WO2022088527A1 - 一种盘式电机冷却结构 - Google Patents

一种盘式电机冷却结构 Download PDF

Info

Publication number
WO2022088527A1
WO2022088527A1 PCT/CN2021/072814 CN2021072814W WO2022088527A1 WO 2022088527 A1 WO2022088527 A1 WO 2022088527A1 CN 2021072814 W CN2021072814 W CN 2021072814W WO 2022088527 A1 WO2022088527 A1 WO 2022088527A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
plate
liquid
coil
casing
Prior art date
Application number
PCT/CN2021/072814
Other languages
English (en)
French (fr)
Inventor
汤磊
李一雄
张广权
杨文雄
夏莉
陈进华
Original Assignee
上海盘毂动力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011195375.XA external-priority patent/CN112186920A/zh
Priority claimed from CN202011190399.6A external-priority patent/CN112186919A/zh
Application filed by 上海盘毂动力科技股份有限公司 filed Critical 上海盘毂动力科技股份有限公司
Priority to US18/250,729 priority Critical patent/US20230396105A1/en
Priority to EP21884272.2A priority patent/EP4239854A1/en
Publication of WO2022088527A1 publication Critical patent/WO2022088527A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/15Mounting arrangements for bearing-shields or end plates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the invention relates to the technical field of heat dissipation of a disc motor, in particular to a cooling structure of a disc motor.
  • the existing liquid cooling system mainly adopts an external cooling method, that is, the cooling liquid is in indirect contact with the cooled components, and the cooling efficiency is low, which affects the service life of the disc motor.
  • the purpose of the present invention is to provide a cooling structure for a disc motor so as to prolong the service life of the disc motor.
  • the present invention provides a cooling structure for a disc motor, comprising:
  • stator iron core has a plurality of stator cells
  • stator casing seals the stator iron core, the stator casing and the outside of the stator iron core form a first cavity, the stator casing and the inner casing of the stator iron core A second cavity is formed, and the stator housing is provided with a liquid inlet channel, a liquid outlet channel, a liquid inlet port, a liquid outlet port, a liquid ejection port and a liquid return port, and the liquid inlet channel communicates with the liquid inlet port and the liquid inlet port.
  • the liquid ejection port, the liquid outlet channel communicates with the liquid outlet port and the liquid return port;
  • a first blocking plate and a second blocking plate arranged between the outside of the stator core and the stator housing, the first blocking plate and the second blocking plate insulate the first cavity as a first cooling channel and a second cooling channel, the first cooling channel is in communication with the liquid outlet, and the second cooling channel is in communication with the liquid return port;
  • the first coil and the second coil are arranged on the stator unit, the first coils on the adjacent stator units are closely matched, and the second coils on the adjacent stator units work close with;
  • the partition plate includes a first partition plate and a second partition plate, wherein the first partition plate is disposed outside the stator unit, and the second partition plate is disposed outside the stator unit.
  • a separator is provided inside the stator unit.
  • the width of the first partition plate is smaller than the width of the outer portion of the stator unit.
  • the first separating plate is fixed on the first coil and the second coil.
  • the width of the second partition plate is smaller than the width of the interior of the stator unit.
  • the second separator is fixed on the first coil and the second coil.
  • the stator casing includes a stator outer casing, a stator inner casing, a front stator plate and a rear stator plate, and the stator outer casing and a stator iron core are interposed between the stator outer casing and the stator inner casing , the front stator plate is arranged on the first end face of the stator casing, the rear stator plate is arranged on the second end face of the stator casing, and the stator casing, the outside of the stator core, the front The stator plate and the rear stator plate form the first cavity; the stator inner shell, the interior of the stator iron core, the front stator plate and the rear stator plate form the second cavity.
  • one or more of the liquid inlet, the liquid outlet, the liquid ejection port and the liquid return port are provided in the stator outer shell, the stator inner shell, the the front stator plate or the rear stator plate.
  • the number of the liquid ejection ports is multiple, and each of the liquid ejection ports corresponds to the middle portion of the stator unit.
  • the stator core is a segmented core.
  • the liquid refrigerant enters the liquid inlet channel from the liquid inlet, and enters the first cooling channel through the oil injection port; the liquid refrigerant entering the first cooling channel and the outer first cooling channel of the stator iron core
  • the first coil exchanges heat with the second coil, then enters the third cooling channel, exchanges heat with the first coil and the second coil on the stator unit corresponding to the third cold channel, and then enters the second cavity
  • the liquid refrigerant in the second cavity exchanges heat with the first coil and the second coil inside the stator core, and then passes through the third channel, and communicates with the first coil on the stator unit corresponding to the third cold channel.
  • the coil exchanges heat with the second coil, and then enters the second cooling channel.
  • the liquid refrigerant entering the second cooling channel exchanges heat with the first and second coils outside the stator core, and then passes through the liquid return port. Enter the liquid outlet channel and flow out from the liquid outlet. It can be seen that in the above process, the liquid refrigerant can fully contact and exchange heat with the core heat-generating components such as the stator core, the first coil and the second coil, thereby improving the heat dissipation efficiency of the disc motor and prolonging the service life of the disc motor.
  • the present invention also discloses another disc motor cooling structure, comprising:
  • stator iron core has a plurality of stator cells
  • stator casing seals the stator iron core, the stator casing and the outside of the stator iron core form a first cavity, the stator casing and the inner casing of the stator iron core A second cavity is formed, and the stator housing is provided with a liquid inlet channel, a liquid outlet channel, a liquid inlet port, a liquid outlet port, a liquid ejection port and a liquid return port, and the liquid inlet channel communicates with the liquid inlet port and the liquid inlet port.
  • the liquid ejection port, the liquid outlet channel communicates with the liquid outlet port and the liquid return port;
  • a first blocking plate and a second blocking plate arranged between the outside of the stator core and the stator housing, the first blocking plate and the second blocking plate insulate the first cavity as a first cooling channel and a second cooling channel, the first cooling channel is in communication with the liquid outlet, and the second cooling channel is in communication with the liquid return port;
  • stator unit a plurality of first coils and second coils with different widths disposed on the stator unit;
  • a third blocking plate interposed between the adjacent stator cells, the third blocking plate and the adjacent first coil and the second coil form a communication between the first cavity and the the third cooling channel of the second cavity.
  • the first coils and the second coils are alternately arranged.
  • the width of the first coil is smaller than the width of the second coil.
  • the third blocking plate is in abutment with the second coil on the adjacent stator unit.
  • the first blocking plate is located on the centerline of both the liquid inlet and the liquid outlet.
  • the second blocking plate is located on the centerline of both the liquid inlet and the liquid outlet.
  • the stator casing includes a stator outer casing, a stator inner casing, a front stator plate and a rear stator plate, and the stator outer casing and a stator iron core are interposed between the stator outer casing and the stator inner casing , the front stator plate is arranged on the first end face of the stator casing, the rear stator plate is arranged on the second end face of the stator casing, and the stator casing, the outside of the stator core, the front The stator plate and the rear stator plate form the first cavity; the stator inner shell, the interior of the stator iron core, the front stator plate and the rear stator plate form the second cavity.
  • one or more of the liquid inlet, the liquid outlet, the liquid ejection port and the liquid return port are provided in the stator outer shell, the stator inner shell, the the front stator plate or the rear stator plate.
  • the number of the liquid ejection ports is multiple, and each of the liquid ejection ports corresponds to the middle portion of the stator unit.
  • the stator core is a segmented core.
  • the liquid refrigerant enters the liquid inlet channel from the liquid inlet, and enters the first cooling channel through the oil injection port; the liquid refrigerant entering the first cooling channel and the outer first cooling channel of the stator iron core
  • the first coil exchanges heat with the second coil, then enters the third cooling channel, exchanges heat with the first coil and the second coil on the stator unit corresponding to the third cold channel, and then enters the second cavity
  • the liquid refrigerant in the second cavity exchanges heat with the first coil and the second coil inside the stator core, and then passes through the third channel, and communicates with the first coil on the stator unit corresponding to the third cold channel.
  • the coil exchanges heat with the second coil, and then enters the second cooling channel.
  • the liquid refrigerant entering the second cooling channel exchanges heat with the first and second coils outside the stator core, and then passes through the liquid return port. Enter the liquid outlet channel and flow out from the liquid outlet. It can be seen that in the above process, the liquid refrigerant can fully contact and exchange heat with the core heat-generating components such as the stator core, the first coil and the second coil, thereby improving the heat dissipation efficiency of the disc motor and prolonging the service life of the disc motor.
  • FIG. 1 is a schematic three-dimensional structural diagram of a disk-type motor cooling structure according to an embodiment of the present invention
  • FIG. 2 is a partial enlarged schematic diagram of a cooling structure of a disc motor provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an exploded structure of a cooling structure for a disc motor according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the principle of a disk motor cooling structure provided by an embodiment of the present invention.
  • FIG. 5 is a schematic three-dimensional structural diagram of another disc motor cooling structure provided by an embodiment of the present invention.
  • FIG. 6 is a partial enlarged schematic diagram of another disc motor cooling structure provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an explosion structure of another disc motor cooling structure provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the principle of another disc motor cooling structure provided by an embodiment of the present invention.
  • 100a is the stator core
  • 200a is the stator housing
  • 300a is the first barrier plate
  • 400a is the second barrier plate
  • 500a is the first coil
  • 600a is the second coil
  • 700a is the partition plate
  • 800a is the first Cavity
  • 900a is the second cavity
  • 101a is the stator unit
  • 201a is the liquid inlet
  • 202a is the liquid outlet
  • 203a is the liquid inlet channel
  • 204a is the liquid outlet channel
  • 205a is the liquid ejection port
  • 206a is the liquid return Port
  • 701a is the first partition plate
  • 702a is the second partition plate
  • 801a is the first cooling channel
  • 802a is the second cooling channel
  • 200-1a is the stator outer shell
  • 200-2a is the stator inner shell
  • 200-3a is the front stator plate
  • 200-4a is the rear stator plate
  • 100b is the stator core
  • 200b is the stator housing
  • 300b is the first barrier plate
  • 400b is the second barrier plate
  • 500b is the first coil
  • 600b is the second coil
  • 700b is the third barrier plate
  • 800b is the first cavity body
  • 900b is the second cavity
  • 101b is the stator unit
  • 201b is the liquid inlet
  • 202b is the liquid outlet
  • 203b is the liquid inlet channel
  • 204b is the liquid outlet channel
  • 205b is the liquid ejection port
  • 206b is the liquid return port
  • 801b is the first cooling channel
  • 802b is the second cooling channel
  • 200-1b is the stator outer shell
  • 200-2b is the stator inner shell
  • 200-3b is the front stator plate
  • 200-4b is the rear stator plate.
  • the core of the present invention is to provide a cooling structure for the disc motor to prolong the service life of the disc motor.
  • the cooling structure of the disc motor disclosed in the present invention includes a stator core 100a, a stator housing 200a, a first blocking plate 300a, a second blocking plate 400a, a first coil 500a, a second coil 600a and The partition plate 700a, wherein the stator core 100a has a plurality of stator cells 101a; the stator casing 200a seals the stator core 100a, the stator casing 200a and the outside of the stator core 100a enclose a first cavity 800a, the stator casing The body 200a and the interior of the stator core 100a enclose a second cavity 900a.
  • the stator housing 200a is provided with a liquid inlet channel 203a, a liquid outlet channel 204a, a liquid inlet port 201a, a liquid outlet port 202a, a liquid ejection port 205a and a return port.
  • the liquid port 206a, the liquid inlet channel 203a are connected to the liquid inlet port 201a and the liquid ejection port 205a, and the liquid outlet channel 204a is connected to the liquid outlet port 202a and the liquid return port 206a;
  • the first blocking plate 300a and the second blocking plate 400a are arranged on the stator iron core
  • the first baffle plate 300a and the second baffle plate 400a isolate the first cavity 800a into a first cooling channel 801a and a second cooling channel 802a, the first cooling channel 801a and the liquid outlet
  • the first coil 500a and the second coil 600a are arranged on the stator unit 101a, and the first coil 500a on the adjacent stator unit 101a is closely matched with
  • the second coils 600a on the adjacent stator cells 101a are closely matched; the partition plate 700a is interposed between the first coil 500a and the second coil 600a, and the adjacent stator cells 101a have a communication between the first cavity 800a and the second coil 600a.
  • the third cooling channel of the second cavity 900a is provided.
  • the liquid refrigerant enters the liquid inlet channel 203a from the liquid inlet 201a, and enters the first cooling channel 801a through the oil injection port; the liquid refrigerant entering the first cooling channel 801a and the stator iron core
  • the first coil 500a and the second coil 600a outside the 100a conduct heat exchange, and then enter the third cooling channel, and conduct heat exchange with the first coil 500a and the second coil 600a on the stator unit 101a corresponding to the third cooling channel.
  • the liquid refrigerant in the second cavity 900a exchanges heat with the first coil 500a and the second coil 600a inside the stator core 100a, and then passes through the third channel, and The first coil 500a and the second coil 600a on the stator unit 101a corresponding to the third cold channel conduct heat exchange, and then enter the second cooling channel 802a, and the liquid refrigerant entering the second cooling channel 802a and the stator iron core
  • the first coil 500a and the second coil 600a outside the 100a conduct heat exchange, and then enter the liquid outlet channel 204a through the liquid return port 206a, and flow out through the liquid outlet port 202a.
  • the liquid refrigerant can fully contact and exchange heat with the core heat-generating components such as the stator core 100a, the first coil 500a and the second coil 600a, thereby improving the heat dissipation efficiency of the disc motor and prolonging the life of the disc motor. service life.
  • the function of the above-mentioned separating plate 700a is to separate the first coil 500a and the second coil 600a, so that a third cooling channel is formed between the first coil 500a, the second coil 600a and the stator unit 101a, and the The core heat-generating components such as the stator unit 101a, the first coil 500a, and the second coil 600a around the three cooling passages dissipate heat.
  • the thicknesses of the first coil 500a and the second coil 600a may or may not be equal. In order to improve the cooling effect of the stator core 100a, the thicknesses of the first coil 500a and the second coil 600a are equal.
  • the dividing plate 700a includes a first dividing plate 701a and a second dividing plate 702a, wherein the first dividing plate 701a is provided outside the stator unit 101a, and the second dividing plate 702a is provided inside the stator unit 101a .
  • the first partition plate 701a and the second partition plate 702a are cubic structures, and any structure that can separate the first coil 500a and the second coil 600a can be understood as the partition plate 700a.
  • the width of the first partition plate 701a is greater than or equal to less than the width of the outer portion of the stator cell 101a. As long as a third cooling channel is formed between adjacent stator cells 101a, it is within the protection scope of the present invention.
  • the optional width of the first partition plate 701a is smaller than the width of the outer portion of the stator unit 101a, which can not only reduce the consumables of the first partition plate 701a, but also increase the effective contact area between the stator unit 101a and the third cooling channel.
  • the first partition plate 701a is fixed on the first coil 500a and the second coil 600a, or the first partition plate 701a is fixed on the stator unit 101a, wherein the first partition plate 701a is fixed on the first coil 500a,
  • the upper form of the second coil 600a or the stator unit 101a may be bonding.
  • the width of the second partition plate 702a is greater than or equal to less than the width of the inside of the stator unit 101a. As long as a third cooling channel is formed between adjacent stator cells 101a, it is within the protection scope of the present invention.
  • the optional width of the second partition plate 702a is smaller than the width of the outer portion of the stator unit 101a, which can not only reduce the consumables of the second partition plate 702a, but also increase the effective contact area between the stator unit 101a and the third cooling channel.
  • the second partition plate 702a is fixed on the first coil 500a and the second coil 600a, or the second partition plate 702a is fixed on the stator unit 101a, wherein the second partition plate 702a is fixed on the first coil 500a,
  • the upper form of the second coil 600a or the stator unit 101a may be bonding.
  • the axial direction of the stator core 100a is the thickness
  • the circumferential surface of the stator core 100a is the width
  • the thickness of the stator unit 101a is the axial direction of the stator.
  • the distance between the upper end face and the lower end face of the cell 101a, the width of the stator cell 101a is the distance between the two side surfaces of the stator cell 101a, since the stator cell 101a has a similar trapezoidal structure, it is close to the axis of the stator core 100a
  • the distance between the two side surfaces of the stator cell 101a at the center is small, and the distance between the two side surfaces of the stator cell 101a at the axial center away from the stator core 100a is large.
  • stator casing 200a The role of the stator casing 200a is to install the stator iron core 100a, wherein the stator casing 200a includes a stator outer casing 200-1a, a stator inner casing 200-2a, a front stator plate 200-3a and a rear stator plate 200-4a.
  • the stator iron core 100a is between the stator outer casing and the stator inner casing 200-2a, the front stator plate 200-3a is arranged on the first end face of the stator casing 200-1a, and the rear stator plate 200-4a is arranged on the second end face of the stator casing 200-1a , and the stator shell 200-1a, the outside of the stator core 100a, the front stator plate 200-3a and the rear stator plate 200-4a form the first cavity 800a;
  • the stator plate 200-3a and the rear stator plate 200-4a form a second cavity 900a.
  • the above is only one of the structural forms of the stator housing 200a, as long as the structure that can seal the stator core 100a can be used as the stator housing 200a, the embodiment of the present invention will not be described in detail here.
  • one or more of the liquid inlet 201a, the liquid outlet 202a, the liquid ejection port 205a and the liquid return port 206a are provided in the stator outer shell 200-1a, the stator inner shell 200-2a, the front stator plate 200- 3a or on the rear stator plate 200-4a. It can be understood here that the liquid inlet 201a, the liquid outlet 202a, the liquid ejection port 205a and the liquid return port 206a may be disposed on the stator outer casing 200-1a at the same time, or on the stator inner casing 200-2a at the same time, or at the same time.
  • liquid inlet 201a, the liquid outlet 202a, the liquid ejection port 205a and the liquid return port 206a are simultaneously arranged in the stator casing 200-1a, or at the same time on the stator inner shell 200-2a, or at the same time at the front stator plate 200-3a, or at the same time at the rear stator plate 200-4a; liquid inlet 201a, liquid outlet 202a , three of the liquid ejection port 205a and the liquid return port 206a are simultaneously arranged on the stator outer casing 200-1a, or simultaneously arranged on the stator inner casing 200-2a, or simultaneously arranged on the front stator plate 200-3a, or at the same time provided on the rear stator plate 200-4a.
  • the liquid inlet 201a, the liquid outlet 202a, the liquid ejection port 205a and the liquid return port 206a can also be provided across components.
  • a part of the liquid inlet channel 203a is provided on the stator housing 200-1a, and a part of the liquid inlet channel 203a is provided on the stator housing 200-1a.
  • On the front stator plate 200-3a a part of the liquid outlet channel 204a is provided on the stator housing 200-1a, and a part of the liquid outlet channel 204a is provided on the front stator plate 200-3a.
  • the liquid inlet 201a, the liquid outlet 202a, the liquid ejection port 205a and the liquid return port 206a are all provided on the stator housing 200-1a.
  • the number of the liquid injection ports 205a is multiple, and each liquid injection port 205a corresponds to the middle of the stator unit 101a; or each liquid injection port 205a corresponds to the third cooling channel, in order to To prolong the residence time of the liquid refrigerant in the first cooling channel 801a, the liquid injection port 205a in the present invention corresponds to the middle of the stator unit 101a.
  • the above-mentioned stator core 100a is a segmented core or an integral core.
  • the cooling structure of the disk motor disclosed in the present invention includes a stator core 100b, a stator housing 200b, a first blocking plate 300b, a second blocking plate 400b, a first coil 500b, a second coil 600b and The third blocking plate 700b, wherein the stator core 100b has a plurality of stator cells 101b; the stator casing 200b seals the stator core 100b, and the stator casing 200b and the outside of the stator core 100b enclose a first cavity 800b, the stator The casing 200b and the interior of the stator core 100b enclose a second cavity 900b.
  • the stator casing 200b is provided with a liquid inlet channel 203b, a liquid outlet channel 204b, a liquid inlet port 201b, a liquid outlet port 202b, a liquid ejection port 205b and The liquid return port 206b, the liquid inlet channel 203b are connected to the liquid inlet port 201b and the liquid ejection port 205b, and the liquid outlet channel 204b is connected to the liquid outlet port 202b and the liquid return port 206b; the first blocking plate 300b and the second blocking plate 400b are arranged on the stator iron Between the outside of the core 100b and the stator housing 200b, the first baffle plate 300b and the second baffle plate 400b isolate the first cavity 800b into a first cooling channel 801b and a second cooling channel 802b, and the first cooling channel 801b is connected to the outlet.
  • the liquid port 202b is in communication, and the second cooling channel 802b is in communication with the liquid return port 206b; the widths of the first coil 500b and the second coil 600b are not equal, and a plurality of first coils 500b and second coils 600b are arranged on the stator unit 101b;
  • the third blocking plate 700b is interposed between the adjacent stator cells 101b, and the third blocking plate 700b and the adjacent first coil 500b and the second coil 600b form a communication between the first cavity 800b and the second cavity 900b the third cooling channel.
  • the liquid refrigerant enters the liquid inlet channel 203b from the liquid inlet 201b, and enters the first cooling channel 801b through the oil injection port; the liquid refrigerant entering the first cooling channel 801b and the stator iron core
  • the first coil 500b and the second coil 600b outside the 100b conduct heat exchange, and then enter the third cooling channel, and conduct heat exchange with the first coil 500b and the second coil 600b on the stator unit 101b corresponding to the third cooling channel.
  • the liquid refrigerant in the second cavity 900b exchanges heat with the first coil 500b and the second coil 600b inside the stator core 100b, and then passes through the third channel, and It exchanges heat with the first coil 500b and the second coil 600b on the stator unit 101b corresponding to the third cold channel, and then enters the second cooling channel 802b, and the liquid refrigerant entering the second cooling channel 802b and the stator core
  • the first coil 500b and the second coil 600b outside the 100b conduct heat exchange, and then enter the liquid outlet channel 204b through the liquid return port 206b, and flow out through the liquid outlet port 202b.
  • the liquid refrigerant can fully contact and exchange heat with the core heat-generating components such as the stator core 100b, the first coil 500b and the second coil 600b, thereby improving the heat dissipation efficiency of the disc motor and prolonging the life of the disc motor. service life.
  • the function of the above-mentioned third blocking plate 700b is to form a third cooling channel with the adjacent first coil 500b and the second coil 600b, and through the third cooling channel, the stator unit 101b and the first coil 500b around the third cooling channel are cooled. and core heat-generating components such as the second coil 600b to dissipate heat.
  • the widths of the first coil 500b and the second coil 600b are not equal, and the width of the first coil 500b is smaller than the width of the second coil 600b.
  • first coils 500b and second coils 600b on each stator cell 101b are alternately arranged, that is, one of every two adjacent coils on each stator cell is the first coil
  • the other is the coil 500b
  • the other is the second coil 600b, so that the number of the third cooling channels in the two adjacent stator cells 101b can be increased.
  • the first coil and the second coil on each stator unit 101b may also be separated by several second coils 600b for every two first coils 500b, which are not listed one by one in the embodiment of the present invention.
  • the third blocking plates 700b are interposed between the adjacent stator cells 101b, wherein the third blocking plates 700b are in contact with the second coils 600b on the adjacent stator cells 101b or not, preferably, The third blocking plate 700b is in contact with the second coil 600b on the adjacent stator unit 101b, so that the machining accuracy can be ensured.
  • the width can be understood in this way. Taking the stator iron core 100b as a whole, the axial direction of the stator iron core 100b is the thickness, the circumferential surface of the stator iron core 100b is the width, and the thickness of the stator single body 101b is the axial direction of the stator single body.
  • the distance between the upper end face and the lower end face of 101b, the width of the stator unit 101b is the distance between the two sides of the stator unit 101b, since the stator unit 101b is similar to the trapezoid structure, it is close to the axis of the stator core 100b
  • the distance between the two side surfaces of the stator unit 101b is relatively small, and the distance between the two side surfaces of the stator unit 101b away from the axial center of the stator core 100b is relatively large;
  • Coil the distance between the outer surface of the coil and the inner surface of the coil is the width of the coil.
  • the lengths of the first cooling channel 801b and the second cooling channel 802b may or may not be equal.
  • the length of the first cooling channel 801b is preferably equal to the length of the second cooling channel 802b, wherein the first barrier
  • the plate 400b is positioned on the midline of both the liquid inlet 201b and the liquid outlet 202b; the second blocking plate 500b is positioned on the midline of both the liquid inlet 201b and the liquid outlet 202b.
  • the above is only one arrangement of the first baffle plate 400b and the second baffle plate 500b.
  • the first baffle plate 400b and the second baffle plate 500b may not be arranged between the liquid inlet 201b and the liquid outlet 202b.
  • On the center line as long as the structure of dividing the first cavity 800b into the first cooling channel 801b and the second cooling channel 802b can be achieved, it can be understood as being within the protection scope of the present invention.
  • stator casing 200b The role of the stator casing 200b is to install the stator iron core 100b, wherein the stator casing 200b includes a stator outer casing 200-1b, a stator inner casing 200-2b, a front stator plate 200-3b and a rear stator plate 200-4b.
  • the stator iron core 100b is between the stator outer casing and the stator inner casing 200-2b, the front stator plate 200-3b is arranged on the first end face of the stator casing 200-1b, and the rear stator plate 200-4b is arranged on the second end face of the stator casing 200-1b , and the stator shell 200-1b, the outside of the stator core 100b, the front stator plate 200-3b and the rear stator plate 200-4b form the first cavity 800b;
  • the stator plate 200-3b and the rear stator plate 200-4b form a second cavity 900b.
  • the above is only one of the structural forms of the stator housing 200b, as long as the structure that can seal the stator core 100b can be used as the stator housing 200b, the embodiment of the present invention will not be described in detail here.
  • one or more of the liquid inlet 201b, the liquid outlet 202b, the liquid ejection port 205b and the liquid return port 206b are provided in the stator outer shell 200-1b, the stator inner shell 200-2b, the front stator plate 200- 3b or the rear stator plate 200-4b. It can be understood here that the liquid inlet 201b, the liquid outlet 202b, the liquid ejection port 205b and the liquid return port 206b may be disposed on the stator outer casing 200-1b at the same time, or on the stator inner casing 200-2b at the same time, or at the same time.
  • liquid inlet 201b, the liquid outlet 202b, the liquid ejection port 205b and the liquid return port 206b are simultaneously arranged in the stator casing 200-1b, or at the same time on the stator inner shell 200-2b, or at the same time at the front stator plate 200-3b, or at the same time at the rear stator plate 200-4b; liquid inlet 201b, liquid outlet 202b , three of the liquid ejection port 205b and the liquid return port 206b are simultaneously arranged on the stator outer casing 200-1b, or simultaneously arranged on the stator inner casing 200-2b, or simultaneously arranged on the front stator plate 200-3b, or at the same time provided on the rear stator plate 200-4b.
  • the liquid inlet 201b, the liquid outlet 202b, the liquid ejection port 205b and the liquid return port 206b can also be provided across the components.
  • a part of the liquid inlet channel 203b is provided on the stator housing 200-1b, and a part of the liquid inlet channel 203b is provided on the stator housing 200-1b.
  • On the front stator plate 200-3b a part of the liquid outlet channel 204b is provided on the stator housing 200-1b, and a part of the liquid outlet channel 204b is provided on the front stator plate 200-3b.
  • the liquid inlet 201b, the liquid outlet 202b, the liquid ejection port 205b and the liquid return port 206b are all provided on the stator housing 200-1b.
  • the number of the liquid injection ports 205b is multiple, and each liquid injection port 205b corresponds to the middle of the stator unit 101b; or each liquid injection port 205b corresponds to the third cooling channel, in order to Extend the residence time of the liquid refrigerant in the first cooling passage 801b.
  • the liquid injection port 205b in the present invention corresponds to the middle of the stator unit 101b.
  • stator core 100b is a segmented core or an integral core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本发明公开了一种盘式电机冷却结构,包括定子铁芯、定子壳体、第一阻隔板、第二阻隔板、第一线圈、第二线圈和分隔板,分隔板介于所述第一线圈和所述第二线圈之间,相邻的所述定子单体之间具有连通所述第一腔体和所述第二腔体的第三冷却通道。采用本发明中的盘式电机冷却结构,液体冷媒能够充分与定子铁芯、第一线圈和第二线圈等核心产热部件直接接触热交换,从而提高了盘式电机的散热效率,延长了盘式电机的使用寿命。

Description

一种盘式电机冷却结构
本申请要求以下中国专利申请的优先权,其全部内容通过引用结合在本申请中。
申请号:202011195375.X
申请日:2020年10月30日
发明创造名称:一种盘式电机冷却结构
申请号:202011190399.6
申请日:2020年10月30日
发明创造名称:一种盘式电机冷却结构
技术领域
本发明涉及盘式电机散热技术领域,特别涉及一种盘式电机冷却结构。
背景技术
为了提高盘式电机的工作效率,必需给盘式电机设计冷却系统。冷却系统主要分两种,一种是风冷,另一种是液冷。相比于风冷,液冷的效率更高。现有液冷系统主要采用外部冷却方式,即冷却液与被冷却部件间接接触,冷却效率低,影响盘式电机的使用寿命。
因此,如何延长盘式电机的使用寿命,成为本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的是提供一种盘式电机冷却结构,以延长盘式电机的使用寿命。
为实现上述目的,本发明提供一种盘式电机冷却结构,包括:
定子铁芯,所述定子铁芯具有多个定子单体;
定子壳体,所述定子壳体密封所述定子铁芯,所述定子壳体与所述定子铁 芯的外部围成第一腔体,所述定子壳体与所述定子铁芯的内部围成第二腔体,所述定子壳体上设置有进液通道、出液通道、进液口、出液口、喷液口和回液口,所述进液通道连通所述进液口和所述喷液口,所述出液通道连通所述出液口与所述回液口;
设置在所述定子铁芯的外部与所述定子壳体之间的第一阻隔板和第二阻隔板,所述第一阻隔板和所述第二阻隔板将所述第一腔体隔绝为第一冷却通道和第二冷却通道,所述第一冷却通道与所述出液口连通,所述第二冷却通道与所述回液口连通;
设置在所述定子单体上的第一线圈和第二线圈,相邻的所述定子单体上的所述第一线圈紧密配合,相邻的所述定子单体上的所述第二线圈紧密配合;
介于所述第一线圈和所述第二线圈之间的分隔板,相邻的所述定子单体之间具有连通所述第一腔体和所述第二腔体的第三冷却通道。
本发明其中一个实施例中,所述分隔板包括第一分隔板和第二分隔板,其中,所述第一分隔板设置在所述定子单体的外部,所述第二分隔板设置在所述定子单体的内部。
本发明其中一个实施例中,所述第一分隔板的宽度小于所述定子单体的外部的宽度。
本发明其中一个实施例中,所述第一分隔板固定在所述第一线圈和所述第二线圈上。
本发明其中一个实施例中,所述第二分隔板的宽度小于所述定子单体的内部的宽度。
本发明其中一个实施例中,所述第二分隔板固定在所述第一线圈和所述第二线圈上。
本发明其中一个实施例中,所述定子壳体包括定子外壳、定子内壳、前定子板和后定子板,所述定子外壳定子铁芯介于所述定外壳与所述定子内壳之间,所述前定子板设置在所述定子外壳的第一端面,所述后定子板设置在所述定子外壳的第二端面,且所述定子外壳、所述定子铁芯的外部、所述前定子板和所述后定子板形成所述第一腔体;所述定子内壳、所述定子铁芯的内部、所述前定子板和所述后定子板形成所述第二腔体。
本发明其中一个实施例中,所述进液口、所述出液口、所述喷液口和所述回液口中的一个或多个设置在所述定子外壳、所述定子内壳、所述前定子板或所述后定子板上。
本发明其中一个实施例中,所述喷液口的数量为多个,每个所述喷液口与所述定子单体的中部相对应。
本发明其中一个实施例中,所述定子铁芯为分段铁芯。
采用本发明的盘式电机冷却结构,液体冷媒由进液口进入至进液通道,并通过喷油口进入第一冷却通道;进入第一冷却通道中的液体冷媒与定子铁芯的外部的第一线圈和第二线圈进行热交换,然后再进入第三冷却通道,并与第三冷通道所对应的定子单体上的第一线圈和第二线圈进行热交换,然后进入至第二腔体中,位于第二腔体中的液体冷媒与定子铁芯内部的第一线圈和第二线圈进行热交换,再通过第三通道,并与第三冷通道所对应的定子单体上的第一线圈和第二线圈进行热交换,然后进入至第二冷却通道,进入第二冷却通道中的液体冷媒与定子铁芯的外部的第一线圈和第二线圈进行热交换,并再通过回液口进入出液通道,并由出液口流出。可见,上述过程中液体冷媒能够充分与定子铁芯、第一线圈和第二线圈等核心产热部件直接接触热交换,从而提高了盘式电机的散热效率,延长了盘式电机的使用寿命。
本发明还公开另一种盘式电机冷却结构,包括:
定子铁芯,所述定子铁芯具有多个定子单体;
定子壳体,所述定子壳体密封所述定子铁芯,所述定子壳体与所述定子铁芯的外部围成第一腔体,所述定子壳体与所述定子铁芯的内部围成第二腔体,所述定子壳体上设置有进液通道、出液通道、进液口、出液口、喷液口和回液口,所述进液通道连通所述进液口和所述喷液口,所述出液通道连通所述出液口与所述回液口;
设置在所述定子铁芯的外部与所述定子壳体之间的第一阻隔板和第二阻隔板,所述第一阻隔板和所述第二阻隔板将所述第一腔体隔绝为第一冷却通道和第二冷却通道,所述第一冷却通道与所述出液口连通,所述第二冷却通道与所述回液口连通;
设置在所述定子单体上的多个宽度不同的第一线圈和第二线圈;
介于相邻的所述定子单体之间的第三阻隔板,所述第三阻隔板与相邻的所述第一线圈和所述第二线圈之间形成连通所述第一腔体和所述第二腔体的第三冷却通道。
本发明其中一个实施例中,在一个所述定子单体上,所述第一线圈和所述第二线圈交替布置。
本发明其中一个实施例中,所述第一线圈的宽度小于所述第二线圈的宽度。
本发明其中一个实施例中,所述第三阻隔板与相邻的所述定子单体上的第二线圈抵接。
本发明其中一个实施例中,所述第一阻隔板位于所述进液口和所述出液口二者的中线上。
本发明其中一个实施例中,所述第二阻隔板位于所述进液口和所述出液口二者的中线上。
本发明其中一个实施例中,所述定子壳体包括定子外壳、定子内壳、前定子板和后定子板,所述定子外壳定子铁芯介于所述定外壳与所述定子内壳之间,所述前定子板设置在所述定子外壳的第一端面,所述后定子板设置在所述定子外壳的第二端面,且所述定子外壳、所述定子铁芯的外部、所述前定子板和所述后定子板形成所述第一腔体;所述定子内壳、所述定子铁芯的内部、所述前定子板和所述后定子板形成所述第二腔体。
本发明其中一个实施例中,所述进液口、所述出液口、所述喷液口和所述回液口中的一个或多个设置在所述定子外壳、所述定子内壳、所述前定子板或所述后定子板上。
本发明其中一个实施例中,所述喷液口的数量为多个,每个所述喷液口与所述定子单体的中部相对应。
本发明其中一个实施例中,所述定子铁芯为分段铁芯。
采用本发明的盘式电机冷却结构,液体冷媒由进液口进入至进液通道,并通过喷油口进入第一冷却通道;进入第一冷却通道中的液体冷媒与定子铁芯的外部的第一线圈和第二线圈进行热交换,然后再进入第三冷却通道,并与第三冷通道所对应的定子单体上的第一线圈和第二线圈进行热交换,然后进入至第 二腔体中,位于第二腔体中的液体冷媒与定子铁芯内部的第一线圈和第二线圈进行热交换,再通过第三通道,并与第三冷通道所对应的定子单体上的第一线圈和第二线圈进行热交换,然后进入至第二冷却通道,进入第二冷却通道中的液体冷媒与定子铁芯的外部的第一线圈和第二线圈进行热交换,并再通过回液口进入出液通道,并由出液口流出。可见,上述过程中液体冷媒能够充分与定子铁芯、第一线圈和第二线圈等核心产热部件直接接触热交换,从而提高了盘式电机的散热效率,延长了盘式电机的使用寿命。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例所提供的一种盘式电机冷却结构的立体结构示意图;
图2为本发明实施例所提供的一种盘式电机冷却结构的局部放大示意图;
图3为本发明实施例所提供的一种盘式电机冷却结构的爆炸结构示意图;
图4为本发明实施例所提供的一种盘式电机冷却结构的原理示意图;
图5为本发明实施例所提供的另一种盘式电机冷却结构的立体结构示意图;
图6为本发明实施例所提供的另一种盘式电机冷却结构的局部放大示意图;
图7为本发明实施例所提供的另一种盘式电机冷却结构的爆炸结构示意图;
图8为本发明实施例所提供的另一种盘式电机冷却结构的原理示意图。
其中:100a为定子铁芯、200a为定子壳体、300a为第一阻隔板、400a为第二阻隔板、500a为第一线圈、600a为第二线圈、700a为分隔板、800a为第 一腔体、900a为第二腔体、101a为定子单体、201a为进液口、202a为出液口、203a为进液通道、204a为出液通道、205a为喷液口、206a为回液口、701a为第一分隔板、702a为第二分隔板、801a为第一冷却通道、802a为第二冷却通道、200-1a为定子外壳、200-2a为定子内壳、200-3a为前定子板、200-4a为后定子板;
100b为定子铁芯、200b为定子壳体、300b为第一阻隔板、400b为第二阻隔板、500b为第一线圈、600b为第二线圈、700b为第三阻隔板、800b为第一腔体、900b为第二腔体、101b为定子单体、201b为进液口、202b为出液口、203b为进液通道、204b为出液通道、205b为喷液口、206b为回液口、801b为第一冷却通道、802b为第二冷却通道、200-1b为定子外壳、200-2b为定子内壳、200-3b为前定子板、200-4b为后定子板。
具体实施方式
本发明的核心是提供一种盘式电机冷却结构,以延长盘式电机的使用寿命。
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和实施方式对本发明作进一步的详细说明。
实施例一
请参考图1至图4,本发明公开的盘式电机冷却结构包括定子铁芯100a、定子壳体200a、第一阻隔板300a、第二阻隔板400a、第一线圈500a、第二线圈600a和分隔板700a,其中,定子铁芯100a具有多个定子单体101a;定子壳体200a密封定子铁芯100a,定子壳体200a与定子铁芯100a的外部围成第一腔体800a,定子壳体200a与定子铁芯100a的内部围成第二腔体900a,定子壳体200a上设置有进液通道203a、出液通道204a、进液口201a、出液口202a、喷液口205a和回液口206a,进液通道203a连通进液口201a和喷液口205a,出液通道204a连通出液口202a与回液口206a;第一阻隔板300a和第二阻隔板400a设置在定子铁芯100a的外部与定子壳体200a之间,第一阻隔 板300a和第二阻隔板400a将第一腔体800a隔绝为第一冷却通道801a和第二冷却通道802a,第一冷却通道801a与出液口202a连通,第二冷却通道802a与回液口206a连通;第一线圈500a和第二线圈600a设置在定子单体101a上,相邻的定子单体101a上的第一线圈500a紧密配合,相邻的定子单体101a上的第二线圈600a紧密配合;分隔板700a介于第一线圈500a和第二线圈600a之间,相邻的定子单体101a之间具有连通第一腔体800a和第二腔体900a的第三冷却通道。
采用本发明的盘式电机冷却结构,液体冷媒由进液口201a进入至进液通道203a,并通过喷油口进入第一冷却通道801a;进入第一冷却通道801a中的液体冷媒与定子铁芯100a的外部的第一线圈500a和第二线圈600a进行热交换,然后再进入第三冷却通道,并与第三冷通道所对应的定子单体101a上的第一线圈500a和第二线圈600a进行热交换,然后进入至第二腔体900a中,位于第二腔体900a中的液体冷媒与定子铁芯100a内部的第一线圈500a和第二线圈600a进行热交换,再通过第三通道,并与第三冷通道所对应的定子单体101a上的第一线圈500a和第二线圈600a进行热交换,然后进入至第二冷却通道802a,进入第二冷却通道802a中的液体冷媒与定子铁芯100a的外部的第一线圈500a和第二线圈600a进行热交换,并再通过回液口206a进入出液通道204a,并由出液口202a流出。可见,上述过程中液体冷媒能够充分与定子铁芯100a、第一线圈500a和第二线圈600a等核心产热部件直接接触热交换,从而提高了盘式电机的散热效率,延长了盘式电机的使用寿命。
上述分隔板700a的作用是将分隔第一线圈500a和第二线圈600a,使得第一线圈500a、第二线圈600a和定子单体101a之间形成第三冷却通道,通过第三冷却通道对第三冷却通道周边的定子单体101a、第一线圈500a和第二线圈600a等核心产热部件进行散热。其中,第一线圈500a和第二线圈600a的厚度可以相等也可以不相等,为了提高定子铁芯100a的冷却效果,第一线圈500a和第二线圈600a的厚度相等。
为了减少分隔板700a的占用体积,增加第三冷却通道的截面积,定子单体101a、第一线圈500a和第二线圈600a与第三冷却通道的接触面积。分隔板700a包括第一分隔板701a和第二分隔板702a,其中,第一分隔板701a设置 在定子单体101a的外部,第二分隔板702a设置在定子单体101a的内部。第一分隔板701a和第二分隔板702a为立方体结构,只要能够将第一线圈500a和第二线圈600a分隔开的结构均可以理解为分隔板700a。
第一分隔板701a的宽度大于、等于小于定子单体101a的外部的宽度。只要使得相邻的定子单体101a之间形成第三冷却通道,均在本发明的保护范围内。可选的第一分隔板701a的宽度小于定子单体101a的外部的宽度,不仅能够减少第一分隔板701a的耗材,还可以增加定子单体101a与第三冷却通道的有效接触面积。
第一分隔板701a固定在第一线圈500a和第二线圈600a上,或者第一分隔板701a固定在定子单体101a上,其中,实现第一分隔板701a固定在第一线圈500a、第二线圈600a或定子单体101a的上的形式可以为粘结。
第二分隔板702a的宽度大于、等于小于定子单体101a的内部的宽度。只要使得相邻的定子单体101a之间形成第三冷却通道,均在本发明的保护范围内。可选的第二分隔板702a的宽度小于定子单体101a的外部的宽度,不仅能够减少第二分隔板702a的耗材,还可以增加定子单体101a与第三冷却通道的有效接触面积。
第二分隔板702a固定在第一线圈500a和第二线圈600a上,或者第二分隔板702a固定在定子单体101a上,其中,实现第二分隔板702a固定在第一线圈500a、第二线圈600a或定子单体101a的上的形式可以为粘结。
需要说明的是,厚度和宽度可以这样理解,以定子铁芯100a整体说明,定子铁芯100a的轴向为厚度,定子铁芯100a周面为宽度,定子单体101a的厚度为轴向上定子单体101a的上端面与下端面之间的距离,定子单体101a的宽度为定子单体101a两个侧面之间的距离,由于定子单体101a为类似梯形结构,靠近定子铁芯100a的轴心处的定子单体101a的两个侧面之间的距离较小,远离定子铁芯100a的轴心处的定子单体101a的两个侧面之间的距离较大。
定子壳体200a的作用是安装定子铁芯100a,其中,定子壳体200a包括定子外壳200-1a、定子内壳200-2a、前定子板200-3a和后定子板200-4a,定子铁芯100a介于定外壳与定子内壳200-2a之间,前定子板200-3a设置在定子外壳200-1a的第一端面,后定子板200-4a设置在定子外壳200-1a的第二端面, 且定子外壳200-1a、定子铁芯100a的外部、前定子板200-3a和后定子板200-4a形成第一腔体800a;定子内壳200-2a、定子铁芯100a的内部、前定子板200-3a和后定子板200-4a形成第二腔体900a。以上仅仅是定子壳体200a的其中一种结构形式,只要能够实现密封定子铁芯100a的结构均可作为定子壳体200a,本发明实施例此处不做具体描述。
在上述结构中,进液口201a、出液口202a、喷液口205a和回液口206a中的一个或多个设置在定子外壳200-1a、定子内壳200-2a、前定子板200-3a或后定子板200-4a上。此处可以理解为,进液口201a、出液口202a、喷液口205a和回液口206a可同时设置在定子外壳200-1a上,或者同时设置在定子内壳200-2a上,或者同时设置在前定子板200-3a上,或者同时设置在后定子板200-4a上;进液口201a、出液口202a、喷液口205a和回液口206a中的两个同时设置在定子外壳200-1a上,或者同时设置在定子内壳200-2a上,或者同时设置在前定子板200-3a上,或者同时设置在后定子板200-4a上;进液口201a、出液口202a、喷液口205a和回液口206a中的三个同时设置在定子外壳200-1a上,或者同时设置在定子内壳200-2a上,或者同时设置在前定子板200-3a上,或者同时设置在后定子板200-4a上。当然,进液口201a、出液口202a、喷液口205a和回液口206a还可以跨部件设置,例如,进液通道203a的一部分设置定子外壳200-1a上,进液通道203a的一部分设置在前定子板200-3a上,出液通道204a的一部分设置在定子外壳200-1a上,出液通道204a的一部分设置在前定子板200-3a上。图示中,进液口201a、出液口202a、喷液口205a和回液口206a均设置在定子外壳200-1a上。
本发明其中一个实施例中,喷液口205a的数量为多个,每个喷液口205a与定子单体101a的中部相对应;或者每个喷液口205a与第三冷却通道相对应,为了延长液体冷媒在第一冷却通道801a的停留时间,本发明中的喷液口205a与定子单体101a的中部相对应,液体冷媒经喷液口205a进入第一冷却通道801a时,当压力较大时先喷到定子单体101a上,再由定子单体101a反射的作用下向两边流,从而延长了液体冷媒在第一冷却通道801a的停留时间,提高了散热效率。
上述定子铁芯100a为分段铁芯或者整体铁芯。
实施例二
请参考图5至图8,本发明公开的盘式电机冷却结构包括定子铁芯100b、定子壳体200b、第一阻隔板300b、第二阻隔板400b、第一线圈500b、第二线圈600b和第三阻隔板700b,其中,定子铁芯100b具有多个定子单体101b;定子壳体200b密封定子铁芯100b,定子壳体200b与定子铁芯100b的外部围成第一腔体800b,定子壳体200b与定子铁芯100b的内部围成第二腔体900b,定子壳体200b上设置有进液通道203b、出液通道204b、进液口201b、出液口202b、喷液口205b和回液口206b,进液通道203b连通进液口201b和喷液口205b,出液通道204b连通出液口202b与回液口206b;第一阻隔板300b和第二阻隔板400b设置在定子铁芯100b的外部与定子壳体200b之间,第一阻隔板300b和第二阻隔板400b将第一腔体800b隔绝为第一冷却通道801b和第二冷却通道802b,第一冷却通道801b与出液口202b连通,第二冷却通道802b与回液口206b连通;第一线圈500b和第二线圈600b的宽度不等,多个第一线圈500b和第二线圈600b设置在定子单体101b上;第三阻隔板700b介于相邻的定子单体101b之间,第三阻隔板700b与相邻的第一线圈500b和第二线圈600b之间形成连通第一腔体800b和第二腔体900b的第三冷却通道。
采用本发明的盘式电机冷却结构,液体冷媒由进液口201b进入至进液通道203b,并通过喷油口进入第一冷却通道801b;进入第一冷却通道801b中的液体冷媒与定子铁芯100b的外部的第一线圈500b和第二线圈600b进行热交换,然后再进入第三冷却通道,并与第三冷通道所对应的定子单体101b上的第一线圈500b和第二线圈600b进行热交换,然后进入至第二腔体900b中,位于第二腔体900b中的液体冷媒与定子铁芯100b内部的第一线圈500b和第二线圈600b进行热交换,再通过第三通道,并与第三冷通道所对应的定子单体101b上的第一线圈500b和第二线圈600b进行热交换,然后进入至第二冷却通道802b,进入第二冷却通道802b中的液体冷媒与定子铁芯100b的外部的第一线圈500b和第二线圈600b进行热交换,并再通过回液口206b进入出液通道204b,并由出液口202b流出。可见,上述过程中液体冷媒能够充分与定子铁芯100b、第一线圈500b和第二线圈600b等核心产热部件直接接触热交换,从而提高了盘式电机的散热效率,延长了盘式电机的使用寿命。
上述第三阻隔板700b的作用是与相邻的第一线圈500b和第二线圈600b围成第三冷却通道,通过第三冷却通道对第三冷却通道周边的定子单体101b、第一线圈500b和第二线圈600b等核心产热部件进行散热。其中,第一线圈500b和第二线圈600b的宽度不等,第一线圈500b的宽度小于第二线圈600b的宽度。
为了使得定子单体产生均匀的磁通量,每个定子单体101b上的多个第一线圈500b和第二线圈600b交替布置,即每个定子单体上每相邻的两个线圈一个是第一线圈500b,另一个就是第二线圈600b,如此可以增加相邻的两个定子单体101b中的第三冷却通道的数量。当然,每个定子单体101b上第一线圈和第二线圈还可以为每两个第一线圈500b间隔若干个第二线圈600b,本发明实施例就不一一举例。
第三阻隔板700b介于相邻的定子单体101b之间,其中,第三阻隔板700b与相邻的所述定子单体101b上的第二线圈600b抵接或者不抵接,优选的,第三阻隔板700b与相邻的所述定子单体101b上的第二线圈600b抵接,如此可以保证加工精度。
需要说明的是,宽度可以这样理解,以定子铁芯100b整体说明,定子铁芯100b的轴向为厚度,定子铁芯100b周面为宽度,定子单体101b的厚度为轴向上定子单体101b的上端面与下端面之间的距离,定子单体101b的宽度为定子单体101b两个侧面之间的距离,由于定子单体101b为类似梯形结构,靠近定子铁芯100b的轴心处的定子单体101b的两个侧面之间的距离较小,远离定子铁芯100b的轴心处的定子单体101b的两个侧面之间的距离较大;而设置在定子单体101b上的线圈,线圈的外表面与线圈的内表面之间的距离为线圈的宽度。
第一冷却通道801b和第二冷却通道802b的长度可以相等也可以不相等,本发明实施例中优选的第一冷却通道801b的长度等于第二冷却通道802b的长度,其中,所述第一阻隔板400b位于所述进液口201b和所述出液口202b二者的中线上;所述第二阻隔板500b位于所述进液口201b和所述出液口202b二者的中线上。以上仅仅是第一阻隔板400b和第二阻隔板500b的其中一种布置形式,第一阻隔板400b和第二阻隔板500b还可不布置在进液口201b和所 述出液口202b二者的中线上,只要能够达到将第一腔体800b分隔为第一冷却通道801b和第二冷却通道802b的结构均可以理解为在本发明的保护范围内。
定子壳体200b的作用是安装定子铁芯100b,其中,定子壳体200b包括定子外壳200-1b、定子内壳200-2b、前定子板200-3b和后定子板200-4b,定子铁芯100b介于定外壳与定子内壳200-2b之间,前定子板200-3b设置在定子外壳200-1b的第一端面,后定子板200-4b设置在定子外壳200-1b的第二端面,且定子外壳200-1b、定子铁芯100b的外部、前定子板200-3b和后定子板200-4b形成第一腔体800b;定子内壳200-2b、定子铁芯100b的内部、前定子板200-3b和后定子板200-4b形成第二腔体900b。以上仅仅是定子壳体200b的其中一种结构形式,只要能够实现密封定子铁芯100b的结构均可作为定子壳体200b,本发明实施例此处不做具体描述。
在上述结构中,进液口201b、出液口202b、喷液口205b和回液口206b中的一个或多个设置在定子外壳200-1b、定子内壳200-2b、前定子板200-3b或后定子板200-4b上。此处可以理解为,进液口201b、出液口202b、喷液口205b和回液口206b可同时设置在定子外壳200-1b上,或者同时设置在定子内壳200-2b上,或者同时设置在前定子板200-3b上,或者同时设置在后定子板200-4b上;进液口201b、出液口202b、喷液口205b和回液口206b中的两个同时设置在定子外壳200-1b上,或者同时设置在定子内壳200-2b上,或者同时设置在前定子板200-3b上,或者同时设置在后定子板200-4b上;进液口201b、出液口202b、喷液口205b和回液口206b中的三个同时设置在定子外壳200-1b上,或者同时设置在定子内壳200-2b上,或者同时设置在前定子板200-3b上,或者同时设置在后定子板200-4b上。当然,进液口201b、出液口202b、喷液口205b和回液口206b还可以跨部件设置,例如,进液通道203b的一部分设置定子外壳200-1b上,进液通道203b的一部分设置在前定子板200-3b上,出液通道204b的一部分设置在定子外壳200-1b上,出液通道204b的一部分设置在前定子板200-3b上。图示中,进液口201b、出液口202b、喷液口205b和回液口206b均设置在定子外壳200-1b上。
本发明其中一个实施例中,喷液口205b的数量为多个,每个喷液口205b 与定子单体101b的中部相对应;或者每个喷液口205b与第三冷却通道相对应,为了延长液体冷媒在第一冷却通道801b的停留时间,本发明中的喷液口205b与定子单体101b的中部相对应,液体冷媒经喷液口205b进入第一冷却通道801b时,当压力较大时先喷到定子单体101b上,再由定子单体101b反射的作用下向两边流,从而延长了液体冷媒在第一冷却通道801b的停留时间,提高了散热效率。
上述定子铁芯100b为分段铁芯或者整体铁芯。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (20)

  1. 一种盘式电机冷却结构,其特征在于,包括:
    定子铁芯,所述定子铁芯具有多个定子单体;
    定子壳体,所述定子壳体密封所述定子铁芯,所述定子壳体与所述定子铁芯的外部围成第一腔体,所述定子壳体与所述定子铁芯的内部围成第二腔体,所述定子壳体上设置有进液通道、出液通道、进液口、出液口、喷液口和回液口,所述进液通道连通所述进液口和所述喷液口,所述出液通道连通所述出液口与所述回液口;
    设置在所述定子铁芯的外部与所述定子壳体之间的第一阻隔板和第二阻隔板,所述第一阻隔板和所述第二阻隔板将所述第一腔体隔绝为第一冷却通道和第二冷却通道,所述第一冷却通道与所述出液口连通,所述第二冷却通道与所述回液口连通;
    设置在所述定子单体上的第一线圈和第二线圈,相邻的所述定子单体上的所述第一线圈紧密配合,相邻的所述定子单体上的所述第二线圈紧密配合;
    介于所述第一线圈和所述第二线圈之间的分隔板,相邻的所述定子单体之间具有连通所述第一腔体和所述第二腔体的第三冷却通道。
  2. 如权利要求1所述的盘式电机冷却结构,其特征在于,所述分隔板包括第一分隔板和第二分隔板,其中,所述第一分隔板设置在所述定子单体的外部,所述第二分隔板设置在所述定子单体的内部。
  3. 如权利要求2所述的盘式电机冷却结构,其特征在于,所述第一分隔板的宽度小于所述定子单体的外部的宽度。
  4. 如权利要求3所述的盘式电机冷却结构,其特征在于,所述第一分隔板固定在所述第一线圈和所述第二线圈上。
  5. 如权利要求2所述的盘式电机冷却结构,其特征在于,所述第二分隔板的宽度小于所述定子单体的内部的宽度。
  6. 如权利要求5所述的盘式电机冷却结构,其特征在于,所述第二分隔板固定在所述第一线圈和所述第二线圈上。
  7. 如权利要求1所述的盘式电机冷却结构,其特征在于,所述定子壳体包括定子外壳、定子内壳、前定子板和后定子板,所述定子铁芯介于所述定外 壳与所述定子内壳之间,所述前定子板设置在所述定子外壳的第一端面,所述后定子板设置在所述定子外壳的第二端面,且所述定子外壳、所述定子铁芯的外部、所述前定子板和所述后定子板形成所述第一腔体;所述定子内壳、所述定子铁芯的内部、所述前定子板和所述后定子板形成所述第二腔体。
  8. 如权利要求7所述的盘式电机冷却结构,其特征在于,所述进液口、所述出液口、所述喷液口和所述回液口中的一个或多个设置在所述定子外壳、所述定子内壳、所述前定子板或所述后定子板上。
  9. 如权利要求8所述的盘式电机冷却结构,其特征在于,所述喷液口的数量为多个,每个所述喷液口与所述定子单体的中部相对应。
  10. 如权利要求1至9中任一项所述的盘式电机冷却结构,其特征在于,所述定子铁芯为分段铁芯。
  11. 一种盘式电机冷却结构,其特征在于,包括:
    定子铁芯,所述定子铁芯具有多个定子单体;
    定子壳体,所述定子壳体密封所述定子铁芯,所述定子壳体与所述定子铁芯的外部围成第一腔体,所述定子壳体与所述定子铁芯的内部围成第二腔体,所述定子壳体上设置有进液通道、出液通道、进液口、出液口、喷液口和回液口,所述进液通道连通所述进液口和所述喷液口,所述出液通道连通所述出液口与所述回液口;
    设置在所述定子铁芯的外部与所述定子壳体之间的第一阻隔板和第二阻隔板,所述第一阻隔板和所述第二阻隔板将所述第一腔体隔绝为第一冷却通道和第二冷却通道,所述第一冷却通道与所述出液口连通,所述第二冷却通道与所述回液口连通;
    设置在所述定子单体上的多个宽度不同的第一线圈和第二线圈;
    介于相邻的所述定子单体之间的第三阻隔板,所述第三阻隔板与相邻的所述第一线圈和所述第二线圈之间形成连通所述第一腔体和所述第二腔体的第三冷却通道。
  12. 如权利要求11所述的盘式电机冷却结构,其特征在于,在一个所述定子单体上,所述第一线圈和所述第二线圈交替布置。
  13. 如权利要求12所述的盘式电机冷却结构,其特征在于,所述第一线 圈的宽度小于所述第二线圈的宽度。
  14. 如权利要求13所述的盘式电机冷却结构,其特征在于,所述第三阻隔板与相邻的所述定子单体上的第二线圈抵接。
  15. 如权利要求11所述的盘式电机冷却结构,其特征在于,所述第一阻隔板位于所述进液口和所述出液口二者的中线上。
  16. 如权利要求15所述的盘式电机冷却结构,其特征在于,所述第二阻隔板位于所述进液口和所述出液口二者的中线上。
  17. 如权利要求11所述的盘式电机冷却结构,其特征在于,所述定子壳体包括定子外壳、定子内壳、前定子板和后定子板,所述定子铁芯介于所述定外壳与所述定子内壳之间,所述前定子板设置在所述定子外壳的第一端面,所述后定子板设置在所述定子外壳的第二端面,且所述定子外壳、所述定子铁芯的外部、所述前定子板和所述后定子板形成所述第一腔体;所述定子内壳、所述定子铁芯的内部、所述前定子板和所述后定子板形成所述第二腔体。
  18. 如权利要求17所述的盘式电机冷却结构,其特征在于,所述进液口、所述出液口、所述喷液口和所述回液口中的一个或多个设置在所述定子外壳、所述定子内壳、所述前定子板或所述后定子板上。
  19. 如权利要求18所述的盘式电机冷却结构,其特征在于,所述喷液口的数量为多个,每个所述喷液口与所述定子单体的中部相对应。
  20. 如权利要求11至19中任一项所述的盘式电机冷却结构,其特征在于,所述定子铁芯为分段铁芯。
PCT/CN2021/072814 2020-10-30 2021-01-20 一种盘式电机冷却结构 WO2022088527A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/250,729 US20230396105A1 (en) 2020-10-30 2021-01-20 Cooling structure for disc-type motor
EP21884272.2A EP4239854A1 (en) 2020-10-30 2021-01-20 Cooling structure for disc-type motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011195375.XA CN112186920A (zh) 2020-10-30 2020-10-30 一种盘式电机冷却结构
CN202011190399.6 2020-10-30
CN202011195375.X 2020-10-30
CN202011190399.6A CN112186919A (zh) 2020-10-30 2020-10-30 一种盘式电机冷却结构

Publications (1)

Publication Number Publication Date
WO2022088527A1 true WO2022088527A1 (zh) 2022-05-05

Family

ID=81383422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072814 WO2022088527A1 (zh) 2020-10-30 2021-01-20 一种盘式电机冷却结构

Country Status (3)

Country Link
US (1) US20230396105A1 (zh)
EP (1) EP4239854A1 (zh)
WO (1) WO2022088527A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6270213B2 (ja) * 2014-06-05 2018-01-31 株式会社神戸製鋼所 電動機
CN211127334U (zh) * 2019-12-31 2020-07-28 浙江盘毂动力科技有限公司 电机冷却系统、电机定子及盘式电机
CN111725939A (zh) * 2019-03-19 2020-09-29 上海盘毂动力科技股份有限公司 一种冷却系统、定子组件以及轴向磁场电机
CN112186919A (zh) * 2020-10-30 2021-01-05 上海盘毂动力科技股份有限公司 一种盘式电机冷却结构
CN112186920A (zh) * 2020-10-30 2021-01-05 上海盘毂动力科技股份有限公司 一种盘式电机冷却结构
CN213185661U (zh) * 2020-10-30 2021-05-11 上海盘毂动力科技股份有限公司 一种盘式电机冷却结构
CN213185660U (zh) * 2020-10-30 2021-05-11 上海盘毂动力科技股份有限公司 一种盘式电机冷却结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6270213B2 (ja) * 2014-06-05 2018-01-31 株式会社神戸製鋼所 電動機
CN111725939A (zh) * 2019-03-19 2020-09-29 上海盘毂动力科技股份有限公司 一种冷却系统、定子组件以及轴向磁场电机
CN211127334U (zh) * 2019-12-31 2020-07-28 浙江盘毂动力科技有限公司 电机冷却系统、电机定子及盘式电机
CN112186919A (zh) * 2020-10-30 2021-01-05 上海盘毂动力科技股份有限公司 一种盘式电机冷却结构
CN112186920A (zh) * 2020-10-30 2021-01-05 上海盘毂动力科技股份有限公司 一种盘式电机冷却结构
CN213185661U (zh) * 2020-10-30 2021-05-11 上海盘毂动力科技股份有限公司 一种盘式电机冷却结构
CN213185660U (zh) * 2020-10-30 2021-05-11 上海盘毂动力科技股份有限公司 一种盘式电机冷却结构

Also Published As

Publication number Publication date
US20230396105A1 (en) 2023-12-07
EP4239854A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
US20050206252A1 (en) Electric machine with improved cooling system, and method of cooling an electric machine
WO2021217294A1 (zh) 一种用于新能源汽车的驱动电机的冷却系统
CN113381531A (zh) 一种定子冷却结构及设有该定子冷却结构的电机
WO2022142497A1 (zh) 一种盘式电机冷却结构以及盘式电机
WO2022088527A1 (zh) 一种盘式电机冷却结构
CN115882622A (zh) 一种轴向磁场电机及其定子冷却结构和制作方法
JP2014522959A (ja) 熱交換器および対応する扁平チューブおよびプレート
CN213185655U (zh) 一种盘式电机冷却结构以及盘式电机
CN211018428U (zh) 一种盘式电机冷却装置
CN213185661U (zh) 一种盘式电机冷却结构
CN213185660U (zh) 一种盘式电机冷却结构
CN218416113U (zh) 油冷电机
CN112186920A (zh) 一种盘式电机冷却结构
CN114337015B (zh) 一种具有定子浸油冷却结构的高功率密度电机
CN114598052B (zh) 用于车辆的电机及车辆
CN114268178A (zh) 定子铁芯和油冷电机
CN112186919A (zh) 一种盘式电机冷却结构
CN112324576B (zh) 散热装置
CN213185656U (zh) 一种盘式电机冷却结构以及盘式电机
CN213185659U (zh) 一种盘式电机冷却结构
CN213185657U (zh) 一种盘式电机冷却结构
CN215267808U (zh) 油冷电机和具有其的车辆
JP3243324U (ja) アダプタ及びアダプタを備えた冷却構造
CN114905958B (zh) 动力系统冷却装置
CN218603287U (zh) 一种可对转子进行防护的油冷电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884272

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18250729

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021884272

Country of ref document: EP

Effective date: 20230530