WO2022088713A1 - 一种空间指向测量仪器微振动影响测量装置及方法 - Google Patents

一种空间指向测量仪器微振动影响测量装置及方法 Download PDF

Info

Publication number
WO2022088713A1
WO2022088713A1 PCT/CN2021/102015 CN2021102015W WO2022088713A1 WO 2022088713 A1 WO2022088713 A1 WO 2022088713A1 CN 2021102015 W CN2021102015 W CN 2021102015W WO 2022088713 A1 WO2022088713 A1 WO 2022088713A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
micro
simulator
degree
measuring instrument
Prior art date
Application number
PCT/CN2021/102015
Other languages
English (en)
French (fr)
Other versions
WO2022088713A9 (zh
Inventor
袁利
王立
李林
郑然�
武延鹏
钟俊
隋杰
李玉明
王苗苗
程会艳
王晓燕
Original Assignee
北京控制工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京控制工程研究所 filed Critical 北京控制工程研究所
Priority to EP21884454.6A priority Critical patent/EP4130703A4/en
Priority to US17/917,272 priority patent/US12085474B2/en
Publication of WO2022088713A1 publication Critical patent/WO2022088713A1/zh
Publication of WO2022088713A9 publication Critical patent/WO2022088713A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/02Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means
    • G01C21/025Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means with the use of startrackers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/06Multidirectional test stands

Definitions

  • the invention relates to the field of extremely high-precision pointing measurement technology in space, the field of space remote sensing, star sensors, and the fields of high-performance optical instruments related to astronomy, aviation, and the like.
  • it relates to a measuring device for the influence of micro-vibration of a space optical sensor in the order of milliarcseconds.
  • Space optical sensor is an important part or important type of spacecraft, which can observe the target (the earth, stars, planets and other celestial bodies) in a specific optical band to obtain the attitude, orbital parameters of the spacecraft itself, or the state of the target celestial body, evolution information, etc.
  • the milliarcsecond optical sensor has higher precision and the system is more sensitive. Small disturbances (hereinafter collectively referred to as "micro-vibrations") generated by the previously neglected spacecraft during normal operation in orbit will seriously affect the measurement accuracy of the attitude measurement system, which in turn affects The stability of the spacecraft even directly affects the quality of work that is sensitive to space optics.
  • a measurement device for the micro-vibration effect of the micro-arc-second space optical sensor is proposed, which can effectively obtain The working performance and accuracy index of the milliarcsecond optical sensor in the micro-vibration environment, as well as the micro-vibration sensitive frequency band range of the milliarcsecond optical sensor, and provide a reference for the calibration error of the whole machine.
  • the purpose of the present invention is to overcome the defects in the prior art, and to provide a measuring device for the influence of micro-vibration of a milliarcsecond space optical sensor, which is suitable for practical engineering applications.
  • the principle of the invention a measuring device for the influence of micro-vibration of a space optical sensor of milliarcsecond level, which is used to simulate free boundary conditions and a zero-gravity environment through a suspension system and a zero-stiffness system.
  • the light source and star simulator simulate stars at infinity; the six-degree-of-freedom microvibration simulator simulates the on-orbit microvibration mechanics environment and serves as the input for the experiment.
  • Very high precision sensors collect system response data.
  • the micro-vibration effect of the space optical sensor of milliarcsecond level is measured by the measuring device in the present invention, and the sensitive parameters of the system are identified according to the data.
  • a micro-vibration impact measurement device for a space pointing measuring instrument, comprising: a light source, a star simulator, an air-floating vibration isolation platform, a suspension system/air-floating system, a zero stiffness system, a support system, a six-freedom system Micro-vibration simulator, signal driving equipment, data acquisition and processing system;
  • the star simulator is connected and fixed with the air flotation platform; the six-degree-of-freedom micro-vibration simulator is connected with the zero-stiffness system through the support system; the zero-stiffness system is connected with the suspension system/air flotation system; the space to be tested points to the measuring instrument and is suspended and fixed on the six-freedom system
  • the working surface of the micro-vibration simulator; the light source, the star simulator, and the center line of the measuring instrument pointing to the space to be tested are on the same straight line; the infinitely distant stars are simulated by the light source and the star simulator, suspension system/air flotation system, zero stiffness
  • the system is used to simulate free boundary conditions and zero gravity environments;
  • the signal driving device generates control signals according to the preset test requirements and sends them to the six-degree-of-freedom micro-vibration simulator.
  • the six-degree-of-freedom micro-vibration simulator generates corresponding micro-vibration signals to simulate the on-orbit micro-vibration mechanical environment;
  • the space to be tested points to the measuring instrument, the data acquisition and processing system, and is connected through a cable for signal transmission to complete the acquisition and storage of the response data of the target position during the test.
  • an acceleration sensor is installed on the support system; an acceleration sensor is installed on the upper and lower table surfaces of the six-degree-of-freedom micro-vibration simulator; an acceleration sensor and an angular displacement sensor are respectively installed on the installation interface of the measuring instrument and the optical element of the space to be tested.
  • the mass of the acceleration sensor is no more than 10 grams, and it has a 0.001g gravitational acceleration measurement capability, and the resolution is better than 0.5 m ⁇ g; the mass of the angular displacement sensor is no more than 10 grams, and the resolution is better than 3 mm arc second.
  • the displacement sensor is installed on the installation surface of the acceleration sensor at the same time, and the resolution of the displacement sensor is better than 2 microns.
  • the three-direction first-order frequencies of the zero-stiffness system are all lower than 0.05 Hz; the three-direction first-order frequencies of the support system are not less than 2KHz.
  • the six-degree-of-freedom micro-vibration simulator has six-degree-of-freedom decoupling capability and satisfies the acceleration driving capability of 0.001 g magnitude in the range of 0-1 kHz.
  • the air pressure of the air flotation system is adjustable and can be kept stable for a long time.
  • the star simulator is connected and fixed with the air flotation platform through a three-point positioning support structure, and the three-point positions should be distributed in an axisymmetric form.
  • the measuring instrument for the spatial orientation to be tested is an optical sensor of the order of milliarcseconds.
  • a method for measuring the influence of micro-vibration on a space pointing measuring instrument comprising the following steps:
  • the data acquisition frequency is not less than 5kHz, and the steady-state data acquisition time is not less than 30 seconds;
  • Step (3) Preliminarily analyze the collected background noise, first perform statistics on the collected time-domain data, perform FFT conversion to obtain frequency-domain data, and perform frequency-domain data analysis to obtain the amplitude-frequency characteristics of the background noise; Step (4), if not satisfied, return to (1) for inspection;
  • the signal driving device is powered on, and the six-degree-of-freedom micro-vibration simulator is driven to perform disturbance driving with different amplitudes in the range of 0 to 1 kHz; at the same time, the data acquisition and processing system data acquisition and storage are performed; the data acquisition frequency is not less than 5kHz, the collection time of each segment of steady-state data is not less than 60 seconds; at least 10 segments of steady-state data are collected; during the first test process, the space pointing measuring instrument to be tested should be powered on and not working;
  • test object and test equipment should be stopped first, and then the power should be turned off.
  • the method of the invention provides a measuring device for the influence of micro-vibration of a space optical sensor of milliarcsecond level.
  • the suspension system and the zero-stiffness system can block the influence of external noise and interference, and at the same time simulate the on-orbit free boundary conditions and zero-gravity environment;
  • b) can simultaneously input 6 degrees of freedom micro-vibration to the milliarcsecond optical instrument;
  • c) can realize the imaging process and image acquisition and storage of the milliarcsecond optical instrument in the micro-vibration environment;
  • d) can Perform imaging evaluation on the impact of micro-vibration environment according to the imaging effect;
  • the ultra-high-precision sensor can acquire and store the micro-vibration response magnitude of the optical sensor in milliarcseconds, and complete the transfer function test of the system in the micro-vibration environment. .
  • Fig. 1 is the schematic diagram of the suspension implementation of the principle of the present invention
  • FIG. 2 is a schematic diagram of the sensor position in the schematic suspension implementation schematic diagram of the present invention.
  • FIG. 3 is a schematic diagram of the implementation of the principle of air flotation of the present invention.
  • a measuring device for the influence of micro-vibration of a milliarcsecond space optical sensor mainly including: a light source 10, a star simulator 20, an air-floating vibration isolation platform 30, a suspension system (or air-floating system) 40, and a zero-stiffness system 50 , a support system 60 , a six-degree-of-freedom micro-vibration simulator 70 , a signal driving device 80 , a milliarcsecond optical sensor 90 , and a data acquisition and processing system 100 .
  • the suspension system 40 is usually composed of N (N is a multiple of 2 or 3, and not less than 3) steel wire ropes with equal stiffness, and can keep the entire test system stable and not roll over during the suspension process.
  • the fixing method of the end can be designed as required.
  • the acceleration sensor 501 is installed on the zero stiffness system 50; the acceleration sensors 701 and 702 are respectively installed on the upper and lower table surfaces of the six-degree-of-freedom micro-vibration simulator 70; the installation interface position of the milliarcsecond optical sensor 90 Acceleration sensors 901 and 902 are attached to the positions of the optical elements, respectively, and an angular displacement sensor 903 is attached to the optical elements.
  • the mass of the acceleration sensors 501, 701, 702, 901, and 902 is not more than 10 grams, has the ability to measure the acceleration of gravity of 0.001g, and the resolution is better than 0.5m ⁇ g; the mass of the angular displacement sensor 903 is not more than 10 grams. , the resolution is better than 3 milliarcseconds; the installation surface of the acceleration sensor is also equipped with a displacement sensor, and the resolution is better than 2 microns, and the displacement sensor can be measured indirectly, such as a laser displacement meter.
  • the three-direction first-order frequencies of the zero-stiffness system 50 are all lower than 0.05Hz; the zero-stiffness system 50 can be replaced by an existing quasi-zero-stiffness system, but its system stiffness should not be greater than 0.1Hz; the support
  • the frequency of the first-order system 60 in three directions is not less than 2KHz. It is made of high-strength metal material and has mounting flanges at both ends. It is used to connect the zero-stiffness system 50 and the six-degree-of-freedom micro-vibration simulator 70. The flanges can be used as required. Design, but the connection strength should be guaranteed.
  • the fasteners between different systems should be positioned with pins, and the pins should not be less than ⁇ 3;
  • the degrees of freedom in the X, Y, and Z motion directions are not coupled with the stiffness of the degrees of freedom in the X, Y, and Z rotational directions, which can be realized by using the existing PI hexapod platform, but it should meet the 0.001g magnitude acceleration drive in the range of 0 to 1 kHz.
  • the six-degree-of-freedom micro-vibration simulator 70 can be replaced by an existing fixed-frequency vibration exciter, and after different frequency excitation tests, the data of different frequencies can be integrated and processed; the light source 10 and the star simulator 20
  • the axes of the milliarcsecond optical sensors 90 are located on the same straight line; the air-floating vibration isolation platform 30 has the air-floating vibration isolation capability, and the air pressure is adjustable.
  • suspension system (or air flotation system) 40 is an air flotation system
  • its flatness should be better than 3um
  • the air flotation rigidity should be better than 20Hz
  • the air pressure is adjustable and can be stable for a long time.
  • the described measuring device for the micro-vibration effect of a space optical sensor at the milliarcsecond level is located in a million-level ultra-clean laboratory during operation.
  • the described measuring device for the micro-vibration effect of a space optical sensor at the milliarcsecond level can also be applied to high-performance satellites, aerial remote sensors, near space vehicles, astronomical observations, civil precision optical equipment, etc. Experiments, tests and other fields of micro-perturbation of precision optics.
  • the test process is as follows:
  • Step (3) Preliminarily analyze the collected background noise, first perform statistics on the collected time-domain data, perform FFT conversion to obtain frequency-domain data, and perform frequency-domain data analysis to obtain the amplitude-frequency characteristics of the background noise; Step (4), if not satisfied, return to (1) for inspection;
  • the signal driving device 80 is powered on to drive the six-degree-of-freedom micro-vibration simulator 70 to perform disturbance driving with different amplitudes in the range of 0 to 1 kHz; at the same time, data acquisition and storage of the data acquisition and processing system 100 are performed; The acquisition frequency is not less than 5kHz, and the acquisition time of each segment of steady-state data is not less than 60 seconds; at least 10 segments of steady-state data are collected; during the test, the milliarcsecond optical sensor 90 should be powered on and not working;
  • step (4) but this time, the milliarcsecond optical sensor 90 should be powered on to work for imaging;
  • test object and test equipment should be stopped first, and then the power should be turned off.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Astronomy & Astrophysics (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种空间指向测量仪器微振动影响测量装置及方法,装置包括:光源(10)、星模拟器(20)、气浮隔振平台(30)、悬吊系统(40)、零刚度系统(50)、支撑系统(60)、六自由度微振动模拟器(70)、信号驱动设备(80)、毫角秒级光学敏感器(90)、数据采集与处理系统(100);星模拟器(20)与气浮隔振平台(30)连接固定;六自由度微振动模拟器(70)通过支撑系统(60)与零刚度系统(50)连接;零刚度系统(50)与悬吊系统(40)连接;毫角秒级光学敏感器(90)悬挂固定于六自由度微振动模拟器(70)作业台面;毫角秒级光学敏感器(90)、数据采集与处理系统(100)通过线缆连接,进行信号传输;六自由度微振动模拟器(70)、信号驱动设备(80)通过线缆连接,实现微振动信号的产生与控制;光源(10)、星模拟器(20)、毫角秒级光学敏感器(90)的中心线位于同一条直线上。该装置能够获取毫角秒级光学敏感器(90)的微振动响应信号的采集和存贮,完成系统微小振动环境下的传递函数测试。

Description

一种空间指向测量仪器微振动影响测量装置及方法
本申请要求于2020年10月27日提交中国专利局、申请号为202011164958.6、发明名称为“一种空间指向测量仪器微振动影响测量装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空间极高精度指向测量技术、空间遥感、星敏感器领域以及天文、航空等涉及到的高性能光学仪器领域。特别涉及一种用于毫角秒级空间光学敏感器微振动影响的测量装置。
背景技术
空间光学敏感器是航天器的重要组成部分或重要类型,可在特定光学波段对目标(地球、恒星、行星等天体)进行观测,以获取航天器本身的姿态、轨道参数或者目标天体的状态、演化信息等。毫角秒级光学敏感器精度更高,系统更加敏感,以往被忽略的航天器在轨正常工作时产生的微小扰动(下文统称“微振动”)将严重影响姿态测量系统的测量精度,进而影响航天器的稳定性,甚至直接影响空间光学敏感的工作质量。
为测试毫角秒级空间光学敏感器微振动环境下的工作性能,并为后续微振动抑制奠定基础,提出一种用于毫角秒级空间光学敏感器微振动影响的测量装置,可有效获取微振动环境下毫角秒级光学敏感器的工作性能和精度指标,以及毫角秒级敏感器微振动敏感频带范围,并为整机标定误差给出参考。
发明内容
本发明的目的在于克服已有技术中的缺陷,提供一种用于毫角秒级空间光学敏感器微振动影响的测量装置,适用于实际工程应用。
本发明原理:一种用于毫角秒级空间光学敏感器微振动影响的测量装置, 通过悬吊系统和零刚度系统用以模拟自由边界条件和零重力环境。光源和星模拟器模拟无穷远的恒星;六自由度微振动模拟器模拟在轨微振动力学环境,并作为试验的输入。极高精度传感器采集系统响应数据。通过本发明中的测量装置对毫角秒级空间光学敏感器的微振动影响进行测量,并根据数据识别出系统敏感参数。
本发明的技术方案是:一种空间指向测量仪器微振动影响测量装置,包括:光源、星模拟器、气浮隔振平台、悬吊系统/气浮系统、零刚度系统、支撑系统、六自由度微振动模拟器、信号驱动设备、数据采集与处理系统;
星模拟器与气浮平台连接固定;六自由度微振动模拟器通过支撑系统与零刚度系统连接;零刚度系统与悬吊系统/气浮系统连接;待测试空间指向测量仪器悬挂固定于六自由度微振动模拟器作业台面;光源、星模拟器、待测试空间指向测量仪器中心线位于同一条直线上;由光源和星模拟器模拟无穷远的恒星,悬吊系统/气浮系统、零刚度系统用以模拟自由边界条件和零重力环境;
信号驱动设备按照预设的测试需求产生控制信号并发送至六自由度微振动模拟器,由六自由度微振动模拟器产生对应的微振动信号模拟在轨微振动力学环境;
待测试空间指向测量仪器、数据采集与处理系统通过线缆连接,进行信号传输,完成试验过程中目标位置的响应数据采集和存贮。
优选的,支撑系统上安装有加速度传感器;六自由度微振动模拟器上下台面分别安装有加速度传感器;待测试空间指向测量仪器安装接口和光学元件上分别安装有加速度传感器以及一个角位移传感器。
优选的,所述的加速度传感器质量不大于10克,具备0.001g重力加速度测量能力,且分辨力优于0.5m·g;所述的角位移传感器质量不大于10克,分辨力优于3毫角秒。
优选的,在加速度传感器的安装面同时安装位移传感器,位移传感器的分辨力优于2微米。
优选的,所述零刚度系统的三向一阶频率均低于0.05Hz;所述的支撑系统三向一阶频率均不小于2KHz。
优选的,所述的六自由度微振动模拟器具备六自由度解耦能力并满足0~1kHz范围内0.001g量级加速度驱动能力。
优选的,所述气浮系统气压可调且能长时保持稳定,其与支撑系统相连平面的平面度应优于3um,气浮刚度优于20Hz。
优选的,所述星模拟器通过三点定位支撑结构与气浮平台连接固定,三点位置应呈轴对称形式分布。
优选的,所述的待测试空间指向测量仪器为毫角秒级光学敏感器。
一种空间指向测量仪器微振动影响测量方法,包括如下步骤:
(1)在百万级超净实验室中搭建所述的测量装置,并检查连接安全性;
(2)打开光源,数据采集与处理系统开机上电,通过上述传感器进行环境背景噪声测试,数据采集频率不小于5kHz,稳态数据采集时间不小于30秒;
(3)对采集的背景噪声进行初步分析,先对采集的时域数据进行统计,在进行FFT转换,得到频域数据,并进行频域数据分析,获取背景噪声幅频特性;满足要求后进行步骤(4),若不满足,应返回(1)进行检查;
(4)信号驱动设备上电,驱动六自由度微振动模拟器分别进行0~1kHz范围内不同幅值的扰动驱动;同时进行数据采集与处理系统的数据采集与存贮;数据采集频率不小于5kHz,每段稳态数据采集时间不小于60秒;至少采集10段稳态数据;首次试验过程中待测试空间指向测量仪器应开机上电,不工作;
(5)对(4)中采集数据进行分析,先对采集的时域数据进行统计,再进行FFT转换,得到频域数据,并进行频域数据分析,最终应获得传感器采集数据的幅频特性图;
(6)待测试空间指向测量仪器开机上电工作成像,重复步骤(4)、(5);
(7)待测试空间指向测量仪器关机,重复步骤(4)、(5);
(8)试验后,应先对被测试对象、测试设备停止工作指令,然后断电关机。
本发明与现有技术相比的优点在于:
本发明方法提供了一种用于毫角秒级空间光学敏感器微振动影响的测量装置,a)悬吊系统和零刚度系统能够阻断外界噪声及干扰的影响,并且同时模拟在轨自由边界条件和零重力环境;b)能够同时对毫角秒级光学仪器输入6自由度的微小振动;c)能够实现毫角秒光学仪器在微振动环境下的成像过程和图像采集存储;d)能够根据成像效果对微振动环境下的影响进行成像评价;e)极高精度传感器能够获取毫角秒级光学敏感器的微振动响应量级采集与存贮,完成系统微小振动环境下的传递函数测试。
附图说明
图1是本发明原理悬吊实施示意图;
图2是本发明原理悬吊实施示意图中传感器位置示意图;
图3是本发明原理气浮实施示意图。
具体实施方式
以下结合附图1、图2和具体实施例对本发明进行详细说明。
用于毫角秒级空间光学敏感器微振动影响的测量装置,主要包括:光源10、星模拟器20、气浮隔振平台30、悬吊系统(或气浮系统)40、零刚度系统50、支撑系统60、六自由度微振动模拟器70、信号驱动设备80、毫角秒级光学敏感器90、数据采集与处理系统100。
所述的悬吊系统40通常有N(N为2或者3的倍数,且不小于3)个刚度相等的钢丝绳索构成,且能够保持悬吊过程中整个测试系统稳定不侧翻,钢丝绳索两端的固定方式可根据需要设计。
所述的零刚度系统50上安装有加速度传感器501;所述的六自由度微振动模拟器70上下台面分别安装有加速度传感器701、702;所述的毫角秒级光学敏感器90安装接口位置与光学元件位置分别安装有加速度传感器901、902,光学元件上安装有角位移传感器903。所述的加速度传感器501、701、702、901、902质量不大于10克,具备0.001g重力加速度测量能力,且分辨力优 于0.5m·g;所述的角位移传感器903质量不大于10克,分辨力优于3毫角秒;所述加速度传感器的安装面同时安装位移传感器,分辨力优于2微米,位移传感器可采用间接测量,如激光位移计。
所述的零刚度系统50三向一阶频率均低于0.05Hz;所述的零刚度系统50可采用现有的准零刚度系统代替,但其系统刚度应不大于0.1Hz;所述的支撑系统60三向一阶频率均不小于2KHz,采用高强度金属材质一体加工成型,两端具有安装法兰,用于连接零刚度系统50和六自由度微振动模拟器70,法兰可根据需要设计,但应保证连接强度,不同系统之间紧固件除螺钉螺栓外,应有销钉定位,销钉不小于φ3;所述的六自由度微振动模拟器70具备六自由度解耦能力,即X、Y、Z运动方向的自由度与X、Y、Z转动方向的自由度刚度没有耦合,可采用现有的PI六足平台实现,但应满足0~1kHz范围内0.001g量级加速度驱动能力;所述的六自由度微振动模拟器70可采用现有的定频激振器代替,经过不同频率激振测试后,将不同频率数据集成处理;所述的光源10、星模拟器20、毫角秒级光学敏感器90轴线位于同一直线上;所述的气浮隔振平台30具备气浮隔振能力,且气压可调。
当所述的悬吊系统(或气浮系统)40为气浮系统时,其应平面度应优于3um,气浮刚度优于20Hz,气压可调且能长期保持稳定。
所述的一种用于毫角秒级空间光学敏感器微振动影响的测量装置工作时位于百万级超净实验室中。
所述的一种用于毫角秒级空间光学敏感器微振动影响的测量装置也可应用于高性能卫星、航空遥感器、临近空间飞行器、天文观测、民用精密光学设备等涉及到的极高精度光学的微小扰动的试验、测试等领域。
测试流程如下:
(1)按照图1所示在百万级超净实验室中进行试验系统的搭建,并检查连接安全性;试验过程中应无人员走动等环境人为噪声;
(2)打开光源10,数据采集与处理系统100开机上电,通过系统中的加 速度传感器701、702、901、902,角位移传感器903,或位移传感器进行环境背景噪声测试,数据采集频率不小于5kHz,稳态数据采集时间不小于30秒;
(3)对采集的背景噪声进行初步分析,先对采集的时域数据进行统计,在进行FFT转换,得到频域数据,并进行频域数据分析,获取背景噪声幅频特性;满足要求后进行步骤(4),若不满足,应返回(1)进行检查;
(4)信号驱动设备80上电,驱动六自由度微振动模拟器70,分别进行0~1kHz范围内不同幅值的扰动驱动;同时进行数据采集与处理系统100的数据采集与存贮;数据采集频率不小于5kHz,每段稳态数据采集时间不小于60秒;至少采集10段稳态数据;试验过程中毫角秒级光学敏感器90应开机上电,不工作;
(5)对(4)中采集数据进行分析,先对采集的时域数据进行统计,再进行FFT转换,得到频域数据,并进行频域数据分析,最终应获得传感器采集数据的幅频特性图,通常用瀑布图的形式表达;
(6)重复步骤(4),但此次毫角秒级光学敏感器90应开机上电工作成像;
(7)对(6)中采集数据进行分析,先对采集的时域数据进行统计,再进行FFT转换,得到频域数据,并进行频域数据分析,最终应获得传感器采集数据的幅频特性图,通常用瀑布图的形式表达;
(8)重复步骤(4),但此次毫角秒级光学敏感器90应关机;
(9)对(8)中采集数据进行分析,先对采集的时域数据进行统计,再进行FFT转换,得到频域数据,并进行频域数据分析,最终应获得传感器采集数据的幅频特性图,通常用瀑布图的形式表达;
(10)试验后,应先对被测试对象、测试设备停止工作指令,然后断电关机。
本发明未详细说明部分属本领域技术人员公知常识。

Claims (10)

  1. 一种空间指向测量仪器微振动影响测量装置,其特征在于:包括:光源、星模拟器、气浮隔振平台、悬吊系统/气浮系统、零刚度系统、支撑系统、六自由度微振动模拟器、信号驱动设备、数据采集与处理系统;
    星模拟器与气浮平台连接固定;六自由度微振动模拟器通过支撑系统与零刚度系统连接;零刚度系统与悬吊系统/气浮系统连接;待测试空间指向测量仪器悬挂固定于六自由度微振动模拟器作业台面;光源、星模拟器、待测试空间指向测量仪器中心线位于同一条直线上;由光源和星模拟器模拟无穷远的恒星,悬吊系统/气浮系统、零刚度系统用以模拟自由边界条件和零重力环境;
    信号驱动设备按照预设的测试需求产生控制信号并发送至六自由度微振动模拟器,由六自由度微振动模拟器产生对应的微振动信号模拟在轨微振动力学环境;
    待测试空间指向测量仪器、数据采集与处理系统通过线缆连接,进行信号传输,完成试验过程中目标位置的响应数据采集和存贮。
  2. 根据权利要求1所述的测量装置,其特征在于:支撑系统上安装有加速度传感器;六自由度微振动模拟器上下台面分别安装有加速度传感器;待测试空间指向测量仪器安装接口和光学元件上分别安装有加速度传感器以及一个角位移传感器。
  3. 根据权利要求2所述的测量装置,其特征在于:所述的加速度传感器质量不大于10克,具备0.001g重力加速度测量能力,且分辨力优于0.5m·g;所述的角位移传感器质量不大于10克,分辨力优于3毫角秒。
  4. 根据权利要求2所述的测量装置,其特征在于:在加速度传感器的安装面同时安装位移传感器,位移传感器的分辨力优于2微米。
  5. 根据权利要求1所述的测量装置,其特征在于:所述零刚度系统的三向一阶频率均低于0.05Hz;所述的支撑系统三向一阶频率均不小于2KHz。
  6. 根据权利要求1所述的测量装置,其特征在于:所述的六自由度微振动模拟器具备六自由度解耦能力并满足0~1kHz范围内0.001g量级加速度驱动能力。
  7. 根据权利要求1所述的测量装置,其特征在于:所述气浮系统气压可调且能长时保持稳定,其与支撑系统相连平面的平面度应优于3um,气浮刚度优于20Hz。
  8. 根据权利要求1所述的测量装置,其特征在于:所述星模拟器通过三点定位支撑结构与气浮平台连接固定,三点位置应呈轴对称形式分布。
  9. 根据权利要求1所述的测量装置,其特征在于:所述的待测试空间指向测量仪器为毫角秒级光学敏感器。
  10. 一种空间指向测量仪器微振动影响测量方法,其特征在于包括如下步骤:
    (1)在百万级超净实验室中搭建权利要求1所述的测量装置,并检查连接安全性;
    (2)打开光源,数据采集与处理系统开机上电,通过权利要求2中传感器进行环境背景噪声测试,数据采集频率不小于5kHz,稳态数据采集时间不小于30秒;
    (3)对采集的背景噪声进行初步分析,先对采集的时域数据进行统计,在进行FFT转换,得到频域数据,并进行频域数据分析,获取背景噪声幅频特性;满足要求后进行步骤(4),若不满足,应返回(1)进行检查;
    (4)信号驱动设备上电,驱动六自由度微振动模拟器分别进行0~1kHz范围内不同幅值的扰动驱动;同时进行数据采集与处理系统的数据采集与存贮;数据采集频率不小于5kHz,每段稳态数据采集时间不小于60秒;至少采集10段稳态数据;首次试验过程中待测试空间指向测量仪器应开机上电,不工作;
    (5)对(4)中采集数据进行分析,先对采集的时域数据进行统计,再进行FFT转换,得到频域数据,并进行频域数据分析,最终应获得传感器采集数 据的幅频特性图;
    (6)待测试空间指向测量仪器开机上电工作成像,重复步骤(4)、(5);
    (7)待测试空间指向测量仪器关机,重复步骤(4)、(5);
    (8)试验后,应先对被测试对象、测试设备停止工作指令,然后断电关机。
PCT/CN2021/102015 2020-10-27 2021-06-24 一种空间指向测量仪器微振动影响测量装置及方法 WO2022088713A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21884454.6A EP4130703A4 (en) 2020-10-27 2021-06-24 APPARATUS AND METHOD FOR MEASURING THE INFLUENCE OF MICROVIBRATIONS OF SPATIAL ORIENTATION MEASURING INSTRUMENTS
US17/917,272 US12085474B2 (en) 2020-10-27 2021-06-24 Apparatus and method for measuring micro-vibration influence of spatial orientation measuring instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011164958.6A CN112504595B (zh) 2020-10-27 2020-10-27 一种空间指向测量仪器微振动影响测量装置及方法
CN202011164958.6 2020-10-27

Publications (2)

Publication Number Publication Date
WO2022088713A1 true WO2022088713A1 (zh) 2022-05-05
WO2022088713A9 WO2022088713A9 (zh) 2022-09-09

Family

ID=74954368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102015 WO2022088713A1 (zh) 2020-10-27 2021-06-24 一种空间指向测量仪器微振动影响测量装置及方法

Country Status (4)

Country Link
US (1) US12085474B2 (zh)
EP (1) EP4130703A4 (zh)
CN (1) CN112504595B (zh)
WO (1) WO2022088713A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543835A (zh) * 2021-12-27 2022-05-27 中科院南京天文仪器有限公司 一种采用激光干涉探测的星模拟系统振动抑制系统及方法
CN114878197A (zh) * 2022-05-23 2022-08-09 南京理工大学 一种验证空间低冲击发射与可靠性附着的地面试验方法
CN115979309A (zh) * 2023-03-17 2023-04-18 常州市金坛中测传感器科技有限公司 一种角度式水平位移传感器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504595B (zh) 2020-10-27 2022-07-05 北京控制工程研究所 一种空间指向测量仪器微振动影响测量装置及方法
CN113158336B (zh) * 2021-04-07 2022-05-24 北京控制工程研究所 一种空间指向测量仪器多物理场耦合建模及精度计算方法
CN113324717A (zh) * 2021-05-11 2021-08-31 上海卫星工程研究所 控制力矩陀螺隔振支架性能测试装置及测试方法
CN113551881B (zh) * 2021-07-16 2023-02-10 中国科学院长春光学精密机械与物理研究所 高精度六自由度光学组件性能测试方法
CN113919190B (zh) * 2021-08-23 2022-06-03 北京控制工程研究所 一种变行程自适应调整准零刚度装置及参数校核方法
CN113998160B (zh) * 2021-11-10 2024-04-19 中国科学院长春光学精密机械与物理研究所 集成重力卸载机构
CN114646443A (zh) * 2022-04-11 2022-06-21 中国科学院长春光学精密机械与物理研究所 微振动模拟平台

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213313A (ja) * 2010-04-02 2011-10-27 Mitsubishi Electric Corp 宇宙機運動シミュレータ
CN102650563A (zh) * 2011-12-20 2012-08-29 北京卫星环境工程研究所 航天器在轨微振动地面试验系统
CN102735264A (zh) * 2012-06-18 2012-10-17 北京控制工程研究所 一种星敏感器故障模拟系统
CN102798459A (zh) * 2012-08-10 2012-11-28 上海卫星工程研究所 卫星地面微振动测试系统
CN104266811A (zh) * 2014-09-16 2015-01-07 上海卫星工程研究所 零刚度非线性微振动悬吊装置及其微振动试验方法
CN111157208A (zh) * 2020-02-27 2020-05-15 广州大学 一种卫星微振动隔振模拟测量系统与方法
CN112504595A (zh) * 2020-10-27 2021-03-16 北京控制工程研究所 一种空间指向测量仪器微振动影响测量装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228473A (ja) * 2003-01-27 2004-08-12 Canon Inc 移動ステージ装置
JP6351054B2 (ja) * 2011-08-01 2018-07-04 高橋 正人 方位情報取得方法
DE202015010029U1 (de) * 2014-07-30 2023-10-04 Kokusai Keisokuki Kabushiki Kaisha Oszilliervorrichtung zur Verbindung eines Rütteltisches mit einer Z-Achsen-Oszilliereinheit
CN107782536B (zh) * 2017-09-14 2019-01-25 北京空间飞行器总体设计部 一种多层次微振动系统试验方法及系统
CN108180829B (zh) * 2017-12-28 2019-09-20 中国科学院西安光学精密机械研究所 一种对具有平行线特征的目标空间指向测量方法
CN110543193B (zh) * 2019-08-30 2022-04-15 中国人民解放军国防科技大学 一种用于指向机构的在线加减速控制方法、系统及介质
CN111174811B (zh) * 2020-01-17 2021-01-15 北京航空航天大学 用于光学卫星指向测量系统的空间基准标定方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213313A (ja) * 2010-04-02 2011-10-27 Mitsubishi Electric Corp 宇宙機運動シミュレータ
CN102650563A (zh) * 2011-12-20 2012-08-29 北京卫星环境工程研究所 航天器在轨微振动地面试验系统
CN102735264A (zh) * 2012-06-18 2012-10-17 北京控制工程研究所 一种星敏感器故障模拟系统
CN102798459A (zh) * 2012-08-10 2012-11-28 上海卫星工程研究所 卫星地面微振动测试系统
CN104266811A (zh) * 2014-09-16 2015-01-07 上海卫星工程研究所 零刚度非线性微振动悬吊装置及其微振动试验方法
CN111157208A (zh) * 2020-02-27 2020-05-15 广州大学 一种卫星微振动隔振模拟测量系统与方法
CN112504595A (zh) * 2020-10-27 2021-03-16 北京控制工程研究所 一种空间指向测量仪器微振动影响测量装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130703A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543835A (zh) * 2021-12-27 2022-05-27 中科院南京天文仪器有限公司 一种采用激光干涉探测的星模拟系统振动抑制系统及方法
CN114878197A (zh) * 2022-05-23 2022-08-09 南京理工大学 一种验证空间低冲击发射与可靠性附着的地面试验方法
CN115979309A (zh) * 2023-03-17 2023-04-18 常州市金坛中测传感器科技有限公司 一种角度式水平位移传感器
CN115979309B (zh) * 2023-03-17 2023-05-16 常州市金坛中测传感器科技有限公司 一种角度式水平位移传感器

Also Published As

Publication number Publication date
WO2022088713A9 (zh) 2022-09-09
US12085474B2 (en) 2024-09-10
EP4130703A1 (en) 2023-02-08
CN112504595A (zh) 2021-03-16
EP4130703A4 (en) 2024-04-24
US20230175921A1 (en) 2023-06-08
CN112504595B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2022088713A1 (zh) 一种空间指向测量仪器微振动影响测量装置及方法
CN102650563B (zh) 航天器在轨微振动地面试验系统
Li et al. Micro-vibration suppression methods and key technologies for high-precision space optical instruments
Pappa et al. Structural dynamics experimental activities in ultralightweight and inflatable space structures
CN102393213B (zh) 天基探测与跟踪成像系统测试装置及测试方法
CN108613661A (zh) 一种光学遥感卫星相机全光路像移测量系统
CN112444365B (zh) 一种卫星太阳翼基板展开低频模态测试方法
CN113740929B (zh) 一种空间惯性传感器的地面测试装置及方法
CN117516803A (zh) 一种转动惯量一体化测试装置及测试方法
CN112985458B (zh) 在形变加载下进行成像的星敏感器指向测量仪及方法
CN105509867A (zh) 一种利用光纤陀螺测量卫星结构微角振动方法
CN111638721B (zh) 一种航天器三超控制全链路扰动传递验证系统及验证方法
RU2323136C2 (ru) Способ подавления помех от колебаний упругой конструкции космической трансформируемой антенны в процессе эксплуатации и устройство для его осуществления
CN110333022B (zh) 拉丝约束的微牛顿推力测试台装置
CN108827573B (zh) 微振动干扰源测试验证系统的校准方法
O'Brien et al. Microprecision interferometer: evaluation of new disturbance isolation solutions
JONES et al. NASA/MSFC Large Space Structures Ground Test Facility
Brondino et al. A Dynamic Motion Simulator for Future European Docking Systems
CN117191314A (zh) 磁悬浮惯性执行机构极微振动地面测试系统及应用方法
Basdogan A theoretical and experimental study of the dynamic response of high precision optical positioning systems
Jiawei et al. Structure Design and Optimization of Micro Gravity Test Device for Space Manipulator
David Setup and commissioning of a Michelson interferometer for the demonstration of gravitational wave detection principles in outreach activities
Winter et al. Fully automated vibration measurements of aircraft fuselages in the mid-frequency range
CN117007263A (zh) 多柔性体结构刚柔耦合振动测控装置及方法
Law et al. System for the measurement of the attitude of wind tunnel models

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021884454

Country of ref document: EP

Effective date: 20221024

NENP Non-entry into the national phase

Ref country code: DE