WO2022088423A1 - 一种基于磁场调控的变焦液体透镜及光学放大仪器 - Google Patents

一种基于磁场调控的变焦液体透镜及光学放大仪器 Download PDF

Info

Publication number
WO2022088423A1
WO2022088423A1 PCT/CN2020/136504 CN2020136504W WO2022088423A1 WO 2022088423 A1 WO2022088423 A1 WO 2022088423A1 CN 2020136504 W CN2020136504 W CN 2020136504W WO 2022088423 A1 WO2022088423 A1 WO 2022088423A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
liquid lens
bottom plate
lens based
magnetic
Prior art date
Application number
PCT/CN2020/136504
Other languages
English (en)
French (fr)
Inventor
刘剑
苏昂
张季儒
高瑞
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to JP2022522319A priority Critical patent/JP7361321B2/ja
Publication of WO2022088423A1 publication Critical patent/WO2022088423A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length

Definitions

  • the invention belongs to the field of liquid lenses, and in particular relates to a zoom liquid lens and an optical magnifying instrument based on magnetic field regulation.
  • the liquid self-zooming lens achieves the purpose of focal length adjustment by changing its own parameters such as curvature and refractive index, and is easy to miniaturize and lighten. Because the liquid lens is based on the change of the surface tension of the liquid, the smoothness of the liquid surface is far greater than the machining accuracy of the traditional lens, and its surface roughness is below 1nm, so it has good surface accuracy.
  • the existing liquid lens encapsulates two liquids, the upper light color is oil and the lower dark color is water.
  • the existing focusing method includes controlling the up and down movement of the sheet through an electromagnetic coil, and adjusting the curvature of the liquid-liquid contact surface to achieve focusing.
  • the disadvantage of this method is that the lens is complex and difficult to operate accurately.
  • the other is to change the contact angle between the inner wall of the cylindrical cavity and water through current, and adjust the curvature of the liquid-liquid contact surface to achieve focus adjustment.
  • Existing liquid self-zooming lenses mainly include physical property control types such as those based on electrowetting principles and mechanical drive types such as those based on electrostatic force and pressure adjustment, among which the physical property control types are the most diverse.
  • a first aspect of the present invention provides a zoom liquid lens based on magnetic field regulation, which can realize focusing of the liquid lens only by adjusting the external magnetic field, and realizes the The focusing unit is completely separated for easy miniaturization.
  • a zoom liquid lens based on magnetic field regulation comprising:
  • a magnetic conductive layer which is attached to the lower surface of the bottom plate of the cylindrical cavity; the magnetic conductive layer is uniformly distributed with a magnetic field perpendicular to the bottom plate;
  • the nano-magnetic particles are grafted with functional groups and deposited on the upper surface of the base plate; the aggregate morphology of the nano-magnetic particles changes with the change of the magnetic field strength, so as to adjust the hydrophilic and hydrophobic properties of the upper surface of the base plate and achieve the purpose of zooming.
  • the magnetic particles under the action of a magnetic field, the magnetic particles form several aggregate arrays on the upper surface of the base plate. Due to the strength gradient of the magnetic field in the direction perpendicular to the base plate, the magnetic aggregates have a cone-like morphology.
  • the taper of the conical aggregate is regulated by the strength of the magnetic field. For example, by increasing the strength of the magnetic field, the taper of the conical aggregate becomes smaller, thereby increasing the actual contact area between the droplet and the bottom plate, and making the upper surface of the bottom plate appear hydrophilic to the liquid in contact with it. sex.
  • the taper of the conical magnetic particle aggregates can be adjusted so that the actual contact area of the liquid in contact with the upper surface of the base plate can be changed, so that the degree of hydrophilicity and hydrophobicity of the upper surface of the base plate can be changed, so as to realize the adjustment of the curvature of the liquid bead achieve zooming purpose.
  • the upper surface and the lower surface of the base plate are provided with light-transmitting regions at relative positions.
  • the light-transmitting area is used for light transmission. Due to the constraining effect of the magnetic yoke on the magnetic field lines, there is no magnetic field distribution in the central area of the base plate and no magnetic particles, forming a light-transmitting area where the light is not disturbed.
  • the bottom plate is made of transparent material.
  • the bottom plate is made of transparent material in order to ensure that light can pass through the light-transmitting area, so as to achieve amplification through droplets.
  • the top of the cylindrical cavity is further provided with a cover plate.
  • the cover plate is made of transparent material.
  • the advantage of this technical solution is that, in order to ensure that the light can pass through the lens, the magnification function can be realized through the droplet.
  • the aggregate morphology of the nanomagnetic particles changes, so that the actual contact area between the bottom plate and the droplet increases, and the properties of the bottom plate change from hydrophobic to hydrophilic, thereby reducing the size of the droplet and the bottom plate.
  • the contact angle of the droplet becomes smaller and the focal length becomes larger.
  • the advantages of the technical solution are that the principle is simple, the focusing is convenient and the efficiency is high.
  • the magnetic field strength is generated by an externally applied magnetic field.
  • the advantage of the above solution is that, by adjusting the focal length through the magnetic field, the lens part and the focusing part can be completely separated, the lens can be miniaturized, and the remote control focusing can be realized by applying an external magnetic field.
  • a second aspect of the present invention provides an optical magnifying instrument, which includes the above-mentioned zoom liquid lens based on magnetic field regulation.
  • the zoom liquid lens is completely separated from the focusing part, and the remote control focusing is realized by applying an external magnetic field.
  • Nano-scale magnetic particles have superparamagnetic properties and rapid magnetic response.
  • the arrangement of nano-magnetic particles can be adjusted according to the change of magnetic field strength, so as to realize the adjustment of the microstructure of the surface of the bottom plate, and then realize the adjustment of the hydrophilic and hydrophobic properties of the surface of the bottom plate, and realize the adjustment of the curvature of the liquid bead. achieve zooming purpose.
  • the lens part and the focusing part can be completely separated, the lens can be miniaturized, and the remote control focusing can be realized by applying an external magnetic field.
  • Existing similar liquid lenses all need to be powered, so there are extra wires or power supply parts.
  • FIG. 1 is a schematic structural diagram of a zoom liquid lens based on magnetic field regulation according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a zoom liquid lens based on magnetic field regulation according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the upper surface of a base plate according to an embodiment of the present invention.
  • Fig. 4 (a) is the arrangement form of magnetic nanoparticles on the upper surface of the bottom plate when the magnetic field strength of the embodiment of the present invention is B1;
  • Figure 4(b) is the state of the droplet when the magnetic field strength of the embodiment of the present invention is B1;
  • Figure 4(c) shows the arrangement of magnetic nanoparticles on the upper surface of the base plate when the magnetic field strength is B2 according to the embodiment of the present invention; wherein, B2>B1;
  • Fig. 4(d) is the state of the droplet when the magnetic field strength of the embodiment of the present invention is B2;
  • Figure 4(e) shows the arrangement of magnetic nanoparticles on the upper surface of the bottom plate when the magnetic field strength is B3 according to the embodiment of the present invention; wherein, B3>B2;
  • Fig. 4(f) is the state of the droplet when the magnetic field strength of the embodiment of the present invention is B3;
  • FIG. 5 is a schematic diagram of magnetic particles according to an embodiment of the present invention.
  • orientation or positional relationship is based on the orientation or positional relationship shown in the accompanying drawings, and is only a relational word determined for the convenience of describing the structural relationship of each component or element of the present invention, and does not specifically refer to any component or element in the present invention, and should not be construed as a reference to the present invention. Invention limitations.
  • This embodiment provides a zoom liquid lens based on magnetic field regulation, which can realize focusing of the liquid lens only by adjusting the external magnetic field, realizes complete separation of the lens from the focusing device, and facilitates miniaturization.
  • the zoom liquid lens based on magnetic field regulation of the present embodiment includes a cylindrical cavity 1, and the cylindrical cavity 1 is encapsulated with an incompatible first transparent liquid 3 and a second transparent liquid 4.
  • the bottom surface of the bottom plate 5 is affixed with a magnetic conductive layer, and the magnetic conductive layer is uniformly distributed with a magnetic field perpendicular to the bottom plate; the upper surface of the bottom plate 5 is deposited with nano-magnetic particles of grafted functional groups to show affinity to the second transparent liquid 4 sex.
  • the aggregate morphology of the nano-magnetic particles changes with the change of the magnetic field strength, so as to adjust the hydrophilic and hydrophobic properties of the upper surface of the base plate and achieve the purpose of zooming.
  • the magnetic particles under the action of a magnetic field, the magnetic particles form several aggregate arrays on the upper surface of the base plate. Due to the strength gradient of the magnetic field in the direction perpendicular to the base plate, the magnetic aggregates have a cone-like morphology.
  • the taper of the conical aggregate is regulated by the strength of the magnetic field. For example, by increasing the strength of the magnetic field, the taper of the conical aggregate becomes smaller, thereby increasing the actual contact area between the droplet and the bottom plate, and making the upper surface of the bottom plate appear hydrophilic to the liquid in contact with it. sex.
  • the taper of the conical magnetic particle aggregates can be adjusted so that the actual contact area of the liquid in contact with the upper surface of the base plate can be changed, so that the degree of hydrophilicity and hydrophobicity of the upper surface of the base plate can be changed, so as to realize the adjustment of the curvature of the liquid bead achieve zooming purpose.
  • a light-transmitting area is provided on the bottom plate of the cylindrical cavity.
  • the clear area is used to transmit light to realize the magnification function of the liquid lens.
  • One side of the light-passing area has no magnetic conductive layer, and the other side is not deposited with nano-magnetic particles. Due to the constraining effect of the magnetic yoke on the magnetic field lines, there is no magnetic field distribution in the central area of the base plate and thus no magnetic particles, forming a light-transmitting area where the light is not disturbed.
  • the bottom plate is made of transparent material.
  • the top of the cylindrical cavity is also provided with a cover plate.
  • the cover plate is made of transparent material.
  • the first transparent liquid may be oil
  • the second transparent liquid may be water
  • magnetic nanoparticles with a size less than 20 nm exhibit superparamagnetic properties, that is, they have a rapid magnetic response in a magnetic field, and their magnetism disappears when the magnetic field disappears.
  • Magnetic polymeric brushes usually perform a simple modification of magnetic nanoparticles. Functional polymer brushes were then grafted on the surface of magnetic nanoparticles by different methods.
  • f the focal length of the lens
  • f the focal length of the lens
  • r the radius of curvature of the lens (for example: the radius of curvature of water droplets)
  • n' the refractive index of the lens material (for example: the refractive index of water)
  • n the refractive index of the medium (eg, the refractive index of oil).
  • an ordered micro-nano-scale array is formed on the upper surface of the base plate 5 as shown in FIG. 3 .
  • a layer of magnetic conductive material is pasted on the lower surface of the bottom plate 5 outside the light-transmitting area as a magnetic yoke.
  • the magnetic yoke acts as a constraining magnetic field line. The magnetic field is evenly distributed where the magnetic yoke is attached to the surface of the bottom plate. There is no magnetic yoke in the light-passing area, so there is no magnetic field, so there is no magnetic particle distribution.
  • is the apparent contact angle of the rough surface
  • ⁇ e is the intrinsic contact angle (Young's contact angle) of the flat surface
  • r is the roughness factor (equal to the ratio of the actual contact area of the solid-liquid interface to the imaginary contact area, r ⁇ 1)
  • the arrangement shape of the magnetic particles changes, which increases the actual contact area between the bottom plate and the droplet, thereby reducing the contact angle between the droplet and the bottom plate, the droplet curvature becomes smaller, and the focal length becomes larger.
  • the magnetic field strength can be generated by an externally applied magnetic field.
  • the lens part and the focusing part can be completely separated, the lens can be miniaturized, and the remote control focusing can be realized by applying an external magnetic field.
  • the cylindrical cavity is made of black POM plastic, the outer diameter is 8mm, the inner diameter is 7mm, and the height is 3mm.
  • the upper and lower cover plates are made of optical glass plates, with a thickness of 0.5mm and a diameter of 1mm in the light-transmitting area.
  • the transparent liquid 3 is colorless transparent silicone oil, the refractive index is 1.65, and the Abbe number is 62.8.
  • the transparent liquid 4 is an aqueous NaCl solution, the refractive index is 1.33, and the Abbe number is 55.8.
  • the magnetic particles are Fe 3 O 4 nanoparticles grafted with hydrophilic functional groups, and the magnetic field is provided by an electrified coil with a diameter of 2 cm and a number of turns of 100, located 5 cm below the lens.
  • a layer of soft iron with a thickness of 0.2mm is attached to the bottom surface of the bottom plate except for the light-transmitting area as a magnetic yoke.
  • the apparent contact angle of the droplet 4 on the base plate 5 is about 80 degrees, and the focal length of the lens is about 6.35 mm.
  • the apparent contact angle is about 20 degrees and the lens focal length is about 18.27 mm.
  • the focal length adjustment range is (6.35mm, 18.27mm).
  • This embodiment also provides an optical magnifying instrument, which includes the above-mentioned zoom liquid lens based on magnetic field regulation.
  • the zoom liquid lens is completely separated from the focusing part, and remote control focusing is realized by applying an external magnetic field.
  • optical magnifying instrument may be other optical magnifying instruments such as medical device endoscopes and microscopes.
  • the micro-nano structure of the contact surface is adjusted by the magnetic field, the actual contact area between the bottom plate and the droplet is changed, the contact angle is adjusted, and the curvature of the droplet is adjusted to achieve the purpose of zooming.
  • the focal length is adjusted by the magnetic field, so that the lens part and the focusing part can be completely separated, the lens can be miniaturized, and the remote control focusing can be realized by applying an external magnetic field.
  • Existing similar liquid lenses all need to be powered, so there are extra wires or power supply parts.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Lenses (AREA)

Abstract

一种基于磁场调控的变焦液体透镜及光学放大仪器,属于液体透镜领域。其中,基于磁场调控的变焦液体透镜包括柱形腔体(1),其内封装有不相溶的两种透明液体(3,4);导磁层,其贴设在柱形腔体(1)的底板(5)下表面;导磁层上均布有垂直于底板(5)的磁场;纳米磁性颗粒,其接枝功能基团且沉积在底板(5)上表面;纳米磁性颗粒的聚集体形态随着磁场强度的变化而变化,以调节底板(5)上表面的亲疏水性质,实现变焦的目的。

Description

一种基于磁场调控的变焦液体透镜及光学放大仪器 技术领域
本发明属于液体透镜领域,尤其涉及一种基于磁场调控的变焦液体透镜及光学放大仪器。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
传统固体透镜调焦只能通过改变透镜相对位置实现,造成镜头组有复杂的机械装置,操作不灵便、制作成本高。液体自变焦透镜是通过改变曲率,折射率等自身参数实现焦距调节的目的,易于微型化,轻便化。由于液体透镜基于液体表面张力的变化,液体表面的平滑度远远大于传统透镜的机械加工精度,其表面粗糙度在1nm以下,故有好的表面精度。
现有的液体透镜封装两种液体,上部浅色为油下部深色为水。现有的调焦的方法包括通过电磁线圈控制薄片的上下运动,调节液-液接触面曲率实现调焦,该方法的缺点是透镜构成复杂,难以精确操作。另一种是通过电流改变圆柱形腔体内壁与水的接触角,调节液-液接触面曲率实现调焦,其缺点是需要电源通过电线连接透镜,不利于透镜微型化。
现有液体自变焦透镜主要包括物性控制式如基于电润湿原理和机械驱动式如基于静电力,压力调节,其中以物性控制式种类最多。发明人发现,现有液体透镜调焦大多数直接或间接由电压电流控制,均无法做到非接触调焦。
发明内容
为了解决上述背景技术中存在的至少一项技术问题,本发明的第一个方面提供一种基于磁场调控的变焦液体透镜,其只需调节外部磁场即可实现液体透镜调焦,实现了透镜与调焦装置完全分离,便于微型化。
为了实现上述目的,本发明采用如下技术方案:
一种基于磁场调控的变焦液体透镜,包括:
柱形腔体,其内封装有不相溶的两种透明液体;
导磁层,其贴设在柱形腔体的底板下表面;所述导磁层上均布有垂直于底板的磁场;
纳米磁性颗粒,其接枝功能基团且沉积在底板上表面;所述纳米磁性颗粒的聚集体形态随着磁场强度的变化而变化,以调节底板上表面的亲疏水性质,实现变焦的目的。
其中,在磁场作用下磁性颗粒在底板上表面组成若干个聚集体阵列。由于磁场在垂直于底板方向上存在强度梯度,磁性聚集体呈锥状形态。锥形聚集体的锥度受磁场强度的调控,比如增强磁场强度,锥形聚集体的锥度变小,从而增大液滴与底板实际接触面积,使底板上表面对与其接触的液体表现为亲水性。因此,通过调节外加磁场的强度,可以调节锥形磁性颗粒聚集体的锥度从而可以改变底板上表面与其接触的液体的实际接触面积,使得底板上表面的亲疏水程度改变,从而实现液珠曲率调节达到变焦目的。
作为一种实施方式,所述底板的上表面和下表面相对位置均设有通光区域。
作为一种实施方式,所述通光区域的一侧无导磁层,另一侧未沉积有纳米磁性颗粒。
其中,通光区域用于透光,由于磁轭对磁场线的约束作用,使得底板中心 区域没有磁场分布从而没有磁性颗粒,形成了一个光线不被干扰的透光区域。
作为一种实施方式,所述底板为透明材质。
该技术方案的优点在于,底板为透明材质目的是为了保障光线能够从通光区域通过,从而经过液滴实现放大。
作为一种实施方式,所述柱形腔体的顶部还设有盖板。
作为一种实施方式,所述盖板为透明材质。
该技术方案的优点在于,为了保证光线可以通过透镜,从而经过液滴实现放大功能。
作为一种实施方式,随着磁场增强,纳米磁性颗粒的聚集体形态发生改变,使得底板与液滴的实际接触面积增大,底板性质由疏水向亲水变化,从而减小了液滴与底板的接触角,液滴曲率变小,焦距变大。
该技术方案的优点在于,其原理简单且调焦方便且效率高。作为一种实施方式,所述磁场强度由外加磁场产生。上述方案的优点在于,通过磁场调节焦距,可以做到透镜部分和调焦部分完全分离,透镜可以做到微小化,通过外加磁场实现远距离遥控调焦。
本发明的第二个方面提供一种光学放大仪器,其包括如上述所述的基于磁场调控的变焦液体透镜。
作为一种实施方式,所述变焦液体透镜与调焦部分完全分离,通过外加磁场实现远距离遥控调焦。
本发明的有益效果是:
(1)通过磁场调节接触面微纳米结构,纳米级磁性颗粒能够适用于小体积的液体透镜。纳米级磁性颗粒具有超顺磁性,磁响应迅速,可以根据磁场强度 变化调节纳米磁性颗粒的排列形态,实现底板表面微结构的调节,进而实现底板表面亲疏水性质的调节,实现液珠曲率调节从而达到变焦目的。
(2)通过磁场调节焦距,可以做到透镜部分和调焦部分完全分离,透镜可以做到微小化,通过外加磁场实现远距离遥控调焦。现有类似液体透镜均需通电,从而多出导线或电源部分。
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明实施例的基于磁场调控的变焦液体透镜结构示意图;
图2是本发明实施例的基于磁场调控的变焦液体透镜立体图;
图3是本发明实施例的底板上表面示意图;
图4(a)是本发明实施例的磁场强度为B1时底板上表面磁性纳米粒子排列形态;
图4(b)是本发明实施例的磁场强度为B1时液滴状态;
图4(c)是本发明实施例的磁场强度为B2时底板上表面磁性纳米粒子排列形态;其中,B2>B1;
图4(d)是本发明实施例的磁场强度为B2时液滴状态;
图4(e)是本发明实施例的磁场强度为B3时底板上表面磁性纳米粒子排列形态;其中,B3>B2;
图4(f)是本发明实施例的磁场强度为B3时液滴状态;
图5是本发明实施例的磁性颗粒示意图。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本发明中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本发明各部件或元件结构关系而确定的关系词,并非特指本发明中任一部件或元件,不能理解为对本发明的限制。
本发明中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本发明中的具体含义,不能理解为对本发明的限制。
本实施例提供了一种基于磁场调控的变焦液体透镜,其只需调节外部磁场即可实现液体透镜调焦,实现了透镜与调焦装置完全分离,便于微型化。
参照图1和图2,本实施例的基于磁场调控的变焦液体透镜,包括柱形腔体 1,柱形腔体1内封装有不相溶的第一透明液体3和第二透明液体4。
底板5下表面贴设有导磁层,导磁层均布有垂直于底板的磁场;底板5上表面沉积有接枝功能基团的纳米磁性颗粒,以对第二透明液体4表现为亲和性。
其中,纳米磁性颗粒的聚集体形态随着磁场强度的变化而变化,以调节底板上表面的亲疏水性质,实现变焦的目的。
其中,在磁场作用下磁性颗粒在底板上表面组成若干个聚集体阵列。由于磁场在垂直于底板方向上存在强度梯度,磁性聚集体呈锥状形态。锥形聚集体的锥度受磁场强度的调控,比如增强磁场强度,锥形聚集体的锥度变小,从而增大液滴与底板实际接触面积,使底板上表面对与其接触的液体表现为亲水性。因此,通过调节外加磁场的强度,可以调节锥形磁性颗粒聚集体的锥度从而可以改变底板上表面与其接触的液体的实际接触面积,使得底板上表面的亲疏水程度改变,从而实现液珠曲率调节达到变焦目的。
在具体实施中,所述柱形腔体的底板上设有通光区域。通光区域用于透光,以实现液体透镜放大的功能。
所述通光区域的一侧无导磁层,另一侧未沉积有纳米磁性颗粒。由于磁轭对磁场线的约束作用,使得底板中心区域没有磁场分布从而没有磁性颗粒,形成了一个光线不被干扰的透光区域。
为了保障光线能够从通光区域通过,从而经过液滴实现放大,所述底板为透明材质。所述柱形腔体的顶部还设有盖板。所述盖板为透明材质。
需要说明的是,第一透明液体可为油,第二透明液体可为水。本领域技术人员也可根据实际情况来具体设置。
如图5所示,一般认为尺寸小于20nm的磁性纳米粒子会表现出超顺磁性, 即在磁场中具有快速的磁响应,当磁场消失后其磁性又随之消失。磁性聚合刷通常对磁性纳米粒子进行一个简单的修饰。然后通过不同的方法将功能性聚合物刷接枝在磁性纳米粒子的表面。
透镜焦距计算公式:f=r/(n’-n),f为透镜焦距,r为透镜曲率半径(例如:水滴曲率半径),n’为透镜材质的折射率(例如:水折射率),n为介质折射率(例如:油的折射率)。
在具体实施中,当底板5处于垂直磁场中时,由于纳米级磁性颗粒具有超顺磁性沿磁感线排列,在底板5上表面形成一个有序的微纳米级阵列如图3所示。为保证磁性粒子不遮挡通光区域,在底板5下表面通光区域以外处贴有一层导磁材料作为磁轭。磁轭起约束磁感线作用,底板表面贴有磁轭的地方均匀分布磁场,通光区域处无磁轭因此无磁场,从而没有磁性颗粒分布。
根据Wenzel方程,
cosθ=r·cosθ e
式中θ为粗糙表面的表观接触角,θ e为平坦表面的本征接触角(杨氏接触角),r为粗糙因子(等于固—液界面实际接触面积与假想接触面积之比,r≥1),由此式可知,对于原本亲水的表面(θ e<90°),r越大则θ越小。即增大表面实际接触面积,将会减小固体表面的表观接触角。
随着磁场强度增加,微粒排列形态改变,透明液体4与底板5上表面实际接触面积增大,使得底板性质由疏水向亲水变化,接触角减小。因此可以通过改变磁场强度改变透明液体4的曲率,实现透镜焦距的调节。磁性颗粒在不同强度磁场中的排列形态如图4(a)-图4(f)所示。
随着磁场增强,磁性颗粒排列形态发生改变,增大了底板与液滴的实际接 触面积,从而减小了液滴与底板的接触角,液滴曲率变小,焦距变大。
在本实施例中,磁场强度可由外加磁场产生。通过磁场调节焦距,可以做到透镜部分和调焦部分完全分离,透镜可以做到微小化,通过外加磁场实现远距离遥控调焦。
下面给出具体实施例:圆柱形腔体为黑色POM塑料,外直径为8mm,内直径为7mm,高度为3mm。上下盖板材质均为光学玻璃板,厚度为0.5mm,通光区域直径为1mm。透明液体3为无色透明硅油,折射率为1.65,阿贝数为62.8。透明液体4为NaCl水溶液,折射率为1.33,阿贝数为55.8。磁性颗粒采用接枝亲水功能团的Fe 3O 4纳米颗粒,磁场由处在透镜下方5cm处的直径2cm,匝数为100圈的通电线圈提供。底板下表面除通光区域外,贴一层厚度为0.2mm的软铁作为磁轭。
当无磁场时,液滴4在底板5上的表观接触角约为80度,透镜焦距约为6.35mm。当磁场接近饱和时,表观接触角为约为20度,透镜焦距约为18.27mm。焦距调节范围为(6.35mm,18.27mm)。
本实施例还提供了一种光学放大仪器,其包括如上述所述的基于磁场调控的变焦液体透镜。
其中,所述变焦液体透镜与调焦部分完全分离,通过外加磁场实现远距离遥控调焦。
需要说明的是,光学放大仪器可以为医疗器械内窥镜、显微镜等其他光学放大仪器。
本实施例通过磁场调节接触面微纳米结构,改变底板与液滴的实际接触面积,调节接触角,实现液珠曲率调节从而达到变焦目的。
本实施例通过磁场调节焦距,可以做到透镜部分和调焦部分完全分离,透镜可以做到微小化,通过外加磁场实现远距离遥控调焦。现有类似液体透镜均需通电,从而多出导线或电源部分。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于磁场调控的变焦液体透镜,其特征在于,包括:
    柱形腔体,其内封装有不相溶的两种透明液体;
    导磁层,其贴设在柱形腔体的底板下表面;所述导磁层上均布有垂直于底板的磁场;
    纳米磁性颗粒,其接枝功能基团且沉积在底板上表面;所述纳米磁性颗粒的聚集体形态随着磁场强度的变化而变化,以调节底板上表面的亲疏水性质,实现变焦的目的。
  2. 如权利要求1所述的基于磁场调控的变焦液体透镜,其特征在于,所述底板的上表面和下表面相对位置均设有通光区域。
  3. 如权利要求2所述的基于磁场调控的变焦液体透镜,其特征在于,所述通光区域的一侧无导磁层,另一侧未沉积有纳米磁性颗粒。
  4. 如权利要求1所述的基于磁场调控的变焦液体透镜,其特征在于,所述底板为透明材质。
  5. 如权利要求1所述的基于磁场调控的变焦液体透镜,其特征在于,所述柱形腔体的顶部还设有盖板。
  6. 如权利要求5所述的基于磁场调控的变焦液体透镜,其特征在于,所述盖板为透明材质。
  7. 如权利要求1所述的基于磁场调控的变焦液体透镜,其特征在于,随着磁场增强,纳米磁性颗粒的聚集体形态发生改变,使得底板与液滴的实际接触面积增大,底板性质由疏水向亲水变化,从而减小了液滴与底板的接触角,液滴曲率变小,焦距变大。
  8. 如权利要求1所述的基于磁场调控的变焦液体透镜,其特征在于,所述 磁场强度由外加磁场产生。
  9. 一种光学放大仪器,其特征在于,包括如权利要求1-8中任一项所述的基于磁场调控的变焦液体透镜。
  10. 如权利要求9所述的光学放大仪器,其特征在于,所述变焦液体透镜与调焦部分完全分离,通过外加磁场实现远距离遥控调焦。
PCT/CN2020/136504 2020-11-02 2020-12-15 一种基于磁场调控的变焦液体透镜及光学放大仪器 WO2022088423A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022522319A JP7361321B2 (ja) 2020-11-02 2020-12-15 磁場調整に基づくズーム液体レンズ及び光学倍率計

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011204120.5 2020-11-02
CN202011204120.5A CN112255713B (zh) 2020-11-02 2020-11-02 一种基于磁场调控的变焦液体透镜及光学放大仪器

Publications (1)

Publication Number Publication Date
WO2022088423A1 true WO2022088423A1 (zh) 2022-05-05

Family

ID=74267533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136504 WO2022088423A1 (zh) 2020-11-02 2020-12-15 一种基于磁场调控的变焦液体透镜及光学放大仪器

Country Status (3)

Country Link
JP (1) JP7361321B2 (zh)
CN (1) CN112255713B (zh)
WO (1) WO2022088423A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1465996A (zh) * 2002-07-05 2004-01-07 思考电机(上海)有限公司 透镜驱动装置
CN1701477A (zh) * 2002-02-13 2005-11-23 皇家飞利浦电子股份有限公司 集成半导体光学设备以及制造该设备的方法和装置
JP2006208661A (ja) * 2005-01-27 2006-08-10 Tdk Corp 流動体レンズ
CN201331592Y (zh) * 2008-11-21 2009-10-21 康佳集团股份有限公司 磁控变焦液体镜头
CN109206652A (zh) * 2018-09-05 2019-01-15 吉林大学 能实现润湿性转换的智能表面构建方法及其所用的装置
CN109884789A (zh) * 2019-03-27 2019-06-14 四川大学 一种基于电磁驱动的变焦液体透镜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0423564D0 (en) * 2004-06-01 2004-11-24 Koninkl Philips Electronics Nv Optical element
KR20070087214A (ko) 2004-12-27 2007-08-27 코닌클리케 필립스 일렉트로닉스 엔.브이. 수차 교정장치
JP2006208662A (ja) * 2005-01-27 2006-08-10 Tdk Corp 流動体反射鏡及びこれを用いた照明装置、並びに、流動体反射鏡を用いた反射望遠鏡
CN101000385A (zh) * 2006-01-14 2007-07-18 鸿富锦精密工业(深圳)有限公司 一种可变焦透镜模组及采用该透镜模组的镜头模组
CN103235410A (zh) * 2013-03-29 2013-08-07 上海大学 磁流体变形镜装置
CN106501554B (zh) * 2016-11-16 2019-01-29 长春理工大学 一种搬移磁性纳米粒子的操纵方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701477A (zh) * 2002-02-13 2005-11-23 皇家飞利浦电子股份有限公司 集成半导体光学设备以及制造该设备的方法和装置
CN1465996A (zh) * 2002-07-05 2004-01-07 思考电机(上海)有限公司 透镜驱动装置
JP2006208661A (ja) * 2005-01-27 2006-08-10 Tdk Corp 流動体レンズ
CN201331592Y (zh) * 2008-11-21 2009-10-21 康佳集团股份有限公司 磁控变焦液体镜头
CN109206652A (zh) * 2018-09-05 2019-01-15 吉林大学 能实现润湿性转换的智能表面构建方法及其所用的装置
CN109884789A (zh) * 2019-03-27 2019-06-14 四川大学 一种基于电磁驱动的变焦液体透镜

Also Published As

Publication number Publication date
CN112255713B (zh) 2021-08-10
JP7361321B2 (ja) 2023-10-16
JP2023503537A (ja) 2023-01-31
CN112255713A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
US8570659B2 (en) Variable focus liquid lens
TWI292048B (en) Variable focus microlens
US9134568B2 (en) Varifocal lens
JP5581053B2 (ja) ポリマーレンズ
US20080252960A1 (en) Optical Element
JP2009505166A (ja) 可変なパワーの素子を有するズームレンズ系
JP2006285182A (ja) 可変焦点レンズ、および撮影装置
JP2007519973A (ja) 可変レンズ系
JP2009543152A (ja) ズーム光学系、並びにそれを備えたカメラ及びデバイス
TW200946951A (en) Image picking-up lens system and image picking-up device using the same
CN109031651B (zh) 一种高光焦度的电润湿液体透镜
EP2598924A2 (en) Reconfigurable, non-oscillating liquid lens and imaging systems
TW201109716A (en) Micro miniature fixed-focus lens
JP2007057843A (ja) 光学素子
US8587874B2 (en) Fluid Pressure Liquid Lens
An et al. Spherically encapsulated variable liquid lens on coplanar electrodes
WO2022088423A1 (zh) 一种基于磁场调控的变焦液体透镜及光学放大仪器
CN109031483A (zh) 一种基于电湿润活塞的液体透镜
TWI302610B (en) Camera zoom module for portable device
CN201340503Y (zh) 一种混合型电控液晶变焦透镜
WO2023010350A1 (zh) 变焦成像镜头、摄像装置及电子设备
CN210323559U (zh) 基于微球的透射式高分辨显微成像系统
CN109765740B (zh) 一种基于液滴分离的光流控透镜
CN109143425A (zh) 一种用于采集光场影像的微透镜阵列结构
KR20090053838A (ko) 가변 포커스 줌 렌즈

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022522319

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959581

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.11.2023)