WO2022088645A1 - 雷达信标和雷达测量系统 - Google Patents

雷达信标和雷达测量系统 Download PDF

Info

Publication number
WO2022088645A1
WO2022088645A1 PCT/CN2021/092422 CN2021092422W WO2022088645A1 WO 2022088645 A1 WO2022088645 A1 WO 2022088645A1 CN 2021092422 W CN2021092422 W CN 2021092422W WO 2022088645 A1 WO2022088645 A1 WO 2022088645A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
spherical lens
beacon
radar beacon
curved surface
Prior art date
Application number
PCT/CN2021/092422
Other languages
English (en)
French (fr)
Inventor
叶雷
Original Assignee
上海玥煊科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海玥煊科技有限公司 filed Critical 上海玥煊科技有限公司
Priority to JP2023526085A priority Critical patent/JP2023547206A/ja
Publication of WO2022088645A1 publication Critical patent/WO2022088645A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/767Responders; Transponders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the invention relates to the technical field of radar, in particular to a radar beacon and a radar measurement system.
  • a radar beacon is an electronic device installed on a target (airplane, missile, etc.) that can emit electromagnetic signals and work with the radar, also known as a beacon or a transponder.
  • radar beacons have been widely used in aviation control, radio navigation, missile guidance, external ballistic measurement, satellite orbit measurement, radar remote sensing and so on. Radar beacons can be divided into active beacons and passive beacons according to whether the signal transmission method is directly used.
  • corner reflectors which are radar wave reflectors of different specifications made of metal sheets according to different purposes.
  • the radar electromagnetic wave scans to the corner reflector, the electromagnetic wave will be refracted and amplified on the metal corner to generate the echo signal to realize the radar measurement.
  • the angle reflector needs to be adjusted to the appropriate reflection angle with the radar. Only when the radar wave can be parallel to the incident angle reflector, the radar can obtain the corresponding strong reflected signal to achieve the purpose of tracking and measurement, and the installation process is cumbersome. At the same time, the reflection efficiency of the corner reflector is low. The farther the distance is, the larger the required corner reflector area. When the side length of the corner reflector exceeds a certain value, the characteristics of its metal material, its own weight and area will give Installation brings a lot of inconvenience. Moreover, due to the geometric shape of the corner reflector, the corner reflector has high requirements on the external environment. For example, in the case of wind, the corner reflector will form jitter, which will cause measurement errors. For example, in the corner reflector It is necessary to maintain a relative clearance within the visual distance of the radar, and no vegetation, standing water, etc. should appear.
  • the purpose of the embodiments of the present invention is to provide a radar beacon and a radar measurement system, which can facilitate the installation of the radar beacon, reduce the cost of the radar beacon, and improve the reflection efficiency of the radar beacon and the measurement accuracy of the radar system.
  • an embodiment of the present invention provides a radar beacon, where the radar beacon includes:
  • a spherical lens having a focal point on a curved surface concentric with the spherical lens
  • a reflecting device which has a reflecting surface with the same curvature as the curved surface, is arranged on the curved surface and the reflecting surface coincides with a part of the curved surface, and is used for reflecting electromagnetic waves incident through the spherical lens .
  • the material of the spherical lens is polytetrafluoroethylene.
  • the distance between the curved surface and the spherical lens surface is 0.4R-0.5R;
  • R is the radius of the spherical lens.
  • the radar beacon further includes:
  • At least one fixing member is connected between the reflecting device and the spherical lens, and is used for fixing the relative positions of the reflecting device and the spherical lens.
  • the radar beacon further includes:
  • a support member disposed under the spherical lens, is used for supporting the radar beacon.
  • the reflective surface of the reflective device is made by a copper plating process.
  • the reflection device further includes a reflection base plate, and the reflection surface is attached to the reflection base plate.
  • the outer edge of the reflective bottom plate is rounded.
  • the reflecting means is part of the target object.
  • an embodiment of the present invention provides a radar measurement system, where the radar measurement system includes:
  • At least one radar beacon according to the first aspect.
  • the technical solution of the embodiment of the present invention is to use a spherical lens to refract the incident electromagnetic wave to a reflecting device, and use the reflecting device to reflect the refracted electromagnetic wave and form an echo signal after being refracted by the spherical lens to realize radar measurement, wherein the spherical lens
  • the focal point is located on a curved surface concentric with the spherical lens, and the reflecting device has a reflective surface with the same curvature as the curved surface, is disposed on the curved surface, and the reflective surface coincides with a part of the curved surface. Therefore, the radar beacon can be conveniently installed, the cost of the radar beacon can be reduced, and the reflection efficiency of the radar beacon and the measurement accuracy of the radar measurement system can be improved.
  • FIG. 1 is a schematic diagram of a radar measurement system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a measurement radar according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a radar beacon according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a spherical lens and a spherical surface according to an embodiment of the present invention
  • FIG. 5 is a perspective view of a reflection device according to an embodiment of the present invention.
  • Fig. 6 is another perspective view of the reflecting device according to the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a reflection device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a radar beacon according to a second embodiment of the embodiments of the present invention.
  • Fig. 9 is the test result comparison diagram of an embodiment of the present invention.
  • FIG. 10 is a comparison chart of test results of another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a radar measurement system according to an embodiment of the present invention.
  • the radar measurement system of the embodiment of the present invention includes a measurement radar 1 and a radar beacon 2 .
  • the measuring radar 1 is used to transmit electromagnetic waves and receive the echo signals returned by the radar beacon 2 .
  • the radar beacon 2 is used to reflect the electromagnetic waves emitted by the measurement radar 1 to form echo signals and send them to the measurement radar 1 .
  • the radar measurement system further includes a server, connected in communication with the measurement radar, for receiving echo signals from the measurement radar 1, and analyzing the echo signals to realize radar measurement.
  • FIG. 2 is a schematic diagram of a measurement radar according to an embodiment of the present invention.
  • the measurement radar according to the embodiment of the present invention includes a radio frequency signal source unit 11 , a signal transmitting unit 12 , an antenna 13 , a signal receiving unit 14 and a communication unit 15 .
  • the radio frequency signal source unit 11 is used to generate electromagnetic waves.
  • the frequency of the electromagnetic wave may be the operating frequency of various existing radars, such as high frequency (HF), very high frequency (VHF), ultra high frequency (UHF, also called P), L-band, S-band, C-band, X-band, Ku-band, K-band, Ka-band, U-band, V-band and W-band, etc.
  • HF high frequency
  • VHF very high frequency
  • UHF ultra high frequency
  • L-band S-band
  • C-band C-band
  • X-band C-band
  • K-band Ka-band
  • U-band V-band
  • W-band W-band
  • the signal transmitting unit 12 transmits electromagnetic waves.
  • the signal receiving unit 14 is used for receiving echo signals.
  • the signal transmitting unit 12 and the signal receiving unit 14 are connected to the antenna 13 .
  • the signal transmitting unit 12 is configured to transmit the electromagnetic waves through the antenna 13 .
  • the signal receiving unit 14 is configured to receive echo signals through the antenna 13 .
  • the antenna 13 may be various existing radar antennas, such as a horn antenna and a microstrip antenna.
  • the communication unit 15 is configured to communicate with a server, so as to send an echo signal to the server, or to receive a control signal of the server.
  • the communication unit may use various existing wired communication or wireless communication manners for communication.
  • the measurement radar 1 further includes a control unit for performing real-time processing on the signal, for example, performing operations such as filtering the echo signal, parsing the received control signal, and the like.
  • the measurement radar 1 further includes a power supply unit for supplying power to each module in the measurement radar 1 .
  • the signal transmission and reception can be realized by measuring the radar.
  • FIG. 2 is only an example of the measurement radar in the embodiment of the present invention, which is not limited in the embodiment of the present invention, and the measurement radar may be implemented by various existing radar devices.
  • FIG. 3 is a schematic diagram of a radar beacon according to the first embodiment of the present invention.
  • the radar beacon 2 according to the embodiment of the present invention includes a spherical lens 21 and a reflection device 22 .
  • the focal point of the spherical lens is located on a curved surface concentric with the spherical lens.
  • FIG. 4 is a schematic diagram of a spherical lens and a curved surface according to an embodiment of the present invention.
  • the solid line circle represents the spherical lens
  • the dotted line circle represents the curved surface formed by the focal points of the spherical lens in different directions, hereinafter referred to as the curved surface.
  • the spherical lens and the curved surface have a common spherical center O.
  • the curved surface is concentric with the spherical lens, and the radius is larger than the radius of the spherical surface of the spherical lens.
  • the radius of the spherical surface is L in the figure
  • the radius of the spherical lens is R in the figure.
  • the radius of the spherical surface is larger than the radius of the spherical lens.
  • the spherical lens is a single-medium spherical lens.
  • the single-medium spherical lens refers to a spherical lens made of the same material. Therefore, the focal points of the spherical lens in different directions can form a regular spherical surface, and the spherical surface and the spherical lens have the same center of circle.
  • the above-mentioned curved surface is a part of the spherical surface formed by the focal point.
  • the figure shows the transmission paths of two groups of electromagnetic waves in different directions.
  • the first group of electromagnetic waves are W11 and W12.
  • the electromagnetic wave W11 and the electromagnetic wave W12 are incident on the spherical lens in parallel. After being refracted by the spherical lens, the focus is point A.
  • the second group of electromagnetic waves are W21 and W22.
  • the electromagnetic wave W21 and the electromagnetic wave W22 are incident on the spherical lens in parallel. After being refracted by the spherical lens, the focus is point B.
  • the material of the spherical lens is polytetrafluoroethylene (PTFE, Poly tetrafluoroethylene).
  • PTFE polytetrafluoroethylene
  • Polytetrafluoroethylene is a high molecular polymer obtained by polymerizing tetrafluoroethylene as a monomer.
  • the shape is white waxy, translucent, and has the characteristics of excellent heat resistance, cold resistance and low cost, and can be used for a long time at -180 ⁇ 260 °C.
  • the dielectric constant of the spherical lens made of polytetrafluoroethylene in the embodiment of the present invention is 2.08.
  • the distance between the curved surface and the spherical lens surface is 0.4R-0.5R.
  • the distance is the difference between the radius L of the curved surface and the radius R of the spherical lens.
  • the efficiency of the radar beacon is the highest.
  • the distance d is 0.5R
  • the flattest aperture phase is obtained; when d is further increased, the aperture efficiency and the pattern will both deteriorate. Therefore, for the spherical lens of the embodiment of the present invention, when d is between 0.4R and 0.5R, the efficiency of the radar beacon is optimal.
  • the formed shape structure makes the corner reflector have greater resistance to the wind.
  • the corner reflector will shake, etc.
  • the phenomenon causes the radar measurement system to fail to measure or the measurement result is not accurate enough.
  • the spherical lens in this embodiment has a smooth and regular surface without large undulations and sharp edges and grooves, so that the wind can bypass the spherical lens, the resistance to the wind is small, and the measurement is not easily affected by the wind. error.
  • the reflecting device 22 is disposed on the spherical surface, and the reflecting surface coincides with a part of the spherical surface, and has a reflecting surface with the same curvature as the spherical surface.
  • the radar beacon further includes at least one fixing member, connected between the reflecting device and the spherical lens, for fixing the relative positions of the reflecting device and the spherical lens.
  • the radar beacon further includes two fixing parts 24a and 24b as an example for illustration, but the embodiment of the present invention does not limit the number of the fixing parts, and it may be one or more than two.
  • FIG. 5 is a perspective view of the reflection device according to the embodiment of the present invention, and the small circles in the figure represent the fixing members, or the connection positions of the fixing members.
  • the uppermost and lowermost small circles are one fixing piece (or the connection position of fixing pieces), and the three small circles in the middle are two fixing pieces (or the connection of fixing pieces). position) coincident position.
  • FIG. 6 the perspective view from the direction of the arrow is shown in FIG. 6 , and the small circle in FIG. 6 represents the fixing member, or the connection position of the fixing member.
  • the fixing member can connect the reflecting device and the spherical lens together in various existing ways.
  • the fixing member can connect the reflecting device to the spherical lens by means of screw connection or adhesive connection.
  • the spherical lenses are connected together.
  • the reflecting device 22 includes a reflecting bottom plate and a reflecting surface.
  • the reflective surface is used for reflecting electromagnetic waves
  • the reflective bottom plate is used for supporting the reflective surface.
  • FIG. 7 The enlarged structure is shown in FIG. 7 , in which the reflective surface 22a is attached to the reflective bottom plate 22b.
  • the reflection surface 22a of the reflection device is made by copper plating process, and overlaps with a part of the spherical surface.
  • the outer edge of the reflective bottom plate 22b is rounded, so that the reflective surfaces attached to the reflective bottom plate can reflect electromagnetic waves in various directions.
  • the reflective bottom plate 22b can be made of various metals (except mercury) or non-metallic materials (eg, plastic, stone, wood).
  • the radar beacon according to the embodiment of the present invention further includes a support member 23 disposed under the spherical lens 21 for supporting the radar beacon.
  • the radar beacon can be placed in a suitable position through the support 23 .
  • the support member 23 is taken as an example for illustration, but the shape of the support member is not limited in the embodiment of the present invention, and the support member 23 may also be other shapes, such as a cylinder, a prism (triangular prism) , quadrangular prism, etc.) and other regular or irregular cylinder shapes, can also be set into a frame body, such as a tripod, a tetrapod, etc.
  • the support member 23 is fixedly connected with the spherical lens 21, and the specific fixing method may be fixed by screws or glued together.
  • the support member 23 is provided separately from the spherical lens 21 .
  • a circular groove may be provided at the top of the cylinder, and the groove matches at least a part of the edge of the spherical lens, so that the spherical lens 21 It can be placed on the support member stably; alternatively, the top of the cylinder is set to be flat, and correspondingly, the bottom of the spherical lens is also set to be flat.
  • a circular ring can be provided on the top of the frame body, so that the spherical lens 21 can be placed on the support member stably.
  • Radar Cross-Section is a physical quantity of the echo intensity generated by the target under the illumination of radar waves.
  • the radar target and scattered energy can be expressed as a product of the effective area and the incident power density. This area is often referred to as the radar cross section.
  • the radar target reflection area RCS can be defined in terms of electromagnetic scattering theory. It is defined as 4 ⁇ times the ratio of the power scattered by the target in the receiving direction within a unit solid angle to the power density of the plane wave incident on the target from a given direction.
  • ⁇ 1 is the power per square meter and ⁇ 2 is the decibels per square meter.
  • the number of decibels per square meter is reduced by 10dBsm, and the echo power is only 1/10; the number of decibels per square meter is reduced by 20dBsm, and the echo power is only 1/100; the number of decibels per square meter is reduced. 30dBsm, the echo power is only 1/1000.
  • the formula for calculating the radar cross-sectional area is:
  • ⁇ (max) is the maximum radar cross-sectional area
  • A is the side length of the square mirror surface of the corner reflector
  • is the wavelength of the electromagnetic wave.
  • the formula for calculating the radar cross-sectional area is:
  • ⁇ (max) is the maximum radar cross-sectional area
  • d is the diameter of the spherical lens
  • is the wavelength of the electromagnetic wave.
  • the corner reflector can keep the radar cross-sectional area basically unchanged.
  • the spherical radar beacon of the embodiment of the present invention can keep the radar cross-sectional area basically unchanged when the irradiation direction of the electromagnetic wave is changed in the range of 90° to 180°.
  • the radar beacon of the embodiment of the present invention can be used to perform radar measurement without accurately adjusting the radar beacon to a suitable reflection angle with the radar, so that the installation of the radar beacon is convenient.
  • the incident electromagnetic wave is refracted to the reflection device by using the spherical lens, the refracted electromagnetic wave is reflected by the reflection device, and an echo signal is formed after being refracted by the spherical lens, so as to realize the radar measurement, wherein the focus of the spherical lens is located in the On the concentric curved surface of the spherical lens, the reflecting device has a reflective surface with the same curvature as the curved surface, is arranged on the curved surface, and the reflective surface coincides with a part of the curved surface. Therefore, the radar beacon can be conveniently installed, the cost of the radar beacon can be reduced, and the reflection efficiency of the radar beacon and the measurement accuracy of the radar measurement system can be improved.
  • FIG. 8 is a schematic diagram of a radar beacon according to a second embodiment of the present invention. As shown in FIG. 8 , in the embodiment of the present invention, the reflection device is a part of the target object.
  • the radar beacon needs to be placed close to the rail.
  • the beacon device may be touched, or, due to Ground vibration and other reasons cause the beacon device to be unbalanced.
  • the reflecting device is not provided in the beacon device, and a part of the target object is used as the reflecting device. That is, the beacon device of this embodiment only includes a spherical lens, and the target object is used as a reflection device, so that the deformation of the target object can be measured relatively accurately.
  • the spherical lens is made of polytetrafluoroethylene, it is easily deformed or damaged when subjected to pressure. As a result, even if the spherical lens falls on the rail during the test, it will be instantly destroyed when it is under pressure from the vehicle, which will not affect the normal running of the vehicle.
  • the incident electromagnetic wave is refracted to the reflection device by using the spherical lens, the refracted electromagnetic wave is reflected by the reflection device, and an echo signal is formed after being refracted by the spherical lens, so as to realize the radar measurement, wherein the focus of the spherical lens is located in the On the concentric curved surface of the spherical lens, the reflecting device has a reflective surface with the same curvature as the curved surface, is arranged on the curved surface, and the reflective surface coincides with a part of the curved surface. Therefore, the radar beacon can be conveniently installed, the cost of the radar beacon can be reduced, and the reflection efficiency of the radar beacon and the measurement accuracy of the radar measurement system can be improved.
  • the test parameters of spherical radar beacons and corner reflectors are shown in Figure 9, where the setting parameter is resolution, and the target distance is measuring radar.
  • the distance to the radar beacon, the angular inverse dimension is the side length of the square reflecting mirror surface of the corner reflector, and the spherical radar beacon refers to the radar beacon in the embodiment of the present invention.
  • the test parameters of the spherical radar beacon are the test parameters of the spherical radar beacon with a diameter of 20 cm. According to the data in Figure 9, it can be seen that:
  • the SNR of the spherical radar beacon is 5-6dB stronger than that of the corner reflector.
  • the angular inverse dimension is 20cm, the SNR of the spherical radar beacon is almost the same as that of the corner reflector.
  • the test parameters of the square reflector with a side length of 20cm and a spherical radar beacon with a diameter of 20cm are shown in Figure 10.
  • the distance is the distance from the measurement radar to the radar beacon, and the spherical beacon refers to the radar beacon of the embodiment of the present invention. Comparing the test data of the spherical radar beacon and the corner reflector in Fig. 10, it can be known that:
  • the signal-to-noise ratio of the corner reflector is 3dB higher than that of the spherical beacon on average.
  • the signal-to-noise ratio of the corner reflector is 3dB lower than that of the spherical beacon on average.
  • the signal-to-noise ratio of the corner reflector is 3dB higher than that of the spherical beacon on average.
  • the signal-to-noise ratio of the corner reflector is 3dB higher than that of the spherical beacon on average.
  • the spherical beacon can no longer add the target, and the signal-to-noise ratio of the corner reflector is 20dB.
  • the diameter of the spherical lens in the embodiment of the present invention can be set according to different application scenarios, so as to achieve the highest efficiency.
  • the length of the radius of the spherical lens is 12 or 21 cm, high efficiency can be maintained in most application scenarios.
  • the incident electromagnetic wave is refracted to the reflection device by using the spherical lens, the refracted electromagnetic wave is reflected by the reflection device, and an echo signal is formed after being refracted by the spherical lens, so as to realize the radar measurement, wherein the focus of the spherical lens is located in the On the concentric curved surface of the spherical lens, the reflecting device has a reflective surface with the same curvature as the curved surface, is arranged on the curved surface, and the reflective surface coincides with a part of the curved surface. Therefore, the radar beacon can be conveniently installed, the cost of the radar beacon can be reduced, and the reflection efficiency of the radar beacon and the measurement accuracy of the radar measurement system can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种雷达信标和雷达测量系统。通过利用球形透镜(21)将入射的电磁波折射到反射装置(22),利用反射装置(22)将折射后的电磁波进行反射并经过球形透镜(21)的折射后形成回波信号以实现雷达测量,其中,球形透镜(21)焦点位于与球形透镜(21)同心的曲面上,反射装置(22)具有与曲面的曲率相同的反射面,设置在曲面上且反射面与曲面的一部分相重合。由此,可以使得雷达信标安装方便,降低雷达信标的成本,提高雷达信标的反射效率和雷达测量系统的测量精度。

Description

雷达信标和雷达测量系统
本申请要求了2020年11月02日提交的、申请号为202011205150.8、发明名称为“雷达信标和雷达测量系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及雷达技术领域,尤其涉及一种雷达信标和雷达测量系统。
背景技术
雷达信标是装在目标(飞机、导弹等)上能发射电磁信号并与雷达配合工作的电子设备,也称信标机或应答机。目前,雷达信标已广泛用于航空管制、无线电导航、导弹制导、外弹道测量、卫星测轨、雷达遥感等方面。根据是否直接使用信号发射方式可以将雷达信标分为有源信标和无源信标。
现有的无源信标通常通过角反射器实现,角反射器是通过金属板材根据不同用途做成的不同规格的雷达波反射器。当雷达电磁波扫描到角反射器后,电磁波会在金属角上产生折射放大,产生回波信号,以实现雷达测量。
但是,角反射器需要调整与雷达的合适反射角,只有雷达波能够平行入射角反射器时,雷达才能取得相应的强反射信号、以达成跟踪、测量的目的,安装过程比较繁琐。同时,角反射器的反射效率较低,距离越远,所需的角反射器面积也越大,当角反射器边长超过一定值时,因其金属材质特性、本身重量、面积均会给安装带来诸多不便。而且,由于角反射器的几何形状,使得角反射器对外界环境要求较高,例如,在有风作用的情况下,角反射器会形成抖动,进而造成测量误差,又例如,在角反射器到雷达通视距离范围内需要保持相对净空,不能出现植被、积水等。
发明内容
有鉴于此,本发明实施例的目的在于提供一种雷达信标和雷达测量系统,可以使得雷达信标安装方便,降低雷达信标的成本,提高雷达信标的反射效率和雷达系统的测量精度。
第一方面,本发明实施例提供了一种雷达信标,所述雷达信标包括:
球形透镜,其焦点位于与所述球形透镜同心的曲面上;以及
反射装置,其具有与所述曲面的曲率相同的反射面,设置在所述曲面上且所述反射面与所述曲面的一部分相重合,用于对穿过所述球形透镜入射的电磁波进行反射。
优选地,所述球形透镜材质为聚四氟乙烯。
优选地,所述曲面与球形透镜表面的距离为0.4R-0.5R;
其中,R为所述球形透镜的半径。
优选地,所述雷达信标还包括:
至少一个固定件,连接在所述反射装置和所述球形透镜之间,用于固定所述反射装置和所述球形透镜的相对位置。
优选地,所述雷达信标还包括:
支撑件,设置在所述球形透镜下,用于支撑所述雷达信标。
优选地,所述反射装置的反射面采用镀铜工艺制成。
优选地,所述反射装置还包括反射底板,所述反射面附着在所述反射底板上。
优选地,所述反射底板的边沿外缘呈圆形。
优选地,所述反射装置为目标物体的一部分。
第二方面,本发明实施例提供了一种雷达测量系统,所述雷达测量系统包括:
测量雷达;以及
至少一个如第一方面所述的雷达信标。
本发明实施例的技术方案通过利用球形透镜将入射的电磁波折射到反射装置,利用反射装置将折射后的电磁波进行反射并经过球形透镜的折射后形成回波信号以实现雷达测量,其中,球形透镜焦点位于与所述球形透镜同心的曲面上,反射装置具有与所述曲面的曲率相同的反射面,设置在所述曲面上且所述反射面与所述曲面的一部分相重合。由此,可以使得雷达信标安装方便,降低雷达信标的成本,提高雷达信标的反射效率和雷达测量系统的测量精度。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1是本发明实施例的雷达测量系统的示意图;
图2是本发明实施例的测量雷达的示意图;
图3是本发明第一实施例的雷达信标的示意图;
图4是本发明实施例的球形透镜和球面的示意图;
图5是本发明实施例的反射装置的一个方向透视图;
图6是本发明实施例的反射装置的另一个方向透视图;
图7是本发明实施例的反射装置的示意图;
图8是本发明实施例的第二实施例的雷达信标的示意图;
图9是本发明一个实施例的测试结果对比图;
图10是本发明另一个实施例的测试结果对比图。
具体实施方式
以下基于实施例对本发明进行描述,但是本发明并不仅仅限于这些实施例。在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。为了避免混淆本发明的实质,公知的方法、过程、流程、元件和电路并没有详细叙述。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
除非上下文明确要求,否则在说明书的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本发明的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1是本发明实施例的雷达测量系统的示意图。如图1所示,本发明实施例的雷达测量系统包括测量雷达1和雷达信标2。其中,测量雷达1用于发射电磁波,并接受雷达信标2返回的回波信号。雷达信标2用于将所述测量雷达1发射的电磁波进行反射后形成回波信号发送至所述测量雷达1。
进一步地,所述雷达测量系统还包括服务器,与所述测量雷达通信连接,用于从所述测量雷达1接收回波信号,并对所述回波信号进行分析,以实现雷达测量。
图2是本发明实施例的测量雷达的示意图。如图2所示,本发明实施例的测量雷达包括射频信号源单元11、信号发射单元12、天线13、信号接收单元14和通信单元15。
在本实施例中,射频信号源单元11用于产生电磁波。
进一步地,所述电磁波的频率可以是现有的各种雷达的工作频率,例如,高频(HF)、甚高频(VHF)、超高频(UHF,也称作P)、L波段、S波段、C波段、X波段,Ku波段、K波段、Ka波段、U波段、V波段和W波段等。
在本实施例中,信号发射单元12发射电磁波。
在本实施例中,信号接收单元14用于接收回波信号。
进一步地,所述信号发射单元12和信号接收单元14与天线13连接。信号发射单元12被配置为通过所述天线13发射所述电磁波。信号接收单元14被配置为通过天线13接收回波信号。
进一步地,天线13可以是现有的各种雷达天线,例如喇叭天线和微带天线等。
在本实施例中,通信单元15用于与服务器进行通信,以向所述服务器发送回波信号,或者,接收所述服务器的控制信号。
进一步地,所述通信单元可以采用现有的各种有线通信或无线通信方式进行通信。
可选地,测量雷达1还包括控制单元,用于对信号进行实时处理,例如,对回波信号进行滤波、解析接收到的控制信号等操作。
进一步地,测量雷达1还包括供电单元,用于为测量雷达1中的各个模块供电。
由此,通过测量雷达即可实现信号的收发。
应理解,图2仅为本发明实施例的测量雷达的一种示例,本发明实施例对此不作限制,测量雷达可以通过现有的各种雷达装置实现。
图3是本发明第一实施例的雷达信标的示意图。如图3所示,本发明实施例的雷达信标2包括球形透镜21和反射装置22。
在本实施例中,球形透镜的焦点位于与所述球形透镜同心的曲面上。
具体地,图4是本发明实施例的球形透镜和曲面的示意图。如图4所示,实线圆表示球形透镜,虚线圆表示所述球形透镜在不同方向上的焦点形成的曲面,以下简称曲面。所述球形透镜与所述曲面具有共同的球心O。进一步地,所述曲面与所述球形透镜同心,且半径大于所述球形透镜的球面的半径。
在本实施例中,球面的半径如图中L,球形透镜的半径如图中R。
进一步地,球面的半径大于所述球形透镜的半径。
进一步地,所述球形透镜为单介质球形透镜。其中,所述单介质球形透镜是指由同一种材质制作形成的球形透镜。由此,可以使得所述球形透镜在不同方向上的焦点 可以形成一个规则的球面,且所述球面与所述球形透镜具有相同的圆心。
进一步地,上述曲面为焦点形成的球面的一部分。
进一步地,图中示出了两组不同方向上的电磁波的传输路径。其中,第一组电磁波为W11和W12,电磁波W11和电磁波W12平行射入所述球形透镜,经过球形透镜折射后,焦点为A点。第二组电磁波为W21和W22,电磁波W21和电磁波W22平行射入所述球形透镜,经过球形透镜折射后,焦点为B点。
由图可知,任意方向的电磁波经过所述球形透镜后,最后焦点都会位于球面上。
在本实施例中,球形透镜的材质为聚四氟乙烯(PTFE,Poly tetra fluoroethylene)。聚四氟乙烯是一种以四氟乙烯作为单体聚合制得的高分子聚合物。形状为白色蜡状、半透明,具有耐热、耐寒性优良、成本低等特点,可在-180~260℃长期使用。
进一步地,本发明实施例基于聚四氟乙烯制作而成的球形透镜的介电常数为2.08。
进一步地,所述曲面与球形透镜表面的距离为0.4R-0.5R。其中,所述距离为所述曲面的半径L与所述球形透镜的半径R的差值。
具体地,通过原理计算与模拟仿真,当球形透镜的材质为聚四氟乙烯且介电常数为2.08时,球面到球形透镜表面的距离d为0.4R时,雷达信标的效率最高。当距离d为0.5R时,得到最平坦的口径相位;当d进一步增大时,口径效率和方向图都会变差。因此,对于本发明实施例的球形透镜来说,d在0.4R-0.5R之间时,雷达信标的效率最优。
由于现有技术中常用的角反射器是由三个相互垂直的平面镜组成的,形成的形状结构使得角反射器对风的阻力较大,当风力较大时,会使得角反射器出现晃动等现象,导致雷达测量系统不能测量或者测量结果精度不足。而本实施例中的球形透镜具有平滑而规则的表面,没有大的起伏和尖锐的棱角和凹槽,使得风可以绕过球形透镜,对风的阻力较小,不易受到风力的影响而导致测量误差。
在本实施例中,反射装置22设置在所述球面上且所述反射面与所述球面的一部分相重合,且具有与所述球面曲率相同的反射面。
进一步地,所述雷达信标还包括至少一个固定件,连接在所述反射装置和所述球形透镜之间,用于固定所述反射装置和所述球形透镜的相对位置。
图3中以所述雷达信标还包括两个固定件24a和24b为例进行说明,但本发明实施例对所述固定件的数量不作限制,也可以是一个或两个以上。
例如,以所述固定件包括8个为例进行说明,图5是本发明实施例的反射装置的透视图,图中小圆圈表示固定件,或者,固定件的连接位置。其中,从上到下的五个小圆圈中,最上边和最下边的小圆圈为一个固定件(或固定件的连接位置),中间三个小圆圈为两个固定件(或固定件的连接位置)的重合位置。
进一步地,对于图5中的反射装置,从箭头方向的透视图如图6所示,图6中小圆圈表示固定件,或者,固定件的连接位置。
进一步地,所述固定件可以通过现有的各种方式将所述反射装置与球形透镜连接在一起,例如,所述固定件可以是以螺丝连接或者粘合连接等方式将所述反射装置与球形透镜连接在一起。
进一步地,所述反射装置22包括反射底板和反射面。其中,反射面用于反射电磁波,反射底板用于承载所述反射面。
具体地,以图5中虚线框部分C为例进行说明,放大后的结构如图7所示,其中,反射面22a附着在所述反射底板22b上。
进一步地,所述反射装置的反射面22a采用镀铜工艺制成,与所述球面的一部分重合。
进一步地,所述反射底板22b的边沿外缘呈圆形,由此,使得附着在所述反射底板上的反射面能够反射各个方向的电磁波。
进一步地,所述反射底板22b可以采用各种金属(汞除外)或非金属材料(例如塑料、石材、木材)等制成。
进一步地,本发明实施例的雷达信标还包括支撑件23,设置在所述球形透镜下21,用于支撑所述雷达信标。
由此,可以通过所述支撑件23将所述雷达信标摆放在合适的位置。
应理解,图3中以所述支撑件23为长方体为例进行说明,但本发明实施例对支撑件的形状不作限制,所述支撑件23也可以是其它形状,例如圆柱、棱柱(三棱柱、四棱柱等)等规则或不规则的柱体形状,也可以设置成架体,例如三脚架、四脚架等。
在一个可选的实现方式中,所述支撑件23与所述球形透镜21固定连接,具体固定方式可以通过螺丝固定或者粘合在一起。
在另一个可选的实现方式中,所述支撑件23与所述球形透镜21分离设置。具体地,当支撑件23为柱体形状时,可以在所述柱体的顶部设置圆形凹槽,所述凹槽与所述球形透镜至少一部分的边缘相吻合,以使得所述球形透镜21可以平稳放置所述 支撑件上;或者,所述柱体的顶部设置为平面,对应的,所述球形透镜的底部也设置为平面。当支撑件23为架体形状时,可以在所述架体的顶部设置圆环,以使得所述球形透镜21可以平稳放置所述支撑件上。
雷达散射截面(Radar Cross-Section,RCS)是目标在雷达波照射下所产生回波强度的一种物理量。具体地,雷达目标和散射的能量可以表示为一个有效面积和入射功率密度的乘积。这个面积通常称为雷达散射截面。雷达目标反射面积RCS可从电磁散射理论方面进行定义。定义为:单位立体角内目标朝接收方向散射的功率与从给定方向入射于该目标的平面波功率密度之比的4π倍。
由于目标物体的RCS随方位变化剧烈,故也常用dBsm(1平方米的分贝数)来表示,具体公式如下:
σ 1=10log 102)
其中,σ 1为每平方米的功率,σ 2为每平方米的分贝数。
由上述公式可知,每平方米的分贝数减少10dBsm,回波功率只剩下1/10;每平方米的分贝数减少20dBsm,回波功率只剩下1/100;每平方米的分贝数减少30dBsm,回波功率只剩下1/1000。
进一步地,对于角反射器,雷达截面积的计算公式为:
Figure PCTCN2021092422-appb-000001
其中,σ(max)为为最大雷达截面积,A为角反射器的正方形反射镜面的边长,λ为电磁波的波长。
进一步地,对于球形透镜,雷达截面积的计算公式为:
Figure PCTCN2021092422-appb-000002
其中,σ(max)为最大雷达截面积,d为球形透镜的直径,λ为电磁波的波长。
根据对现有技术的角反射器和本发明实施例的雷达信标的实际测试结果可知:
角反射器在电磁波的照射方向变化在25°范围内时,可以保持雷达截面积基本不变。
本发明实施例的球形雷达信标在电磁波的照射方向变化在90°到180°范围内时,可以保持雷达截面积基本不变。
由此,可以使得本发明实施例的雷达信标在使用过程中,不需要将雷达信标精准 的调整到与雷达合适反射角就可进行雷达测量,使得雷达信标安装方便。
本发明实施例通过利用球形透镜将入射的电磁波折射到反射装置,利用反射装置将折射后的电磁波进行反射并经过球形透镜的折射后形成回波信号以实现雷达测量,其中,球形透镜焦点位于与所述球形透镜同心的曲面上,反射装置具有与所述曲面的曲率相同的反射面,设置在所述曲面上且所述反射面与所述曲面的一部分相重合。由此,可以使得雷达信标安装方便,降低雷达信标的成本,提高雷达信标的反射效率和雷达测量系统的测量精度。
图8是本发明第二实施例的雷达信标的示意图。如图8所示,在本发明实施例中,反射装置为目标物体的一部分。
具体地,在一些测试场景中,例如对铁轨的形变进行测试等场景,需要将雷达信标放置在距离铁轨较近的位置,车辆经过铁轨时,可能会触碰到信标装置,或者,由于地面震动等原因导致信标装置失衡,此时,如果信标装置中存在坚固物件(例如金属等)时,可能影响车辆的正常行驶,进而导致严重的后果。由此,在本实施例中,在信标装置中不设置所述反射装置,将目标物体的一部分作为反射装置。也即,本实施例的信标装置只包括球形透镜,将目标物体作为反射装置,由此,可以比较精确地测量目标物体的形变。
进一步地,由于球形透镜是由聚四氟乙烯制成,在受到压力时,容易发生形变或者被破坏。由此,即使在测试过程中,球形透镜掉落在铁轨上,在受到车辆的压力时也会瞬间被破坏,不会影响车辆的正常行驶。
本发明实施例通过利用球形透镜将入射的电磁波折射到反射装置,利用反射装置将折射后的电磁波进行反射并经过球形透镜的折射后形成回波信号以实现雷达测量,其中,球形透镜焦点位于与所述球形透镜同心的曲面上,反射装置具有与所述曲面的曲率相同的反射面,设置在所述曲面上且所述反射面与所述曲面的一部分相重合。由此,可以使得雷达信标安装方便,降低雷达信标的成本,提高雷达信标的反射效率和雷达测量系统的测量精度。
进一步地,以X波段雷达为例进行说明,不同设置参数和目标距离下,球形雷达信标和角反射器的测试参数如图9所示,其中,设置参数为分辨率,目标距离为测量雷达到雷达信标的距离,角反尺寸为角反射器的正方形反射镜面的边长,球形雷达信标是指本发明实施例的雷达信标。其中,球形雷达信标的测试参数为直径为20cm的球形雷达信标的测试参数。根据图9的数据可知:
在目标距离小于80米时,角反尺寸为15cm时,球形雷达信标的信噪比比角反射器的信噪比强5-6dB。角反尺寸为20cm时,球形雷达信标的信噪比与角反射器的信噪比相差无几。
进一步地,以K波段雷达为例进行说明,正方形反射镜面的边长为20cm的角反射器和直径为20cm的球形雷达信标的测试参数如图10所示,其中,设置参数为分辨率,目标距离为测量雷达到雷达信标的距离,球形信标是指本发明实施例的雷达信标,对比图10球形雷达信标和角反射器的测试数据可知:
目标距离为38.5米时,角反射器的信噪比高于球形信标平均3dB。
目标距离为59米时,角反射器的信噪比低于球形信标平均3dB。
目标距离为80米时,角反射器的信噪比高于球形信标平均3dB。
目标距离为92米时,角反射器的信噪比高于球形信标平均3dB。
目标距离为116米时,球形信标已经无法添加目标,角反射器的信噪比为20dB。
由上述对比结果可知,在球形透镜的直径和角反射器的边长均为20cm时,在目标距离为59-80米时,球形信标的效率较高。由此,可以根据不同的应用场景设置本发明实施例的球形透镜的直径,以使得效率达到最高。
优选地,当球形透镜的半径长度为12或者21厘米时,能够在大多数的应用场景下保持较高的效率。
本发明实施例通过利用球形透镜将入射的电磁波折射到反射装置,利用反射装置将折射后的电磁波进行反射并经过球形透镜的折射后形成回波信号以实现雷达测量,其中,球形透镜焦点位于与所述球形透镜同心的曲面上,反射装置具有与所述曲面的曲率相同的反射面,设置在所述曲面上且所述反射面与所述曲面的一部分相重合。由此,可以使得雷达信标安装方便,降低雷达信标的成本,提高雷达信标的反射效率和雷达测量系统的测量精度。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种雷达信标,其特征在于,所述雷达信标包括:
    球形透镜,其焦点位于与所述球形透镜同心的曲面上;以及
    反射装置,其具有与所述曲面的曲率相同的反射面,设置在所述曲面上且所述反射面与所述曲面的一部分相重合,用于对穿过所述球形透镜入射的电磁波进行反射。
  2. 根据权利要求1所述的雷达信标,其特征在于,所述球形透镜材质为聚四氟乙烯。
  3. 根据权利要求1所述的雷达信标,其特征在于,所述曲面与球形透镜表面的距离为0.4R-0.5R;
    其中,R为所述球形透镜的半径。
  4. 根据权利要求1所述的雷达信标,其特征在于,所述雷达信标还包括:
    至少一个固定件,连接在所述反射装置和所述球形透镜之间,用于固定所述反射装置和所述球形透镜的相对位置。
  5. 根据权利要求1所述的雷达信标,其特征在于,所述雷达信标还包括:
    支撑件,设置在所述球形透镜下,用于支撑所述雷达信标。
  6. 根据权利要求1所述的雷达信标,其特征在于,所述反射装置的反射面采用镀铜工艺制成。
  7. 根据权利要求1所述的雷达信标,其特征在于,所述反射装置还包括反射底板,所述反射面附着在所述反射底板上。
  8. 根据权利要求7所述的雷达信标,其特征在于,所述反射底板的边沿外缘呈圆形。
  9. 根据权利要求1所述的雷达信标,其特征在于,所述反射装置为目标物体的一部分。
  10. 一种雷达测量系统,其特征在于,所述雷达测量系统包括:
    测量雷达;以及
    至少一个如权利要求1-9中任一项所述的雷达信标。
PCT/CN2021/092422 2020-11-02 2021-05-08 雷达信标和雷达测量系统 WO2022088645A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023526085A JP2023547206A (ja) 2020-11-02 2021-05-08 レーダービーコンおよびレーダー測定システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011205150.8A CN112363157B (zh) 2020-11-02 2020-11-02 雷达信标和雷达测量系统
CN202011205150.8 2020-11-02

Publications (1)

Publication Number Publication Date
WO2022088645A1 true WO2022088645A1 (zh) 2022-05-05

Family

ID=74512653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092422 WO2022088645A1 (zh) 2020-11-02 2021-05-08 雷达信标和雷达测量系统

Country Status (3)

Country Link
JP (1) JP2023547206A (zh)
CN (1) CN112363157B (zh)
WO (1) WO2022088645A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363157B (zh) * 2020-11-02 2023-02-28 上海玥煊科技有限公司 雷达信标和雷达测量系统
CN113009475A (zh) * 2021-02-22 2021-06-22 佛山科学技术学院 雷达反射器、雷达探测系统、雷达信号探测方法及装置
CN113391304B (zh) * 2021-05-11 2023-09-12 雷远信息技术有限公司 雷达定位方法、定位雷达和定位系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973965A (en) * 1987-07-10 1990-11-27 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Passive radar target
CN101461091A (zh) * 2006-06-07 2009-06-17 Sei复合产品股份有限公司 无线电波透镜天线设备
US20180159244A1 (en) * 2016-12-02 2018-06-07 Archit Lens Technology Inc. Retro-directive Quasi-Optical System
CN109638474A (zh) * 2019-01-31 2019-04-16 中国电子科技集团公司第五十四研究所 一种大口径透镜天线
CN112363157A (zh) * 2020-11-02 2021-02-12 上海玥煊科技有限公司 雷达信标和雷达测量系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1823240A (en) * 1928-04-19 1931-09-15 Windsor N Cobb Rotating spherical beacon
ES2333397B1 (es) * 2009-11-12 2010-11-26 Sociedad Anonima De Preformados Metalicos Baliza para cables.
CN102401891B (zh) * 2010-09-10 2014-06-18 上海无线电设备研究所 一种被动式雷达目标增强器的实现方法
CN103036066B (zh) * 2011-09-29 2016-07-27 深圳光启高等理工研究院 一种龙伯透镜天线
CN204331132U (zh) * 2014-11-21 2015-05-13 上海无线电设备研究所 一种均匀介质反射器
CN104807404A (zh) * 2015-04-23 2015-07-29 北京建筑大学 一种多用途球形测量装置与自动提取算法
CN105470660B (zh) * 2016-01-12 2018-07-27 电子科技大学 基于新型介质填充方式的极低剖面柱面龙伯透镜天线
CN108933334B (zh) * 2018-07-19 2021-04-02 华北水利水电大学 一种球体龙勃电磁透镜反射器的制作方法及装置
CN111641047A (zh) * 2020-06-19 2020-09-08 中国人民解放军总参谋部第六十研究所 一种可变rcs的龙伯透镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973965A (en) * 1987-07-10 1990-11-27 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Passive radar target
CN101461091A (zh) * 2006-06-07 2009-06-17 Sei复合产品股份有限公司 无线电波透镜天线设备
US20180159244A1 (en) * 2016-12-02 2018-06-07 Archit Lens Technology Inc. Retro-directive Quasi-Optical System
CN109638474A (zh) * 2019-01-31 2019-04-16 中国电子科技集团公司第五十四研究所 一种大口径透镜天线
CN112363157A (zh) * 2020-11-02 2021-02-12 上海玥煊科技有限公司 雷达信标和雷达测量系统

Also Published As

Publication number Publication date
JP2023547206A (ja) 2023-11-09
CN112363157B (zh) 2023-02-28
CN112363157A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2022088645A1 (zh) 雷达信标和雷达测量系统
US5557282A (en) Height finding antenna apparatus and method of operation
CN103245935A (zh) 高精度sar有源定标器外校准系统
WO2005098470A1 (en) Apparatus and method using wavefront phase measurements to determine geometrical relationships
US5670965A (en) Compact antenna test range
CN103185566A (zh) 一种反射面天线波束指向的测试装置及其测试方法
CN206134947U (zh) 毫米波相控阵天线及天线设备
Pienaar et al. Bistatic RCS measurements in a compact range
CN115113156B (zh) 用于双极化相控阵气象雷达的标校方法和系统
JP4165336B2 (ja) 風速レーダ
CN106410424A (zh) 毫米波相控阵天线及天线设备
CN111157957A (zh) 毫米波雷达探测装置
Fry et al. aerails for centimetre wave lengths
Sen et al. Radar systems and radio aids to navigation
JP4258570B2 (ja) 風速レーダ
Zeng et al. Error analysis of angle inverse RCS for millimeter wave SAR radiometric calibration
RU2699079C1 (ru) Способ пеленгации и широкополосный пеленгатор для его осуществления
KR100983406B1 (ko) 안테나 장치
US2705754A (en) Directive antenna systems
RU2691378C1 (ru) Способ контроля диаграммы направленности активной фазированной антенной решётки
RU143511U1 (ru) Малогабаритная безэховая камера
RU2718127C1 (ru) Устройство контроля формы отражающей поверхности антенной системы зеркального типа
Ratcliffe Aerials for radar equipment
Bhuiya et al. Microstrip monopulse feed for parabolic dish tracking antenna used in a radio theodolite system
RU2179321C2 (ru) Устройство для электрической юстировки антенны бортовой радиолокационной станции

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023526085

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21884388

Country of ref document: EP

Kind code of ref document: A1