500, b2 Between -200 and 200, and including -200 and 200. It should be noted that, in this embodiment of the present application, the target step size may be preset according to actual needs, and may be 1 or 2, which is not limited.
  • the above adjustment methods help to improve the display effect of the splicing screen, thereby improving the user experience. It should be noted that the above is only an example of a method for adjusting the color value of the screen, and is not enough to limit the embodiments of the present application. limited.
  • the splicing screen shown in FIG. 1 is only introduced by taking the splicing screen shown in FIG. 1 as an example.
  • the sizes of the display screens used to form the splicing screen in the embodiments of the present application may be the same or different, and , the embodiment of the present application does not limit the splicing method of the display screen.
  • the splicing screen includes a display screen A and a display screen B.
  • the brand, batch, model, material, etc. of each display screen in the splicing screen are not limited in the embodiments of the present application.
  • FIG. 4 takes the example of adjusting the color of each display screen used to form the splicing screen to introduce the image quality adjustment method.
  • the method shown in FIG. 4 in the embodiment of the present application can also be extended to adjust the color accuracy, saturation, brightness, contrast, etc. of each display screen in the splicing screen, by replacing the reference picture in FIG. 4 with the corresponding Benchmark reference pictures, such as grayscale, stripes, three primary colors, etc.
  • an embodiment of the present application further provides an apparatus 700 , as shown in FIG. 7 , including a processing module 701 and a communication module 702 .
  • the apparatus 700 is used to implement the function of the host in the method shown in FIG. 4 .
  • the apparatus 700 may be an electronic device separated from the splicing screen, or may be an apparatus integrated in the splicing screen.
  • the apparatus 700 may be a system-on-a-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the processing module 701 is configured to generate image quality adjustment parameters of each display screen in the splicing screen according to the reference pictures and photos.
  • the communication module 702 is used for sending reference pictures to the splicing screen, receiving photos and so on.
  • each functional module in each embodiment of this application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides an apparatus 800, including a processor 810, for implementing the function of the host in the above method.
  • the processor 810 may be configured to generate image quality adjustment parameters of each display screen in the splicing screen according to the reference pictures and photos.
  • the reference pictures and photos please refer to the detailed description in the method, which will not be described herein again.
  • apparatus 800 may also include memory 820 for storing computer programs and/or data.
  • a computer program includes instructions.
  • Memory 820 is coupled to processor 810 .
  • the coupling in the embodiments of the present application is the spaced coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between the devices, units or modules.
  • the memory 810 may also be located outside the apparatus 800 .
  • the processor 810 may cooperate with the memory 820 .
  • Processor 810 may execute instructions stored in memory 820 .
  • memory 820 may be included in processor 810 .
  • the apparatus 800 may further include a communication interface 830 for communicating with other apparatuses through a transmission medium, so that the apparatuses used in the apparatus 800 may communicate with other apparatuses or apparatuses.
  • the communication interface 830 may be a transceiver, circuit, bus, module, or other type of communication interface, and the other device or apparatus may be a video wall, or a color analyzer.
  • the processor 810 uses the communication interface 830 to send and receive information, such as photos, reference pictures, etc., and is used to implement the methods in the above embodiments.
  • the communication interface 830 may be used to send reference pictures, receive photos, and the like.
  • connection medium between the communication interface 830 , the processor 810 , and the memory 820 is not limited in the embodiments of the present application.
  • the memory 820 , the processor 810 , and the communication interface 830 may be connected by a bus, and the bus may be divided into an address bus, a data bus, a control bus, and the like.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the terms “when” or “after” can be interpreted to mean “if” or “after” or “in response to determining" or “in response to detecting ...”.
  • the phrases “in determining" or “if detecting (the stated condition or event)” can be interpreted to mean “if determining" or “in response to determining" or “on detecting (the stated condition or event)” or “in response to the detection of (the stated condition or event)”.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), and the like.
  • magnetic media eg, floppy disks, hard disks, magnetic tapes
  • optical media eg, DVD
  • semiconductor media eg, Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Image Processing (AREA)

Abstract

一种画质调整方法及装置,涉及终端显示领域。该方法包括:接收到第一事件,第一事件用于触发调整拼接屏的画质,拼接屏为至少包括第一显示屏和第二显示屏组合成的显示屏;响应于第一事件,向拼接屏发送N个参考图片,N个参考图片包括第一参考图片;接收第一照片,第一照片为拼接屏作为一个整体全屏显示第一参考图片时对拼接屏的整个显示区域拍摄的照片;然后,根据第一参考图片和第一照片,生成第一画质调整参数和第二画质调整参数,第一画质调整参数用于调整第一显示屏的画质,第二画质调整参数用于调整第二显示屏的画质。这种技术方案可以一次调整拼接屏中多个显示屏的画质,从而有助于提高拼接屏画质调整的效率。

Description

一种画质调整方法及装置
相关申请的交叉引用
本申请要求在2020年10月31日提交中国专利局、申请号为202011195639.1、申请名称为“一种画质调整方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端显示技术领域,特别涉及一种画质调整方法及装置。
背景技术
目前,利用多个小尺寸的显示屏可以拼接成一个大尺寸的显示屏,为用户提供大屏幕显示效果的视觉体验。但是,由于各个小尺寸的显示屏的显示效果存在差异,因此容易导致拼接的大尺寸的显示屏的显示效果不好,特别是小尺寸的显示屏的交接位置,影响用户观看。
发明内容
本申请实提供了一种画质调整方法及装置,能够支持一次性调整拼接屏中的多个显示屏的画质,从而有助于提高拼接屏的画质调整效率。
第一方面,为本申请实施例的一种画质调整方法,具体包括:接收到第一事件,所述第一事件用于触发调整拼接屏的画质,所述拼接屏为至少包括第一显示屏和第二显示屏组合成的显示屏;响应于所述第一事件,向所述拼接屏发送N个参考图片,所述N个参考图片包括第一参考图片,所述N为大于或等于1的正整数;接收第一照片,所述第一照片为所述拼接屏作为一个整体全屏显示所述第一参考图片时对所述拼接屏的整个显示区域拍摄的照片;然后,根据所述第一参考图片和所述第一照片,生成第一画质调整参数和第二画质调整参数,所述第一画质调整参数用于调整所述第一显示屏的画质,所述第二画质调整参数用于调整所述第二显示屏的画质。
本申请实施例中,由于当触发调整拼接屏画质时,能够向拼接屏发送N个参考图片,从而可以根据参考图片和拼接屏作为一个整体全屏显示参考图片时对拼接屏的整个显示区域拍摄的照片,生成针对拼接屏中的各个显示屏生成画质调整参数,因而,与现有技术中用户需要针对拼接屏中每个显示屏的画质分别进行调整相比,可以一次调整拼接屏中多个显示屏的画质,从而有助于提高拼接屏画质调整的效率。
在一种可能的设计中,根据所述第一参考图片和所述第一照片,可以基于下列方式生成第一画质调整参数和第二画质调整参数:
将所述第一照片划分为第一画面和第二画面,所述第一画面为所述拼接屏作为一个整体全屏显示所述第一参考图片时在所述第一显示屏内显示的画面,所述第二画面为所述拼接屏作为一个整体全屏显示所述第一参考图片时在所述第二显示屏内显示的画面;
确定第一画面颜色值、第二画面颜色值、第一边界颜色值和第二边界颜色值,所述第 一画面颜色值用于指示所述第一画面的整体颜色,所述第二画面颜色值用于指示所述第二画面的整体颜色,所述第一边界颜色值用于指示所述第一画面中第一边界的颜色值,所述第二边界颜色值用于指示所述第二画面中的第二边界的颜色值,所述第一边界和所述第二边界为所述第一画面和所述第二画面的相邻边界;
根据所述第一画面颜色值、所述第二画面颜色值、所述第一边界颜色值和所述第二边界颜色值,对所述第一画面颜色值和所述第二画面颜色值进行调整,使得所述第一画面颜色值和所述第二画面颜色值调整后,调整后的所述第一画面颜色值和调整后的所述第二画面颜色值之间的差值小于第一阈值、所述第一画面和所述第二画面的相邻边界的颜色值之间的差值小于第二阈值、且所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值小于第三阈值;
根据所述第一参考图片的颜色值和调整后的所述第一画面颜色值,得到所述第一画质调整参数,以及根据所述第一参考图片的颜色值和调整后的所述第二画面颜色值,得到所述第二画质调整参数。
通过上述技术方案,使得拼接屏的不同显示屏根据对应的画质调整参数进行调整后,拼接屏整体的显示效果更加协调。
在一种可能的设计中,所述第一画质调整参数包括所述第一参考图片的RGB值、和第一目标RGB值,所述第一目标RGB值是根据调整后的所述第一画面颜色值得到的;所述第二画质调整参数包括所述第一参考图片的RGB值、和第二目标RGB值,所述第二目标RGB值是根据调整后的所述第二画面颜色值得到的。从而便于实现。
需要说明的是,参考图片的RGB值也可以称之为标准RGB值,例如,参考图片为纯红色图片,参考图片的RGB值,即为纯红色的RGB值。
在一种可能的设计中,所述第一画面颜色值为所述第一画面中所有图像块的颜色值的平均值,所述第二画面颜色值为所述第二画面中所有图像块的颜色值的平均值,所述第一边界颜色值为所述第一边界上的所有图像块的颜色值的平均值,所述第二边界颜色值为所述第二边界上所有图像块的颜色值的平均值。从而使得用于衡量画面整体颜色的颜色值、和用于衡量画面某一边界的颜色的颜色值更加符合实际情况。
在一种可能的设计中,根据所述第一画面颜色值、所述第二画面颜色值、所述第一边界颜色值和所述第二边界颜色值,可以基于下列方式对所述第一画面颜色值和所述第二画面颜色值进行调整:
选择所述第一画面颜色值和所述第二画面颜色值中的较小值;
当所述第一画面颜色值小于所述第二画面颜色值时,判断所述第二画面颜色值与所述第一画面颜色值之间的差值是否小于所述第一阈值,以及判断所述第二边界颜色值与所述第一边界颜色之间的差值是否小于所述第二阈值;
若所述第二画面颜色值与所述第一画面颜色值之间的差值小于所述第一阈值、且所述第二边界颜色值与所述第一边界颜色之间的差值小于所述第二阈值,则判断所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是否小于第三阈值;
若所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是不小于第三阈值,按照第一步长,对所述第一画面颜色值进行调整,并重新执行选择所述第一画面颜色值和所述第二画面颜色值中的较小值的步骤,直至所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是小于所述第三阈值为止。
从而进一步使得拼接屏的不同显示屏根据对应的画质调整参数进行调整后,拼接屏整体的显示效果更加协调。
应理解,对于由3块或更多块显示屏拼接而成的拼接屏,则选择各个显示屏的画面颜色值的最小值。
在一种可能的设计中,若所述第二画面颜色值与所述第一画面颜色值之间的差值不小于所述第一阈值、和/或所述第二边界颜色值与所述第一边界颜色之间的差值不小于所述第二阈值,根据第二步长,对所述第二画面颜色值进行调整,并重新执行选择所述第一画面颜色值和所述第二画面颜色值中的较小值的步骤。从而进一步使得拼接屏的不同显示屏根据对应的画质调整参数进行调整后,拼接屏整体的显示效果达到最优,而非单个显示屏的显示效果最优。
在一种可能的设计中,向所述第一显示屏发送所述第一画质调整参数,以使得所述第一显示屏根据所述第一画质调整参数对画质进行调整;向所述第二显示屏发送所述第二画质调整参数,以使得所述第二显示屏根据所述第二画质调整参数对画质进行调整。以便于拼接屏的各个显示屏进行画质调整。
在一种可能的设计中,所述N为64或125。例如,N为64时,这64个参考图片是不同的,从而便于针对拼接屏的不同显示屏得到多组画质调整参数。
在一种可能的设计中,所述第一参考图片为标准颜色图片、或者标准色阶图片。从而提高得到的画质调整参数的可靠性。
在一种可能的设计中,所述第一事件为首次开机操作、调整画质操作、或者达到画质调整时刻。从而便于保持拼接屏的显示效果,提升用户体验。
在一种可能的设计中,响应于所述第一事件,生成所述N个参考图片,并所述拼接屏发送N个参考图片。示例的,可以基于相应的参考图片生成算法,得到N个参考图片。
第二方面,为本申请实施例的一种装置,包括处理模块和通信模块;
所述通信模块,用于接收第一事件,所述第一事件用于触发调整拼接屏的画质,所述拼接屏为至少包括第一显示屏和第二显示屏组合成的显示屏;
所述处理模块,用于响应于所述第一事件,触发所述通信模块向所述拼接屏发送N个参考图片,所述N个参考图片包括第一参考图片,所述N为大于或等于1的正整数;
所述通信模块,还用于接收第一照片,所述第一照片为所述拼接屏作为一个整体全屏显示所述第一参考图片时对所述拼接屏的整个显示区域拍摄的照片;
所述处理模块,还用于根据所述第一参考图片和所述第一照片,生成第一画质调整参数和第二画质调整参数,所述第一画质调整参数用于调整所述第一显示屏的画质,所述第二画质调整参数用于调整所述第二显示屏的画质。
在一种可能的设计中,所述处理模块用于根据所述第一参考图片和所述第一照片,基于下列方式生成第一画质调整参数和第二画质调整参数:
所述处理模块,首先将所述第一照片划分为第一画面和第二画面,所述第一画面为所述拼接屏作为一个整体全屏显示所述第一参考图片时在所述第一显示屏内显示的画面,所述第二画面为所述拼接屏作为一个整体全屏显示所述第一参考图片时在所述第二显示屏内显示的画面;
其次,所述处理模块再确定第一画面颜色值、第二画面颜色值、第一边界颜色值和第二边界颜色值,所述第一画面颜色值用于指示所述第一画面的整体颜色,所述第二画面颜 色值用于指示所述第二画面的整体颜色,所述第一边界颜色值用于指示所述第一画面中第一边界的颜色值,所述第二边界颜色值用于指示所述第二画面中的第二边界的颜色值,所述第一边界和所述第二边界为所述第一画面和所述第二画面的相邻边界;
然后,所述处理模块根据所述第一画面颜色值、所述第二画面颜色值、所述第一边界颜色值和所述第二边界颜色值,对所述第一画面颜色值和所述第二画面颜色值进行调整,使得所述第一画面颜色值和所述第二画面颜色值调整后,调整后的所述第一画面颜色值和调整后的所述第二画面颜色值之间的差值小于第一阈值、所述第一画面和所述第二画面的相邻边界的颜色值之间的差值小于第二阈值、且所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值小于第三阈值;
最后,所述处理模块根据所述第一参考图片的颜色值和调整后的所述第一画面颜色值,得到所述第一画质调整参数,以及根据所述第一参考图片的颜色值和调整后的所述第二画面颜色值,得到所述第二画质调整参数。
在一种可能的设计中,所述第一画质调整参数包括所述第一参考图片的RGB值、和第一目标RGB值,所述第一目标RGB值是根据调整后的所述第一画面颜色值得到的;所述第二画质调整参数包括所述第一参考图片的RGB值、和第二目标RGB值,所述第二目标RGB值是根据调整后的所述第二画面颜色值得到的。
在一种可能的设计中,所述第一画面颜色值为所述第一画面中所有图像块的颜色值的平均值,所述第二画面颜色值为所述第二画面中所有图像块的颜色值的平均值,所述第一边界颜色值为所述第一边界上的所有图像块的颜色值的平均值,所述第二边界颜色值为所述第二边界上所有图像块的颜色值的平均值。
在一种可能的设计中,所述处理模块,用于根据所述第一画面颜色值、所述第二画面颜色值、所述第一边界颜色值和所述第二边界颜色值,基于下列方式对所述第一画面颜色值和所述第二画面颜色值进行调整:
所述处理模块,首先选择所述第一画面颜色值和所述第二画面颜色值中的较小值;
然后,当所述第一画面颜色值小于所述第二画面颜色值时,所述处理模块判断所述第二画面颜色值与所述第一画面颜色值之间的差值是否小于所述第一阈值,以及判断所述第二边界颜色值与所述第一边界颜色之间的差值是否小于所述第二阈值;
若所述第二画面颜色值与所述第一画面颜色值之间的差值小于所述第一阈值、且所述第二边界颜色值与所述第一边界颜色之间的差值小于所述第二阈值,则所述处理模块判断所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是否小于第三阈值;
若所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是不小于第三阈值,所述处理模块按照第一步长,对所述第一画面颜色值进行调整,并重新执行选择所述第一画面颜色值和所述第二画面颜色值中的较小值的步骤,直至所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是小于所述第三阈值为止。
在一种可能的设计中,所述处理模块,还用于若所述第二画面颜色值与所述第一画面颜色值之间的差值不小于所述第一阈值、和/或所述第二边界颜色值与所述第一边界颜色之间的差值不小于所述第二阈值,根据第二步长,对所述第二画面颜色值进行调整,并重新执行选择所述第一画面颜色值和所述第二画面颜色值中的较小值的步骤。
在一种可能的设计中,所述通信模块还用于向所述第一显示屏发送所述第一画质调整参数,以使得所述第一显示屏根据所述第一画质调整参数对画质进行调整;向所述第二显示屏发送所述第二画质调整参数,以使得所述第二显示屏根据所述第二画质调整参数对画质进行调整。
在一种可能的设计中,所述N为64或125。
在一种可能的设计中,所述第一参考图片为标准颜色图片、或者标准色阶图片。
在一种可能的设计中,所述第一事件为首次开机操作、调整画质操作、或者达到画质调整时刻。
在一种可能的设计中,所述装置为与所述拼接屏分离的设备、或者,所述装置为集成在所述拼接屏上的芯片。
第三方面,为本申请实施例的一种装置,所述装置包括存储器、处理器和通信接口,其中,所述存储器存储有一个或多个计算机程序,所述一个或多个计算机程序包括指令;所述处理器用于执行所述指令,调用所述通信接口,使得所述装置执行第一方面及其第一方面任一可能设计的方法。
其中,所述存储器、处理器和通信接口耦合,本申请实施例中“耦合”是指两个部件彼此直接或间接地结合。
在一种可能的设计中,所述装置为主机,与拼接屏分离。或者,所述装置为芯片,集成在所述拼接屏上。
第四方面,为本申请实施例的一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序,当计算机程序在电子设备上运行时,使得所述电子设备执行第一方面及其第一方面任一可能设计的方法。
第五方面,为本申请实施例的一种计算机程序,所述计算机程序包括指令,当所述指令在计算机上运行时,使得所述计算机执行第一方面及其第一方面任一可能设计的方法。
第六方面,为本申请实施例的一种系统,包括主机、拼接屏和色彩分析仪。其中,主机用于执行如上述第一方面及其第一方面任一可能设计的方法。拼接屏用于接收来自主机的参考图片,并作为一个整体全屏显示该参考图片。拼接屏中的各个显示屏接收来自主机的画质调整参数,根据相应的画质调整参数进行画质调整。色彩分析仪用于在拼接屏作为一个整体全屏显示参考图片时对拼接屏的整个显示区域拍照,并将照片发送给主机。
其中,第二方面至第六方面的有益效果,请参见第一方面的有益效果,不重复赘述。
附图说明
图1为本申请实施例的一种拼接屏的示意图;
图2为本申请实施例的一种系统结构的示意图;
图3为本申请实施例的一种拼接屏的整个显示区域的示意图;
图4为本申请实施例的一种画质调整方法的流程示意图;
图5为本申请实施例的一种得到图像块的颜色值的示意图;
图6为本申请实施例的另一拼接屏的示意图;
图7为本申请实施例的一种装置的结构示意图;
图8为本申请实施例的另一装置的结构示意图。
具体实施方式
目前,制造大尺寸的显示屏成本较高。通常,将多个小尺寸的显示屏拼接或组合,得到一个大尺寸的显示屏。例如,如图1所示,将显示屏1、显示屏2、显示屏3和显示屏4组合得到一个拼接屏,即大尺寸的显示屏。
然而,由于各个小尺寸的显示屏的显示效果存在差异,因此,容易导致拼接的大尺寸的显示屏的显示效果较差,特别是小尺寸的显示屏的交接位置。目前,为了提高拼接的大尺寸的显示屏的显示效果,一般是专业技术人员通过对每个小尺寸的显示屏的画质进行单独调整。但是,这种调整方式过程复杂而且效率较低。
有鉴于此,本申请实施例提供了一种画质调整方法,可以支持一次性调整多个显示屏的画质,从而有助于提高调整效率。需要说明的是,本申请实施例中,画质指的是画面质量,可以包括颜色、色彩准确度、清晰度、饱和度、亮度、或对比度等用于衡量画面质量的指标,因此,调整显示屏的画质可以包括调整显示屏的颜色、色彩准确度、清晰度、饱和度、或对比度等用于衡量画面质量的指标。下面以调整显示屏的颜色为例进行介绍。
应理解,本申请实施例中“至少一个”是指一个或者多个。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的三种情况。其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c七种情况。其中a、b、c中的每一个本身可以是元素,也可以是包含一个或多个元素的集合。
在本申请中,“示例的”、“在一些实施例中”、“在另一些实施例中”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
首先,对本申请实施例涉及的部分名词进行解释,以便于本领域技术人员理解。
1、显示屏。本申请实施例中的显示屏指的是一块无拼接的屏幕,例如,图1中所示的显示屏1、显示屏2、显示屏3或显示屏4。
2、拼接屏。本申请实施例中的拼接屏又可以称之为组合式屏幕,指的是由多个显示屏拼接或组合得到的一块屏幕。例如,图1中由显示屏1、显示屏2、显示屏3和显示屏4组合而成的拼接屏。
3、参考图片。本申请实施例中,参考图片的颜色是单一的,即纯色图片,比如参考图片的颜色为红色、绿色、蓝色等。示例的,参考图片可以为标准颜色图片、标准色阶图片等。
以图1所示的拼接屏为例。示例的,如图2所示,为本申请实施例的一种系统架构图,包括拼接屏、主机和色彩分析仪。其中,主机和拼接屏可以是分离的,或者主机和拼接屏也可以是未分离的,对此不作限定。
如图2所示,拼接屏包括显示屏1、显示屏2、显示屏3和显示屏4。显示屏1包括画质调整模块1,显示屏2包括画质调整模块2,显示屏3包括画质调整模块3,显示屏4包 括画质调整模块4。画质调整模块1用于调整显示屏1的画质,画质调整模块2用于调整显示屏2的画质,画质调整模块3用于调整显示屏3的画质,画质调整模块4用于调整显示屏4的画质。
主机用于向拼接屏发送一组参考图片,以及生成拼接屏的各个显示屏的3D-lut色彩调整表,并将各个显示屏的3D-lut色彩调整表发送给对应的显示屏。以一个显示屏的3D-lut色彩调整表为例。3D-lut色彩调整表包括一组画质调整参数。其中,一组画质调整参数的个数、与一组参考图片的个数是相同的。例如,一组参考图片为N个,则一组画质调整参数的个数为N。N为大于或等于1的正整数。比如,N的取值可以为64或者125等。
例如,主机响应于开机操作,向拼接屏发送一组参考图片。比如,用户将拼接屏组装好后,主机响应于首次开机操作,向拼接屏发送一组参考图片。再比如,主机接收到用户调整显示屏画质的操作,向拼接屏发送一组参考图片。
示例的,主机包括图像生成模块和画质调节工具。图像生成模块用于将一组参考图片发送给拼接屏。示例的,一组参考图片可以包括N个参考图片,N为大于或等于1的正整数。例如,参考图片可以是由图像生成模块生成的,也可以是预置在图像生成模块中的,对此不作限定。画质调节工具用于生成拼接屏的各个显示屏的3D-lut色彩调整表。
色彩分析仪用于在固定位置对拼接屏全屏显示参考图片时的整个显示区域进行拍照,得到拼接屏全屏显示参考图片时的照片,并将该照片发送给主机,用于生成画质调整参数。例如,如图3所示,拼接屏全屏显示参考图片,可以理解为拼接屏在整个显示区域(即如中所示的阴影区域)内显示参考图片,即拼接屏作为一个整体显示参考图片,而非各个显示屏分别全屏显示参考图片。比如,参考图片为标准蓝色图片,则图3所示的阴影区域内呈现蓝色。色彩分析仪对图3所示的拼接屏的整个显示区域(即阴影区域)进行拍照。
示例的,色彩分析仪可以为专业仪器,也可以通过拍照手机和色彩分析软件实现,本申请实施例对色彩分析仪的具体实现方式不作限定。
需要说明的是,在主机与拼接屏分离的情况下,主机和拼接屏可以通过有线方式连接,也可以通过无线方式连接,对此不作限定。主机和色彩分析仪也可以通过有线方式连接,也可以通过无线方式连接,对此不作限定。
下面结合图2所示的系统架构,以一组参考图片包括两个参考图片为例,对本申请实施例的画质调整方法进行详细介绍。
示例的,如图4所示,为本申请实施例的一种画质调整方法的流程示意图,具体包括以下步骤:
401、主机向拼接屏发送参考图片组。参考图片组为一组参考图片,以参考图片组包括参考图片1和参考图片2为例。
示例的,主机可以响应于第一事件,向拼接屏发送参考图片组。例如,第一事件可以为开机操作,或者,调整显示屏画质的操作。又示例的,主机也可以周期性,向拼接屏发送参考图片组,进行画质调整。其中,画质调整的周期可以是设备出长之前预先配置好的,也可以是用户根据自身需求设置的,对此不作限定。例如,画质调整的周期可以为3个月,也可以为1个月或半年等,对此不作限定。
在一些实施例中,主机可以向拼接屏中的各个显示屏发送参考图片组,或者向拼接屏中的至少一个显示屏发送参考图片组。
402、拼接屏依次全屏显示参考图片组中的参考图片1和参考图片2。
示例的,拼接屏按照参考图片组中参考图片的序号从小到大的顺序依次全屏显示参考图片。例如,参考图片1的序号为1,参考图片2的序号为2,拼接屏先全屏显示参考图片1,然后再全屏显示参考图片2。当然,可以理解的是,本申请实施例还可以采用其它方式显示参考图片组中的参考图片。
403、当拼接屏全屏显示参考图片1时,色彩分析仪在固定位置对拼接屏的整个显示区域进行拍照,得到照片1,并将照片1发送给主机;当拼接屏全屏显示参考图片2时,色彩分析仪在固定位置对拼接屏的整个显示区域进行拍照,得到照片2,并将照片2发送给主机。
示例的,用户当拼接屏全屏显示参考图片1时,在固定位置,对色彩分析仪进行操作,使得色彩分析仪响应于用户的操作,对拼接屏的整个显示区域进行拍照,得到照片1。用户当拼接屏全屏显示参考图片2时,在固定位置,对色彩分析仪进行操作,使得色彩分析仪响应于用户的操作,对拼接屏的整个显示区域进行拍照。
或者,又示例的,主机向色彩分析仪发送拍照指令,色彩分析仪接收到拍照指令,在固定位置每隔第一时长对拼接屏的整个显示区域进行拍照。需要说明的时,第一时长可以为相邻两个参考图片的显示间隔。从而无需用户操作。
或者,又示例的,主机可以响应于拼接屏显示参考图片组中的参考图片,向色彩分析仪发送拍照指令,色彩分析仪接收到拍照指令,在固定位置对拼接屏的整个显示区域进行拍照。例如,主机响应于拼接屏显示参考图片1,向色彩分析仪发送拍照指令。色彩分析仪接收到拍照指令,在固定位置对拼接屏的整个显示区域进行拍照,得到拼接屏显示参考图片1时拼接屏整个显示区域的照片。主机响应于拼接屏显示参考图片2,再向色彩分析仪发送拍照指令。色彩分析仪接收到拍照指令,在固定位置对拼接屏的整个显示区域进行拍照,得到拼接屏显示参考图片2时拼接屏整个显示区域的照片。
需要说明的是,本申请实施例中,对触发色彩分析仪对拼接屏整个显示区域拍照的方式不作限定。
404、主机接收到照片1,根据照片1和参考图片1,生成拼接屏的各个显示屏的画质调整参数1。主机接收到照片2,根据照片2和参考图片2,生成拼接屏的各个显示屏的画质调整参数2。
405、主机分别向拼接屏的各个显示屏发送对应的3D-lut色彩调整表。其中,拼接屏的每个显示屏对应一个3D-lut色彩调整表。以一个显示屏的3D-lut色彩调整表为例,该显示屏的3D-lut色彩调整表包括该显示屏的画质调整参数1和画质调整参数2。
406、拼接屏的每个显示屏接收到对应的3D-lut色彩调整表,根据3D-lut色彩调整表中的画质调整参数,对画质进行相应的调整。从而使得拼接屏可以一次实现对多个显示屏的画质的调节,有助于提高调节效率。
进一步的,在一些实施例中,主机还可以向拼接屏依次发送多个参考图片组,每个参考图片组中包括的图片的个数可以相同,也可以不同,而且每个参考图片组中包括的图片的颜色可以部分相同,部分不同,也可以完全不同,以实现拼接屏对不同的画质参数进行调节。例如,主机向拼接屏可以依次发送第一参考图片组、第二参考图片组。第一参考图片组包括标准红色图片、标准蓝色图片、标准黄色图片和标准白色图片。第二参考图片组包括标准黑色图片、和标准绿色图片。
下面以主机根据照片1和参考图片1,生成显示屏1的画质调整参数1、显示屏2的画质调整参数1、显示屏3的画质调整参数1和显示屏4的画质调整参数1为例,对主机生成显示屏的画质调整参数进行相应的介绍。
首先,主机将照片1按照拼接屏中各个显示屏的显示区域进行分割,得到画面1、画面2、画面3和画面4。画面1为显示屏1内显示的画面,画面2为显示屏2内显示的画面,画面3为显示屏3内显示的画面,画面4为显示屏4内显示的画面。而画面1、画面2、画面3和画面4组成照片1。
其次,主机提取画面1中每个图像块(Block)的颜色值,提取画面2中每个Block的颜色值,提取画面3中每个Block的颜色值,以及提取画面4中每个Block的颜色值。
以一个Block的颜色值为例,该Block的颜色值可以为该Block在Lab颜色空间中的坐标(L,a,b),L表示该Block的亮度,a表示该Block的红色程度,b表示该Block的蓝色程度。其中,在Lab颜色空间中的坐标(L,a,b)可以简称为CIELab坐标、或Lab坐标,是一种对CIEXYZ坐标的非线性映射,具有两个性质:1)视觉平均性,在Lab颜色空间内两颜色的欧氏距离与人眼感受到的色差呈近似线性。2)取值对称性,CIELab坐标的L取值在[0,100]内,a、b取值在[-128,128]内,可以很好的归一化。
示例的,一个Block包括32×32个像素,每个像素包含4个颜色通道RGBY,R表示红色通道,G表示绿色通道,B表示蓝色通道,Y表示黄色通道。
在一些实施例中,如图5所示,主机可以基于下列方式提取一个Block的颜色值:
主机对该Block中所有像素进行取对数和归一化的预处理,得到预处理结果。从而便于观察各个通道中像素的分布,而且分布也更接近对称。将预处理结果输入到卷积神经网络(convolutional neural networks,CNN)模型中得到该Block的颜色值。示例的,本申请示例中的CNN模型的结构可以是Pix2pix模型中判别器模型的简化版,CNN模型可以包括核尺寸3×3的卷积层+BatchNorm+ReLU层、MaxPool(采样率和步长为2)、AveragePool(采样率和步长为4)。
上述仅为一种提取Block的颜色值的举例,本申请实施例中还可以通过其它方式提取Block的颜色值,对此不作限定。
再次,主机根据画面1中每个Block的颜色值,确定画面1的颜色值,以及画面1的四个边界的颜色值;根据画面2中每个Block的颜色值,确定画面2的颜色值,以及画面2的四个边界的颜色值;根据画面3中每个Block的颜色值,确定画面3的颜色值,以及画面3的四个边界的颜色值;根据画面4中每个Block的颜色值,确定画面4的颜色值,以及画面4的四个边界的颜色值。
其中,一个画面的颜色值为该画面中所有Block的颜色值的平均值,用于表征画面的整体颜色,画面的一个边界的颜色值为该画面的这个边上的所有Block的颜色值的平均值,用于表征画面的边界的颜色。
然后,主机根据画面1的颜色值、画面1的四个边界的颜色值、画面2的颜色值、画面2的四个边界的颜色值、画面3的颜色值、画面3的四个边界的颜色值、画面4的颜色值和画面4的四个边界的颜色值,分别对画面1的颜色值、画面2的颜色值、画面3的颜 色值、画面4的颜色值进行调整,使得相邻两个画面的颜色值之间的差值小于阈值1,相邻两个画面的边界的颜色值之间的差值小于阈值2,且拼接屏的整个显示区域的颜色值与参考图片1的颜色值之间的差值小于阈值3。
其中,阈值1、阈值2、阈值3可是以根据实际需求预先设置的,例如,0.5≤阈值1≤2.3,0.5≤阈值2≤2.3,0.5≤阈值2≤2.3,阈值1、阈值2和阈值3的取值越小,人眼越无法察觉不同显示屏显示的颜色差异。
例如,在颜色值为Lab坐标的情况下,以颜色值1为Lab坐标1,颜色值2为Lab坐标2为例,Lab1坐标为(L 1,a 1,b 1),Lab2坐标为(L 2,a 2,b 2),颜色值1和颜色值2之间的差值ΔE12可以满足表达式1:
Figure PCTCN2021123622-appb-000001
最后,主机根据调整后的画面1的颜色值、调整后的画面2的颜色值、调整后的画面的颜色值和调整后的画面的颜色值,生成显示屏1的画质调整参数1、显示屏2的画质调整参数1、显示屏3的画质调整参数1和显示屏4的画质调整参数1。以显示屏1的画质调整参数1为例,显示屏1的画质调整参数包括参考RGB值、和目标RGB值,参考RGB值为参考图片的RGB值,目标RGB值是根据调整后的画面1的颜色值得到的。
例如,以画面1为例,主机可以将调整后的画面1的颜色值从Lab颜色空间转到RGB颜色空间中,得到目标RGB值。比如,主机可以先将调整后的画面1的颜色值(即画面1的Lab坐标)转换为XYZ颜色空间中的坐标(x1,y1,z1),然后,根据(x1,y1,z1),通过插值计算得到RGB颜色空间中与(x1,y1,z1)对应的RGB坐标,即目标RGB值。
进一步的,在一些实施例中,主机可以基于下列方式调整画面1的颜色值、画面2的颜色值、画面3的颜色值和画面4的颜色值,使得相邻两个画面的颜色值之间的差值小于阈值1,相邻两个画面的边界的颜色值之间的差值小于阈值2,且拼接屏的整个显示区域的颜色值与参考图片1的颜色值之间的差值小于阈值3:
步骤1、主机根据画面1的颜色值、画面2的颜色值、画面3的颜色值和画面4的颜色值,从画面1、画面2、画面3和画面4中确定第一目标画面,第一目标画面的颜色值与参考图片的颜色值之间的差值最小。
步骤2、主机判断画面1、画面2、画面3和画面4中与第一目标画面相邻的画面是否满足判定条件,若满足执行步骤4,否则执行步骤3。
例如,第一目标画面为显示屏2内显示的画面,与第一目标画面相邻的画面为画面1(显示屏1内显示的画面)和画面4(显示屏4内显示的画面)。主机判断画面1、画面4是否满足判定条件,如果画面1和画面4均满足判定条件,则执行步骤4,如果画面1和/或画面4不满足判定条件,则执行步骤3。
以画面1为例,主机可以基于下列方式判断画面1是否满足判定条件:
主机当画面1的颜色值和画面2的颜色值之间的差值小于阈值1、且画面1与画面2之间的边界的颜色值之间的差值小于阈值2,则判定画面1满足判定条件;若画面1的颜色值和画面2的颜色值之间的差值大于或等于阈值1、和/或画面1与画面2之间的边界的颜色值之间的差值大于或等于阈值2,则判定画面1不满足判定条件。
步骤3、主机根据目标步长,调整不满足判定条件的与第一目标画面相邻的画面的颜色值,然后重新执行步骤1。
示例的,以画面1为例,比如画面1的颜色值为(L1,a1,b1),目标步长可以为1,主机可以将a1加1或减1,将b1加1或减1,其中,a1在-500~500之间,且包括-500、500在内,b1在-200~200之间,且包括-200、200在内。需要说明的是,在本申请实施例中,目标步长可以是根据实际需要预先设置好的,可以为1,也可以为2等,对此不作限定。
步骤4:主机从画面1、画面2、画面3和画面4中确定第二目标画面,第二目标画面为除第一目标画面以外的画面中与参考图片的颜色值之间的差值最小的画面。
步骤5、主机判断画面1、画面2、画面3和画面4中与第二目标画面相邻的画面是否满足判定条件,若满足执行步骤7,否则执行步骤6。
步骤6、主机根据目标步长,调整不满足判定条件的与第二目标画面相邻的画面的颜色值,然后重新执行步骤1。
步骤7、主机如果判断画面1、画面2、画面3和画面4均满足判定条件,则确定拼接屏整个显示区域的颜色值,拼接屏整个显示区域的颜色值为画面1的颜色值、画面2的颜色值、画面3的颜色值和画面4的颜色值的平均值。
步骤8、主机当拼接屏整个显示区域的颜色值与参考图片1的颜色值之间的差值小于阈值3,则停止对画面1的颜色值、画面2的颜色值、画面3的颜色值和画面4的颜色值的调整。
在另一些实施例中,当拼接屏整个显示区域的颜色中与参考图片1的颜色值之间的差值大于或等于阈值3,则根据目标步长,调整画面1、画面2、画面3和画面4中画面的颜色值与参考图片的颜色值之间的差值最小的画面的颜色值。然后重新执行步骤1,直至拼接屏整个显示区域的颜色值与参考图片1的颜色值之间的差值小于阈值3为止。
例如,以画面1、画面2、画面3和画面4中画面的颜色值与参考图片的颜色值之间的差值最小的画面为画面2为例,比如画面2的颜色值为(L2,a2,b2),目标步长可以为1,主机可以将a2加1或减1,将b2加1或减1,其中,a2在-500~500之间,且包括-500、500在内,b2在-200~200之间,且包括-200、200在内。需要说明的是,在本申请实施例中,目标步长可以是根据实际需要预先设置好的,可以为1,也可以为2等,对此不作限定。
通过上述调整方式,有助于提升拼接屏的显示效果,从而提高用户体验。需要说明的是,上述仅为一种调整画面的颜色值的方式的举例说明,并不够成对本申请实施例的限定,本申请实施例主机还可以通过其它方式调整画面的颜色值,对此不作限定。
上述仅是以图1所示的拼接屏为例进行介绍的,需要说明的是,本申请实施例中用于组成拼接屏的各个显示屏的尺寸可以是相同的,也可以是不同的,而且,本申请实施例不限定显示屏的拼接方式,例如,如图6所示,拼接屏包括显示屏A和显示屏B。当然,本申请实施例中对拼接屏中的各个显示屏的品牌、批次、型号、材质等均不作限定。
应理解,图4是以调整用于组成拼接屏的各个显示屏的颜色为例对画质调整方法进行介绍的。此外,本申请实施例中图4所示的方法还可以扩展到针对拼接屏中各个显示屏的色彩准确度、饱和度、亮度、对比度等的调整,通过将图4中的参考图片替换为相应基准的参考图片,如灰阶、条纹、三原色等实现。
以上各个实施例可以单独使用,也可以相互结合使用,对此不作限定。
基于相同的构思,本申请实施例还提供了一种装置700,如图7所示,包括处理模块701和通信模块702。
一示例中,装置700用于实现图4所示的方法中主机的功能。该装置700可以是与拼接屏分离的电子设备,也可以是集成在拼接屏中的装置。示例的,该装置700可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
例如,处理模块701用于根据参考图片和照片,生成拼接屏中各个显示屏的画质调整参数。通信模块702用于向拼接屏发送参考图片,接收照片等。
关于处理模块701、通信模块702的具体执行过程,可参见上方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图8所示,本申请实施例还提供一种装置800,包括处理器810,用于实现上述方法中主机的功能。示例地,处理器810可以用于根据参考图片和照片,生成拼接屏中各个显示屏的画质调整参数,具体参见方法中的详细描述,此处不再说明。
在一些实施例中,装置800还可以包括存储器820,用于存储计算机程序和/或数据。计算机程序包括指令。存储器820和处理器810耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。作为另一种实现,存储器810还可以位于装置800之外。处理器810可以和存储器820协同操作。处理器810可能执行存储器820中存储的指令。或者,存储器820可以包括于处理器810中。
在一些实施例中,装置800还可以包括通信接口830,用于通过传输介质和其它设备进行通信,从而用于装置800中的装置可以和其它设备或装置进行通信。示例性地,通信接口830可以是收发器、电路、总线、模块或其它类型的通信接口,该其它设备或装置可以是拼接屏、或色彩分析仪。处理器810利用通信接口830收发信息,例如照片、参考图片等,并用于实现上述实施例中的方法。示例性的,通信接口830可以用于发送参考图片,接收照片等。
本申请实施例中不限定上述通信接口830、处理器810以及存储器820之间的连接介质。例如,本申请实施例在图8中以存储器820、处理器810以及通信接口830之间可以通过总线连接,所述总线可以分为地址总线、数据总线、控制总线等。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储 程序指令和/或数据。
以上实施例中所用,根据上下文,术语“当…时”或“当…后”可以被解释为意思是“如果…”或“在…后”或“响应于确定…”或“响应于检测到…”。类似地,根据上下文,短语“在确定…时”或“如果检测到(所陈述的条件或事件)”可以被解释为意思是“如果确定…”或“响应于确定…”或“在检测到(所陈述的条件或事件)时”或“响应于检测到(所陈述的条件或事件)”。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。在不冲突的情况下,以上各实施例的方案都可以组合使用。
需要指出的是,本专利申请文件的一部分包含受著作权保护的内容。除了对专利局的专利文件或记录的专利文档内容制作副本以外,著作权人保留著作权。

Claims (23)

  1. 一种画质调整方法,其特征在于,所述方法包括:
    接收到第一事件,所述第一事件用于触发调整拼接屏的画质,所述拼接屏为至少包括第一显示屏和第二显示屏组合成的显示屏;
    响应于所述第一事件,向所述拼接屏发送N个参考图片,所述N个参考图片包括第一参考图片,所述N为大于或等于1的正整数;
    接收第一照片,所述第一照片为所述拼接屏作为一个整体全屏显示所述第一参考图片时对所述拼接屏的整个显示区域拍摄的照片;
    根据所述第一参考图片和所述第一照片,生成第一画质调整参数和第二画质调整参数,所述第一画质调整参数用于调整所述第一显示屏的画质,所述第二画质调整参数用于调整所述第二显示屏的画质。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述第一参考图片和所述第一照片,生成第一画质调整参数和第二画质调整参数,包括:
    将所述第一照片划分为第一画面和第二画面,所述第一画面为所述拼接屏作为一个整体全屏显示所述第一参考图片时在所述第一显示屏内显示的画面,所述第二画面为所述拼接屏作为一个整体全屏显示所述第一参考图片时在所述第二显示屏内显示的画面;
    确定第一画面颜色值、第二画面颜色值、第一边界颜色值和第二边界颜色值,所述第一画面颜色值用于指示所述第一画面的整体颜色,所述第二画面颜色值用于指示所述第二画面的整体颜色,所述第一边界颜色值用于指示所述第一画面中第一边界的颜色值,所述第二边界颜色值用于指示所述第二画面中的第二边界的颜色值,所述第一边界和所述第二边界为所述第一画面和所述第二画面的相邻边界;
    根据所述第一画面颜色值、所述第二画面颜色值、所述第一边界颜色值和所述第二边界颜色值,对所述第一画面颜色值和所述第二画面颜色值进行调整,使得所述第一画面颜色值和所述第二画面颜色值调整后,调整后的所述第一画面颜色值和调整后的所述第二画面颜色值之间的差值小于第一阈值、所述第一画面和所述第二画面的相邻边界的颜色值之间的差值小于第二阈值、且所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值小于第三阈值;
    根据所述第一参考图片的颜色值和调整后的所述第一画面颜色值,得到所述第一画质调整参数,以及根据所述第一参考图片的颜色值和调整后的所述第二画面颜色值,得到所述第二画质调整参数。
  3. 如权利要求2所述的方法,其特征在于,所述第一画质调整参数包括所述第一参考图片的RGB值、和第一目标RGB值,所述第一目标RGB值是根据调整后的所述第一画面颜色值得到的;所述第二画质调整参数包括所述第一参考图片的RGB值、和第二目标RGB值,所述第二目标RGB值是根据调整后的所述第二画面颜色值得到的。
  4. 如权利要求2或3所述的方法,其特征在于,所述第一画面颜色值为所述第一画面中所有图像块的颜色值的平均值,所述第二画面颜色值为所述第二画面中所有图像块的颜色值的平均值,所述第一边界颜色值为所述第一边界上的所有图像块的颜色值的平均值,所述第二边界颜色值为所述第二边界上所有图像块的颜色值的平均值。
  5. 如权利要求2至4任一所述的方法,其特征在于,所述根据所述第一画面颜色值、 所述第二画面颜色值、所述第一边界颜色值和所述第二边界颜色值,对所述第一画面颜色值和所述第二画面颜色值进行调整,包括:
    选择所述第一画面颜色值和所述第二画面颜色值中的较小值;
    当所述第一画面颜色值小于所述第二画面颜色值时,判断所述第二画面颜色值与所述第一画面颜色值之间的差值是否小于所述第一阈值,以及判断所述第二边界颜色值与所述第一边界颜色之间的差值是否小于所述第二阈值;
    若所述第二画面颜色值与所述第一画面颜色值之间的差值小于所述第一阈值、且所述第二边界颜色值与所述第一边界颜色之间的差值小于所述第二阈值,则判断所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是否小于第三阈值;
    若所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是不小于第三阈值,按照第一步长,对所述第一画面颜色值进行调整,并重新执行选择所述第一画面颜色值和所述第二画面颜色值中的较小值的步骤,直至所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是小于所述第三阈值为止。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    若所述第二画面颜色值与所述第一画面颜色值之间的差值不小于所述第一阈值、和/或所述第二边界颜色值与所述第一边界颜色之间的差值不小于所述第二阈值,根据第二步长,对所述第二画面颜色值进行调整,并重新执行选择所述第一画面颜色值和所述第二画面颜色值中的较小值的步骤。
  7. 如权利要求1至6任一所述的方法,其特征在于,所述方法还包括:
    向所述第一显示屏发送所述第一画质调整参数,以使得所述第一显示屏根据所述第一画质调整参数对画质进行调整;向所述第二显示屏发送所述第二画质调整参数,以使得所述第二显示屏根据所述第二画质调整参数对画质进行调整。
  8. 如权利要求1至7任一所述的方法,其特征在于,所述N为64或125。
  9. 如权利要求1至8任一所述的方法,其特征在于,所述第一参考图片为标准颜色图片、或者标准色阶图片。
  10. 如权利要求1至9任一所述的方法,其特征在于,所述第一事件为首次开机操作、调整画质操作、或者达到画质调整时刻。
  11. 一种装置,其特征在于,包括处理模块和通信模块;
    所述通信模块,用于接收第一事件,所述第一事件用于触发调整拼接屏的画质,所述拼接屏为至少包括第一显示屏和第二显示屏组合成的显示屏;
    所述处理模块,用于响应于所述第一事件,触发所述通信模块向所述拼接屏发送N个参考图片,所述N个参考图片包括第一参考图片,所述N为大于或等于1的正整数;
    所述通信模块,还用于接收第一照片,所述第一照片为所述拼接屏作为一个整体全屏显示所述第一参考图片时对所述拼接屏的整个显示区域拍摄的照片;
    所述处理模块,还用于根据所述第一参考图片和所述第一照片,生成第一画质调整参数和第二画质调整参数,所述第一画质调整参数用于调整所述第一显示屏的画质,所述第二画质调整参数用于调整所述第二显示屏的画质。
  12. 如权利要求11所述的装置,其特征在于,所述根据所述第一参考图片和所述第一照片,生成第一画质调整参数和第二画质调整参数,包括:
    将所述第一照片划分为第一画面和第二画面,所述第一画面为所述拼接屏作为一个整 体全屏显示所述第一参考图片时在所述第一显示屏内显示的画面,所述第二画面为所述拼接屏作为一个整体全屏显示所述第一参考图片时在所述第二显示屏内显示的画面;
    确定第一画面颜色值、第二画面颜色值、第一边界颜色值和第二边界颜色值,所述第一画面颜色值用于指示所述第一画面的整体颜色,所述第二画面颜色值用于指示所述第二画面的整体颜色,所述第一边界颜色值用于指示所述第一画面中第一边界的颜色值,所述第二边界颜色值用于指示所述第二画面中的第二边界的颜色值,所述第一边界和所述第二边界为所述第一画面和所述第二画面的相邻边界;
    根据所述第一画面颜色值、所述第二画面颜色值、所述第一边界颜色值和所述第二边界颜色值,对所述第一画面颜色值和所述第二画面颜色值进行调整,使得所述第一画面颜色值和所述第二画面颜色值调整后,调整后的所述第一画面颜色值和调整后的所述第二画面颜色值之间的差值小于第一阈值、所述第一画面和所述第二画面的相邻边界的颜色值之间的差值小于第二阈值、且所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值小于第三阈值;
    根据所述第一参考图片的颜色值和调整后的所述第一画面颜色值,得到所述第一画质调整参数,以及根据所述第一参考图片的颜色值和调整后的所述第二画面颜色值,得到所述第二画质调整参数。
  13. 如权利要求12所述的装置,其特征在于,所述第一画质调整参数包括所述第一参考图片的RGB值、和第一目标RGB值,所述第一目标RGB值是根据调整后的所述第一画面颜色值得到的;所述第二画质调整参数包括所述第一参考图片的RGB值、和第二目标RGB值,所述第二目标RGB值是根据调整后的所述第二画面颜色值得到的。
  14. 如权利要求12或13所述的装置,其特征在于,所述第一画面颜色值为所述第一画面中所有图像块的颜色值的平均值,所述第二画面颜色值为所述第二画面中所有图像块的颜色值的平均值,所述第一边界颜色值为所述第一边界上的所有图像块的颜色值的平均值,所述第二边界颜色值为所述第二边界上所有图像块的颜色值的平均值。
  15. 如权利要求12至14任一所述的装置,其特征在于,所述根据所述第一画面颜色值、所述第二画面颜色值、所述第一边界颜色值和所述第二边界颜色值,对所述第一画面颜色值和所述第二画面颜色值进行调整,包括:
    选择所述第一画面颜色值和所述第二画面颜色值中的较小值;
    当所述第一画面颜色值小于所述第二画面颜色值时,判断所述第二画面颜色值与所述第一画面颜色值之间的差值是否小于所述第一阈值,以及判断所述第二边界颜色值与所述第一边界颜色之间的差值是否小于所述第二阈值;
    若所述第二画面颜色值与所述第一画面颜色值之间的差值小于所述第一阈值、且所述第二边界颜色值与所述第一边界颜色之间的差值小于所述第二阈值,则判断所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是否小于第三阈值;
    若所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是不小于第三阈值,按照第一步长,对所述第一画面颜色值进行调整,并重新执行选择所述第一画面颜色值和所述第二画面颜色值中的较小值的步骤,直至所述拼接屏的整个显示区域的颜色值与所述第一参考图片的颜色值之间的差值是小于所述第三阈值为止。
  16. 如权利要求15所述的装置,其特征在于,所述处理模块,还用于:
    若所述第二画面颜色值与所述第一画面颜色值之间的差值不小于所述第一阈值、和/ 或所述第二边界颜色值与所述第一边界颜色之间的差值不小于所述第二阈值,根据第二步长,对所述第二画面颜色值进行调整,并重新执行选择所述第一画面颜色值和所述第二画面颜色值中的较小值的步骤。
  17. 如权利要求11至16任一所述的装置,其特征在于,所述通信模块,还用于:
    向所述第一显示屏发送所述第一画质调整参数,以使得所述第一显示屏根据所述第一画质调整参数对画质进行调整;向所述第二显示屏发送所述第二画质调整参数,以使得所述第二显示屏根据所述第二画质调整参数对画质进行调整。
  18. 如权利要求11至17任一所述的装置,其特征在于,所述N为64或125。
  19. 如权利要求11至18任一所述的装置,其特征在于,所述第一参考图片为标准颜色图片、或者标准色阶图片。
  20. 如权利要求11至19任一所述的装置,其特征在于,所述第一事件为首次开机操作、调整画质操作、或者达到画质调整时刻。
  21. 如权利要求11至20任一所述的装置,其特征在于,所述装置为与所述拼接屏分离的设备、或者,所述装置为集成在所述拼接屏上的芯片。
  22. 一种装置,其特征在于,所述装置包括存储器、处理器和通信接口,其中,所述存储器存储有一个或多个计算机程序,所述一个或多个计算机程序包括指令;所述处理器用于执行所述指令,调用所述通信接口,使得所述装置执行如权利要求1至10任一所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当所述计算机程序在电子设备上运行时,使得所述电子设备执行如权利要求1至10任一所述的方法。
PCT/CN2021/123622 2020-10-31 2021-10-13 一种画质调整方法及装置 WO2022089211A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21884940.4A EP4216542A4 (en) 2020-10-31 2021-10-13 METHOD AND DEVICE FOR IMAGE QUALITY ADJUSTMENT
US18/308,761 US20230259320A1 (en) 2020-10-31 2023-04-28 Image Quality Adjustment Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011195639.1 2020-10-31
CN202011195639.1A CN114449244B (zh) 2020-10-31 2020-10-31 一种画质调整方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/308,761 Continuation US20230259320A1 (en) 2020-10-31 2023-04-28 Image Quality Adjustment Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2022089211A1 true WO2022089211A1 (zh) 2022-05-05

Family

ID=81356917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123622 WO2022089211A1 (zh) 2020-10-31 2021-10-13 一种画质调整方法及装置

Country Status (4)

Country Link
US (1) US20230259320A1 (zh)
EP (1) EP4216542A4 (zh)
CN (1) CN114449244B (zh)
WO (1) WO2022089211A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030103162A1 (en) * 2001-12-05 2003-06-05 Olympus Optical Co. Ltd. Image display system
CN101076128A (zh) * 2007-06-05 2007-11-21 广东威创日新电子有限公司 一种多屏幕拼墙校正装置及方法
CN102750931A (zh) * 2012-07-25 2012-10-24 广东威创视讯科技股份有限公司 一种调整拼接墙一致性的方法及装置
CN103929604A (zh) * 2014-03-10 2014-07-16 南京大学 一种投影仪阵列拼接显示方法
CN104795048A (zh) * 2015-04-14 2015-07-22 广东威创视讯科技股份有限公司 拼接显示屏颜色校准方法和系统
CN107274848A (zh) * 2017-07-28 2017-10-20 北京京东方多媒体科技有限公司 一种调试拼接屏的方法、拼接屏的调试装置及系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2728494B2 (ja) * 1989-04-17 1998-03-18 日本電信電話株式会社 大画面表示装置の制御方法
CA2093842A1 (en) * 1992-07-30 1994-01-31 Albert D. Edgar System and method for image mapping in linear space
IL119259A (en) * 1996-09-17 2000-12-06 Comview Graphics Ltd Electro-optical display apparatus and method of using same
JP2005045483A (ja) * 2003-07-28 2005-02-17 Imaging Solutions Ag 基準領域によるカラー管理
CN101061517A (zh) * 2004-09-20 2007-10-24 艾利森电话股份有限公司 通过像素采样抗锯齿的方法和系统
EP2037437A1 (en) * 2007-09-13 2009-03-18 Dimitijs Volohovs Configurable large screen display
JP4640508B2 (ja) * 2009-01-09 2011-03-02 ソニー株式会社 画像処理装置、画像処理方法、プログラム、及び撮像装置
CA3114448C (en) * 2011-12-06 2023-06-27 Dolby Laboratories Licensing Corporation Device and method of improving the perceptual luminance nonlinearity - based image data exchange across different display capabilities
US9076252B2 (en) * 2012-01-05 2015-07-07 Qualcomm Incorporated Image perceptual attribute adjustment
CN103813116A (zh) * 2012-11-15 2014-05-21 深圳市光峰光电技术有限公司 调整方法、调整装置、光机和屏幕拼墙系统
US9195909B2 (en) * 2013-09-23 2015-11-24 Adobe Systems Incorporated Using machine learning to define user controls for photo adjustments
JP6421445B2 (ja) * 2014-01-24 2018-11-14 株式会社リコー 投影システム、画像処理装置、校正方法、システムおよびプログラム
JP2015206950A (ja) * 2014-04-22 2015-11-19 ソニー株式会社 情報処理装置、情報処理方法、プログラム、調整装置、及び画像表示システム
JP2016001781A (ja) * 2014-06-11 2016-01-07 ソニー株式会社 情報処理装置、情報処理方法、プログラム、及び画像表示装置
TWI667795B (zh) * 2014-09-25 2019-08-01 日商富士軟片股份有限公司 有機場效電晶體、有機半導體結晶的製造方法及有機半導體元件
KR102218901B1 (ko) * 2014-10-15 2021-02-23 삼성전자 주식회사 색 보정 방법 및 장치
KR20160057651A (ko) * 2014-11-14 2016-05-24 삼성전자주식회사 디스플레이 장치 및 그 제어 방법
US9727977B2 (en) * 2014-12-29 2017-08-08 Daqri, Llc Sample based color extraction for augmented reality
CN105206233B (zh) * 2015-09-11 2018-05-18 京东方科技集团股份有限公司 一种驱动模式切换方法及模块和显示装置
KR101823671B1 (ko) * 2017-02-21 2018-01-31 울산대학교 산학협력단 레이저 기반 3차원 스캐너, 및 이의 고속 스캔 방법
CN108228817B (zh) * 2017-12-29 2021-12-03 华为技术有限公司 数据处理方法、装置和系统
CN109062531B (zh) * 2018-08-15 2021-08-27 京东方科技集团股份有限公司 拼接屏以及拼接屏的显示方法和显示控制装置
CN110021256B (zh) * 2019-04-02 2021-11-23 Oppo广东移动通信有限公司 显示亮度调整方法及相关产品
US11227412B2 (en) * 2019-07-05 2022-01-18 Lg Electronics Inc. Artificial intelligence apparatus for calibrating color of display panel of user and method for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030103162A1 (en) * 2001-12-05 2003-06-05 Olympus Optical Co. Ltd. Image display system
CN101076128A (zh) * 2007-06-05 2007-11-21 广东威创日新电子有限公司 一种多屏幕拼墙校正装置及方法
CN102750931A (zh) * 2012-07-25 2012-10-24 广东威创视讯科技股份有限公司 一种调整拼接墙一致性的方法及装置
CN103929604A (zh) * 2014-03-10 2014-07-16 南京大学 一种投影仪阵列拼接显示方法
CN104795048A (zh) * 2015-04-14 2015-07-22 广东威创视讯科技股份有限公司 拼接显示屏颜色校准方法和系统
CN107274848A (zh) * 2017-07-28 2017-10-20 北京京东方多媒体科技有限公司 一种调试拼接屏的方法、拼接屏的调试装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4216542A4 *

Also Published As

Publication number Publication date
EP4216542A4 (en) 2024-01-17
US20230259320A1 (en) 2023-08-17
CN114449244B (zh) 2023-07-18
CN114449244A (zh) 2022-05-06
EP4216542A1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
CN109863549B (zh) 电子设备、显示装置及其控制方法
US20060152603A1 (en) White balance correction in digital camera images
US8885935B2 (en) Image processing apparatus and image processing method
US9883155B2 (en) Methods and systems for combining foreground video and background video using chromatic matching
US20220328019A1 (en) Display terminal adjustment method and display terminal
WO2020056744A1 (zh) 拖影评价、改善方法和电子设备
US10602026B2 (en) Image processing apparatus, image processing method, and non-transitory computer readable medium
US8830251B2 (en) Method and system for creating an image
US9432574B2 (en) Method of developing an image from raw data and electronic apparatus
WO2022089211A1 (zh) 一种画质调整方法及装置
US20170124963A1 (en) Display adjustment method and electronic device thereof
WO2022262848A1 (zh) 图像处理方法、装置和电子设备
CN110351604A (zh) 不同影像模态的自适应显示方法、装置及系统
WO2021258872A1 (zh) 界面显示方法、装置及计算机可读存储介质
CN111784574B (zh) 单屏多画面边界显示方法、装置、电子设备及存储介质
CN112312122B (zh) 摄像头保护膜的检测方法及装置
US11562712B2 (en) Video reproduction system, video reproduction device, and calibration method for video reproduction system
US9491453B2 (en) Measurement position determination apparatus, image display system, and non-transitory computer readable medium
WO2023035943A1 (zh) 色卡生成方法、图像处理方法、装置及可读存储介质
WO2023015422A1 (zh) 一种图像的处理方法及其装置
US11706522B2 (en) Imaging system, server, imaging device, imaging method, program, and recording medium having a function of assisting capturing of an image coincident with preference of a user
US20240071275A1 (en) Calibration system for display apparatus and operating method thereof
CN117499559A (zh) 虚拟拍摄系统、设备配置方法、装置、设备及存储介质
TW201822147A (zh) 圖像分類方法及圖像展示方法
WO2018133227A1 (zh) 颜色填充方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021884940

Country of ref document: EP

Effective date: 20230420

NENP Non-entry into the national phase

Ref country code: DE