WO2022088854A1 - 载波聚合控制方法、射频前端器件、电路、终端及介质 - Google Patents

载波聚合控制方法、射频前端器件、电路、终端及介质 Download PDF

Info

Publication number
WO2022088854A1
WO2022088854A1 PCT/CN2021/112786 CN2021112786W WO2022088854A1 WO 2022088854 A1 WO2022088854 A1 WO 2022088854A1 CN 2021112786 W CN2021112786 W CN 2021112786W WO 2022088854 A1 WO2022088854 A1 WO 2022088854A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
carrier aggregation
multiplexer
frequency band
combination
Prior art date
Application number
PCT/CN2021/112786
Other languages
English (en)
French (fr)
Inventor
陈武
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022088854A1 publication Critical patent/WO2022088854A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a carrier aggregation control method, a radio frequency front-end device, a radio frequency circuit, a terminal device, and a readable storage medium.
  • CA Carrier Aggregation
  • carrier aggregation is implemented in different ways, so that UEs (user equipment, user terminals) that work in different CA combinations have different radio frequency index requirements.
  • the UE only implements a single CA combination, the CA combination used by other operators cannot be implemented.
  • the CA combination of Band7+Band66 cannot be implemented.
  • Operator network or users of different network modes will affect the user experience.
  • the solution compatible with the combined use of multiple CAs is an integrated solution, which is very costly and is not suitable for a large number of mid-to-low-end machines.
  • the main purpose of this application is to provide a carrier aggregation control method, a radio frequency front-end device, a radio frequency circuit, a terminal device and a readable storage medium, aiming to realize multiple CA combinations at the same time, and save costs, so as to take into account performance and cost, so as to apply For a large number of low-end machines.
  • the present application provides a carrier aggregation control method, and the carrier aggregation control method includes the following steps:
  • a multiplexer for processing the first uplink signal is determined from the multiplexer combination, and the first uplink signal is processed through the determined multiplexer to obtain a first carrier aggregation signal, wherein the multiplexer combination includes at least two different multiplexers;
  • the second uplink signal is processed by the public carrier processing module to obtain a second carrier aggregation signal
  • the first carrier aggregation signal and the second carrier aggregation signal are combined by the diplexer to obtain the CA combined uplink signal corresponding to the CA combination type.
  • the present application also provides a carrier aggregation control method, the carrier aggregation control method includes the following steps:
  • Control the radio frequency switch to switch the radio frequency signal path to the downlink signal path corresponding to the CA combined downlink signal, so that the first branch signal is transmitted to the multiplexer combination, wherein the multiplexer combination at least includes two different multiplexer combinations. tool;
  • a multiplexer for processing the first branch signal is determined from the multiplexer combination, and the first branch signal is processed through the determined multiplexer, Get the first downlink signal;
  • the second branch signal is processed by the public carrier processing module to obtain a second downlink signal.
  • the present application also provides a radio frequency front-end device, which is characterized by comprising: a multiplexer combination, a public carrier processing module, a radio frequency switch and a diplexer, and the multiplexer combination is combined with the the radio frequency switch is connected, the public carrier processing module and the radio frequency switch are connected with the diplexer, wherein,
  • the multiplexer combination is used to obtain the first uplink signal corresponding to the CA combination type according to the CA combination type to be generated, and determine the first uplink signal from the multiplexer combination.
  • a multiplexer processing the first uplink signal through the determined multiplexer to obtain a first carrier aggregation signal;
  • the public carrier processing module is configured to obtain a second uplink signal corresponding to the CA combination type, and process the second uplink signal to obtain a second carrier aggregation signal;
  • the radio frequency switch configured to switch the radio frequency signal path to the uplink signal path corresponding to the CA combination type, so that the first carrier aggregation signal is transmitted to the diplexer;
  • the diplexer is configured to combine the first carrier aggregation signal and the second carrier aggregation signal to obtain a CA combined uplink signal corresponding to the CA combination type.
  • the present application also provides a radio frequency circuit, comprising: a multiplexer combination, a public carrier processing module, a radio frequency switch and a diplexer, the multiplexer combination is connected to the radio frequency switch , the public carrier processing module and the radio frequency switch are connected to the diplexer, wherein,
  • the multiplexer combination is configured to process the received first uplink signals of different frequency bands to obtain a first carrier aggregation signal, and send the first carrier aggregation signal to the radio frequency switch;
  • the public carrier processing module configured to process the received second uplink signal to obtain a second carrier aggregation signal, and send the second carrier aggregation signal to the diplexer;
  • the radio frequency switch configured to switch a radio frequency signal path, so as to receive the first carrier aggregation signal sent by the multiplexer in combination, and send the first carrier aggregation signal to the diplexer;
  • the diplexer is configured to receive the first carrier aggregation signal sent by the radio frequency switch and the second carrier aggregation signal sent by the public carrier processing module, and convert the first carrier aggregation signal and the second carrier aggregation signal to perform carrier aggregation to obtain a carrier aggregation uplink signal.
  • the present application also provides a terminal device, the terminal device includes: a memory, a processor, and a carrier aggregation control program stored in the memory and running on the processor, the The carrier aggregation control program, when executed by the processor, implements the steps of the first or second carrier aggregation control method as described above.
  • the present application also provides a computer-readable storage medium, where a carrier aggregation control program is stored on the computer-readable storage medium, and the carrier aggregation control program is executed by a processor to achieve the above-mentioned The steps of the first or second carrier aggregation control method.
  • the present application provides a carrier aggregation control method, a radio frequency front-end device, a radio frequency circuit, a terminal device, and a readable storage medium, for acquiring a carrier aggregation CA combination type to be generated, and acquiring a first uplink signal and a second uplink corresponding to the CA combination type signal; according to the CA combination type, determine the multiplexer for processing the first uplink signal from the multiplexer combination, and process the first uplink signal through the determined multiplexer to obtain the first carrier aggregation signal;
  • the carrier processing module processes the second uplink signal to obtain the second carrier aggregation signal; controls the radio frequency switch to switch the radio frequency signal path to the uplink signal path corresponding to the CA combination type, so that the first carrier aggregation signal is transmitted to the diplexer;
  • the first carrier aggregation signal and the second carrier aggregation signal are combined by the diplexer to obtain the CA combined uplink signal corresponding to the CA combination type.
  • the present application can also realize the multiplexing of the public carrier processing module through a diplexer, thereby realizing multiple CA combination, compared with only a single CA combination, the present application can realize multiple CA combinations at the same time through the multiplexer combination and the switching of the radio frequency switch, thereby improving the performance, and at the same time, the multiplexing of the public carrier processing module can be significantly reduced.
  • Common carrier processing module multiplexer or filter
  • the multiplexer combination is switched through the radio frequency switch to establish different radio frequency signal paths, so that the first carrier aggregation signal generated by any multiplexer in the multiplexer combination and the second carrier aggregation signal generated by the common carrier processing module
  • the carrier aggregation signal is combined through a diplexer to obtain a CA combination. Since the CA combination has different types of CA combination according to the different multiplexers, multiple CA combinations can be realized at the same time, and multiple CA combinations can be combined. Multiplexing the public carrier processing module can save cost compared to the existing integrated solution. Therefore, the present application can realize multiple CA combinations at the same time, and save the cost, so as to take into account the performance and cost, so that it can be applied to a large number of low-end and middle-end machines.
  • FIG. 1 is a schematic structural diagram of a terminal of a hardware operating environment involved in a solution according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a first embodiment of a carrier aggregation control method applied to carrier aggregation in the present application;
  • FIG. 3 is a schematic flowchart of a first embodiment of a carrier aggregation control method applied to carrier de-aggregation in the present application;
  • FIG. 4 is a schematic diagram of the hardware structure of the first embodiment of the radio frequency front-end device of the present application.
  • FIG. 6 is a schematic diagram of the implementation path of Band7+Band66 in the RF front-end device of the application;
  • FIG. 8 is a schematic diagram of the implementation path of Band41+Band66 in the RF front-end device of the present application.
  • BnTX is the upstream serial port of Band n frequency band
  • Band1TX is the upstream serial port of Band1 frequency band
  • BnRX is the downstream serial port of Band n frequency band
  • Band1RX is the downstream serial port of Band 1 frequency band
  • B1/3 TRX is the simultaneous operation of Band1 frequency band and Band3 frequency band
  • B1/3 Qaul-plexer is a quad-plexer that transmits and receives Band1 frequency band and Band3 frequency band
  • B66 duplexer is a duplexer that transmits and receives Band66 frequency band
  • B7 duplexer is a duplexer that transmits and receives Band7 frequency band
  • B41TRX Fileter transmits and receives Band41 frequency band.
  • the filter, SPDT is a single-pole double-throw switch
  • MB&HB diplexer is a duplexer for transmitting and receiving mid-high frequency
  • B1/3/7/66 TRX is a transceiver for Band1, Band3, Band7 and Band66 frequency bands
  • B1/ The 3/41/66 TRX is a transceiver for Band1, Band3, Band41 and Band66.
  • FIG. 1 is a schematic structural diagram of a terminal of a hardware operating environment involved in the solution of an embodiment of the present application.
  • the terminal in the embodiment of the present application is a terminal device, and the terminal device may be an electronic device with a function of sending and receiving radio frequency signals, such as a mobile phone and a tablet computer.
  • the terminal may include: a processor 1001, such as a CPU (Central Processing Unit, central processing unit), a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005.
  • the communication bus 1002 is used to realize the connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (eg, a WI-FI interface).
  • the memory 1005 may be high-speed RAM memory, or may be non-volatile memory, such as disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • terminal structure shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or less components than the one shown, or combine some components, or arrange different components.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module and a carrier aggregation control program.
  • the processor 1001 can be configured to call the carrier aggregation control program stored in the memory 1005, and perform the following operations:
  • a multiplexer for processing the first uplink signal is determined from the multiplexer combination, and the first uplink signal is processed by the determined multiplexer to obtain a first carrier aggregation signal, wherein the multiplexer combination includes at least two different multiplexers;
  • the second uplink signal is processed by the public carrier processing module to obtain a second carrier aggregation signal
  • the first carrier aggregation signal and the second carrier aggregation signal are combined by the diplexer to obtain the CA combined uplink signal corresponding to the CA combination type.
  • the multiplexer combination includes a quadplexer and a duplexer
  • the processor 1001 can be used to call the carrier aggregation control program stored in the memory 1005, and also perform the following operations:
  • the first uplink signal is filtered and combined by the quadplexer to obtain a first carrier aggregation signal, wherein the first uplink signal includes two Uplink signal in the road band;
  • the first uplink signal is filtered by the duplexer to obtain a first carrier aggregation signal, wherein the first uplink signal includes an uplink of one frequency band Signal.
  • the quadplexer is a quadplexer that transmits and receives Band1 frequency band signals and Band3 frequency band signals at the same time
  • the duplexer is a duplexer that transmits and receives Band66 frequency band signals
  • the processor 1001 can be used to call the memory 1005.
  • the carrier aggregation control procedure also performs the following operations:
  • the determined multiplexer is the quadplexer, filter and combine the Band1 frequency band uplink signal and the Band3 frequency band uplink signal in the first uplink signal through the quadplexer to obtain a first carrier aggregation signal ;
  • the determined multiplexer is the duplexer, filtering the Band66 frequency band uplink signal in the first uplink signal by the duplexer to obtain the first carrier aggregation signal.
  • the public carrier processing module is a duplexer or a filter.
  • the public carrier processing module is a duplexer that transmits and receives Band7 frequency band signals or a filter that transmits and receives Band41 frequency band signals.
  • processor 1001 can be configured to call the carrier aggregation control program stored in the memory 1005, and also perform the following operations:
  • a multiplexer for processing the first branch signal is determined from the multiplexer combination, and the first branch signal is processed through the determined multiplexer, Get the first downlink signal;
  • the second branch signal is processed by the public carrier processing module to obtain a second downlink signal.
  • the processor 1001 can be configured to call the carrier aggregation control program stored in the memory 1005, and perform the following operations:
  • Control the radio frequency switch to switch the radio frequency signal path to the downlink signal path corresponding to the CA combined downlink signal, so that the first branch signal is transmitted to the multiplexer combination, wherein the multiplexer combination at least includes two different multiplexer combinations. tool;
  • a multiplexer for processing the first branch signal is determined from the multiplexer combination, and the first branch signal is processed through the determined multiplexer, get the first downlink signal;
  • the second branch signal is processed by the public carrier processing module to obtain a second downlink signal.
  • processor 1001 can be configured to call the carrier aggregation control program stored in the memory 1005, and also perform the following operations:
  • the first split signal is split and filtered by the quadplexer to obtain a first downlink signal, wherein the first downlink signal Including downlink signals of two frequency bands;
  • the first branch signal is filtered by the duplexer to obtain a first downlink signal, where the first downlink signal includes a frequency band downlink signal.
  • processor 1001 can be configured to call the carrier aggregation control program stored in the memory 1005, and also perform the following operations:
  • the first split signal is split and filtered by the quadplexer to obtain the downlink signal of Band1 frequency band and the downlink signal of Band3 frequency band;
  • the first branched signal is filtered by the duplexer to obtain the downlink signal in the Band66 frequency band.
  • the public carrier processing module is a duplexer or a filter.
  • the public carrier processing module is a duplexer that transmits and receives Band7 frequency band signals or a filter that transmits and receives Band41 frequency band signals.
  • the present application provides a carrier aggregation control method.
  • FIG. 2 is a schematic flowchart of a first embodiment of a carrier aggregation control method applied to carrier aggregation in the present application.
  • the carrier aggregation control method includes:
  • Step S10 acquiring the carrier aggregation CA combination type to be generated, and acquiring the first uplink signal and the second uplink signal corresponding to the CA combination type;
  • the carrier aggregation control method is implemented by a terminal device, and the terminal device may be an electronic device with a function of sending and receiving radio frequency signals, such as a mobile phone and a tablet computer.
  • the terminal device is described by taking a UE (user equipment, user terminal) as an example.
  • the carrier aggregation control method is applied to a radio frequency front-end device, and the radio frequency front-end device includes: a multiplexer combination, a public carrier processing module, a radio frequency switch and a diplexer, and the multiplexer combination is connected to the radio frequency switch, The public carrier processing module and the radio frequency switch are connected with the diplexer.
  • the CA (Carrier Aggregation, carrier aggregation) combination type to be generated is acquired, and the first uplink signal and the second uplink signal corresponding to the CA combination type are acquired.
  • the CA combination types include 1 CA combination, 2 CA combinations, 3 CA combinations, etc. Specifically, it is set according to the region where the UE is located, that is, it is set according to the CA combination type of the operator in the region, for example In overseas regions, the CA combination types can be Band1+Band3+Band7 and Band7+Band66, and each combination can be 2CC (Component Carrier, carrier unit), 3CC, 4CC, 5CC, etc., which are not specifically limited here.
  • 2CC Component Carrier, carrier unit
  • the CA function can support continuous or non-continuous carrier aggregation, each user uses an independent HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) entity on each carrier, and each transport block can only be mapped to on a specific carrier.
  • the PDCCH (Physical Downlink Control Channel) channels on each carrier are independent of each other, and the design of the R8 (Rel-8) version can be reused.
  • the PDCCH of each carrier is used as the PDSCH (Physical Downlink Shared Channel) of each carrier. , Physical Downlink Shared Channel) and PUSCH (Pyhsical Uplink Shared Channel, Physical Uplink Shared Channel) channel allocation resources.
  • the first uplink signal is a non-public uplink signal in the CA combination type to be generated
  • the second uplink signal is a public uplink signal in the CA combination type.
  • the first uplink signal and the second uplink signal are based on the CA combination type. Set the combination type. For example, if the CA combination type is Band1+Band3+Band7 and Band7+Band66, the first uplink signal is the Band1 band uplink signal and the Band3 band uplink signal or the Band66 band uplink signal, and the second uplink signal is the Band7 band uplink signal. That is, the first uplink signal is a frequency band signal of 1920MHZ (megahertz)-1980MHZ, a frequency band signal of 1710MHZ-1785MHZ, or a frequency band signal of 1710MHZ-1780MHZ.
  • the first uplink signal may be a one-way uplink signal, or may be a two-way uplink signal, a three-way uplink signal, or a four-way uplink signal.
  • the number of frequency bands for non-public signals in the CA combination type to be generated is divided.
  • the first uplink signal may be two uplink signals or one uplink signal.
  • the original signal needs to be subjected to frequency conversion processing to obtain the uplink signal of the corresponding frequency band.
  • Step S20 determine a multiplexer for processing the first uplink signal from the multiplexer combination, and process the first uplink signal through the determined multiplexer to obtain the first uplink signal.
  • a carrier aggregation signal wherein the multiplexer combination includes at least two different multiplexers;
  • a multiplexer for processing the first uplink signal is determined from the multiplexer combination, and the first uplink signal is processed through the determined multiplexer to obtain the first carrier aggregation Signal.
  • the multiplexer combination can be two multiplexers, three multiplexers, four multiplexers, etc., and the multiplexer can be a duplexer, a quadplexer, a hexaplexer, an octaplexer, etc. It is understood that the number of multiplexers in the multiplexer combination corresponds to the number of CA combinations in the CA combination type.
  • the multiplexer combination is set according to the CA combination type required by the UE.
  • the CA combination type required by the UE is two combinations of Band1+Band3+Band7 and Band7+Band66, then the multiplexer combination includes four combinations.
  • the quadplexer is a transceiver that simultaneously transmits and receives Band1 frequency band signals and Band3 frequency band signals
  • the duplexer is a transceiver that transmits and receives Band66 frequency band signals.
  • the first uplink signal is filtered by the duplexer; if the determined multiplexer is If the first uplink signal is a multiplexer other than the duplexer, the first uplink signal is filtered and combined through the multiplexer.
  • Step S30 processing the second uplink signal by a public carrier processing module to obtain a second carrier aggregation signal
  • the second uplink signal is processed by the public carrier processing module to obtain the second carrier aggregation signal.
  • the public carrier processing module is a multiplexer, and the multiplexer can be a duplexer, a quadplexer, a hexaplexer, etc.
  • the CA combination type Set the number of signals in the same frequency band, for example, two combinations of Band1+Band3+Band7 and Band7+Band66, that is, the first uplink signal is one uplink signal, then the multiplexer is a duplexer; if the second uplink signal is In time division duplex mode, the public carrier processing module is a filter, and the number of the filters is set according to the number of signals in the same frequency band in the CA combination type.
  • the determined public carrier processing module is a duplexer or a single filter, and the first uplink signal is a single uplink signal, the first uplink signal is filtered through the duplexer or filter; if The determined public carrier processing module is a multiplexer or multiple filters other than the duplexer, and when the first uplink signal is a multiplex uplink signal, the first uplink signal is filtered and combined.
  • Step S40 controlling the radio frequency switch to switch the radio frequency signal path to the uplink signal path corresponding to the CA combination type, so that the first carrier aggregation signal is transmitted to the diplexer;
  • the radio frequency switch is controlled to switch the radio frequency signal path to the uplink signal path corresponding to the CA combination type, so that the first carrier aggregation signal is transmitted to the diplexer.
  • the radio frequency switch can be a single-pole double-throw switch, a single-pole three-throw switch, a single-pole four-throw switch, etc. Specifically, it is set according to the number of CA combinations in the CA combination type, that is, according to the number of multiplexers in the multiplexer combination.
  • the RF switch is a single-pole double-throw switch, which controls the By switching the SPDT switch, two RF signal paths can be obtained.
  • One RF signal path is the signal path connecting the first multiplexer and the diplexer, and the other RF signal path is the second multiplexer and the diplexer. The signal path to which the diplexer is connected.
  • Step S50 Combine the first carrier aggregation signal and the second carrier aggregation signal through the diplexer to obtain a CA combined uplink signal corresponding to the CA combination type.
  • the first carrier aggregation signal and the second carrier aggregation signal are combined by the diplexer to obtain the CA combined uplink signal corresponding to the CA combination type.
  • the diplexer can be set according to the CA combination type. If the CA combination type is the combination of Band1+Band3+Band7 and Band7+Band66, the diplexer is a transceiver for transmitting and receiving medium and high frequencies. , the frequency range of the mid-high frequency is 1710MHZ-2170MHZ and 2500MHZ-2690MHZ; if the CA combination type is Band1+Band3+Band41 and Band41+Band66, the frequency range of the mid-high frequency is 1710MHZ-2170MHZ and 2496MHZ-2690MHZ.
  • An embodiment of the present application provides a carrier aggregation control method, which acquires a carrier aggregation CA combination type to be generated, and acquires a first uplink signal and a second uplink signal corresponding to the CA combination type; according to the CA combination type, from the multiplexer combination Determine the multiplexer for processing the first uplink signal, and process the first uplink signal through the determined multiplexer to obtain the first carrier aggregation signal; process the second uplink signal through the public carrier processing module to obtain the first uplink signal.
  • Two carrier aggregation signals control the RF switch to switch the RF signal path to the uplink signal path corresponding to the CA combination type, so that the first carrier aggregation signal is transmitted to the diplexer; the first carrier aggregation signal and The second carrier aggregation signal is combined to obtain a CA combined uplink signal corresponding to the CA combination type.
  • the embodiment of the present application can also realize the multiplexing of the public carrier processing module through the diplexer, so as to realize Multiple CA combinations, compared to implementing only a single CA combination, the embodiment of the present application can simultaneously realize multiple CA combinations through the multiplexer combination and the switching of the radio frequency switch, thereby improving the performance.
  • the multiplexing of the public carrier processing module , the redundancy of the public carrier processing module (multiplexer or filter) can be significantly reduced, and the design of the RF front-end device can be simplified to save costs.
  • the multiplexer combination is switched through the radio frequency switch to establish different radio frequency signal paths, so that the first carrier aggregation signal generated by any multiplexer in the multiplexer combination and the second carrier aggregation signal generated by the common carrier processing module
  • the carrier aggregation signal is combined through a diplexer to obtain a CA combination. Since the CA combination has different types of CA combination according to the different multiplexers, multiple CA combinations can be realized at the same time, and multiple CA combinations can be implemented simultaneously. Multiplexing the public carrier processing module can save cost compared to the existing integrated solution. Therefore, the embodiments of the present application can simultaneously implement multiple CA combinations and save costs, so as to take into account both performance and cost, and thus be applied to a large number of low-end and mid-range machines.
  • step S20 includes:
  • Step a21 according to the CA combination type, from two different multiplexers in the multiplexer combination, determine the multiplexer that processes the first uplink signal;
  • the multiplexer for processing the first uplink signal is determined from two different multiplexers in the multiplexer combination.
  • the two different multiplexers are transceivers that transmit and receive signals in different frequency bands.
  • the radio frequency switch is a single-pole double-throw switch.
  • Step a22 Process the first uplink signal through the determined multiplexer to obtain a first carrier aggregation signal.
  • the first uplink signal is processed by the determined multiplexer to obtain the first carrier aggregation signal.
  • the multiplexer combination is set as a first multiplexer and a second multiplexer, and if the determined multiplexer is the first multiplexer, the first uplink signal is processed by the first multiplexer. Processing is performed, and if the determined multiplexer is the second multiplexer, the first uplink signal is processed through the second multiplexer.
  • step a22 includes:
  • Step a221 if the determined multiplexer is the quadplexer, filter and combine the first uplink signal through the quadplexer to obtain a first carrier aggregation signal, where the first uplink signal is The signal includes uplink signals of two frequency bands;
  • Step a222 if the determined multiplexer is the duplexer, filter the first uplink signal through the duplexer to obtain a first carrier aggregation signal, wherein the first uplink signal includes a channel Upstream signal of the frequency band.
  • the determined multiplexer is a quadplexer, and the first uplink signal includes uplink signals of two frequency bands, filtering and combining processing are performed on the first uplink signal; if the determined multiplexer is a dual channel If the first uplink signal includes an uplink signal of one frequency band, the first uplink signal is filtered, and then processed through any of the above steps to obtain the first carrier aggregation signal.
  • step a22 includes:
  • Step a2211 if the determined multiplexer is the quadplexer, filter and combine the Band1 frequency band uplink signal and the Band3 frequency band uplink signal in the first uplink signal through the quadplexer to obtain the first uplink signal.
  • carrier aggregation signal if the determined multiplexer is the quadplexer, filter and combine the Band1 frequency band uplink signal and the Band3 frequency band uplink signal in the first uplink signal through the quadplexer to obtain the first uplink signal.
  • Step a2221 if the determined multiplexer is the duplexer, filter the Band66 frequency band uplink signal in the first uplink signal by the duplexer to obtain a first carrier aggregation signal.
  • the determined multiplexer is a quadplexer that transmits and receives Band1 frequency band signals and Band3 frequency band signals at the same time, then through the quadplexer, the Band1 frequency band uplink signal and the Band3 frequency band uplink signal in the first uplink signal are respectively Filter and then combine; if the determined multiplexer is a duplexer that transmits and receives the Band66 frequency band, then the duplexer is used to filter the Band66 frequency band uplink signal in the first uplink signal, and then, through any of the above steps A first carrier aggregation signal is obtained.
  • step S30 includes:
  • Step a31 Filter the second uplink signal by the public carrier processing module to obtain a second carrier aggregation signal, where the second uplink signal includes an uplink signal of one frequency band.
  • the second uplink signal is filtered by the public carrier processing module to obtain the second carrier aggregation signal, wherein the second uplink signal includes an uplink signal of one frequency band.
  • the public carrier processing module is a duplexer or a filter.
  • step a31 includes:
  • Step a311 Filter the Band7 frequency band uplink signal or the Band41 frequency band uplink signal in the second uplink signal by the public carrier processing module to obtain a second carrier aggregation signal.
  • the Band7 frequency band uplink signal or the Band41 frequency band uplink signal in the second uplink signal is filtered by the public carrier processing module to obtain the second carrier aggregation signal.
  • the public carrier processing module is a duplexer for sending and receiving Band7 frequency band signals or a filter for sending and receiving Band41 frequency band signals, that is, sending and receiving frequency band signals of 2500MHZ-2570MHZ and receiving frequency signals of 2620MHZ-2690MHZ, or sending and receiving frequency signals of 2496MHZ-2690MHZ.
  • the redundancy of the public carrier processing module can be significantly reduced, and the cost can be saved.
  • the carrier aggregation control method further includes:
  • Step a60 acquiring the CA combined downlink signal, and splitting the CA combined downlink signal through a diplexer to obtain a first split signal and a second split signal;
  • the CA combined downlink signal is obtained, and the CA combined downlink signal is branched through a diplexer to obtain the first branched signal and the second branched signal.
  • the CA combination downlink signal can be set according to the CA combination signal that the UE needs to receive.
  • the diplexer is connected to the transceiver antenna, and the transceiver antenna can be set according to the CA combination type required by the UE. For example, if the combination of Band1+Band3+Band7 and Band7+Band66, the transceiver antenna and the diplexer both send and receive mid-to-high frequency signals.
  • the frequency range of the mid-high frequency is 1710MHZ-2170MHZ and 2496MHZ-2690MHZ.
  • the first branch signal and the second branch signal can be obtained.
  • the combination of Band1+Band3+Band7 and Band7+Band66 the first branch signal It is a carrier aggregation signal of Band1 frequency band + Band3 frequency band or a signal of Band7 frequency band
  • the second branch signal is a signal of Band7 frequency band.
  • Step a70 controlling a radio frequency switch to switch a radio frequency signal path to a downlink signal path corresponding to the CA combination downlink signal, so that the first branch signal is transmitted to the multiplexer combination;
  • the RF switch is controlled to switch the RF signal path to the downlink signal path corresponding to the CA combined downlink signal, so that the first branch signal is transmitted to the multiplexer combination.
  • the radio frequency switch can be a single-pole double-throw switch, a single-pole three-throw switch, a single-pole four-throw switch, etc. Specifically, it is set according to the number of CA combinations in the CA combination type required by the UE, that is, according to the multiplexer combination in the multiplexer combination. quantity is set.
  • the RF switch is a single-pole double-throw switch, which controls the The single-pole double-throw switch is switched to obtain two RF signal paths, one of which is the signal path connecting the first multiplexer and the diplexer, so that the first branch signal is transmitted to the first multiplexer.
  • the other radio frequency signal path is a signal path connecting the second multiplexer and the diplexer, so that the second branched signal is transmitted to the second multiplexer.
  • Step a80 according to the CA combined downlink signal, determine a multiplexer for processing the first branch signal from the multiplexer combination, and process the first branch signal through the determined multiplexer , get the first downlink signal;
  • the downlink signal is combined according to the CA, the multiplexer for processing the first branch signal is determined from the multiplexer combination, and the first branch signal is processed through the determined multiplexer, so as to obtain the first branch signal.
  • the multiplexer combination can be two multiplexers, three multiplexers, four multiplexers, etc., and the multiplexer can be a duplexer, a quadplexer, a hexaplexer, an octaplexer, etc. It is understood that the number of multiplexers in the multiplexer combination corresponds to the number of CA combinations in the CA combination type.
  • the multiplexer combination is set according to the CA combination type required by the UE.
  • the CA combination type required by the UE is two combinations of Band1+Band3+Band7 and Band7+Band66, then the multiplexer combination includes four combinations.
  • the quadplexer is a transceiver that simultaneously transmits and receives Band1 frequency band signals and Band3 frequency band signals
  • the duplexer is a transceiver that transmits and receives Band66 frequency band signals.
  • the first branch signal is filtered by the duplexer;
  • the multiplexer is a multiplexer other than the duplexer, the first branched signal is a multi-channel downlink signal, and the first branched signal is branched and filtered through the multiplexer.
  • step a90 the second branch signal is processed by the public carrier processing module to obtain a second downlink signal.
  • the second branch signal is processed by the public carrier processing module to obtain the second downlink signal.
  • the public carrier processing module is a multiplexer, and the multiplexer can be a duplexer, a quadplexer, a hexaplexer, etc.
  • the multiplexer can be a duplexer, a quadplexer, a hexaplexer, etc.
  • the CA combination Set the number of signals in the same frequency band in the type, such as the combination of Band1+Band3+Band7 and Band7+Band66, that is, the first branch signal is a downlink signal, then the multiplexer is a duplexer; if the second branch signal is a duplexer If the signal is in time division duplex mode, the public carrier processing module is a filter, and the number of the filters is set according to the number of signals in the same frequency band in the CA combination type.
  • the determined public carrier processing module is a duplexer or a single filter, and the first branch signal is a single-channel downlink signal, the first branch signal is filtered through the duplexer or filter; If the determined public carrier processing module is a multiplexer other than a duplexer or multiple filters, and the first branched signal is a multi-channel downlink signal, branch and filter processing is performed on the first branched signal.
  • An embodiment of the present application provides a carrier aggregation control method, which acquires a CA combined downlink signal, and splits the CA combined downlink signal through a diplexer to obtain a first branch signal and a second branch signal; control the radio frequency
  • the switch switches the RF signal path to the downlink signal path corresponding to the CA combined downlink signal, so that the first branch signal is transmitted to the multiplexer combination; according to the CA combined downlink signal, it is determined from the multiplexer combination to process the first branch signal
  • the multiplexer of the invention processes the first branch signal through the determined multiplexer to obtain the first downlink signal; the public carrier processing module processes the second branch signal to obtain the second downlink signal.
  • the embodiment of the present application realizes the multiplexing of the common carrier processing module through the diplexer, and also realizes the carrier de-aggregation and aggregation of the first branch signal (non-public signal) through the combination of the multiplexers, thereby realizing multiple CA combination, compared with only a single CA combination, the embodiment of the present application can realize multiple CA combinations at the same time through the multiplexer combination and the switching of the radio frequency switch, thereby improving the performance.
  • the multiplexing of the public carrier processing module can be Significantly reduces the redundancy of the common carrier processing module (multiplexer or filter), and can simplify the design of RF front-end devices to save costs.
  • the present application provides a carrier aggregation control method.
  • FIG. 3 is a schematic flowchart of a first embodiment of a carrier aggregation control method applied to carrier de-aggregation in the present application.
  • the carrier aggregation control method includes:
  • Step S100 acquiring the CA combined downlink signal, and splitting the CA combined downlink signal through a diplexer to obtain a first split signal and a second split signal;
  • the carrier aggregation control method is implemented by a terminal device, and the terminal device may be an electronic device with a function of sending and receiving radio frequency signals, such as a mobile phone and a tablet computer.
  • the terminal device is described by taking a UE (user equipment, user terminal) as an example.
  • the carrier aggregation control method is applied to a radio frequency front-end device, and the radio frequency front-end device includes: a multiplexer combination, a public carrier processing module, a radio frequency switch and a diplexer, and the multiplexer combination is connected to the radio frequency switch, The public carrier processing module and the radio frequency switch are connected with the diplexer.
  • the CA combined downlink signal is obtained, and the CA combined downlink signal is branched through a diplexer to obtain the first branched signal and the second branched signal.
  • the CA combination downlink signal can be set according to the CA combination signal that the UE needs to receive.
  • the diplexer is connected to the transceiver antenna, and the transceiver antenna can be set according to the CA combination type required by the UE. For example, if the combination of Band1+Band3+Band7 and Band7+Band66, the transceiver antenna and the diplexer both send and receive mid-to-high frequency signals.
  • the frequency range of the mid-high frequency is 1710MHZ-2170MHZ and 2496MHZ-2690MHZ.
  • the first branch signal and the second branch signal can be obtained.
  • the combination of Band1+Band3+Band7 and Band7+Band66 the first branch signal It is a carrier aggregation signal of Band1 frequency band + Band3 frequency band or a signal of Band7 frequency band
  • the second branch signal is a signal of Band7 frequency band.
  • Step S110 controlling the RF switch to switch the RF signal path to the downlink signal path corresponding to the CA combined downlink signal, so that the first branch signal is transmitted to the multiplexer combination, wherein the multiplexer combination at least includes two different multiplexers;
  • the RF switch is controlled to switch the RF signal path to the downlink signal path corresponding to the CA combined downlink signal, so that the first branch signal is transmitted to the multiplexer combination.
  • the radio frequency switch can be a single-pole double-throw switch, a single-pole three-throw switch, a single-pole four-throw switch, etc. Specifically, it is set according to the number of CA combinations in the CA combination type required by the UE, that is, according to the multiplexer combination in the multiplexer combination. quantity is set.
  • the RF switch is a single-pole double-throw switch, which controls the The single-pole double-throw switch is switched to obtain two RF signal paths, one of which is the signal path connecting the first multiplexer and the diplexer, so that the first branch signal is transmitted to the first multiplexer.
  • the other radio frequency signal path is a signal path connecting the second multiplexer and the diplexer, so that the second branched signal is transmitted to the second multiplexer.
  • Step S120 according to the CA combination downlink signal, determine a multiplexer for processing the first branch signal from the multiplexer combination, and process the first branch signal through the determined multiplexer , get the first downlink signal;
  • the downlink signal is combined according to the CA, the multiplexer for processing the first branch signal is determined from the multiplexer combination, and the first branch signal is processed through the determined multiplexer, so as to obtain the first branch signal.
  • the multiplexer combination can be two multiplexers, three multiplexers, four multiplexers, etc., and the multiplexer can be a duplexer, a quadplexer, a hexaplexer, an octaplexer, etc. It is understood that the number of multiplexers in the multiplexer combination corresponds to the number of CA combinations in the CA combination type.
  • the multiplexer combination is set according to the CA combination type required by the UE.
  • the CA combination type required by the UE is two combinations of Band1+Band3+Band7 and Band7+Band66, then the multiplexer combination includes four combinations.
  • the quadplexer is a transceiver that simultaneously transmits and receives Band1 frequency band signals and Band3 frequency band signals
  • the duplexer is a transceiver that transmits and receives Band66 frequency band signals.
  • the first branch signal is filtered by the duplexer;
  • the multiplexer is a multiplexer other than the duplexer, the first branched signal is a multi-channel downlink signal, and the first branched signal is branched and filtered through the multiplexer.
  • step S130 the second branch signal is processed by the public carrier processing module to obtain a second downlink signal.
  • the second branch signal is processed by the public carrier processing module to obtain the second downlink signal.
  • the public carrier processing module is a multiplexer, and the multiplexer can be a duplexer, a quadplexer, a hexaplexer, etc.
  • the multiplexer can be a duplexer, a quadplexer, a hexaplexer, etc.
  • the CA combination Set the number of signals in the same frequency band in the type, such as the combination of Band1+Band3+Band7 and Band7+Band66, that is, the first branch signal is a downlink signal, then the multiplexer is a duplexer; if the second branch signal is a duplexer If the signal is in time division duplex mode, the public carrier processing module is a filter, and the number of the filters is set according to the number of signals in the same frequency band in the CA combination type.
  • the determined public carrier processing module is a duplexer or a single filter, and the first branch signal is a single-channel downlink signal, the first branch signal is filtered through the duplexer or filter; If the determined public carrier processing module is a multiplexer other than a duplexer or multiple filters, and the first branched signal is a multi-channel downlink signal, branch and filter processing is performed on the first branched signal.
  • the embodiment of the present application provides a carrier aggregation control method, obtaining a CA combined downlink signal, and splitting the CA combined downlink signal through a diplexer to obtain a first branch signal and a second branch signal; control the radio frequency
  • the switch switches the RF signal path to the downlink signal path corresponding to the CA combined downlink signal, so that the first branch signal is transmitted to the multiplexer combination; according to the CA combined downlink signal, it is determined from the multiplexer combination to process the first branch signal
  • the multiplexer of the invention processes the first branch signal through the determined multiplexer to obtain the first downlink signal; the public carrier processing module processes the second branch signal to obtain the second downlink signal.
  • the embodiment of the present application realizes the multiplexing of the common carrier processing module through the diplexer, and also realizes the carrier de-aggregation and aggregation of the first branch signal (non-public signal) through the combination of the multiplexers, thereby realizing multiple CA combination, compared with only a single CA combination, the embodiment of the present application can realize multiple CA combinations at the same time through the multiplexer combination and the switching of the radio frequency switch, thereby improving the performance.
  • the multiplexing of the public carrier processing module can be Significantly reduces the redundancy of the common carrier processing module (multiplexer or filter), and can simplify the design of RF front-end devices to save costs.
  • step S80 includes:
  • Step a81 according to the CA combined downlink signal, from two different multiplexers in the multiplexer combination, determine a multiplexer for processing the first branch signal;
  • Step a82 Process the first branch signal through the determined multiplexer to obtain a first downlink signal.
  • the downlink signal is combined according to the CA, and the multiplexer that processes the first branched signal is determined from two different multiplexers in the multiplexer combination.
  • the first branch signal is processed to obtain a first downlink signal.
  • the two different multiplexers are transceivers that transmit and receive signals in different frequency bands.
  • the combination of multiplexers is set as the first multiplexer and the second multiplexer, and if the determined multiplexer is the first multiplexer, the first multiplexer is used for the first multiplexer.
  • the branched signal is processed, and if the determined multiplexer is the second multiplexer, the first branched signal is processed through the second multiplexer.
  • the radio frequency switch is a single-pole double-throw switch.
  • step a82 includes:
  • Step a821 if the determined multiplexer is the quadplexer, the first split signal is split and filtered by the quadplexer to obtain a first downlink signal, wherein the first split signal is The downlink signal includes downlink signals of two frequency bands;
  • Step a822 if the determined multiplexer is the duplexer, filter the first branch signal through the duplexer to obtain a first downlink signal, wherein the first downlink signal Including the downlink signal of one frequency band.
  • the first branched signal is subjected to branching and filtering processing; if the determined multiplexer is It is a duplexer, and the first branch signal includes a downlink signal of one frequency band, then the first branch signal is filtered, and then processed through any of the above steps to obtain the first downlink signal.
  • step a82 includes:
  • Step a8211 if the determined multiplexer is the quadplexer, the first split signal is split and filtered by the quadplexer to obtain the downlink signal of Band1 frequency band and the downlink signal of Band3 frequency band;
  • Step a8221 if the determined multiplexer is the duplexer, filter the first branch signal through the duplexer to obtain a downlink signal in the Band66 frequency band.
  • the determined multiplexer is a quadplexer that transmits and receives Band1 frequency band signals and Band3 frequency band signals at the same time
  • the downlink signal of Band1 frequency band and the downlink signal of Band3 frequency band in the first branched signal are processed by the quadplexer. Separately split and then filter; if the determined multiplexer is a duplexer that transmits and receives the Band66 frequency band, the downlink signal of the Band66 frequency band in the first split signal is filtered by the duplexer, and then, through any of the above A first downlink signal is obtained in one step.
  • step S90 includes:
  • Step a91 Filter the second branch signal by the public carrier processing module to obtain a second downlink signal, where the second downlink signal includes a downlink signal of one frequency band.
  • the second branch signal is filtered by the public carrier processing module to obtain the second downlink signal, wherein the second branch signal includes a downlink signal of one frequency band.
  • the public carrier processing module is a duplexer or a filter.
  • Step a911 Filter the second downlink signal by the public carrier processing module to obtain a Band7 frequency band downlink signal or a Band41 frequency band downlink signal.
  • the downlink signal in the Band7 frequency band or the downlink signal in the Band41 frequency band in the second branch signal is filtered by the public carrier processing module to obtain the second downlink signal.
  • the public carrier processing module is a duplexer for sending and receiving Band7 frequency band signals or a filter for sending and receiving Band41 frequency band signals, that is, sending and receiving frequency band signals of 2500MHZ-2570MHZ and receiving frequency signals of 2620MHZ-2690MHZ, or sending and receiving frequency signals of 2496MHZ-2690MHZ.
  • the redundancy of the public carrier processing module can be significantly reduced, and the cost can be saved.
  • the present application also provides a radio frequency front-end device.
  • FIG. 4 is a schematic diagram of a hardware structure of a first embodiment of a radio frequency front-end device of the present application.
  • the radio frequency front-end device includes: a multiplexer combination, a public carrier processing module, a radio frequency switch and a diplexer, the multiplexer combination is connected to the radio frequency switch, and the public carrier The processing module and the radio frequency switch are connected with the diplexer, wherein,
  • the multiplexer combination is used to obtain the first uplink signal corresponding to the CA combination type according to the CA combination type to be generated, and determine the first uplink signal from the multiplexer combination.
  • a multiplexer processing the first uplink signal through the determined multiplexer to obtain a first carrier aggregation signal;
  • the public carrier processing module is configured to obtain a second uplink signal corresponding to the CA combination type, and process the second uplink signal to obtain a second carrier aggregation signal;
  • the radio frequency switch configured to switch the radio frequency signal path to the uplink signal path corresponding to the CA combination type, so that the first carrier aggregation signal is transmitted to the diplexer;
  • the diplexer is configured to combine the first carrier aggregation signal and the second carrier aggregation signal to obtain a CA combined uplink signal corresponding to the CA combination type.
  • the diplexer is also used to obtain the CA combined downlink signal, and branch the CA combined downlink signal to obtain the first branch signal and the second branch signal;
  • the radio frequency switch is further configured to switch the radio frequency signal path to the downlink signal path corresponding to the CA combined downlink signal, so that the first branch signal is transmitted to the multiplexer combination;
  • the multiplexer combination is further configured to combine downlink signals according to the CA, determine a multiplexer for processing the first branch signal from the multiplexer combination, and use the determined multiplexer to The first branch signal is processed to obtain a first downlink signal;
  • the public carrier processing module is further configured to process the second branch signal to obtain a second downlink signal.
  • the multiplexer combination includes two different multiplexers, wherein,
  • the multiplexer combination is configured to determine, according to the CA combination type, a multiplexer for processing the first uplink signal from two different multiplexers in the multiplexer combination, through the determined multiplexer. a multiplexer, processing the first uplink signal to obtain a first carrier aggregation signal;
  • the multiplexer combination is further configured to combine the downlink signals according to the CA, and determine a multiplexer for processing the first branch signal from two different multiplexers in the multiplexer combination.
  • the multiplexer combination includes a quadplexer and a duplexer, wherein,
  • the quadplexer configured to filter and combine the first uplink signal to obtain a first carrier aggregation signal, wherein the first uplink signal includes uplink signals of two frequency bands;
  • the duplexer configured to filter the first uplink signal to obtain a first carrier aggregation signal, wherein the first uplink signal includes an uplink signal of one frequency band;
  • the quadplexer is further configured to split and filter the first split signal to obtain a first downlink signal, wherein the first downlink signal includes downlink signals of two frequency bands;
  • the duplexer is further configured to filter the first branch signal to obtain a first downlink signal, wherein the first downlink signal includes a downlink signal of one frequency band.
  • the quadplexer is a quadplexer that transmits and receives Band1 frequency band signals and Band3 frequency band signals at the same time
  • the duplexer is a duplexer that transmits and receives Band66 frequency band signals, wherein,
  • the quadplexer is used to filter and combine the Band1 frequency band uplink signal and the Band3 frequency band uplink signal in the first uplink signal to obtain the first carrier aggregation signal;
  • the duplexer configured to filter the Band66 frequency band uplink signal in the first uplink signal to obtain a first carrier aggregation signal
  • the quadplexer is also used for splitting and filtering the first split signal to obtain a downlink signal in the Band1 frequency band and a downlink signal in the Band3 frequency band;
  • the duplexer is further configured to filter the first branch signal to obtain a downlink signal in the Band66 frequency band.
  • the public carrier processing module is a duplexer or a filter, wherein,
  • the public carrier processing module configured to filter the second uplink signal to obtain a second carrier aggregation signal, wherein the second uplink signal includes an uplink signal of one frequency band;
  • the public carrier processing module is further configured to filter the second branch signal to obtain a second downlink signal, wherein the second downlink signal includes a downlink signal of one frequency band.
  • FIG. 5 is a schematic diagram of the hardware structure of the second embodiment of the radio frequency front-end device of the present application.
  • the public carrier processing module is a duplexer for transmitting and receiving Band7 frequency band signals, wherein,
  • the public carrier processing module is configured to filter the Band7 frequency band uplink signal or the Band41 frequency band uplink signal in the second uplink signal to obtain the second carrier aggregation signal;
  • the public carrier processing module is further configured to filter the second downlink signal to obtain a Band7 frequency band downlink signal or a Band41 frequency band downlink signal.
  • the radio frequency front-end device can be used for carrier aggregation and carrier de-aggregation, that is, the radio frequency front-end device can send and receive CA combined signals.
  • the CA combination of Band1+Band3+Band7 and Band7+Band66, when the RF front-end device is used for carrier aggregation, that is, when sending an uplink signal refer to Figure 5, which is the implementation of Band1+Band3+Band7 in the RF front-end device of the application
  • the first uplink signal is obtained through the quadplexer that transmits and receives the B1 frequency band and the B3 frequency band.
  • the first uplink signal includes the B1 frequency band uplink signal and the B3 frequency band uplink signal.
  • FIG. 6 is a schematic diagram of the implementation path of Band7+Band66 in the radio frequency front-end device of the present application, and the first uplink signal is obtained through a duplexer of the B66 frequency band, specifically, through the B66 uplink serial port to obtain , and then process it through the corresponding quadplexer or duplexer to obtain the first carrier aggregation signal.
  • the public B7 frequency band duplexer obtains the second uplink signal and processes it to obtain the second carrier aggregation signal.
  • select the corresponding RF signal path through the SPDT switch so that the first CA signal is combined with the second CA signal through the diplexer, and finally the CA combined signal is obtained.
  • the RF front-end device when used for carrier de-aggregation, that is, when receiving the CA combined downlink signal, firstly, the CA combined downlink signal is split through the diplexer to obtain the first split signal and the second split. signal, and then select the corresponding quadplexer or duplexer for the first branch signal through the radio frequency switch, and process the first branch signal through the selected quadplexer or duplexer to obtain the first branch signal.
  • Line signal, and output through the B1, B3 or B66 downstream serial port, at the same time, the public B7 duplexer processes the second branch signal to obtain the second downstream signal, and output through the B7 downstream serial port.
  • the public carrier processing module is a filter for transmitting and receiving Band41 frequency band signals, wherein,
  • the public carrier processing module is configured to filter the Band41 frequency band uplink signal in the second uplink signal to obtain a second carrier aggregation signal;
  • the public carrier processing module is further configured to filter the second downlink signal to obtain the downlink signal of the Band41 frequency band.
  • the radio frequency front-end device can be used for carrier aggregation and carrier de-aggregation, that is, the radio frequency front-end device can send and receive CA combined signals.
  • the CA combination of Band1+Band3+Band41 and Band41+Band66, when the RF front-end device is used for carrier aggregation, that is, when sending uplink signals refer to FIG. 7 , which is the implementation of Band1+Band3+Band41 in the RF front-end device of the present application
  • FIG. 7 is the implementation of Band1+Band3+Band41 in the RF front-end device of the present application
  • the first uplink signal is obtained through the quadplexer that transmits and receives the B1 frequency band and the B3 frequency band.
  • the first uplink signal includes the B1 frequency band uplink signal and the B3 frequency band uplink signal. Specifically, through the B1 uplink serial port and the B3 uplink serial port Obtain, or, referring to FIG. 8, FIG. 8 is a schematic diagram of the implementation path of Band41+Band66 in the radio frequency front-end device of the present application, and the first uplink signal is obtained through a duplexer that transmits and receives the B66 frequency band. Specifically, it is obtained through the B66 uplink serial port.
  • the public B41 frequency band filter obtains the second uplink signal, and processes it to obtain the second carrier aggregation signal.
  • the corresponding RF signal path is selected through the SPDT switch, so that the first carrier aggregation signal is combined with the second carrier aggregation signal through the diplexer, and the CA combined signal is finally obtained.
  • the RF front-end device when used for carrier de-aggregation, that is, when receiving the CA combined downlink signal, firstly, the CA combined downlink signal is split through the diplexer to obtain the first split signal and the second split. signal, and then select the corresponding quadplexer or duplexer for the first branch signal through the radio frequency switch, and process the first branch signal through the selected quadplexer or duplexer to obtain the first branch signal.
  • Line signal, and output through the B1, B3 or B66 downstream serial port, at the same time, the public B7 filter processes the second branch signal to obtain the second downstream signal, which is output through the B41 downstream serial port.
  • radio frequency front-end device of the present application are basically the same as the above-mentioned embodiments of the carrier aggregation control method, and are not repeated here.
  • This embodiment provides a radio frequency front-end device, the radio frequency front-end device includes a multiplexer combination, a public carrier processing module, a radio frequency switch and a diplexer, the multiplexer combination is connected to the radio frequency switch, and the public carrier processing module, the radio frequency
  • the switch is connected with the diplexer, and the multiplexer combination is used to obtain the first uplink signal corresponding to the CA combination type according to the CA combination type to be generated, and determine the first uplink signal from the multiplexer combination.
  • the processing multiplexer through the determined multiplexer, processes the first uplink signal to obtain the first carrier aggregation signal; the public carrier processing module is used to obtain the second uplink signal corresponding to the CA combination type, and analyzes the second uplink signal.
  • the uplink signal is processed to obtain the second carrier aggregation signal; the radio frequency switch is used to switch the radio frequency signal path to the uplink signal path corresponding to the CA combination type, so that the first carrier aggregation signal is transmitted to the co-directional duplexer; the co-directional duplexer
  • the device is configured to combine the first carrier aggregation signal and the second carrier aggregation signal to obtain the CA combined uplink signal corresponding to the CA combination type.
  • the multiplexing of the public carrier processing module can also be realized through the diplexer, thereby To realize multiple CA combinations, compared with only a single CA combination, the present application can realize multiple CA combinations at the same time through the switching of the multiplexer combination and the radio frequency switch, thereby improving the performance.
  • the multiplexing of the public carrier processing module The redundancy of the common carrier processing module (multiplexer or filter) can be significantly reduced, and the design of RF front-end devices can be simplified to save costs.
  • the present application also provides a radio frequency circuit.
  • the radio frequency circuit includes: a multiplexer combination, a public carrier processing module, a radio frequency switch, and a diplexer, the multiplexer combination is connected to the radio frequency switch, and the public carrier process The module and the radio frequency switch are connected with the diplexer, wherein,
  • the multiplexer combination is configured to process the received first uplink signals of different frequency bands to obtain a first carrier aggregation signal, and send the first carrier aggregation signal to the radio frequency switch;
  • the public carrier processing module configured to process the received second uplink signal to obtain a second carrier aggregation signal, and send the second carrier aggregation signal to the diplexer;
  • the radio frequency switch configured to switch a radio frequency signal path, so as to receive the first carrier aggregation signal sent by the multiplexer in combination, and send the first carrier aggregation signal to the diplexer;
  • the diplexer is configured to receive the first carrier aggregation signal sent by the radio frequency switch and the second carrier aggregation signal sent by the public carrier processing module, and convert the first carrier aggregation signal and the second carrier aggregation signal to perform carrier aggregation to obtain a carrier aggregation uplink signal.
  • the diplexer is also used for receiving the carrier aggregation downlink signal, and performing carrier de-aggregation on the carrier aggregation downlink signal to obtain a first branch signal and a second branch signal, and the first branch signal and the second branch signal are obtained.
  • a branch signal is sent to the radio frequency switch, and the second branch signal is sent to the public carrier processing module;
  • the radio frequency switch is further configured to receive the first branch signal sent by the diplexer, and switch the radio frequency signal path to send the first branch signal to the multiplexer combination;
  • the multiplexer combination is further configured to receive the first branch signal sent by the radio frequency switch, and process the first branch signal to obtain first downlink signals of different frequency bands;
  • the public carrier processing module is further configured to receive the second branch signal sent by the diplexer, and process the second branch signal to obtain a second downlink signal.
  • the multiplexer combination includes a quadplexer that transmits and receives Band1 frequency band signals and Band3 frequency band signals at the same time, and a duplexer that transmits and receives Band66 frequency band signals, wherein,
  • the quadplexer is connected to the radio frequency switch, and is configured to perform carrier aggregation on the received Band1 frequency band uplink signal and Band3 frequency band uplink signal to obtain a first carrier aggregation signal, and send the first carrier aggregation signal to the The radio frequency switch, or receiving the first branch signal sent by the radio frequency switch, and performing carrier de-aggregation on the first branch signal to obtain the downlink signal of Band1 frequency band and the downlink signal of Band3 frequency band;
  • the duplexer is configured to filter the received uplink signal of the Band66 frequency band to obtain a first carrier aggregation signal, and send the first carrier aggregation signal to the radio frequency switch, or receive the first carrier aggregation signal sent by the radio frequency switch. splitting the signal, and filtering the first splitting signal to obtain the downlink signal in the Band66 frequency band.
  • the radio frequency circuit can be used for carrier aggregation and carrier de-aggregation, that is, the radio frequency circuit can transmit and receive CA combined signals.
  • the CA combination of Band1+Band3+Band7 and Band7+Band66 when the RF circuit is used for carrier aggregation, that is, when sending an uplink signal, referring to Figure 5, first, the first uplink is obtained by sending and receiving the quadplexer of the B1 frequency band and the B3 frequency band. signal, the first uplink signal includes the B1 frequency band uplink signal and the B3 frequency band uplink signal, specifically, obtained through the B1 uplink serial port and the B3 uplink serial port, or, referring to FIG.
  • the signal specifically, is acquired through the B66 uplink serial port, and then processed by the corresponding quadplexer or duplexer to obtain the first carrier aggregation signal.
  • the public B7 frequency band duplexer acquires the second uplink signal, and It is processed to obtain the second carrier aggregation signal, and finally, the corresponding RF signal path is selected through the SPDT switch, so that the first carrier aggregation signal is combined with the second carrier aggregation signal through the diplexer, and finally The CA combined signal is obtained.
  • the radio frequency circuit when used for carrier de-aggregation, that is, when receiving the CA combined downlink signal, firstly, the CA combined downlink signal is split by the diplexer to obtain the first split signal and the second split signal. , and then select the corresponding quadplexer or duplexer for the first branch signal through the radio frequency switch, and process the first branch signal through the selected quadplexer or duplexer to obtain the first downlink
  • the signal is output through the B1, B3 or B66 downlink serial port.
  • the public B7 duplexer processes the second branch signal to obtain the second downlink signal, which is output through the B7 downlink serial port.
  • the CA combination of Band1+Band3+Band41 and Band41+Band66 when the RF circuit is used for carrier aggregation, that is, when the uplink signal is sent, referring to Figure 7, first, obtain the first An uplink signal, the first uplink signal includes the B1 frequency band uplink signal and the B3 frequency band uplink signal. Specifically, it is obtained through the B1 uplink serial port and the B3 uplink serial port, or, referring to FIG.
  • the first uplink signal is obtained through the duplexer of the B66 frequency band
  • An uplink signal specifically, is acquired through the B66 uplink serial port, and then processed by the corresponding quadplexer or duplexer to obtain the first carrier aggregation signal, and at the same time, the public B41 frequency band filter acquires the second uplink signal, and process it to obtain the second carrier aggregation signal, and finally, select the corresponding RF signal path through the single-pole double-throw switch, so that the first carrier aggregation signal is combined with the second carrier aggregation signal through the diplexer, Finally, the CA combined signal is obtained.
  • the radio frequency circuit when used for carrier de-aggregation, that is, when receiving the CA combined downlink signal, firstly, the CA combined downlink signal is split by the diplexer to obtain the first split signal and the second split signal. , and then select the corresponding quadplexer or duplexer for the first branch signal through the radio frequency switch, and process the first branch signal through the selected quadplexer or duplexer to obtain the first downlink
  • the signal is output through the B1, B3 or B66 downlink serial port.
  • the public B7 filter processes the second branch signal to obtain the second downlink signal, which is output through the B41 downlink serial port.
  • radio frequency circuit of the present application are basically the same as the above-mentioned embodiments of the carrier aggregation control method, and are not repeated here.
  • This embodiment provides a radio frequency circuit
  • the radio frequency circuit includes a multiplexer combination, a public carrier processing module, a radio frequency switch and a diplexer, the multiplexer combination is connected to the radio frequency switch, and the public carrier processing module, the radio frequency switch and The diplexers are connected to each other, wherein the multiplexers are combined to process the received first uplink signals of different frequency bands to obtain the first carrier aggregation signal, and send the first carrier aggregation signal to the radio frequency switch; the public carrier The processing module is used to process the received second uplink signal to obtain the second carrier aggregation signal, and send the second carrier aggregation signal to the diplexer; the radio frequency switch is used to switch the radio frequency signal path to receive multiplexed signals The first carrier aggregation signal sent by the device is combined, and the first carrier aggregation signal is sent to the diplexer; the diplexer is used to receive the first carrier aggregation signal sent by the radio frequency switch and the signal sent by the public carrier processing module.
  • the multiplexing of the public carrier processing module can also be realized through the diplexer, so as to realize Multiple CA combinations, compared to only a single CA combination, the present application can realize multiple CA combinations at the same time through the multiplexer combination and the switching of the radio frequency switch, thereby improving the performance.
  • the multiplexing of the public carrier processing module can be The redundancy of the common carrier processing module (multiplexer or filter) is significantly reduced, and the design of the RF circuit can be simplified to save costs.
  • the present application also provides a terminal device, the terminal device includes: a memory, a processor, and a carrier aggregation control program stored on the memory and executable on the processor, where the carrier aggregation control program is processed by the The steps of implementing the carrier aggregation control method according to any one of the above embodiments when the controller is executed.
  • the specific embodiments of the terminal device of the present application are basically the same as the above-mentioned embodiments of the carrier aggregation control method, which will not be repeated here.
  • the present application further provides a computer-readable storage medium, where a carrier aggregation control program is stored on the computer-readable storage medium, and when the carrier aggregation control program is executed by a processor, the carrier aggregation according to any one of the above embodiments is implemented The steps of the control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种载波聚合控制方法、射频前端器件、射频电路、终端设备及可读存储介质,所述载波聚合控制方法包括获取待生成的CA组合类型,以及对应的第一上行信号和第二上行信号;通过多工器组合和射频开关,对第一上行信号进行处理,得到第一载波聚合信号,并复用公有载波处理模块对第二上行信号进行处理,得到第二载波聚合信号;最后,将第一载波聚合信号及第二载波聚合信号通过同向双工器进行合路,得到CA组合上行信号。本申请可同时实现多个CA组合,并节省成本,以兼顾性能和成本。

Description

载波聚合控制方法、射频前端器件、电路、终端及介质 【技术领域】
本申请涉及通信技术领域,尤其涉及一种载波聚合控制方法、射频前端器件、射频电路、终端设备及可读存储介质。
【背景技术】
随着通信技术的迅速发展,人们对通信速率的要求越来越高。为了提高系统容量和峰值速率,需增加系统传输带宽。然而,每个运营商在每个频段都只能拿到有限的频谱资源,因此,只能通过CA(Carrier Aggregation,载波聚合)提高系统峰值速率与吞吐量。
由于全球不同区域的运营商会有不同的频谱分配,导致载波聚合的实现方式不同,以使不同CA组合工作的UE(user equipment,用户终端)的射频指标要求也不同。目前,若UE只实现单个CA组合,对于其它运营商使用的CA组合将无法实现,例如UE只实现Band1+Band3+band7的CA组合,那么将无法实现Band7+Band66的CA组合,对于需要使用不同运营商网络或不同网络模式的用户,将会影响用户的使用体验。然而,兼容多个CA组合使用的方案为集成方案,该方案成本非常高,对于大量的中低端机并不适用。
综上所述,现有的方案不是实现上有缺失就是成本高,即无法兼顾性能和成本。因此,如何同时实现多个CA组合,并节省成本是目前亟需解决的问题。
【发明内容】
本申请的主要目的在于提供一种载波聚合控制方法、射频前端器件、射频电路、终端设备及可读存储介质,旨在同时实现多个CA组合,并节省成本,以兼顾性能和成本,从而应用于大量的中低端机。
为实现上述目的,本申请提供一种载波聚合控制方法,所述载波聚合控制方法包括以下步骤:
获取待生成的载波聚合CA组合类型,并获取所述CA组合类型对应的第一上行信号和第二上行信号;
根据所述CA组合类型,从多工器组合中确定对所述第一上行信号进行处理的多工器,通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号,其中,所述多工器组合至少包括两个不同的多工器;
通过公有载波处理模块对所述第二上行信号进行处理,得到第二载波聚合信号;
控制射频开关切换射频信号路径至所述CA组合类型对应的上行信号路径,以使所述第一载波聚合信号传输至同向双工器;
通过所述同向双工器将所述第一载波聚合信号和所述第二载波聚合信号进行合路,得到所述CA组合类型对应的CA组合上行信号。
此外,为实现上述目的,本申请还提供一种载波聚合控制方法,所述载波聚合控制方法包括以下步骤:
获取CA组合下行信号,并通过同向双工器,对所述CA组合下行信号进行分路,得到第一分路信号及第二分路信号;
控制射频开关切换射频信号路径至所述CA组合下行信号对应的下行信号路径,以使所述第一分路信号传输至多工器组合,其中,所述多工器组合至少包括两个不同的多工器;
根据所述CA组合下行信号,从所述多工器组合中确定对所述第一分路信号进行处理的多工器,通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号;
通过公有载波处理模块对所述第二分路信号进行处理,得到第二下行信号。
此外,为实现上述目的,本申请还提供一种射频前端器件,其特征在于,包括:多工器组合、公有载波处理模块、射频开关及同向双工器,所述多工器组合与所述射频开关相连接,所述公有载波处理模块、所述射频开关与所述同向双工器相连接,其中,
所述多工器组合,用于根据待生成的CA组合类型,获取所述CA组合类型对应的第一上行信号,并从所述多工器组合中确定对所述第一上行信号进行处理的多工器,通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号;
所述公有载波处理模块,用于获取所述CA组合类型对应的第二上行信号,并对所述第二上行信号进行处理,得到第二载波聚合信号;
所述射频开关,用于切换射频信号路径至所述CA组合类型对应的上行信号路径,以使所述第一载波聚合信号传输至所述同向双工器;
所述同向双工器,用于将所述第一载波聚合信号和所述第二载波聚合信号进行合路,得到所述CA组合类型对应的CA组合上行信号。
此外,为实现上述目的,本申请还提供一种射频电路,包括:多工器组合、公有载波处理模块、射频开关及同向双工器,所述多工器组合与所述射频开关相连接,所述公有载波处理模块、所述射频开关与所述同向双工器相连接,其中,
所述多工器组合,用于对接收的不同频段的第一上行信号进行处理得到第一载波聚合信号,并将所述第一载波聚合信号发送至所述射频开关;
所述公有载波处理模块,用于对接收的第二上行信号进行处理得到第二载波聚合信号,并将所述第二载波聚合信号发送至所述同向双工器;
所述射频开关,用于切换射频信号路径,以接收所述多工器组合发送的所述第一载波聚合信号,并将所述第一载波聚合信号发送至所述同向双工器;
所述同向双工器,用于接收所述射频开关发送的所述第一载波聚合信号及所述公有载波处理模块发送的所述第二载波聚合信号,并将所述第一载波聚合信号及所述第二载波聚合信号进行载波聚合,得到载波聚合上行信号。
此外,为实现上述目的,本申请还提供一种终端设备,所述终端设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的载波聚合控制程序,所述载波聚合控制程序被所述处理器执行时实现如上所述的第一种或第二种载波聚合控制方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有载波聚合控制程序,所述载波聚合控制程序被处理器执行时实现如上所述的第一种或第二种载波聚合控制方法的步骤。
本申请提供一种载波聚合控制方法、射频前端器件、射频电路、终端设备及可读存储介质,获取待生成的载波聚合CA组合类型,并获取CA组合类型对应的第一上行信号和第二上行信号;根据CA组合类型,从多工器组合中确定对第一上行信号进行处理的多工器,通过确定的多工器,对第一上行信号进行处理,得到第一载波聚合信号;通过公有载波处理模块对第二上行信号进行处理,得到第二载波聚合信号;控制射频开关切换射频信号路径至CA组合类型对应的上行信号路径,以使第一载波聚合信号传输至同向双工器;通过同向双工器将第一载波聚合信号和第二载波聚合信号进行合路,得到CA组合类型对应的CA组合上行信号。通过上述方式,本申请在通过多工器组合实现第一上行信号(非公有信号)进行载波聚合的基础上,还可以通过同向双工器实现公有载波处理模块的复用,从而实现多个CA组合,相比只实现单个CA组合,本申请通过多工器组合以及射频开关的切换,可同时实现多个CA组合,从而提高性能,同时,对公有载波处理模块的复用,可以显著降低公有载波处理模块(多工器或滤波器)的冗余度,而且可以简化射频前端器件的设计,以节省成本。具体的,将多工器组合通过射频开关进行切换,以建立不同的射频信号路径,以使多工器组合中任一多工器生成的第一载波聚合信号与公有载波处理模块生成的第二载波聚合信号通过同向双工器进行合路,得到CA组合,由于该CA组合根据多工器的不同,有不同的CA组合类型,从而可同时实现多个CA组合,并且,多个CA组合复用公有载波处理模块,相比现有的集成方案,可节省成本。因此,本申请可同时实现多个CA组合,并节省成本,以兼顾性能和成本,从而应用于大量的中低端机。
【附图说明】
图1为本申请实施例方案涉及的硬件运行环境的终端结构示意图;
图2为本申请应用于载波聚合的载波聚合控制方法第一实施例的流程示意图;
图3为本申请应用于载波解聚合的载波聚合控制方法第一实施例的流程示意图;
图4为本申请射频前端器件第一实施例的硬件结构示意图;
图5为本申请射频前端器件中Band1+Band3+Band7的实现路径的示意图;
图6为本申请射频前端器件中Band7+Band66的实现路径的示意图;
图7为本申请射频前端器件中Band1+Band3+Band41的实现路径的示意图;
图8为本申请射频前端器件中Band41+Band66的实现路径的示意图。
附图标号说明:
1 多工器组合 2 公有载波处理模块
3 射频开关 4、8、10 同向双工器
5 四工器 6、7 双工器
9 滤波器    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
【具体实施方式】
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在下述实施例中,BnTX为Band n频段上行串口,例如Band1TX为Band1频段上行串口,BnRX为Band n频段下行串口,例如Band1RX为Band1频段下行串口,B1/3 TRX为Band1频段和Band3频段同时工作的收发器,B1/3 Qaul-plexer为收发Band1频段和Band3频段的四工器,B66 duplexer为收发Band66频段的双工器,B7 duplexer为收发Band7频段的双工器,B41TRX Fileter为收发Band41频段的滤波器,SPDT为单刀双掷开关,MB&HB diplexer为收发中高频的同向双工器,B1/3/7/66 TRX为Band1频段、Band3频段、Band7频段和Band66频段的收发器,B1/3/41/66 TRX为Band1频段、Band3频段、Band41频段和Band66频段的收发器。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的终端结构示意图。
本申请实施例终端为终端设备,该终端设备可以为手机、平板电脑等具有收发射频信号功能的电子设备。
如图1所示,该终端可以包括:处理器1001,例如CPU(Central Processing Unit,中央处理器),通信总线1002,用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及载波聚合控制程序。
在图1所示的终端中,处理器1001可以用于调用存储器1005中存储的载波聚合控制程序,并执行以下操作:
获取待生成的载波聚合CA组合类型,并获取所述CA组合类型对应的第一上行信号和第二上行信号;
根据所述CA组合类型,从多工器组合中确定对所述第一上行信号进行处理的多工器, 通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号,其中,所述多工器组合至少包括两个不同的多工器;
通过公有载波处理模块对所述第二上行信号进行处理,得到第二载波聚合信号;
控制射频开关切换射频信号路径至所述CA组合类型对应的上行信号路径,以使所述第一载波聚合信号传输至同向双工器;
通过所述同向双工器将所述第一载波聚合信号和所述第二载波聚合信号进行合路,得到所述CA组合类型对应的CA组合上行信号。
进一步地,所述多工器组合包括四工器及双工器,处理器1001可以用于调用存储器1005中存储的载波聚合控制程序,还执行以下操作:
若确定的多工器为所述四工器,则通过所述四工器对所述第一上行信号进行滤波、合路,得到第一载波聚合信号,其中,所述第一上行信号包括两路频段的上行信号;
若确定的多工器为所述双工器,则通过所述双工器对所述第一上行信号进行滤波,得到第一载波聚合信号,其中,所述第一上行信号包括一路频段的上行信号。
进一步地,所述四工器为同时收发Band1频段信号和Band3频段信号的四工器,所述双工器为收发Band66频段信号的双工器,处理器1001可以用于调用存储器1005中存储的载波聚合控制程序,还执行以下操作:
若确定的多工器为所述四工器,则通过所述四工器对所述第一上行信号中的Band1频段上行信号和Band3频段上行信号进行滤波、合路,得到第一载波聚合信号;
若确定的多工器为所述双工器,则通过所述双工器对所述第一上行信号中的Band66频段上行信号进行滤波,得到第一载波聚合信号。
进一步地,所述公有载波处理模块为双工器或滤波器。
进一步地,所述公有载波处理模块为收发Band7频段信号的双工器或收发Band41频段信号的滤波器。
进一步地,处理器1001可以用于调用存储器1005中存储的载波聚合控制程序,还执行以下操作:
获取CA组合下行信号,并通过所述同向双工器,对所述CA组合下行信号进行分路,得到第一分路信号及第二分路信号;
控制所述射频开关切换射频信号路径至所述CA组合下行信号对应的下行信号路径,以使所述第一分路信号传输至所述多工器组合;
根据所述CA组合下行信号,从所述多工器组合中确定对所述第一分路信号进行处理的多工器,通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号;
通过所述公有载波处理模块对所述第二分路信号进行处理,得到第二下行信号。
在图1所示的终端中,处理器1001可以用于调用存储器1005中存储的载波聚合控制程序,并执行以下操作:
获取CA组合下行信号,并通过同向双工器,对所述CA组合下行信号进行分路,得到第一分路信号及第二分路信号;
控制射频开关切换射频信号路径至所述CA组合下行信号对应的下行信号路径,以使所述第一分路信号传输至多工器组合,其中,所述多工器组合至少包括两个不同的多工器;
根据所述CA组合下行信号,从所述多工器组合中确定对所述第一分路信号进行处理的多工器,通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号;
通过公有载波处理模块对所述第二分路信号进行处理,得到第二下行信号。
进一步地,处理器1001可以用于调用存储器1005中存储的载波聚合控制程序,还执行以下操作:
若确定的多工器为所述四工器,则通过所述四工器对所述第一分路信号进行分路、滤波,得到第一下行信号,其中,所述第一下行信号包括两路频段的下行信号;
若确定的多工器为所述双工器,则通过所述双工器对所述第一分路信号进行滤波,得到第一下行信号,其中,所述第一下行信号包括一路频段的下行信号。
进一步地,处理器1001可以用于调用存储器1005中存储的载波聚合控制程序,还执行以下操作:
若确定的多工器为所述四工器,则通过所述四工器对所述第一分路信号进行分路、滤波,得到Band1频段下行信号及Band3频段下行信号;
若确定的多工器为所述双工器,则通过所述双工器对所述第一分路信号进行滤波,得到Band66频段下行信号。
进一步地,所述公有载波处理模块为双工器或滤波器。
进一步地,所述公有载波处理模块为收发Band7频段信号的双工器或收发Band41频段信号的滤波器。
基于上述硬件结构,提出本申请载波聚合控制方法各个实施例。
本申请提供一种载波聚合控制方法。
参照图2,图2为本申请应用于载波聚合的载波聚合控制方法第一实施例的流程示意图。
在本实施例中,该载波聚合控制方法包括:
步骤S10,获取待生成的载波聚合CA组合类型,并获取所述CA组合类型对应的第一上行信号和第二上行信号;
在本实施例中,该载波聚合控制方法由终端设备实现,该终端设备可以为手机、平板电脑等具有收发射频信号功能的电子设备。该终端设备以UE(user equipment,用户终端)为例进行说明。具体的,该载波聚合控制方法应用于射频前端器件,该射频前端器件包括:多工器组合、公有载波处理模块、射频开关及同向双工器,该多工器组合与射频开关相连接,公有载波处理模块、射频开关与同向双工器相连接。
在本实施例中,获取待生成的CA(Carrier Aggregation,载波聚合)组合类型,并获取CA组合类型对应的第一上行信号和第二上行信号。其中,CA组合类型包括1个CA组合、2个CA组合、3个CA组合等,具体的,根据UE所处地域进行设定,即根据所处地域运营商的CA组合类型进行设定,例如海外地区,CA组合类型可以为Band1+Band3+Band7和Band7+Band66两种组合,并且,每个组合可以是2CC(Component Carrier,载波单元)、3CC、4CC、5CC等,此处不作具体限定。
需要说明的是,CA功能可以支持连续或非连续载波聚合,每个用户在每个载波上使用独立的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)实体,每个传输块只能映射到特定的一个载波上。每个载波上面的PDCCH(Physical Downlink Control Channel,物理下行控制信道)信道相互独立,可以重用R8(Rel-8)版本的设计,使用每个载波的PDCCH为每个载波的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)和PUSCH(Pyhsical Uplink Shared Channel,物理上行共享信道)信道分配资源。
此外,还需要说明的是,第一上行信号为待生成的CA组合类型中非公有上行信号,第二上行信号为该CA组合类型中公有上行信号,第一上行信号及第二上行信号根据CA组合类型进行设定。例如,CA组合类型为Band1+Band3+Band7和Band7+Band66两种组合,则第一上行信号为Band1频段上行信号和Band3频段上行信号或Band66频段上行信号,第二上行信号为Band7频段上行信号,即第一上行信号为1920MHZ(兆赫兹)-1980MHZ的频段信号和1710MHZ-1785MHZ的频段信号,或者1710MHZ-1780MHZ的频段信号。
可以理解,第一上行信号可以为一路上行信号,也可以为两路上行信号、三路上行信号、四路上行信号,具体的,根据待生成的CA组合类型中非公有信号的频段划分数量,例如,Band1+Band3+Band7和Band7+Band66两种组合,第一上行信号可以为两路上行信号或一路上行信号。第一上行信号和第二上行信号需要将原始信号经过变频处理,得到相应频段的上行信号。
步骤S20,根据所述CA组合类型,从多工器组合中确定对所述第一上行信号进行处理 的多工器,通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号,其中,所述多工器组合至少包括两个不同的多工器;
在本实施例中,根据CA组合类型,从多工器组合中确定对第一上行信号进行处理的多工器,通过确定的多工器,对第一上行信号进行处理,得到第一载波聚合信号。其中,多工器组合可以为两个多工器、三个多工器、四个多工器等,多工器可以为双工器、四工器、六工器、八工器等,可以理解,多工器组合中的多工器数量对应CA组合类型中CA组合数量。
需要说明的是,多工器组合根据UE所需的CA组合类型进行设定,例如UE所需的CA组合类型为Band1+Band3+Band7和Band7+Band66两种组合,则多工器组合包括四工器和双工器,并且,该四工器为同时收发Band1频段信号和Band3频段信号的收发器,该双工器为收发Band66频段信号的收发器。
此外,还需要说明的是,若确定的多工器为双工器,第一上行信号为单路上行信号时,则通过双工器对第一上行信号进行滤波处理;若确定的多工器为除了双工器以外的多工器,第一上行信号为多路上行信号,则通过多工器对第一上行信号进行滤波、合路处理。
步骤S30,通过公有载波处理模块对所述第二上行信号进行处理,得到第二载波聚合信号;
在本实施例中,通过公有载波处理模块对第二上行信号进行处理,得到第二载波聚合信号。
其中,若第二上行信号为频分双工模式,则公有载波处理模块为多工器,该多工器可以为双工器、四工器、六工器等,具体的,根据CA组合类型中相同频段信号数量进行设定,例如Band1+Band3+Band7和Band7+Band66两种组合,即第一上行信号为一路上行信号,则该多工器为双工器;若第二上行信号为时分双工模式,则公有载波处理模块为滤波器,该滤波器的数量根据CA组合类型中相同频段信号数量进行设定。
需要说明的是,若确定的公有载波处理模块为双工器或单个滤波器,第一上行信号为单路上行信号时,则通过双工器或滤波器对第一上行信号进行滤波处理;若确定的公有载波处理模块为除了双工器以外的多工器或多个滤波器,第一上行信号为多路上行信号时,则对第一上行信号进行滤波、合路处理。
步骤S40,控制所述射频开关切换射频信号路径至所述CA组合类型对应的上行信号路径,以使所述第一载波聚合信号传输至同向双工器;
在本实施例中,控制射频开关切换射频信号路径至CA组合类型对应的上行信号路径,以使第一载波聚合信号传输至同向双工器。其中,射频开关可以为单刀双掷开关、单刀三掷开关、单刀四掷开关等,具体的,根据CA组合类型中CA组合数量进行设定,即根据多工器组合中多工器数量进行设定。
需要说明的是,若多工器组合包括两个多工器,将两个多工器设定为第一多工器及第二多工器,则该射频开关为单刀双掷开关,控制该单刀双掷开关进行切换,可得到两条射频信号路径,其中一条射频信号路径为第一多工器与同向双工器相连接的信号路径,另外一条射频信号路径为第二多工器与同向双工器相连接的信号路径。
步骤S50,通过所述同向双工器将所述第一载波聚合信号和所述第二载波聚合信号进行合路,得到所述CA组合类型对应的CA组合上行信号。
在本实施例中,通过同向双工器将第一载波聚合信号和第二载波聚合信号进行合路,得到CA组合类型对应的CA组合上行信号。
需要说明的是,同向双工器可根据CA组合类型进行设定,若CA组合类型为Band1+Band3+Band7和Band7+Band66两种组合,则同向双工器为收发中高频的收发器,该中高频的频段范围为1710MHZ-2170MHZ和2500MHZ-2690MHZ;若CA组合类型为Band1+Band3+Band41和Band41+Band66两种组合,则该中高频的频段范围为1710MHZ-2170MHZ和2496MHZ-2690MHZ。
本申请实施例提供一种载波聚合控制方法,获取待生成的载波聚合CA组合类型,并获 取CA组合类型对应的第一上行信号和第二上行信号;根据CA组合类型,从多工器组合中确定对第一上行信号进行处理的多工器,通过确定的多工器,对第一上行信号进行处理,得到第一载波聚合信号;通过公有载波处理模块对第二上行信号进行处理,得到第二载波聚合信号;控制射频开关切换射频信号路径至CA组合类型对应的上行信号路径,以使第一载波聚合信号传输至同向双工器;通过同向双工器将第一载波聚合信号和第二载波聚合信号进行合路,得到CA组合类型对应的CA组合上行信号。通过上述方式,本申请实施例在通过多工器组合实现第一上行信号(非公有信号)进行载波聚合的基础上,还可以通过同向双工器实现公有载波处理模块的复用,从而实现多个CA组合,相比只实现单个CA组合,本申请实施例通过多工器组合以及射频开关的切换,可同时实现多个CA组合,从而提高性能,同时,对公有载波处理模块的复用,可以显著降低公有载波处理模块(多工器或滤波器)的冗余度,而且可以简化射频前端器件的设计,以节省成本。具体的,将多工器组合通过射频开关进行切换,以建立不同的射频信号路径,以使多工器组合中任一多工器生成的第一载波聚合信号与公有载波处理模块生成的第二载波聚合信号通过同向双工器进行合路,得到CA组合,由于该CA组合根据多工器的不同,有不同的CA组合类型,从而可同时实现多个CA组合,并且,多个CA组合复用公有载波处理模块,相比现有的集成方案,可节省成本。因此,本申请实施例可同时实现多个CA组合,并节省成本,以兼顾性能和成本,从而应用于大量的中低端机。
进一步地,基于上述第一实施例,提出本申请载波聚合控制方法第二实施例。
在本实施例中,上述步骤S20包括:
步骤a21,根据所述CA组合类型,从所述多工器组合中的两个不同的多工器确定对所述第一上行信号进行处理的多工器;
在本实施例中,根据CA组合类型,从多工器组合中的两个不同的多工器确定对第一上行信号进行处理的多工器。其中,两个不同的多工器为对不同频段信号进行收发的收发器。
进一步地,当多工器组合为两个不同的多工器时,则射频开关为单刀双掷开关。
步骤a22,通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号。
在本实施例中,通过确定的多工器,对第一上行信号进行处理,得到第一载波聚合信号。具体的,将多工器组合设定为第一多工器和第二多工器,若确定的多工器为第一多工器,则通过第一多工器对所述第一上行信号进行处理,若确定的多工器为第二多工器,则通过第二多工器对所述第一上行信号进行处理。
进一步地,步骤a22包括:
步骤a221,若确定的多工器为所述四工器,则通过所述四工器对所述第一上行信号进行滤波、合路,得到第一载波聚合信号,其中,所述第一上行信号包括两路频段的上行信号;
步骤a222,若确定的多工器为所述双工器,则通过所述双工器对所述第一上行信号进行滤波,得到第一载波聚合信号,其中,所述第一上行信号包括一路频段的上行信号。
在本实施例中,若确定的多工器为四工器,第一上行信号包括两路频段的上行信号,则对第一上行信号进行滤波、合路处理;若确定的多工器为双工器,第一上行信号包括一路频段的上行信号,则对第一上行信号进行滤波处理,然后,通过以上任一步骤进行处理,得到第一载波聚合信号。
进一步地,步骤a22包括:
步骤a2211,若确定的多工器为所述四工器,则通过所述四工器对所述第一上行信号中的Band1频段上行信号和Band3频段上行信号进行滤波、合路,得到第一载波聚合信号;
步骤a2221,若确定的多工器为所述双工器,则通过所述双工器对所述第一上行信号中的Band66频段上行信号进行滤波,得到第一载波聚合信号。
在本实施例中,若确定的多工器为同时收发Band1频段信号和Band3频段信号的四工器,则通过该四工器对第一上行信号中的Band1频段上行信号和Band3频段上行信号分别进行滤波,再进行合路;若确定的多工器为收发Band66频段的双工器,则通过该双工器对第一上行信号中的Band66频段上行信号进行滤波,然后,通过以上任一步骤得到第一载波聚合信号。
本实施例中,通过单刀双掷开关对多工器组合中的两个不同多工器进行切换,可同时实现两个CA组合,并且只需简单的单刀双掷开关,相比现有的集成方案,可进一步节省成本。
进一步地,基于上述第一实施例,提出本申请载波聚合控制方法第三实施例。
在本实施例中,上述步骤S30包括:
步骤a31,通过所述公有载波处理模块对所述第二上行信号进行滤波,得到第二载波聚合信号,其中,所述第二上行信号包括一路频段的上行信号。
在本实施例中,通过公有载波处理模块对第二上行信号进行滤波,得到第二载波聚合信号,其中,第二上行信号包括一路频段的上行信号。其中,公有载波处理模块为双工器或滤波器。
进一步地,步骤a31包括:
步骤a311,通过所述公有载波处理模块对所述第二上行信号中的Band7频段上行信号或Band41频段上行信号进行滤波,得到第二载波聚合信号。
在本实施例中,通过公有载波处理模块对第二上行信号中的Band7频段上行信号或Band41频段上行信号进行滤波,得到第二载波聚合信号。其中,公有载波处理模块为收发Band7频段信号的双工器或收发Band41频段信号的滤波器,即发送2500MHZ-2570MHZ的频段信号和接收2620MHZ-2690MHZ的频段信号,或者收发2496MHZ-2690MHZ的频段信号。
本实施例中,通过公用公有载波处理模块,可显著降低公有载波处理模块的冗余度,可节省成本。
进一步地,基于上述第一实施例,提出本申请载波聚合控制方法第四实施例。
在本实施例中,该载波聚合控制方法还包括:
步骤a60,获取CA组合下行信号,并通过同向双工器,对所述CA组合下行信号进行分路,得到第一分路信号及第二分路信号;
在本实施例中,获取CA组合下行信号,并通过同向双工器,对CA组合下行信号进行分路,得到第一分路信号及第二分路信号。
其中,CA组合下行信号可根据UE所需接收的CA组合信号进行设定,具体的,该同向双工器与收发天线进行相连接,该收发天线可以根据UE所需的CA组合类型进行设定,例如Band1+Band3+Band7和Band7+Band66两种组合,则收发天线和同向双工器均收发中高频信号,该中高频的频段范围为1710MHZ-2170MHZ和2500MHZ-2690MHZ;若CA组合类型为Band1+Band3+Band41和Band41+Band66两种组合,则该中高频的频段范围为1710MHZ-2170MHZ和2496MHZ-2690MHZ。
需要说明的是,经过同向双工器进行分频后,可得到第一分路信号及第二分路信号,例如Band1+Band3+Band7和Band7+Band66两种组合,则第一分路信号为Band1频段+Band3频段的载波聚合信号或Band7频段的信号,第二分路信号为Band7频段信号。
步骤a70,控制射频开关切换射频信号路径至所述CA组合下行信号对应的下行信号路径,以使所述第一分路信号传输至所述多工器组合;
在本实施例中,控制射频开关切换射频信号路径至CA组合下行信号对应的下行信号路径,以使第一分路信号传输至多工器组合。其中,射频开关可以为单刀双掷开关、单刀三掷开关、单刀四掷开关等,具体的,根据UE所需CA组合类型中CA组合数量进行设定,即根据多工器组合中多工器数量进行设定。
需要说明的是,若多工器组合包括两个多工器,将两个多工器设定为第一多工器及第二多工器,则该射频开关为单刀双掷开关,控制该单刀双掷开关进行切换,可得到两条射频信号路径,其中一条射频信号路径为第一多工器与同向双工器相连接的信号路径,以使第一分路信号传输至第一多工器,另外一条射频信号路径为第二多工器与同向双工器相连接的信号路径,以使第二分路信号传输至第二多工器。
步骤a80,根据所述CA组合下行信号,从多工器组合中确定对所述第一分路信号进行处理的多工器,通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号;
在本实施例中,根据CA组合下行信号,从多工器组合中确定对第一分路信号进行处理的多工器,通过确定的多工器,对第一分路信号进行处理,得到第一下行信号。其中,多工器组合可以为两个多工器、三个多工器、四个多工器等,多工器可以为双工器、四工器、六工器、八工器等,可以理解,多工器组合中的多工器数量对应CA组合类型中CA组合数量。
需要说明的是,多工器组合根据UE所需的CA组合类型进行设定,例如UE所需的CA组合类型为Band1+Band3+Band7和Band7+Band66两种组合,则多工器组合包括四工器和双工器,并且,该四工器为同时收发Band1频段信号和Band3频段信号的收发器,该双工器为收发Band66频段信号的收发器。
此外,还需要说明的是,若确定的多工器为双工器,第一分路信号为单路下行信号时,则通过双工器对第一分路信号进行滤波处理;若确定的多工器为除了双工器以外的多工器,第一分路信号为多路下行信号,则通过多工器对第一分路信号进行分路、滤波处理。
步骤a90,通过公有载波处理模块对所述第二分路信号进行处理,得到第二下行信号。
在本实施例中,通过公有载波处理模块对第二分路信号进行处理,得到第二下行信号。
其中,若第二分路信号为频分双工模式,则公有载波处理模块为多工器,该多工器可以为双工器、四工器、六工器等,具体的,根据CA组合类型中相同频段信号数量进行设定,例如Band1+Band3+Band7和Band7+Band66两种组合,即第一分路信号为一路下行信号,则该多工器为双工器;若第二分路信号为时分双工模式,则公有载波处理模块为滤波器,该滤波器的数量根据CA组合类型中相同频段信号数量进行设定。
需要说明的是,若确定的公有载波处理模块为双工器或单个滤波器,第一分路信号为单路下行信号,则通过双工器或滤波器对第一分路信号进行滤波处理;若确定的公有载波处理模块为除了双工器以外的多工器或多个滤波器,第一分路信号为多路下行信号时,则对第一分路信号进行分路、滤波处理。
本申请实施例提供一种载波聚合控制方法,获取CA组合下行信号,并通过同向双工器,对CA组合下行信号进行分路,得到第一分路信号及第二分路信号;控制射频开关切换射频信号路径至CA组合下行信号对应的下行信号路径,以使第一分路信号传输至多工器组合;根据CA组合下行信号,从多工器组合中确定对第一分路信号进行处理的多工器,通过确定的多工器,对第一分路信号进行处理,得到第一下行信号;通过公有载波处理模块对第二分路信号进行处理,得到第二下行信号。通过上述方式,本申请实施例通过同向双工器实现公有载波处理模块的复用,还通过多工器组合实现第一分路信号(非公有信号)进行载波解聚合聚合,从而实现多个CA组合,相比只实现单个CA组合,本申请实施例通过多工器组合以及射频开关的切换,可同时实现多个CA组合,从而提高性能,同时,对公有载波处理模块的复用,可以显著降低公有载波处理模块(多工器或滤波器)的冗余度,而且可以简化射频前端器件的设计,以节省成本。
本申请提供一种载波聚合控制方法。
参照图3,图3为本申请应用于载波解聚合的载波聚合控制方法第一实施例的流程示意图。
在本实施例中,该载波聚合控制方法包括:
步骤S100,获取CA组合下行信号,并通过同向双工器,对所述CA组合下行信号进行分路,得到第一分路信号及第二分路信号;
在本实施例中,该载波聚合控制方法由终端设备实现,该终端设备可以为手机、平板电脑等具有收发射频信号功能的电子设备。该终端设备以UE(user equipment,用户终端)为例进行说明。具体的,该载波聚合控制方法应用于射频前端器件,该射频前端器件包括:多工器组合、公有载波处理模块、射频开关及同向双工器,该多工器组合与射频开关相连接,公有载波处理模块、射频开关与同向双工器相连接。
在本实施例中,获取CA组合下行信号,并通过同向双工器,对CA组合下行信号进行分路,得到第一分路信号及第二分路信号。
其中,CA组合下行信号可根据UE所需接收的CA组合信号进行设定,具体的,该同向双工器与收发天线进行相连接,该收发天线可以根据UE所需的CA组合类型进行设定,例如Band1+Band3+Band7和Band7+Band66两种组合,则收发天线和同向双工器均收发中高频信号,该中高频的频段范围为1710MHZ-2170MHZ和2500MHZ-2690MHZ;若CA组合类型为Band1+Band3+Band41和Band41+Band66两种组合,则该中高频的频段范围为1710MHZ-2170MHZ和2496MHZ-2690MHZ。
需要说明的是,经过同向双工器进行分频后,可得到第一分路信号及第二分路信号,例如Band1+Band3+Band7和Band7+Band66两种组合,则第一分路信号为Band1频段+Band3频段的载波聚合信号或Band7频段的信号,第二分路信号为Band7频段信号。
步骤S110,控制射频开关切换射频信号路径至所述CA组合下行信号对应的下行信号路径,以使所述第一分路信号传输至所述多工器组合,其中,所述多工器组合至少包括两个不同的多工器;
在本实施例中,控制射频开关切换射频信号路径至CA组合下行信号对应的下行信号路径,以使第一分路信号传输至多工器组合。其中,射频开关可以为单刀双掷开关、单刀三掷开关、单刀四掷开关等,具体的,根据UE所需CA组合类型中CA组合数量进行设定,即根据多工器组合中多工器数量进行设定。
需要说明的是,若多工器组合包括两个多工器,将两个多工器设定为第一多工器及第二多工器,则该射频开关为单刀双掷开关,控制该单刀双掷开关进行切换,可得到两条射频信号路径,其中一条射频信号路径为第一多工器与同向双工器相连接的信号路径,以使第一分路信号传输至第一多工器,另外一条射频信号路径为第二多工器与同向双工器相连接的信号路径,以使第二分路信号传输至第二多工器。
步骤S120,根据所述CA组合下行信号,从多工器组合中确定对所述第一分路信号进行处理的多工器,通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号;
在本实施例中,根据CA组合下行信号,从多工器组合中确定对第一分路信号进行处理的多工器,通过确定的多工器,对第一分路信号进行处理,得到第一下行信号。其中,多工器组合可以为两个多工器、三个多工器、四个多工器等,多工器可以为双工器、四工器、六工器、八工器等,可以理解,多工器组合中的多工器数量对应CA组合类型中CA组合数量。
需要说明的是,多工器组合根据UE所需的CA组合类型进行设定,例如UE所需的CA组合类型为Band1+Band3+Band7和Band7+Band66两种组合,则多工器组合包括四工器和双工器,并且,该四工器为同时收发Band1频段信号和Band3频段信号的收发器,该双工器为收发Band66频段信号的收发器。
此外,还需要说明的是,若确定的多工器为双工器,第一分路信号为单路下行信号时,则通过双工器对第一分路信号进行滤波处理;若确定的多工器为除了双工器以外的多工器,第一分路信号为多路下行信号,则通过多工器对第一分路信号进行分路、滤波处理。
步骤S130,通过公有载波处理模块对所述第二分路信号进行处理,得到第二下行信号。
在本实施例中,通过公有载波处理模块对第二分路信号进行处理,得到第二下行信号。
其中,若第二分路信号为频分双工模式,则公有载波处理模块为多工器,该多工器可以为双工器、四工器、六工器等,具体的,根据CA组合类型中相同频段信号数量进行设定,例如Band1+Band3+Band7和Band7+Band66两种组合,即第一分路信号为一路下行信号,则该多工器为双工器;若第二分路信号为时分双工模式,则公有载波处理模块为滤波器,该滤波器的数量根据CA组合类型中相同频段信号数量进行设定。
需要说明的是,若确定的公有载波处理模块为双工器或单个滤波器,第一分路信号为单路下行信号,则通过双工器或滤波器对第一分路信号进行滤波处理;若确定的公有载波处理模块为除了双工器以外的多工器或多个滤波器,第一分路信号为多路下行信号时,则对第一分路信号进行分路、滤波处理。
本申请实施例提供一种载波聚合控制方法,获取CA组合下行信号,并通过同向双工器, 对CA组合下行信号进行分路,得到第一分路信号及第二分路信号;控制射频开关切换射频信号路径至CA组合下行信号对应的下行信号路径,以使第一分路信号传输至多工器组合;根据CA组合下行信号,从多工器组合中确定对第一分路信号进行处理的多工器,通过确定的多工器,对第一分路信号进行处理,得到第一下行信号;通过公有载波处理模块对第二分路信号进行处理,得到第二下行信号。通过上述方式,本申请实施例通过同向双工器实现公有载波处理模块的复用,还通过多工器组合实现第一分路信号(非公有信号)进行载波解聚合聚合,从而实现多个CA组合,相比只实现单个CA组合,本申请实施例通过多工器组合以及射频开关的切换,可同时实现多个CA组合,从而提高性能,同时,对公有载波处理模块的复用,可以显著降低公有载波处理模块(多工器或滤波器)的冗余度,而且可以简化射频前端器件的设计,以节省成本。
进一步地,基于上述第一实施例,提出本申请载波聚合控制方法第二实施例。
在本实施例中,上述步骤S80包括:
步骤a81,根据所述CA组合下行信号,从所述多工器组合中的两个不同的多工器确定对所述第一分路信号进行处理的多工器;
步骤a82,通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号。
在本实施例中,根据CA组合下行信号,从多工器组合中的两个不同的多工器确定对第一分路信号进行处理的多工器,然后,通过确定的多工器,对第一分路信号进行处理,得到第一下行信号。其中,两个不同的多工器为对不同频段信号进行收发的收发器。
需要说明的是,将多工器组合设定为第一多工器和第二多工器,若确定的多工器为第一多工器,则通过第一多工器对所述第一分路信号进行处理,若确定的多工器为第二多工器,则通过第二多工器对所述第一分路信号进行处理。
进一步地,当多工器组合为两个不同的多工器时,则射频开关为单刀双掷开关。
进一步地,步骤a82包括:
步骤a821,若确定的多工器为所述四工器,则通过所述四工器对所述第一分路信号进行分路、滤波,得到第一下行信号,其中,所述第一下行信号包括两路频段的下行信号;
步骤a822,若确定的多工器为所述双工器,则通过所述双工器对所述第一分路信号进行滤波,得到第一下行信号,其中,所述第一下行信号包括一路频段的下行信号。
在本实施例中,若确定的多工器为四工器,第一分路信号包括两路频段的下行信号,则对第一分路信号进行分路、滤波处理;若确定的多工器为双工器,第一分路信号包括一路频段的下行信号,则对第一分路信号进行滤波处理,然后,通过以上任一步骤进行处理,得到第一下行信号。
进一步地,步骤a82包括:
步骤a8211,若确定的多工器为所述四工器,则通过所述四工器对所述第一分路信号进行分路、滤波,得到Band1频段下行信号及Band3频段下行信号;
步骤a8221,若确定的多工器为所述双工器,则通过所述双工器对所述第一分路信号进行滤波,得到Band66频段下行信号。
在本实施例中,若确定的多工器为同时收发Band1频段信号和Band3频段信号的四工器,则通过该四工器对第一分路信号中的Band1频段下行信号和Band3频段下行信号分别进行分路,再进行滤波;若确定的多工器为收发Band66频段的双工器,则通过该双工器对第一分路信号中的Band66频段下行信号进行滤波,然后,通过以上任一步骤得到第一下行信号。
本实施例中,通过单刀双掷开关对多工器组合中的两个不同多工器进行切换,可同时实现两个CA组合,并且只需简单的单刀双掷开关,相比现有的集成方案,可进一步节省成本。
进一步地,基于上述第一实施例,提出本申请载波聚合控制方法第六实施例。
在本实施例中,上述步骤S90包括:
步骤a91,通过所述公有载波处理模块对所述第二分路信号进行滤波,得到第二下行信号,其中,所述第二下行信号包括一路频段的下行信号。
在本实施例中,通过公有载波处理模块对第二分路信号进行滤波,得到第二下行信号,其中,第二分路信号包括一路频段的下行信号。其中,公有载波处理模块为双工器或滤波器。
步骤a911,通过所述公有载波处理模块对所述第二下行信号进行滤波,得到Band7频段下行信号或Band41频段下行信号。
在本实施例中,通过公有载波处理模块对第二分路信号中的Band7频段下行信号或Band41频段下行信号进行滤波,得到第二下行信号。其中,公有载波处理模块为收发Band7频段信号的双工器或收发Band41频段信号的滤波器,即发送2500MHZ-2570MHZ的频段信号和接收2620MHZ-2690MHZ的频段信号,或者收发2496MHZ-2690MHZ的频段信号。
本实施例中,通过公用公有载波处理模块,可显著降低公有载波处理模块的冗余度,可节省成本。
本申请还提供一种射频前端器件。
参照图4,图4为本申请射频前端器件第一实施例的硬件结构示意图。
在本实施例中,所述射频前端器件包括:多工器组合、公有载波处理模块、射频开关及同向双工器,所述多工器组合与所述射频开关相连接,所述公有载波处理模块、所述射频开关与所述同向双工器相连接,其中,
所述多工器组合,用于根据待生成的CA组合类型,获取所述CA组合类型对应的第一上行信号,并从所述多工器组合中确定对所述第一上行信号进行处理的多工器,通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号;
所述公有载波处理模块,用于获取所述CA组合类型对应的第二上行信号,并对所述第二上行信号进行处理,得到第二载波聚合信号;
所述射频开关,用于切换射频信号路径至所述CA组合类型对应的上行信号路径,以使所述第一载波聚合信号传输至所述同向双工器;
所述同向双工器,用于将所述第一载波聚合信号和所述第二载波聚合信号进行合路,得到所述CA组合类型对应的CA组合上行信号。
进一步地,所述同向双工器,还用于获取CA组合下行信号,并对所述CA组合下行信号进行分路,得到第一分路信号及第二分路信号;
所述射频开关,还用于切换射频信号路径至所述CA组合下行信号对应的下行信号路径,以使所述第一分路信号传输至所述多工器组合;
所述多工器组合,还用于根据所述CA组合下行信号,从所述多工器组合中确定对所述第一分路信号进行处理的多工器,通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号;
所述公有载波处理模块,还用于对所述第二分路信号进行处理,得到第二下行信号。
进一步地,所述多工器组合包括两个不同的多工器,其中,
所述多工器组合,用于根据所述CA组合类型,从所述多工器组合中的两个不同的多工器确定对所述第一上行信号进行处理的多工器,通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号;
所述多工器组合,还用于根据所述CA组合下行信号,从所述多工器组合中的两个不同的多工器确定对所述第一分路信号进行处理的多工器。
进一步地,所述多工器组合包括四工器及双工器,其中,
所述四工器,用于对所述第一上行信号进行滤波、合路,得到第一载波聚合信号,其中,所述第一上行信号包括两路频段的上行信号;
所述双工器,用于对所述第一上行信号进行滤波,得到第一载波聚合信号,其中,所述第一上行信号包括一路频段的上行信号;
所述四工器,还用于对所述第一分路信号进行分路、滤波,得到第一下行信号,其中,所述第一下行信号包括两路频段的下行信号;
所述双工器,还用于对所述第一分路信号进行滤波,得到第一下行信号,其中,所述第 一下行信号包括一路频段的下行信号。
进一步地,所述四工器为同时收发Band1频段信号和Band3频段信号的四工器,所述双工器为收发Band66频段信号的双工器,其中,
所述四工器,用于对所述第一上行信号中的Band1频段上行信号和Band3频段上行信号进行滤波、合路,得到第一载波聚合信号;
所述双工器,用于对所述第一上行信号中的Band66频段上行信号进行滤波,得到第一载波聚合信号;
所述四工器,还用于对所述第一分路信号进行分路、滤波,得到Band1频段下行信号及Band3频段下行信号;
所述双工器,还用于对所述第一分路信号进行滤波,得到Band66频段下行信号。
进一步地,所述公有载波处理模块为双工器或滤波器,其中,
所述公有载波处理模块,用于对所述第二上行信号进行滤波,得到第二载波聚合信号,其中,所述第二上行信号包括一路频段的上行信号;
所述公有载波处理模块,还用于对所述第二分路信号进行滤波,得到第二下行信号,其中,所述第二下行信号包括一路频段的下行信号。
进一步地,参照图5,图5为本申请射频前端器件第二实施例的硬件结构示意图。
所述公有载波处理模块为收发Band7频段信号的双工器,其中,
所述公有载波处理模块,用于对所述第二上行信号中的Band7频段上行信号或Band41频段上行信号进行滤波,得到第二载波聚合信号;
所述公有载波处理模块,还用于对所述第二下行信号进行滤波,得到Band7频段下行信号或Band41频段下行信号。
在本实施例中,该射频前端器件可用于载波聚合和载波解聚合,即该射频前端器件可收发CA组合信号。例如Band1+Band3+Band7和Band7+Band66的CA组合,当射频前端器件用于载波聚合时,即发送上行信号时,参照图5,图5为本申请射频前端器件中Band1+Band3+Band7的实现路径的示意图,首先,通过收发B1频段和B3频段的四工器获取第一上行信号,该第一上行信号包括B1频段上行信号和B3频段上行信号,具体的,通过B1上行串口及B3上行串口进行获取,或者,参照图6,图6为本申请射频前端器件中Band7+Band66的实现路径的示意图,通过收发B66频段的双工器获取第一上行信号,具体的,通过B66上行串口进行获取,然后,通过相应的四工器或双工器进行处理,得到第一载波聚合信号,同时,公有的B7频段双工器获取第二上行信号,并对其进行处理,得到第二载波聚合信号,最后,通过单刀双掷开关选择对应的射频信号路径,以使第一载波聚合信号通过同向双工器与第二载波聚合信号进行合路,最终得到CA组合信号。
相应的,当射频前端器件用于载波解聚合时,即接收CA组合下行信号时,首先,通过同向双工器对CA组合下行信号进行分路,得到第一分路信号及第二分路信号,然后,将第一分路信号通过射频开关选择对应的四工器或双工器,并通过选择的四工器或双工器,对第一分路信号进行处理,以得到第一下行信号,并通过B1、B3或B66下行串口输出,同时,公有的B7双工器对第二分路信号进行处理,得到第二下行信号,并通过B7下行串口输出。
进一步地,所述公有载波处理模块为收发Band41频段信号的滤波器,其中,
所述公有载波处理模块,用于对所述第二上行信号中的Band41频段上行信号进行滤波,得到第二载波聚合信号;
所述公有载波处理模块,还用于对所述第二下行信号进行滤波,得到Band41频段下行信号。
在本实施例中,该射频前端器件可用于载波聚合和载波解聚合,即该射频前端器件可收发CA组合信号。例如Band1+Band3+Band41和Band41+Band66的CA组合,当射频前端器件用于载波聚合时,即发送上行信号时,参照图7,图7为本申请射频前端器件中Band1+Band3+Band41的实现路径的示意图,首先,通过收发B1频段和B3频段的四工器获 取第一上行信号,该第一上行信号包括B1频段上行信号和B3频段上行信号,具体的,通过B1上行串口及B3上行串口进行获取,或者,参照图8,图8为本申请射频前端器件中Band41+Band66的实现路径的示意图,通过收发B66频段的双工器获取第一上行信号,具体的,通过B66上行串口进行获取,然后,通过相应的四工器或双工器进行处理,得到第一载波聚合信号,同时,公有的B41频段滤波器获取第二上行信号,并对其进行处理,得到第二载波聚合信号,最后,通过单刀双掷开关选择对应的射频信号路径,以使第一载波聚合信号通过同向双工器与第二载波聚合信号进行合路,最终得到CA组合信号。
相应的,当射频前端器件用于载波解聚合时,即接收CA组合下行信号时,首先,通过同向双工器对CA组合下行信号进行分路,得到第一分路信号及第二分路信号,然后,将第一分路信号通过射频开关选择对应的四工器或双工器,并通过选择的四工器或双工器,对第一分路信号进行处理,以得到第一下行信号,并通过B1、B3或B66下行串口输出,同时,公有的B7滤波器对第二分路信号进行处理,得到第二下行信号,并通过B41下行串口输出。
本申请射频前端器件的具体实施例与上述载波聚合控制方法各实施例基本相同,在此不作赘述。
本实施例提供一种射频前端器件,该射频前端器件包括多工器组合、公有载波处理模块、射频开关及同向双工器,多工器组合与射频开关相连接,公有载波处理模块、射频开关与同向双工器相连接,多工器组合,用于根据待生成的CA组合类型,获取CA组合类型对应的第一上行信号,并从多工器组合中确定对第一上行信号进行处理的多工器,通过确定的多工器,对第一上行信号进行处理,得到第一载波聚合信号;公有载波处理模块,用于获取CA组合类型对应的第二上行信号,并对第二上行信号进行处理,得到第二载波聚合信号;射频开关,用于切换射频信号路径至CA组合类型对应的上行信号路径,以使第一载波聚合信号传输至同向双工器;同向双工器,用于将第一载波聚合信号和第二载波聚合信号进行合路,得到CA组合类型对应的CA组合上行信号。通过构建上述射频前端器件,本实施例通过多工器组合实现第一上行信号(非公有信号)进行载波聚合的基础上,还可以通过同向双工器实现公有载波处理模块的复用,从而实现多个CA组合,相比只实现单个CA组合,本申请通过多工器组合以及射频开关的切换,可同时实现多个CA组合,从而提高性能,同时,对公有载波处理模块的复用,可以显著降低公有载波处理模块(多工器或滤波器)的冗余度,而且可以简化射频前端器件的设计,以节省成本。
本申请还提供一种射频电路。
在本实施例中,所述射频电路包括:多工器组合、公有载波处理模块、射频开关及同向双工器,所述多工器组合与所述射频开关相连接,所述公有载波处理模块、所述射频开关与所述同向双工器相连接,其中,
所述多工器组合,用于对接收的不同频段的第一上行信号进行处理得到第一载波聚合信号,并将所述第一载波聚合信号发送至所述射频开关;
所述公有载波处理模块,用于对接收的第二上行信号进行处理得到第二载波聚合信号,并将所述第二载波聚合信号发送至所述同向双工器;
所述射频开关,用于切换射频信号路径,以接收所述多工器组合发送的所述第一载波聚合信号,并将所述第一载波聚合信号发送至所述同向双工器;
所述同向双工器,用于接收所述射频开关发送的所述第一载波聚合信号及所述公有载波处理模块发送的所述第二载波聚合信号,并将所述第一载波聚合信号及所述第二载波聚合信号进行载波聚合,得到载波聚合上行信号。
进一步地,所述同向双工器,还用于接收载波聚合下行信号,并对所述载波聚合下行信号进行载波解聚合,得到第一分路信号及第二分路信号,将所述第一分路信号发送至所述射频开关,并将所述第二分路信号发送至所述公有载波处理模块;
所述射频开关,还用于接收所述同向双工器发送的所述第一分路信号,并切换射频信号路径,以发送所述第一分路信号至所述多工器组合;
所述多工器组合,还用于接收所述射频开关发送的所述第一分路信号,并将所述第一分路信号进行处理得到不同频段的第一下行信号;
所述公有载波处理模块,还用于接收所述同向双工器发送的所述第二分路信号,并将所述第二分路信号进行处理,得到第二下行信号。
进一步地,所述多工器组合包括同时收发Band1频段信号和Band3频段信号的四工器及收发Band66频段信号的双工器,其中,
所述四工器与所述射频开关相连接,用于对接收的Band1频段上行信号和Band3频段上行信号进行载波聚合得到第一载波聚合信号,并将所述第一载波聚合信号发送至所述射频开关,或接收所述射频开关发送的第一分路信号,并将所述第一分路信号进行载波解聚合得到Band1频段下行信号和Band3频段下行信号;
所述双工器,用于对接收的Band66频段上行信号进行滤波得到第一载波聚合信号,并将所述第一载波聚合信号发送至所述射频开关,或接收所述射频开关发送的第一分路信号,并将所述第一分路信号进行滤波得到Band66频段下行信号。
在本实施例中,该射频电路可用于载波聚合和载波解聚合,即该射频电路可收发CA组合信号。例如Band1+Band3+Band7和Band7+Band66的CA组合,当射频电路用于载波聚合时,即发送上行信号时,参照图5,首先,通过收发B1频段和B3频段的四工器获取第一上行信号,该第一上行信号包括B1频段上行信号和B3频段上行信号,具体的,通过B1上行串口及B3上行串口进行获取,或者,参照图6,通过收发B66频段的双工器获取第一上行信号,具体的,通过B66上行串口进行获取,然后,通过相应的四工器或双工器进行处理,得到第一载波聚合信号,同时,公有的B7频段双工器获取第二上行信号,并对其进行处理,得到第二载波聚合信号,最后,通过单刀双掷开关选择对应的射频信号路径,以使第一载波聚合信号通过同向双工器与第二载波聚合信号进行合路,最终得到CA组合信号。
相应的,当射频电路用于载波解聚合时,即接收CA组合下行信号时,首先,通过同向双工器对CA组合下行信号进行分路,得到第一分路信号及第二分路信号,然后,将第一分路信号通过射频开关选择对应的四工器或双工器,并通过选择的四工器或双工器,对第一分路信号进行处理,以得到第一下行信号,并通过B1、B3或B66下行串口输出,同时,公有的B7双工器对第二分路信号进行处理,得到第二下行信号,并通过B7下行串口输出。
此外,例如Band1+Band3+Band41和Band41+Band66的CA组合,当射频电路用于载波聚合时,即发送上行信号时,参照图7,首先,通过收发B1频段和B3频段的四工器获取第一上行信号,该第一上行信号包括B1频段上行信号和B3频段上行信号,具体的,通过B1上行串口及B3上行串口进行获取,或者,参照图8,通过收发B66频段的双工器获取第一上行信号,具体的,通过B66上行串口进行获取,然后,通过相应的四工器或双工器进行处理,得到第一载波聚合信号,同时,公有的B41频段滤波器获取第二上行信号,并对其进行处理,得到第二载波聚合信号,最后,通过单刀双掷开关选择对应的射频信号路径,以使第一载波聚合信号通过同向双工器与第二载波聚合信号进行合路,最终得到CA组合信号。
相应的,当射频电路用于载波解聚合时,即接收CA组合下行信号时,首先,通过同向双工器对CA组合下行信号进行分路,得到第一分路信号及第二分路信号,然后,将第一分路信号通过射频开关选择对应的四工器或双工器,并通过选择的四工器或双工器,对第一分路信号进行处理,以得到第一下行信号,并通过B1、B3或B66下行串口输出,同时,公有的B7滤波器对第二分路信号进行处理,得到第二下行信号,并通过B41下行串口输出。
本申请射频电路的具体实施例与上述载波聚合控制方法各实施例基本相同,在此不作赘述。
本实施例提供一种射频电路,该射频电路包括多工器组合、公有载波处理模块、射频开关及同向双工器,多工器组合与射频开关相连接,公有载波处理模块、射频开关与同向双工器相连接,其中,多工器组合,用于对接收的不同频段的第一上行信号进行处理得到第一载波聚合信号,并将第一载波聚合信号发送至射频开关;公有载波处理模块,用于对接收的第 二上行信号进行处理得到第二载波聚合信号,并将第二载波聚合信号发送至同向双工器;射频开关,用于切换射频信号路径,以接收多工器组合发送的第一载波聚合信号,并将第一载波聚合信号发送至同向双工器;同向双工器,用于接收射频开关发送的第一载波聚合信号及公有载波处理模块发送的第二载波聚合信号,并将第一载波聚合信号及第二载波聚合信号进行载波聚合,得到载波聚合上行信号。通过构建上述射频电路,本实施例通过多工器组合实现第一上行信号(非公有信号)进行载波聚合的基础上,还可以通过同向双工器实现公有载波处理模块的复用,从而实现多个CA组合,相比只实现单个CA组合,本申请通过多工器组合以及射频开关的切换,可同时实现多个CA组合,从而提高性能,同时,对公有载波处理模块的复用,可以显著降低公有载波处理模块(多工器或滤波器)的冗余度,而且可以简化射频电路的设计,以节省成本。
本申请还提供一种终端设备,该终端设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的载波聚合控制程序,所述载波聚合控制程序被所述处理器执行时实现如以上任一项实施例所述的载波聚合控制方法的步骤。
本申请终端设备的具体实施例与上述载波聚合控制方法各实施例基本相同,在此不作赘述。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质上存储有载波聚合控制程序,所述载波聚合控制程序被处理器执行时实现如以上任一项实施例所述的载波聚合控制方法的步骤。
本申请计算机可读存储介质的具体实施例与上述载波聚合控制方法各实施例基本相同,在此不作赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (24)

  1. 一种载波聚合控制方法,其特征在于,所述载波聚合控制方法包括以下步骤:
    获取待生成的载波聚合CA组合类型,并获取所述CA组合类型对应的第一上行信号和第二上行信号;
    根据所述CA组合类型,从多工器组合中确定对所述第一上行信号进行处理的多工器,通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号,其中,所述多工器组合至少包括两个不同的多工器;
    通过公有载波处理模块对所述第二上行信号进行处理,得到第二载波聚合信号;
    控制射频开关切换射频信号路径至所述CA组合类型对应的上行信号路径,以使所述第一载波聚合信号传输至同向双工器;
    通过所述同向双工器将所述第一载波聚合信号和所述第二载波聚合信号进行合路,得到所述CA组合类型对应的CA组合上行信号。
  2. 如权利要求1所述的载波聚合控制方法,其特征在于,所述多工器组合包括四工器及双工器,所述通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号的步骤包括:
    若确定的多工器为所述四工器,则通过所述四工器对所述第一上行信号进行滤波、合路,得到第一载波聚合信号,其中,所述第一上行信号包括两路频段的上行信号;
    若确定的多工器为所述双工器,则通过所述双工器对所述第一上行信号进行滤波,得到第一载波聚合信号,其中,所述第一上行信号包括一路频段的上行信号。
  3. 如权利要求2所述的载波聚合控制方法,其特征在于,所述四工器为同时收发Band1频段信号和Band3频段信号的四工器,所述双工器为收发Band66频段信号的双工器,所述通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号的步骤包括:
    若确定的多工器为所述四工器,则通过所述四工器对所述第一上行信号中的Band1频段上行信号和Band3频段上行信号进行滤波、合路,得到第一载波聚合信号;
    若确定的多工器为所述双工器,则通过所述双工器对所述第一上行信号中的Band66频段上行信号进行滤波,得到第一载波聚合信号。
  4. 如权利要求1至3中任一项所述的载波聚合控制方法,其特征在于,所述公有载波处理模块为双工器或滤波器。
  5. 如权利要求4所述的载波聚合控制方法,其特征在于,所述公有载波处理模块为收发Band7频段信号的双工器或收发Band41频段信号的滤波器。
  6. 如权利要求1所述的载波聚合控制方法,其特征在于,所述载波聚合控制方法还包括:
    获取CA组合下行信号,并通过所述同向双工器,对所述CA组合下行信号进行分路,得到第一分路信号及第二分路信号;
    控制所述射频开关切换射频信号路径至所述CA组合下行信号对应的下行信号路径,以使所述第一分路信号传输至所述多工器组合;
    根据所述CA组合下行信号,从所述多工器组合中确定对所述第一分路信号进行处理的多工器,通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号;
    通过所述公有载波处理模块对所述第二分路信号进行处理,得到第二下行信号。
  7. 一种载波聚合控制方法,其特征在于,所述载波聚合控制方法包括以下步骤:
    获取CA组合下行信号,并通过同向双工器,对所述CA组合下行信号进行分路,得到第一分路信号及第二分路信号;
    控制射频开关切换射频信号路径至所述CA组合下行信号对应的下行信号路径,以使所述第一分路信号传输至多工器组合,其中,所述多工器组合至少包括两个不同的多工器;
    根据所述CA组合下行信号,从所述多工器组合中确定对所述第一分路信号进行处理的 多工器,通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号;
    通过公有载波处理模块对所述第二分路信号进行处理,得到第二下行信号。
  8. 如权利要求7所述的载波聚合控制方法,其特征在于,所述多工器组合包括四工器及双工器,所述通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号的步骤包括:
    若确定的多工器为所述四工器,则通过所述四工器对所述第一分路信号进行分路、滤波,得到第一下行信号,其中,所述第一下行信号包括两路频段的下行信号;
    若确定的多工器为所述双工器,则通过所述双工器对所述第一分路信号进行滤波,得到第一下行信号,其中,所述第一下行信号包括一路频段的下行信号。
  9. 如权利要求8所述的载波聚合控制方法,其特征在于,所述四工器为同时收发Band1频段信号和Band3频段信号的四工器,所述双工器为收发Band66频段信号的双工器,所述通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号的步骤包括:
    若确定的多工器为所述四工器,则通过所述四工器对所述第一分路信号进行分路、滤波,得到Band1频段下行信号及Band3频段下行信号;
    若确定的多工器为所述双工器,则通过所述双工器对所述第一分路信号进行滤波,得到Band66频段下行信号。
  10. 如权利要求7至9中任一项所述的载波聚合控制方法,其特征在于,所述公有载波处理模块为双工器或滤波器。
  11. 如权利要求10所述的载波聚合控制方法,其特征在于,所述公有载波处理模块为收发Band7频段信号的双工器或收发Band41频段信号的滤波器。
  12. 一种射频前端器件,其特征在于,包括:多工器组合、公有载波处理模块、射频开关及同向双工器,所述多工器组合与所述射频开关相连接,所述公有载波处理模块、所述射频开关与所述同向双工器相连接,其中,
    所述多工器组合,用于根据待生成的CA组合类型,获取所述CA组合类型对应的第一上行信号,并从所述多工器组合中确定对所述第一上行信号进行处理的多工器,通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号;
    所述公有载波处理模块,用于获取所述CA组合类型对应的第二上行信号,并对所述第二上行信号进行处理,得到第二载波聚合信号;
    所述射频开关,用于切换射频信号路径至所述CA组合类型对应的上行信号路径,以使所述第一载波聚合信号传输至所述同向双工器;
    所述同向双工器,用于将所述第一载波聚合信号和所述第二载波聚合信号进行合路,得到所述CA组合类型对应的CA组合上行信号。
  13. 如权利要求12所述的射频前端器件,其特征在于,所述同向双工器,还用于获取CA组合下行信号,并对所述CA组合下行信号进行分路,得到第一分路信号及第二分路信号;
    所述射频开关,还用于切换射频信号路径至所述CA组合下行信号对应的下行信号路径,以使所述第一分路信号传输至所述多工器组合;
    所述多工器组合,还用于根据所述CA组合下行信号,从所述多工器组合中确定对所述第一分路信号进行处理的多工器,通过确定的多工器,对所述第一分路信号进行处理,得到第一下行信号;
    所述公有载波处理模块,还用于对所述第二分路信号进行处理,得到第二下行信号。
  14. 如权利要求12或13所述的射频前端器件,其特征在于,所述多工器组合包括两个不同的多工器,其中,
    所述多工器组合,用于根据所述CA组合类型,从所述多工器组合中的两个不同的多工器确定对所述第一上行信号进行处理的多工器,通过确定的多工器,对所述第一上行信号进行处理,得到第一载波聚合信号;
    所述多工器组合,还用于根据所述CA组合下行信号,从所述多工器组合中的两个不同 的多工器确定对所述第一分路信号进行处理的多工器。
  15. 如权利要求14所述的射频前端器件,其特征在于,所述多工器组合包括四工器及双工器,其中,
    所述四工器,用于对所述第一上行信号进行滤波、合路,得到第一载波聚合信号,其中,所述第一上行信号包括两路频段的上行信号;
    所述双工器,用于对所述第一上行信号进行滤波,得到第一载波聚合信号,其中,所述第一上行信号包括一路频段的上行信号;
    所述四工器,还用于对所述第一分路信号进行分路、滤波,得到第一下行信号,其中,所述第一下行信号包括两路频段的下行信号;
    所述双工器,还用于对所述第一分路信号进行滤波,得到第一下行信号,其中,所述第一下行信号包括一路频段的下行信号。
  16. 如权利要求15所述的射频前端器件,其特征在于,所述四工器为同时收发Band1频段信号和Band3频段信号的四工器,所述双工器为收发Band66频段信号的双工器,其中,
    所述四工器,用于对所述第一上行信号中的Band1频段上行信号和Band3频段上行信号进行滤波、合路,得到第一载波聚合信号;
    所述双工器,用于对所述第一上行信号中的Band66频段上行信号进行滤波,得到第一载波聚合信号;
    所述四工器,还用于对所述第一分路信号进行分路、滤波,得到Band1频段下行信号及Band3频段下行信号;
    所述双工器,还用于对所述第一分路信号进行滤波,得到Band66频段下行信号。
  17. 如权利要求16所述的射频前端器件,其特征在于,所述公有载波处理模块为双工器或滤波器,其中,
    所述公有载波处理模块,用于对所述第二上行信号进行滤波,得到第二载波聚合信号,其中,所述第二上行信号包括一路频段的上行信号;
    所述公有载波处理模块,还用于对所述第二分路信号进行滤波,得到第二下行信号,其中,所述第二下行信号包括一路频段的下行信号。
  18. 如权利要求17所述的射频前端器件,其特征在于,所述公有载波处理模块为收发Band7频段信号的双工器或收发Band41频段信号的滤波器,其中,
    所述公有载波处理模块,用于对所述第二上行信号中的Band7频段上行信号或Band41频段上行信号进行滤波,得到第二载波聚合信号;
    所述公有载波处理模块,还用于对所述第二下行信号进行滤波,得到Band7频段下行信号或Band41频段下行信号。
  19. 一种射频电路,其特征在于,包括:多工器组合、公有载波处理模块、射频开关及同向双工器,所述多工器组合与所述射频开关相连接,所述公有载波处理模块、所述射频开关与所述同向双工器相连接,其中,
    所述多工器组合,用于对接收的不同频段的第一上行信号进行处理得到第一载波聚合信号,并将所述第一载波聚合信号发送至所述射频开关;
    所述公有载波处理模块,用于对接收的第二上行信号进行处理得到第二载波聚合信号,并将所述第二载波聚合信号发送至所述同向双工器;
    所述射频开关,用于切换射频信号路径,以接收所述多工器组合发送的所述第一载波聚合信号,并将所述第一载波聚合信号发送至所述同向双工器;
    所述同向双工器,用于接收所述射频开关发送的所述第一载波聚合信号及所述公有载波处理模块发送的所述第二载波聚合信号,并将所述第一载波聚合信号及所述第二载波聚合信号进行载波聚合,得到载波聚合上行信号。
  20. 如权利要求19所述的射频电路,其特征在于,所述同向双工器,还用于接收载波 聚合下行信号,并对所述载波聚合下行信号进行载波解聚合,得到第一分路信号及第二分路信号,将所述第一分路信号发送至所述射频开关,并将所述第二分路信号发送至所述公有载波处理模块;
    所述射频开关,还用于接收所述同向双工器发送的所述第一分路信号,并切换射频信号路径,以发送所述第一分路信号至所述多工器组合;
    所述多工器组合,还用于接收所述射频开关发送的所述第一分路信号,并将所述第一分路信号进行处理得到不同频段的第一下行信号;
    所述公有载波处理模块,还用于接收所述同向双工器发送的所述第二分路信号,并将所述第二分路信号进行处理,得到第二下行信号。
  21. 如权利要求19或20所述的射频电路,其特征在于,所述多工器组合包括同时收发Band1频段信号和Band3频段信号的四工器及收发Band66频段信号的双工器,其中,
    所述四工器与所述射频开关相连接,用于对接收的Band1频段上行信号和Band3频段上行信号进行载波聚合得到第一载波聚合信号,并将所述第一载波聚合信号发送至所述射频开关,或接收所述射频开关发送的第一分路信号,并将所述第一分路信号进行载波解聚合得到Band1频段下行信号和Band3频段下行信号;
    所述双工器,用于对接收的Band66频段上行信号进行滤波得到第一载波聚合信号,并将所述第一载波聚合信号发送至所述射频开关,或接收所述射频开关发送的第一分路信号,并将所述第一分路信号进行滤波得到Band66频段下行信号。
  22. 如权利要求21所述的射频电路,其特征在于,所述公有载波处理模块为收发Band7频段信号的双工器或收发Band41频段信号的滤波器,其中,
    所述公有载波处理模块,用于对接收的Band7频段上行信号或接收所述同向双工器发送的第二分路信号进行滤波得到Band7频段下行信号,以实现Band1+Band3+Band7的载波聚合组合或Band7+Band66的载波聚合组合;
    所述公有载波处理模块,还用于对接收的Band41频段上行信号或接收所述同向双工器发送的第二分路信号进行滤波得到Band41频段下行信号,以实现Band1+Band3+Band41的载波聚合组合或Band41+Band66的载波聚合组合。
  23. 一种终端设备,其特征在于,所述终端设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的载波聚合控制程序,所述载波聚合控制程序被所述处理器执行时实现如权利要求1至6中任一项所述的载波聚合控制方法或者如权利要求7至11中任一项所述的载波聚合控制方法的步骤。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有载波聚合控制程序,所述载波聚合控制程序被处理器执行时实现如权利要求1至6中任一项所述的载波聚合控制方法或者如权利要求7至11中任一项所述的载波聚合控制方法的步骤。
PCT/CN2021/112786 2020-10-29 2021-08-16 载波聚合控制方法、射频前端器件、电路、终端及介质 WO2022088854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011184159.5 2020-10-29
CN202011184159.5A CN114430313B (zh) 2020-10-29 2020-10-29 载波聚合控制方法、射频前端器件、电路、终端及介质

Publications (1)

Publication Number Publication Date
WO2022088854A1 true WO2022088854A1 (zh) 2022-05-05

Family

ID=81309949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112786 WO2022088854A1 (zh) 2020-10-29 2021-08-16 载波聚合控制方法、射频前端器件、电路、终端及介质

Country Status (2)

Country Link
CN (1) CN114430313B (zh)
WO (1) WO2022088854A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264791A (zh) * 2014-01-15 2016-01-20 华为技术有限公司 射频设备和用户系统
US20180152945A1 (en) * 2016-11-30 2018-05-31 Skyworks Solutions, Inc. Front-end modules for carrier aggregation
US20190123769A1 (en) * 2017-04-18 2019-04-25 Skyworks Solutions, Inc. Front-end architecture having split triplexer for carrier aggregation and mimo support
US20190149178A1 (en) * 2016-07-17 2019-05-16 Skyworks Solutions, Inc. Uplink carrier aggregation and simultaneous mimo using a diplexer between an antenna and an antenna switch module
CN111478709A (zh) * 2020-04-03 2020-07-31 惠州Tcl移动通信有限公司 载波聚合电路及移动终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017894A (zh) * 2017-05-31 2017-08-04 广东欧珀移动通信有限公司 实现载波聚合的装置及移动终端
CN107453858A (zh) * 2017-09-04 2017-12-08 锐石创芯(厦门)科技有限公司 支持载波聚合的射频前端装置及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105264791A (zh) * 2014-01-15 2016-01-20 华为技术有限公司 射频设备和用户系统
US20190149178A1 (en) * 2016-07-17 2019-05-16 Skyworks Solutions, Inc. Uplink carrier aggregation and simultaneous mimo using a diplexer between an antenna and an antenna switch module
US20180152945A1 (en) * 2016-11-30 2018-05-31 Skyworks Solutions, Inc. Front-end modules for carrier aggregation
US20190123769A1 (en) * 2017-04-18 2019-04-25 Skyworks Solutions, Inc. Front-end architecture having split triplexer for carrier aggregation and mimo support
CN111478709A (zh) * 2020-04-03 2020-07-31 惠州Tcl移动通信有限公司 载波聚合电路及移动终端

Also Published As

Publication number Publication date
CN114430313B (zh) 2024-04-23
CN114430313A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
US11626900B2 (en) Radio frequency transmit-receive apparatus, terminal, and method
RU2658656C2 (ru) Многорежимный беспроводной терминал
US20220225080A1 (en) Degradation signaling
EP3691382A1 (en) Method for determining resource area to be allocated to bandwidth part in wireless communication system, and apparatus therefor
CN109195140B (zh) 一种射频模块、d2d通信方法及移动终端
DE102015012569A1 (de) Vorrichtung, System und Verfahren zur Unterscheidung zwischen einer IMS-Verbindung und einer Nicht-IMS-Verbindung
TW201946398A (zh) 用於增強之交互調變失真性能之切換的終端的前端系統
WO2012079411A1 (zh) 共用天线的无线通信设备及采用所述设备的通信方法
KR101974549B1 (ko) 이동형 기지국 장치 및 이를 이용한 무선 통신 방법
CN113938142A (zh) 双连接功率放大器系统
WO2016101556A1 (zh) 频带修改方法、装置、终端及基站
WO2024060809A1 (zh) 无线通信方法、通信设备、存储介质和计算机程序产品
WO2022088854A1 (zh) 载波聚合控制方法、射频前端器件、电路、终端及介质
US11310794B2 (en) Data transmission method in internet of vehicles and terminal
DE102013108279B4 (de) Funkkommunikationseinrichtungen und Verfahren zum Steuern einer Funkkommunikationseinrichtung
WO2022111632A1 (zh) 网络设备、用户终端、芯片、无线通信系统及方法
CN107786983A (zh) 一种数据传输方法及网络设备
KR101782115B1 (ko) 이동형 기지국 장치 및 이를 이용한 무선 통신 방법
CN107820725B (zh) 子帧时序配置方法、装置,网络侧设备和终端侧设备
CN105337629A (zh) 电子设备和电子设备的控制方法
WO2022226682A1 (zh) 开关电路、通信装置和终端设备
EP4156590A1 (en) Joint bandwidth part switching for a group of ues
EP4380237A1 (en) Access control method, terminal and network device
EP4099752A1 (en) Mechanisms for radio link failure (rlf) reporting to network
WO2017142580A1 (en) Apparatus, system and method of user equipment (ue) relaying via non-cellular radio access technology (rat)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884586

Country of ref document: EP

Kind code of ref document: A1