WO2022088105A1 - 一种通信方法、装置及计算机可读存储介质 - Google Patents

一种通信方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2022088105A1
WO2022088105A1 PCT/CN2020/125546 CN2020125546W WO2022088105A1 WO 2022088105 A1 WO2022088105 A1 WO 2022088105A1 CN 2020125546 W CN2020125546 W CN 2020125546W WO 2022088105 A1 WO2022088105 A1 WO 2022088105A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
uplink
frequency
downlink
Prior art date
Application number
PCT/CN2020/125546
Other languages
English (en)
French (fr)
Inventor
宣一荻
谢信乾
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/125546 priority Critical patent/WO2022088105A1/zh
Priority to CN202080105974.XA priority patent/CN116326051A/zh
Priority to EP20959266.6A priority patent/EP4228356A4/en
Publication of WO2022088105A1 publication Critical patent/WO2022088105A1/zh
Priority to US18/307,301 priority patent/US20230262673A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method, an apparatus, and a computer-readable storage medium.
  • duplex modes in wireless communication systems, such as time division duplex (TDD) and frequency division full duplex (full-duplex frequency division duplex, full-duplex FDD).
  • TDD time division duplex
  • FDD full-duplex frequency division duplex
  • uplink and downlink resources can be configured in units of time slots and symbols.
  • full-duplex FDD scenario if the uplink and downlink resources are configured in units of time slots and symbols, the requirements for configuring uplink and downlink resources in the same carrier at the same time cannot be satisfied, that is, the simultaneous uplink and downlink communication in the same carrier cannot be satisfied. demand.
  • the present application provides a communication method, apparatus, and computer-readable storage medium, which can implement uplink and downlink communication for terminal devices in the same carrier at the same time in a full-duplex FDD scenario.
  • the present application provides a communication method, which can be applied to a terminal device, and can also be applied to a module (eg, a chip) in the terminal device.
  • the following description takes the application to the terminal device as an example.
  • the communication method may be used to determine uplink and downlink resources, and may include: receiving first indication information from a network device, where the first indication information is used to indicate a first uplink frequency domain resource, a second uplink frequency domain resource on a carrier in a first time period frequency domain resources and first downlink frequency domain resources, the first time period includes one or more time slots, wherein the frequency of the first uplink frequency domain resource is less than the frequency of the first downlink frequency domain resource , the frequency of the second uplink frequency domain resource is greater than the frequency of the first downlink frequency domain resource; or, the sequence number of any frequency domain resource block in the first uplink frequency domain resource is smaller than that of the first downlink frequency domain resource.
  • the sequence number of any frequency domain resource block in the line frequency domain resources, the sequence number of any frequency domain resource block in the second uplink resource is greater than the sequence number of any frequency domain resource block in the downlink frequency domain resources;
  • the first indication information determines the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier.
  • the terminal device may receive first indication information from the network device, and the first indication information may indicate the first uplink frequency domain resource, the second Uplink frequency domain resources and first downlink frequency domain resources. After receiving the first indication information, the terminal device may determine the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier according to the first indication information. In this way, in the full-duplex FDD scenario, the terminal device can determine the uplink and downlink resources in the same carrier at the same time, and in the full-duplex FDD scenario, the terminal device can perform uplink and downlink communication in the same carrier at the same time.
  • the first indication information may indicate the frequency domain resource configuration of a certain carrier within a time period
  • the frequency domain of the carrier may be preset in advance
  • the first time period may include one or more time slots .
  • the first uplink frequency domain resource may include a frequency domain resource block with the smallest frequency or the smallest sequence number in the carrier
  • the second uplink frequency domain resource may include a frequency domain resource block with the largest frequency or the largest sequence number in the carrier.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first downlink frequency domain resource and the maximum frequency of the first downlink frequency domain resource and The difference between the minimum frequencies of the second uplink frequency domain resources is equal.
  • the maximum frequency of the frequency domain resources can be understood as the frequency corresponding to the subcarrier with the largest frequency in the frequency domain resources; the minimum frequency of the frequency domain resources can be understood as the frequency of the frequency domain resources with the smallest frequency.
  • the frequency corresponding to the subcarrier can be understood as the frequency corresponding to the subcarrier.
  • the maximum frequency of the first uplink frequency domain resource can be understood as the frequency corresponding to the subcarrier with the largest frequency in the first uplink frequency domain resource; the minimum frequency of the first downlink frequency domain resource can be understood as the first The frequency corresponding to the subcarrier with the smallest frequency in the downlink frequency domain resource; the maximum frequency of the first downlink frequency domain resource can be understood as the frequency corresponding to the subcarrier with the largest frequency in the first downlink frequency domain resource; the second uplink frequency The minimum frequency of the frequency domain resource can be understood as the frequency corresponding to the subcarrier with the smallest frequency in the second uplink frequency domain resource.
  • the subcarrier interval used for measurement may be a predefined subcarrier interval.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first downlink frequency domain resource and the difference between the maximum frequency of the first downlink frequency domain resource and the minimum frequency of the second uplink frequency domain resource are equal. It is understood that the frequency domain interval between the first uplink frequency domain resource and the first downlink frequency domain resource is equal to the frequency domain interval between the second uplink frequency domain resource and the first downlink frequency domain resource.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource may be equal to the number of frequency domain resource blocks in the second uplink frequency domain resource, so that the first indication information can only be used to indicate the first
  • the terminal device can determine the number of frequency domain resource blocks in the first uplink frequency domain resource and the number of frequency domain resource blocks in the first uplink frequency domain resource and the number of frequency domain resource blocks in the first uplink frequency domain resource. Second, the number of frequency domain resource blocks in the uplink frequency domain resources, so that signaling overhead can be reduced.
  • the first indication information includes a first field and a second field, and the first field indicates a frequency in the first uplink frequency domain resource or the second uplink frequency domain resource The number of domain resource blocks, the second field indicates the number of frequency domain resource blocks in the first downlink frequency domain resource.
  • the network device may indicate the terminal device through two fields, that is, the first indication information may include a first field and a second field. Since the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource, the first field only needs to indicate the first uplink frequency domain resource or the second uplink frequency domain resource the number of frequency-domain resource blocks in the first field, the terminal device can determine the number of frequency-domain resource blocks in the first uplink frequency-domain resource and the number of frequency-domain resource blocks in the second uplink frequency-domain resource through the first field; The field may indicate the number of frequency domain resource blocks in the first downlink frequency domain, and the terminal device may determine the number of frequency domain resource blocks in the first downlink frequency domain resource through the second field, thereby reducing signaling overhead.
  • the determining the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier according to the first indication information includes: according to the The first field determines the first uplink frequency domain resource and the second uplink frequency domain resource, wherein the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier, and the second uplink frequency domain
  • the maximum frequency of the domain resource is the maximum frequency of the carrier; the first downlink frequency domain resource is determined according to the second field, and the center frequency of the first downlink frequency domain resource is the center frequency of the carrier.
  • a certain carrier may be preset in advance, and the terminal device may determine the number of frequency domain resource blocks in the first uplink frequency domain resource and the frequency domain in the second uplink frequency domain resource through the first field.
  • the number of frequency domain resource blocks, the number of frequency domain resource blocks in the first downlink frequency domain resource can also be determined through the second field, the frequency of the first uplink frequency domain resource is less than the frequency of the first downlink frequency domain resource, the second The frequency of the uplink frequency domain resource is greater than the frequency of the first downlink frequency domain resource.
  • the terminal device can determine that the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier, and the maximum frequency of the second uplink frequency domain resource is the maximum frequency of the carrier, because the first downlink frequency domain resource is in the first In the middle of the uplink frequency domain resource and the second uplink frequency domain resource, the frequency domain distance between the first uplink frequency domain resource and the first downlink frequency domain resource, and the frequency domain between the second uplink frequency domain resource and the first downlink frequency domain resource If the distances are equal, and the frequency domain length of the carrier is set in advance, it can be determined that the center frequency of the first downlink frequency domain resource is the center frequency of the carrier.
  • the frequency domain resource configuration pattern may be a symmetrical pattern, that is, the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource are symmetrical with the center frequency of the first downlink frequency domain resource.
  • the network device can only indicate the frequency domain resource configuration of half of the pattern through the first indication information, and the terminal device can determine the configuration of all uplink and downlink resources of the carrier, thereby reducing signaling overhead.
  • the deviation between the frequency corresponding to the center frequency of the carrier and the minimum frequency on the carrier is equal to the deviation between the frequency corresponding to the center frequency of the carrier and the maximum frequency on the carrier.
  • the deviation between the frequency corresponding to the center frequency of the first downlink frequency domain resource and the minimum frequency of the first downlink frequency domain resource is equal to the difference between the frequency corresponding to the center frequency of the first downlink frequency domain resource and the first downlink frequency domain resource. Deviation value for maximum frequency.
  • the first time period includes a downlink time period in an uplink and downlink time slot format configured at the cell level.
  • the first time period may refer to a certain time period of a certain carrier in the time domain, and the first time period may be at least not less than the downlink time in the uplink and downlink time slot formats configured at the cell level period of time.
  • the first indication information can implement more flexible configuration of uplink and downlink resources.
  • the first indication information is carried in cell-specific signaling.
  • the first indication information may be carried in cell-specific signaling, and the network device may not need to use a separate signaling to send the first indication information to the terminal device, thereby reducing signaling overhead.
  • the present application provides a communication method, which can be applied to a network device, and can also be applied to a module (eg, a chip) in a network device.
  • the communication method may be used to determine uplink and downlink resources, and may include: determining first indication information, where the first indication information is used to indicate the first uplink frequency domain resource, the second uplink frequency domain resource and the a first downlink frequency domain resource, wherein the frequency of the first uplink frequency domain resource is less than the frequency of the downlink frequency domain resource, and the frequency of the second uplink frequency domain resource is greater than the frequency of the downlink frequency domain resource; Or the sequence number of any frequency domain resource block in the first uplink frequency domain resource is smaller than the sequence number of any frequency domain resource block in the first downlink frequency domain resource, and any frequency domain resource block in the second uplink resource.
  • the sequence number of the domain resource block is greater than the sequence number of any frequency domain resource block in the downlink frequency domain resources; and the first indication information is sent to the terminal device.
  • the network device may first determine the first indication information, and the first indication information may indicate the first uplink frequency domain resource and the second uplink frequency domain resource of the terminal device on a certain carrier within the first time period. resource and the first downlink frequency domain resource, and then send the first indication information to the terminal device.
  • the terminal device After the terminal device receives the first indication information, it can determine, according to the first indication information, the The first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource. In this way, in the full-duplex FDD scenario, the terminal device can determine the uplink and downlink resources in the same carrier at the same time, and in the full-duplex FDD scenario, the terminal device can perform uplink and downlink communication in the same carrier at the same time.
  • the first indication information may indicate the frequency domain resource configuration of a certain carrier within a time period
  • the frequency domain of the carrier may be preset in advance
  • the first time period may include one or more time slots .
  • the execution subject of the second aspect is a network device
  • the specific content of the second aspect corresponds to the content of the first aspect
  • the corresponding features and beneficial effects of the second aspect can refer to the description of the first aspect. To avoid repetition, this The detailed description is appropriately omitted here.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first downlink frequency domain resource and the maximum frequency of the first downlink frequency domain resource and The difference between the minimum frequencies of the second uplink frequency domain resources is equal.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information includes a first field and a second field, and the first field indicates a frequency in the first uplink frequency domain resource or the second uplink frequency domain resource The number of domain resource blocks, the second field indicates the number of frequency domain resource blocks in the first downlink frequency domain.
  • the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier, and the maximum frequency of the second uplink frequency domain resource is the maximum frequency of the carrier;
  • the center frequency of the downlink frequency domain resource is the center frequency of the carrier.
  • the first time period includes a downlink time period in an uplink and downlink time slot format configured at the cell level.
  • the first indication information is carried in cell-specific signaling.
  • the present application provides a communication method, which can be applied to a terminal device, and can also be applied to a module (eg, a chip) in the terminal device.
  • the following description takes the application to the terminal device as an example.
  • the communication method may be used to determine uplink and downlink resources, and may include: receiving first indication information from a network device, where the first indication information is used to indicate a first uplink frequency domain resource and/or a first uplink frequency domain resource on a carrier within a first time period Two uplink frequency domain resources, wherein the maximum frequency of the first uplink frequency domain resource is less than the minimum frequency of the first frequency domain resource, and the minimum frequency of the second uplink frequency domain resource is greater than the maximum frequency of the first frequency domain resource frequency, the first uplink frequency domain and/or the second uplink frequency domain resource and the first frequency domain resource belong to the same frequency band; the first uplink frequency domain resource and/or the first uplink frequency domain resource are determined according to the first indication information. /or the second uplink frequency domain resource.
  • the first frequency domain resource configuration may be configured in a TDD time slot format for uplink communication and downlink communication.
  • the first uplink frequency domain resource and/or the second uplink frequency domain resource may be added on the basis of the first frequency domain resource configuration, wherein the maximum frequency of the first uplink frequency domain resource may be smaller than the minimum frequency of the first frequency domain resource , the minimum frequency of the second uplink frequency domain resource may be greater than the maximum frequency of the first frequency domain resource.
  • the network device can send the first indication information to the terminal device, where the first indication information is used to indicate the first uplink frequency domain resource and/or the second uplink frequency domain resource on the carrier within the first time period, and the terminal After the indication information, the first uplink frequency domain resource and/or the second uplink frequency domain resource may be determined.
  • the solution provided by the present application can additionally add first indication information on the basis of the signaling of the first frequency domain resource configured in the time slot format of TDD, and the first indication information indicates the first uplink added on the basis of the first frequency domain resource frequency domain resources and/or second uplink frequency domain resources.
  • the terminal device can determine the uplink and downlink resources in the same carrier at the same time, and in the full-duplex FDD scenario, the terminal device can perform uplink and downlink communication in the same carrier at the same time.
  • the frequency band may be a predefined frequency range.
  • the first uplink frequency domain resource may include a frequency domain resource block with the smallest frequency or the smallest sequence number in the carrier, and the second uplink frequency domain resource may include a frequency domain resource block with the largest frequency or the largest sequence number in the carrier.
  • the communication method may further include: receiving second indication information from a network device, where the second indication information is used to indicate a second time period and a third time period, in the second time period
  • the first frequency domain resources are downlink frequency domain resources in the time period
  • the first frequency domain resources are uplink frequency domain resources in the third time period
  • the first time period includes the second time period , the first frequency domain resource is predetermined.
  • the network device may also send second indication information to the terminal device, and the second indication information may indicate the second time period and the third time period. It can be understood that the second indication information indicates the first time period.
  • the downlink symbol and uplink symbol corresponding to the frequency domain resource, the second indication information indicates to the terminal equipment that the first frequency domain resource is the downlink frequency domain resource in the second time period, and the first frequency domain resource is the uplink frequency domain resource in the third time period. domain resources.
  • the first frequency domain resource may be indicated by other indication information, or may be preset.
  • the first period of time may include at least the second period of time, that is, the first period of time may include the second period of time, and may also include the second period of time and the third period of time.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first frequency domain resource and the maximum frequency of the first frequency domain resource and the second The difference between the minimum frequencies of the uplink frequency domain resources is equal.
  • the maximum frequency of the frequency domain resources can be understood as the frequency corresponding to the subcarrier with the largest frequency in the frequency domain resources; the minimum frequency of the frequency domain resources can be understood as the frequency of the frequency domain resources with the smallest frequency.
  • the frequency corresponding to the subcarrier can be understood as the frequency corresponding to the subcarrier.
  • the maximum frequency of the first uplink frequency domain resource can be understood as the frequency corresponding to the subcarrier with the largest frequency in the first uplink frequency domain resource; the minimum frequency of the first downlink frequency domain resource can be understood as the first The frequency corresponding to the subcarrier with the smallest frequency in the downlink frequency domain resource; the maximum frequency of the first downlink frequency domain resource can be understood as the frequency corresponding to the subcarrier with the largest frequency in the first downlink frequency domain resource; the second uplink frequency The minimum frequency of the frequency domain resource can be understood as the frequency corresponding to the subcarrier with the smallest frequency in the second uplink frequency domain resource.
  • the subcarrier interval used for measurement may be a predefined subcarrier interval.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first frequency domain resource and the difference between the maximum frequency of the first frequency domain resource and the minimum frequency of the second uplink frequency domain resource are equal.
  • the frequency domain interval between an uplink frequency domain resource and the first frequency domain resource is equal to the frequency domain interval between the second uplink frequency domain resource and the first frequency domain resource.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource may be equal to the number of frequency domain resource blocks in the second uplink frequency domain resource, so that the first indication information can only be used to indicate the first
  • the terminal device can determine the number of frequency domain resource blocks in the first uplink frequency domain resource and the number of frequency domain resource blocks in the first uplink frequency domain resource and the number of frequency domain resource blocks in the first uplink frequency domain resource. Second, the number of frequency domain resource blocks in the uplink frequency domain resources, so that signaling overhead can be reduced.
  • the first indication information indicates the number of resource blocks in the first uplink frequency domain resource and/or the second uplink frequency domain resource.
  • the first indication information may indicate the number of resource blocks in the first uplink frequency domain resource, may also indicate the number of resource blocks in the second uplink frequency domain resource, and may also indicate the first uplink frequency The number of resource blocks in the domain resources and the number of resource blocks in the second uplink frequency domain resources.
  • the first indication information indicates the first uplink frequency domain resource and the second uplink frequency domain resource
  • the number of domain resource blocks the first indication information may only need to indicate the number of frequency domain resource blocks in one uplink frequency domain resource, that is, the number of frequency domain resource blocks in the first uplink frequency domain resource or the second uplink frequency domain.
  • the terminal device can determine the number of frequency domain resource blocks in the first uplink frequency domain resource and the number of frequency domain resource blocks in the second uplink frequency domain resource, which can reduce signaling overhead.
  • the determining the first uplink frequency domain resource and/or the second uplink frequency domain resource according to the first indication information includes: according to the first indication information and the first indication information A frequency domain interval, determining the first uplink frequency domain resource and/or the second uplink frequency domain resource, wherein the first frequency domain interval is predetermined, or according to the first frequency domain resource bandwidth is determined.
  • the terminal device may determine the first uplink frequency domain resource and/or the second uplink frequency domain resource according to the first indication information. Specifically, the first uplink frequency domain resource and/or the second uplink frequency domain resource may be determined according to the first indication information and the first frequency domain spacing.
  • the first frequency domain spacing may refer to the frequency domain spacing between the first uplink frequency domain resource and the first frequency domain resource, and the terminal device can use the frequency domain spacing according to the and the first indication information to determine the first uplink frequency domain resource; when the first indication information indicates the second uplink frequency domain resource, the first frequency domain spacing may refer to the second uplink frequency domain resource and the first frequency domain resource.
  • the terminal device can determine the second uplink frequency domain resource according to the frequency domain spacing and the first indication information; in the case that the first indication information indicates the first uplink frequency domain resource and the second uplink frequency domain resource, the first A frequency domain spacing may refer to the frequency domain spacing between the first uplink frequency domain resource and the first frequency domain resource and the frequency domain spacing between the second uplink frequency domain resource and the first frequency domain resource. and the two frequency domain distances to determine the first uplink frequency domain resource and the second uplink frequency domain resource. It should be understood that the first frequency domain spacing may be zero.
  • the first indication information and the second indication information are carried in cell-specific signaling.
  • the first indication information and the second indication information may be carried in cell-specific signaling, and the network device may not need to use a separate signaling to send the first indication information and/or the first indication information and/or the first indication information to the terminal device. Second indication information, thereby reducing signaling overhead.
  • the present application provides a communication method, which can be applied to a network device or a module (eg, a chip) in the network device.
  • the following description is described by taking the application to the network device as an example.
  • the communication method may be used to determine frequency domain resources, and may include: determining first indication information, where the first indication information is used to indicate a first uplink frequency domain resource and/or a second uplink frequency domain on a carrier within a first time period resources, wherein the maximum frequency of the first uplink frequency domain resource is less than the minimum frequency of the first frequency domain resource, the minimum frequency of the second uplink frequency domain resource is greater than the maximum frequency of the first frequency domain resource, the The first uplink frequency domain and/or the second uplink frequency domain resource and the first frequency domain resource belong to the same frequency band; and the first indication information is sent to the terminal device.
  • the network device may first determine the first indication information, and the first indication information may be used to indicate the first uplink frequency domain resource and/or the second uplink frequency domain resource on the carrier within the first time period, and then The first indication information is sent to the terminal device, and after receiving the first indication information, the terminal device can determine the first uplink frequency domain resource and/or the second uplink frequency domain resource.
  • the first indication information may be additionally added on the basis of the signaling of the first frequency domain resource configured in the time slot format of TDD, and used to indicate the first uplink frequency domain resource and/or the first uplink frequency domain resource added on the basis of the first frequency domain resource. or the second uplink frequency domain resource.
  • the minimum frequency of the first uplink frequency domain resource may be smaller than the maximum frequency of the first frequency domain resource, and the minimum frequency of the second uplink frequency domain resource may be greater than the maximum frequency of the first frequency domain resource.
  • the execution subject of the fourth aspect is a network device
  • the specific content of the fourth aspect corresponds to the content of the third aspect
  • the corresponding features of the fourth aspect and the beneficial effects achieved may refer to the description of the third aspect. To avoid repetition, this The detailed description is appropriately omitted here.
  • the communication method may further include: sending second indication information to the terminal device, where the second indication information is used to indicate the first frequency domain resource, the first frequency domain
  • the resources are downlink frequency domain resources in the second time period, and uplink frequency domain resources in the third time period, and the first time period includes the second time period.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first frequency domain resource and the maximum frequency of the first frequency domain resource and the second The difference between the minimum frequencies of the uplink frequency domain resources is equal.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information indicates the number of resource blocks in the first uplink frequency domain resource and/or the second uplink frequency domain resource.
  • the first indication information and the second indication information are carried in cell-specific signaling.
  • a communication apparatus may be a terminal device or a module (eg, a chip) in the terminal device.
  • the communication device may include:
  • a receiving unit configured to receive first indication information from a network device, where the first indication information is used to indicate the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain on the carrier within the first time period domain resources, the first time period includes one or more time slots, wherein the frequency of the first uplink frequency domain resource is less than the frequency of the first downlink frequency domain resource, and the second uplink frequency domain resource
  • the frequency of the first downlink frequency domain resource is greater than the frequency of the first downlink frequency domain resource; or the sequence number of any frequency domain resource block in the first uplink frequency domain resource is smaller than that of any frequency domain resource in the first downlink frequency domain resource.
  • the sequence number of the block, the sequence number of any frequency domain resource block in the second uplink resource is greater than the sequence number of any frequency domain resource block in the downlink frequency domain resource;
  • a determining unit configured to determine the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier according to the first indication information.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first downlink frequency domain resource and the maximum frequency of the first downlink frequency domain resource and The difference between the minimum frequencies of the second uplink frequency domain resources is equal.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information includes a first field and a second field, and the first field indicates a frequency in the first uplink frequency domain resource or the second uplink frequency domain resource The number of domain resource blocks, the second field indicates the number of frequency domain resource blocks in the first downlink frequency domain.
  • the determining unit determines, according to the first indication information, the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier, including: The first uplink frequency domain resource and the second uplink frequency domain resource are determined according to the first field, wherein the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier, and the second uplink frequency domain resource is the minimum frequency of the carrier.
  • the maximum frequency of the uplink frequency domain resource is the maximum frequency of the carrier; the first downlink frequency domain resource is determined according to the second field, and the center frequency of the first downlink frequency domain resource is the center of the carrier frequency.
  • the first time period includes a downlink time period in an uplink and downlink time slot format configured at the cell level.
  • the first indication information is carried in cell-specific signaling.
  • a communication apparatus may be a network device or a module (eg, a chip) in the network device.
  • the communication device may include:
  • a determining unit used for first indication information, where the first indication information is used to indicate the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier within the first time period, wherein, The frequency of the first uplink frequency domain resource is lower than the frequency of the downlink frequency domain resource, and the frequency of the second uplink frequency domain resource is greater than the frequency of the downlink frequency domain resource; or the first uplink frequency domain resource The sequence number of any one of the frequency-domain resource blocks in the The sequence number of any frequency domain resource block in the domain resource;
  • a sending unit configured to send the first indication information to the terminal device.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first downlink frequency domain resource and the maximum frequency of the first downlink frequency domain resource and The difference between the minimum frequencies of the second uplink frequency domain resources is equal.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information includes a first field and a second field, and the first field indicates a frequency in the first uplink frequency domain resource or the second uplink frequency domain resource The number of domain resource blocks, the second field indicates the number of frequency domain resource blocks in the first downlink frequency domain.
  • the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier, and the maximum frequency of the second uplink frequency domain resource is the maximum frequency of the carrier;
  • the center frequency of the downlink frequency domain resource is the center frequency of the carrier.
  • the first time period includes a downlink time period in an uplink and downlink time slot format configured at the cell level.
  • the first indication information is carried in cell-specific signaling.
  • a communication apparatus may be a terminal device or a module (for example, a chip) in the terminal device.
  • the communication device may include:
  • a first receiving unit configured to receive first indication information from a network device, where the first indication information is used to indicate the first uplink frequency domain resource and/or the second uplink frequency domain resource on the carrier within the first time period, wherein , the maximum frequency of the first uplink frequency domain resource is less than the minimum frequency of the first frequency domain resource, the minimum frequency of the second uplink frequency domain resource is greater than the maximum frequency of the first frequency domain resource, the first uplink frequency domain resource
  • the frequency domain and/or the second uplink frequency domain resource and the first frequency domain resource belong to the same frequency band;
  • a determining unit configured to determine the first uplink frequency domain resource and/or the second uplink frequency domain resource according to the first indication information.
  • the communication device may further include:
  • a second receiving unit configured to receive second indication information from a network device, where the second indication information is used to indicate a second time period and a third time period, and within the second time period, the first frequency domain
  • the resources are downlink frequency domain resources, the first frequency domain resources are uplink frequency domain resources in the third time period, the first time period includes the second time period, and the first frequency domain resources are predetermined.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first frequency domain resource and the maximum frequency of the first frequency domain resource and the second The difference between the minimum frequencies of the uplink frequency domain resources is equal.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information indicates the number of resource blocks in the first uplink frequency domain resource and/or the second uplink frequency domain resource.
  • the determining unit determining the first uplink frequency domain resource and/or the second uplink frequency domain resource according to the first indication information includes: according to the first indication information and the first frequency domain spacing, to determine the first uplink frequency domain resource and/or the second uplink frequency domain resource, wherein the first frequency domain spacing is predetermined, or based on the first frequency domain The bandwidth of the resource is determined.
  • the first indication information and the second indication information are carried in cell-specific signaling.
  • a communication apparatus may be a network device or a module (eg, a chip) in the network device.
  • the communication device may include:
  • a determining unit configured to determine first indication information, where the first indication information is used to indicate the first uplink frequency domain resource and/or the second uplink frequency domain resource on the carrier within the first time period, wherein the first uplink frequency domain resource
  • the maximum frequency of the frequency domain resource is less than the minimum frequency of the first frequency domain resource
  • the minimum frequency of the second uplink frequency domain resource is greater than the maximum frequency of the first frequency domain resource
  • the first uplink frequency domain and/or the The second uplink frequency domain resource and the first frequency domain resource belong to the same frequency band
  • the first sending unit is configured to send the first indication information to the terminal device.
  • the communication device may further include:
  • a second sending unit configured to send second indication information to the terminal device, where the second indication information is used to indicate the first frequency domain resource, and the first frequency domain resource is downlink in the second time period
  • the frequency domain resources are uplink frequency domain resources in the third time period, and the first time period includes the second time period.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first frequency domain resource and the maximum frequency of the first frequency domain resource and the second The difference between the minimum frequencies of the uplink frequency domain resources is equal.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information indicates the number of resource blocks in the first uplink frequency domain resource and/or the second uplink frequency domain resource.
  • the first indication information and the second indication information are carried in cell-specific signaling.
  • a communication apparatus may be a terminal device or a module (eg, a chip) in the terminal device.
  • the communication device may include a processor, a memory, an input interface for receiving information from other communication devices other than the communication device, and an output interface for sending information outside the communication device other communication devices output information, the processor invokes the computer program stored in the memory to execute the first aspect or the communication method provided by any implementation manner of the first aspect; or
  • a communication apparatus may be a network device or a module (eg, a chip) in the network device.
  • the communication device may include a processor, a memory, an input interface for receiving information from other communication devices other than the communication device, and an output interface for sending information outside the communication device other communication devices output information, the processor invokes the computer program stored in the memory to execute the second aspect or the communication method provided in any implementation manner of the second aspect; or
  • the present application provides a communication system including the communication device of the ninth aspect and the communication device of the tenth aspect.
  • the present application provides a computer-readable storage medium on which a computer program or computer instruction is stored, and when the computer program or computer instruction is executed, the above-mentioned first aspect and any Part of the communication method described in a possible implementation, the second aspect and any possible implementation thereof, the third aspect and any possible implementation thereof, and the fourth aspect and any possible implementation thereof All steps are performed.
  • the present application provides a computer program product comprising executable instructions, which, when the computer program product is run on a user equipment, enables the first aspect and any possible implementation thereof, the second aspect Part or all of the steps of the communication method described in the third aspect and any possible implementation thereof, and the fourth aspect and any possible implementation thereof are performed.
  • the present application provides a chip system, the chip system includes a processor, and may also include a memory, for implementing the first aspect and any possible implementation thereof, the second aspect and any possible implementation thereof Implementation, the third aspect and any possible implementation thereof, and the communication method described in the fourth aspect and any possible implementation thereof.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a data transmission mode in a duplex mode provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a frequency domain resource configuration provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another frequency domain resource configuration provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • communication can be classified into different types according to different types of transmitting nodes and receiving nodes.
  • sending information from a network device to a terminal device is called downlink (downlink, DL) communication
  • sending information from a terminal device to a network device is called uplink (uplink, UL) communication.
  • FIG. 1 is a schematic diagram of a data transmission manner in a duplex mode provided by an embodiment of the present application.
  • Existing duplex modes can be divided into TDD, frequency division duplex (FDD) and full-duplex FDD:
  • TDD is actually a half-duplex technology, that is, only data can be received or sent at the same time, and the uplink and downlink transmissions of time division duplex are separated in time. Different time slots of the same carrier (frequency band), as shown in (a) of Figure 1;
  • FDD refers to a data transmission method in which uplink and downlink transmissions are performed on carriers in different frequency bands at the same time.
  • the channel is transmitted using the frequency band 1 carrier, and the uplink is transmitted using the carrier in the frequency band 2;
  • Full-duplex FDD can also be called in-band full-duplex FDD, which refers to a data transmission method in which uplink transmission and downlink transmission are performed on different frequencies in a frequency band at the same time, as shown in (c) of Figure 1. As shown, the uplink and downlink use different frequencies within Band 1 for transmission.
  • NR system In the fifth-generation wireless communication system—NR system, it can be divided into multiple radio frames in the time domain, and each radio frame is 10ms long; one radio frame includes multiple time slots.
  • One slot (slot) may include 14 orthogonal frequency division multiplexing (OFDM) symbols; for the case where the subcarrier space (subcarrier space, SCS) is 15 kHz, the time domain length of one slot is 1 ms.
  • the symbols in each slot can be divided into three categories: downstream symbols (labeled D), upstream symbols (labeled U) and flexible symbols (labeled X). Downlink data transmission can be performed in downlink symbols and flexible symbols, and uplink data transmission can be performed in uplink symbols and flexible symbols.
  • the frame structure configuration of NR is flexibly configured by combining semi-static RRC configuration and dynamic downlink control information (DCI) configuration.
  • the RRC configuration supports two modes: cell-specific RRC configuration and UE-specific RRC configuration.
  • the way of DCI configuration supports two ways: direct indication of slot format indicator (SFI) and DCI scheduling decision.
  • SFI slot format indicator
  • the frequency domain resource is a part of the frequency band (band) allocated by the network device to the terminal device for data transmission.
  • the frequency domain resource can be a component carrier (CC) or a bandwidth part (BWP) ), can also be a carrier band, etc.
  • CC component carrier
  • BWP bandwidth part
  • This embodiment of the present application does not limit this, where the BWP may be a continuous frequency domain resource or a discontinuous frequency domain resource.
  • the frequency domain resources may include uplink frequency domain resources and downlink frequency domain resources.
  • the uplink frequency domain resources are the frequency domain resources configured by the network device for the terminal device to transmit uplink data
  • the downlink frequency domain resources are configured by the network device to The frequency domain resource used by the terminal device to transmit downlink data
  • the uplink data involved in this embodiment of the present application refers to the data sent by the terminal device to the network device
  • the downlink data refers to the data sent by the network device to the terminal device.
  • the frequency domain resource configuration information is used to indicate the uplink frequency domain resources and downlink frequency domain resources used when transmitting data between the terminal device and the network device.
  • the specific frequency domain resource configuration information may include information such as bandwidth parameters, frequency domain location parameters, etc. .
  • the frequency domain resource configuration information may also be referred to as BWP configuration information (BWP configuration information).
  • a resource block (RB), consecutive N subcarriers in the frequency domain can be called a resource block.
  • one resource block in the LTE system includes 12 subcarriers
  • one resource block in the NR system in 5G also includes 12 subcarriers.
  • the number of subcarriers included in one resource block may also be other values.
  • the frequency domain resource block may include multiple subcarriers, and the number of subcarriers in the frequency domain resource block is equal to the number of subcarriers in the resource block. It can be understood that the frequency domain resource block is a resource block.
  • the maximum frequency is the frequency corresponding to the subcarrier with the highest frequency in the uplink/downlink frequency domain resources.
  • Minimum frequency of uplink/downlink frequency domain resources The minimum frequency is the frequency corresponding to the subcarrier with the smallest frequency in the uplink/downlink frequency domain resources.
  • the center frequency is the middle frequency in the frequency range corresponding to a channel bandwidth.
  • the center frequency of the carrier refers to the middle frequency in the frequency range corresponding to the bandwidth of the carrier, and the deviation between the frequency corresponding to the center frequency of the carrier and the minimum frequency in the carrier is equal to the deviation between the frequency corresponding to the center frequency and the maximum frequency in the carrier.
  • a time slot is a unit of data transmission resources in the time domain.
  • a time slot usually contains multiple symbols/chips, and each symbol/chip may have the same or different transmission directions.
  • a time slot of the NR system in 5G includes 14 OFDM symbols, the time slot length corresponding to the 15kHz subcarrier spacing is 1ms, and the time slot length corresponding to the 30kHz subcarrier spacing is 0.5ms.
  • An OFDM symbol is the smallest time unit in the time domain in an OFDM system.
  • the slot format is used to indicate the uplink and downlink time domain resource configuration of the terminal equipment. For example, if a slot includes 14 symbols, the slot format specifies that one slot is used for uplink transmission and downlink transmission. and flexible transmission symbols, such as the first to fourth symbols for uplink transmission, the fifth to eleventh symbols for flexible transmission, the twelfth to fourteenth symbols for uplink transmission, etc. .
  • the frequency domain resources are divided into several sub-resources, and each sub-resource in the frequency domain can be called a sub-carrier.
  • Subcarriers can also be understood as the minimum granularity of frequency domain resources.
  • the time-frequency resource unit is the smallest resource granularity in the OFDM system, which is one OFDM symbol in the time domain and one subcarrier in the frequency domain.
  • Subcarrier spacing in the OFDM system, the spacing value between the center positions or peak positions of two adjacent subcarriers in the frequency domain.
  • the subcarrier spacing in the long term evolution (LTE) system is 15 kHz
  • the subcarrier spacing in the NR system in 5G may be 15 kHz, or 30 kHz, or 60 kHz, or 120 kHz, etc.
  • the bandwidth of the carrier includes a continuous frequency range in the frequency band, and the frequency range may be predetermined.
  • the bandwidth of the carrier may be 5MHz, 10MHz, 15MHz, and so on.
  • Frequency band It can also be called frequency band, or operation frequency band, including uplink operation frequency band and downlink operation frequency band.
  • the uplink/downlink operation frequency band is a continuous frequency range, which is determined by the minimum frequency of the uplink/downlink operation frequency band and the maximum frequency of the uplink/downlink frequency band.
  • the uplink operation frequency band is the downlink operation frequency band; when the system adopts frequency division duplex, the uplink operation frequency band is not the downlink operation frequency band.
  • the network device can notify the terminal device of the uplink and downlink resources through the cell-specific semi-static uplink and downlink common configuration information.
  • the cell-specific semi-static uplink and downlink common configuration information can be composed of reference subcarrier configuration parameters and a pattern, and the pattern can be
  • the uplink and downlink time slot formats and patterns configured at the cell level can be determined by five parameters: the time slot configuration period, the number of downlink transmission time slots, the number of downlink transmission symbols, the number of uplink transmission time slots, and the number of uplink transmission symbols.
  • the number of downlink time slots and the number of downlink symbols represent downlink resources, that is, the downlink time period
  • the number of downlink time slots represents the number of consecutive full downlink time slots at the beginning of the configured period
  • the number of downlink symbols represents the number of downlink time slots after several full downlink time slots.
  • the number of consecutive full downlink symbols; the number of uplink time slots and the number of uplink symbols represent uplink resources, that is, the uplink time period
  • the number of uplink time slots represents the number of consecutive full uplink time slots before the end of the configured period
  • the number of uplink symbols represents the number of all The number of consecutive full upstream symbols before the upstream time slot.
  • uplink and downlink resources can be configured in units of time slots and symbols.
  • the terminal equipment performs uplink and downlink communication on the same carrier at the same time. If the network equipment configures the uplink and downlink resources for the terminal equipment in units of time slots and symbols, it cannot meet the requirements of the same carrier at the same time.
  • the uplink and downlink configuration requirements of different frequency domain resources are examples of the uplink and downlink configuration requirements of different frequency domain resources.
  • the present application provides a communication method, which can realize uplink and downlink communication of terminal devices in the same carrier at the same time in a full-duplex FDD scenario.
  • the network device may send first indication information to the terminal device, which is used to indicate the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier within the first time period.
  • the device may determine the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier according to the first indication information.
  • the network device may send first indication information to the terminal device, and the first indication information may indicate, based on the first frequency domain resource, the first uplink frequency domain resource and/or the first uplink frequency domain resource added on the carrier in the first time period.
  • the terminal device can determine the first uplink frequency domain resource and/or the second uplink frequency domain resource on the carrier according to the first indication information; the first frequency domain resource can be indicated by other indication information. And the symbol is used for uplink and downlink communication.
  • the terminal equipment can determine the uplink and downlink resources in the same carrier at the same time, and in the full-duplex FDD scenario, the terminal equipment can perform uplink and downlink communication in the same carrier at the same time.
  • the application scenarios of the embodiments of the present application are first described below. According to whether the terminal device supports in-band full-duplex FDD, it can be divided into the following application scenarios, specifically:
  • the application scenario may include a first terminal device 201 , a second terminal device 202 and a network device 203 .
  • the first terminal device 201 and the second terminal device 202 do not support in-band full-duplex FDD, and do not support in-band full-duplex FDD.
  • the terminal device can receive downlink signals sent by the network device or send uplink signals to the network device, for example,
  • the network device 203 can send downlink signals to the first terminal device 201
  • the second terminal device 202 can send uplink signals to the network device 203 .
  • FIG. 3 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • the application scenario may include a first terminal device 301 , a second terminal device 302 and a network device 303 .
  • the first terminal device 301 and the second terminal device 302 support full-duplex FDD and support in-band full-duplex FDD.
  • the terminal device can simultaneously receive downlink signals sent by the network device and send uplink signals to the network device.
  • the network device 303 The downlink signal can be sent to the first terminal device 301, and the first terminal device 301 can send the uplink signal to the network device 303; the network device 303 can send the downlink signal to the second terminal device 302, and the second terminal device 302 can be sent to the network device 303 Send an uplink signal.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE LTE frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • EDGE enhanced data rate for GSM evolution
  • WiMAX worldwide interoperability for microwave access
  • the technical solutions of the embodiments of the present application may also be applied to other communication systems, such as a public land mobile network (PLMN) system, a fifth generation (5th generation, 5G) system or a communication system after 5G or a new wireless ( new radio, NR), etc., which are not limited in the embodiments of the present application.
  • PLMN public land mobile network
  • 5G fifth generation
  • NR new wireless
  • the terminal device in this embodiment of the present application may also be referred to as a user terminal.
  • the user terminal can be a device that includes a wireless transceiver function and can cooperate with a network device to provide a communication service for the user.
  • a user terminal may refer to a UE, a user, a satellite phone, a satellite terminal, a subscriber unit, a cellular phone, a smart phone, a smart watch, a wireless data card, a personal Personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (handset), laptop computer (laptop computer), machine type communication (machine type communication, MTC) terminal, etc.
  • PDA personal Personal digital assistant
  • the terminal device may be a vehicle-mounted device or a wearable device, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a driverless ( Wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city A terminal, a wireless terminal in a smart home, a 5G network, or a terminal device in a future communication network, etc., are not specifically limited in this embodiment of the present application.
  • VR virtual reality
  • AR augmented reality
  • Wireless terminals in self driving wireless terminals in remote medical
  • wireless terminals in smart grid wireless terminals in transportation safety
  • wireless terminals in smart city A terminal a wireless terminal in a smart home, a 5G network, or a terminal device in a future communication network, etc.
  • the network device in this embodiment of the present application may be a device used to communicate with a terminal device, for example, may be a global system for mobile communications (GSM) system or a code division multiple access (code division multiple access) device.
  • a base station base transceiver station, BTS
  • BTS can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolutional Node B in an LTE system , eNB or eNodeB), it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, an in-vehicle device, a wearable device, and future 5G
  • the network equipment in the network or the network after 5G or the network equipment in the future evolved PLMN network, etc. for example, the transmission point (TRP or TP) in the NR system, the base station (gNB) in the NR system, the base station in the 5G system.
  • the base station in this embodiment of the present application may include various forms of base station, for example: a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point, a next-generation base station (gNodeB, gNB), a transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP), mobile switching center and device-to-device (Device-to-Device, D2D), vehicle outreach (vehicle-to-everything, V2X), machine A device that undertakes the function of a base station in machine-to-machine (M2M) communication, etc., is not specifically limited in this embodiment of the present application.
  • M2M machine-to-machine
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to execute the methods provided by the embodiments of the present application. It is sufficient to perform communication.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute a program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer readable device, carrier or medium.
  • computer readable media may include, but are not limited to, magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CDs), digital versatile discs (DVDs), etc. ), smart cards and flash memory devices (eg, erasable programmable read-only memory (EPROM), cards, stick or key drives, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the functions performed by the terminal device in this application may also be performed by modules (eg, chips) in the terminal equipment, and the functions performed by the network devices in this application may also be performed by modules (eg, chips) in the network device. implement.
  • the communication method can be used for terminal equipment to determine uplink and downlink resources. As shown in FIG. 4 , the communication method may include the following steps.
  • the network device sends first indication information to the terminal device.
  • the terminal device may receive the first indication information from the network device.
  • the first indication information is used to indicate the frequency domain resource configuration pattern on the carrier in the first time period.
  • the frequency domain resource configuration pattern is used to determine uplink frequency domain resources and downlink frequency domain resources on the carrier within the first time period. That is, the first indication information is used to indicate uplink frequency domain resources and downlink frequency domain resources on the carrier within the first time period.
  • the uplink frequency domain resource is a frequency domain resource block used for uplink communication
  • the downlink frequency domain resource is a frequency domain resource block used for downlink communication.
  • the frequency domain resource block may be a resource block.
  • the resource block (resource block) and the frequency domain resource block in the current NR protocol may have the same physical meaning.
  • the subcarriers or resource blocks included in the carrier are determined in advance.
  • the bandwidth of the carrier includes a continuous frequency range, which may be predetermined.
  • the bandwidth of the carrier can be predetermined as 5MHz, 10MHz, and so on.
  • the first time period includes one or more time slots.
  • the first time period may refer to a certain time period of a certain carrier in the time domain.
  • the first indication information can be used to indicate the frequency domain resource configuration pattern of the terminal device at the current moment when data needs to be transmitted; when the first time period includes multiple time slots, the first indication information The information may be used to indicate the frequency domain resource configuration pattern of all time slots of the terminal device in the first time period.
  • the first time period includes the downlink time period in the uplink and downlink time slot format configured at the cell level. That is, the first time period is not less than the time period corresponding to the downlink symbol determined by the uplink and downlink time slot format configured at the cell level. It can be understood that the first time period may be a time period greater than or equal to the downlink time period in the uplink and downlink time slot formats configured at the cell level. That is, the first time period may include the uplink time period and the downlink time period in the uplink and downlink time slot formats configured at the cell level. That is, the first time period may include uplink symbols and downlink symbols determined by the uplink and downlink time slot formats configured at the cell level.
  • the first time period indicated by the first indication information may be at least a time period not less than the downlink time period in the uplink and downlink time slot format configured at the cell level, which can implement more flexible uplink and downlink resource configuration.
  • the first indication information may be used to indicate a frequency domain resource configuration pattern on the carrier in the first time period, and may include: the first indication information is used to indicate multiple frequency domain resource configurations on the carrier in the first time period.
  • the arbitrary frequency domain resource configuration pattern is used to determine the uplink frequency domain resource and the downlink frequency domain resource on the carrier within a time unit of the first time period.
  • the time unit is included in the first time period, and the time unit includes one or more time slots. That is, the first indication information includes a plurality of indication information for indicating uplink frequency domain resources and downlink frequency domain resources on the carrier in a time unit, the time unit includes one or more time slots, and the first time period includes multiple time slots. time unit.
  • the frequency domain resource configuration of the carrier in the first time period is more flexible.
  • the carrier bandwidth of the terminal equipment is 10MHz, including 50 frequency domain resource blocks, numbered RB0 to RB49, and the first time period includes 20 time slots, numbered from time slot 0 to time slot 19, which can be divided into four Time units are numbered as time units 0 to 3.
  • Time units 0 to 3 respectively include time slots 0 to 4, time slots 5 to 9, time slots 10 to 14, and time slots 15 to 19.
  • the first indication information indicates 4 frequency slots.
  • Frequency domain resource configuration pattern 0 indicates that the carriers in time slots 0 to 4 RBs 0 to 9 and RB39 to 49 are used for uplink communication, and RBs 10 to 38 are used for downlink communication; frequency domain resource configuration pattern 1 indicates that RBs 0 to 9 and RB35 to 49 on carriers in time slots 5 to 9 are used for uplink communication, RBs 10 to 34 are used for downlink communication; frequency domain resource configuration pattern 2 indicates that RBs 0 to 14 and RB35 to 49 on carriers in time slots 10 to 14 are used for uplink communication, and RBs 15 to 34 are used for downlink communication; frequency domain resource configuration Pattern 3 indicates that RBs 0 to 19 and RBs 30 to 49 on carriers in slots 15 to 19 are used for uplink communication, and RBs 20 to 29 are used for downlink communication.
  • the frequency domain resource configuration pattern can be divided into a first frequency domain resource configuration pattern and a second frequency domain resource configuration pattern. The following possibilities are included:
  • the first frequency domain resource configuration pattern is used to determine at least one uplink frequency domain resource and at least one downlink frequency domain resource on the carrier within the first time period.
  • the uplink frequency domain resource is a frequency domain resource block used for uplink communication
  • the downlink frequency domain resource is a frequency domain resource block used for downlink communication.
  • the first frequency domain resource configuration pattern is used to determine the first uplink frequency domain resource and the first downlink frequency domain resource, or the first downlink frequency domain resource and the first uplink frequency domain resource, or the first Uplink frequency domain resource, first downlink frequency domain resource, second downlink frequency domain resource, or first downlink frequency domain resource, second downlink frequency domain resource, first uplink frequency domain resource, or first downlink frequency domain resource frequency domain resources, first uplink frequency domain resources, second uplink frequency domain resources, second downlink frequency domain resources, or first downlink frequency domain resources, first uplink frequency domain resources, second downlink frequency domain resources, The second downlink frequency domain resources and so on.
  • the first frequency domain resource configuration pattern is used to determine the first uplink frequency domain resource and the first downlink frequency domain resource.
  • the first indication information is used to indicate the first uplink frequency domain resource and the first downlink frequency domain resource.
  • the frequency of the first uplink frequency domain resource is smaller than the frequency of the first downlink frequency domain resource, or the sequence number of any resource block of the first uplink frequency domain resource is smaller than any resource block of the first downlink frequency domain resource 's serial number.
  • the first frequency domain resource configuration pattern is used to indicate the first downlink frequency domain resource and the first uplink frequency domain resource.
  • the first indication information is used to indicate the first downlink frequency domain resource and the first uplink frequency domain resource.
  • the frequency of the first downlink frequency domain resource is smaller than the frequency of the first uplink frequency domain resource, or the sequence number of any resource block of the first downlink frequency domain resource is smaller than that of any resource block of the first uplink frequency domain resource 's serial number.
  • the first frequency domain resource configuration pattern is used to determine the first downlink frequency domain resource, the first uplink frequency domain resource, the second uplink frequency domain resource and the second downlink frequency domain resource.
  • the first indication information is used to indicate the first downlink frequency domain resource, the first uplink frequency domain resource, the second uplink frequency domain resource and the second downlink frequency domain resource.
  • the frequency of the first downlink frequency domain resource is less than the frequency of the first uplink frequency domain resource and the frequency of the second uplink frequency domain resource, and the frequency of the second downlink frequency domain resource is greater than the first uplink frequency domain.
  • the frequency of the resource and the frequency of the second uplink frequency domain resource; or the sequence number of any resource block of the first downlink frequency domain resource is smaller than the sequence number of any resource block of the first uplink frequency domain resource and the second
  • the sequence number of any resource block of the uplink frequency domain resource, the sequence number of any resource block of the second downlink frequency domain resource is greater than the sequence number of any resource block of the first uplink frequency domain resource and the second uplink frequency domain.
  • the second frequency domain resource configuration pattern is used to determine the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier in the first time period.
  • the first indication information is used to indicate the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier in the first time period.
  • the first uplink frequency domain resource and the second uplink frequency domain resource may be used for uplink communication between the terminal device and the network device, and the first downlink frequency domain resource may be used for the downlink communication between the network device and the terminal device.
  • the frequency of the first uplink frequency domain resource is less than the frequency of the first downlink frequency domain resource, and the frequency of the second uplink frequency domain resource is greater than the frequency of the first downlink frequency domain resource; or any of the first uplink frequency domain resources
  • the sequence number of a frequency-domain resource block is smaller than the sequence number of any frequency-domain resource block in the first downlink frequency-domain resource, and the sequence number of any frequency-domain resource block in the second uplink resource is greater than any one of the downlink frequency-domain resources. The sequence number of the resource block.
  • a frequency domain spacing exists between the first uplink frequency domain resource and the first downlink frequency domain resource, and between the first downlink frequency domain resource and the second uplink frequency domain resource. That is, the frequency domain interval between the first uplink frequency domain resource and the first downlink frequency domain resource may be the first frequency domain interval, and the frequency domain interval between the first downlink frequency domain resource and the second uplink frequency domain resource may be is the second frequency domain spacing.
  • the first frequency domain spacing is the number of resource blocks between the resource block with the highest sequence number of the first uplink frequency domain resource and the resource block with the lowest sequence number of the first downlink frequency domain resource.
  • the first frequency domain spacing is the difference between the sequence number of the resource block with the highest sequence number of the first uplink frequency domain resource and the sequence number of the resource block with the lowest sequence number of the first downlink frequency domain resource minus one.
  • the second frequency domain spacing is the number of resource blocks between the resource block with the highest sequence number of the first downlink frequency domain resource and the resource block with the lowest sequence number of the second uplink frequency domain resource.
  • the second frequency domain interval is the difference between the sequence number of the resource block with the highest sequence number of the first downlink frequency domain resource and the sequence number of the resource block with the lowest sequence number of the second uplink frequency domain resource minus one.
  • the first frequency domain spacing and the second frequency domain spacing may be zero. It should be understood that due to the existence of the first frequency domain spacing and the second frequency domain spacing, adjacent frequency interference between uplink communication and downlink communication can be reduced.
  • the first uplink frequency domain resource may include a frequency domain resource block with the smallest frequency or the smallest sequence number in the carrier
  • the second uplink frequency domain resource may include a frequency domain resource block with the largest frequency or the largest sequence number in the carrier.
  • the second frequency domain resource configuration pattern can be divided into two types, that is, the second frequency domain resource configuration pattern can be a third frequency domain resource configuration pattern or a fourth frequency domain resource configuration pattern.
  • the third frequency domain resource configuration pattern the number of frequency domain resource blocks in the first uplink frequency domain resource and the second uplink frequency domain resource may be different, and/ Or the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first downlink frequency domain resource and the difference between the maximum frequency of the first downlink frequency domain resource and the minimum frequency of the second uplink frequency domain resource may be different. equal.
  • the maximum frequency of the frequency domain resource can be understood as the frequency corresponding to the subcarrier with the highest frequency in the frequency domain resource; the minimum frequency of the frequency domain resource can be understood as the frequency corresponding to the subcarrier with the smallest frequency in the frequency domain resource.
  • the maximum frequency of the first uplink frequency domain resource can be understood as the frequency corresponding to the subcarrier with the largest frequency in the first uplink frequency domain resource; the minimum frequency of the first downlink frequency domain resource can be understood as the first The frequency corresponding to the subcarrier with the smallest frequency in the downlink frequency domain resource; the maximum frequency of the first downlink frequency domain resource can be understood as the frequency corresponding to the subcarrier with the largest frequency in the first downlink frequency domain resource; the second uplink frequency The minimum frequency of the frequency domain resource can be understood as the frequency corresponding to the subcarrier with the smallest frequency in the second uplink frequency domain resource.
  • the fourth frequency-domain resource configuration pattern may be a pattern symmetrical with the center frequency of the first downlink frequency-domain resource:
  • the fourth frequency domain resource configuration pattern is used to determine the first uplink frequency domain resource, the first downlink frequency domain resource and the second uplink frequency domain resource.
  • the frequency of the first uplink frequency domain resource may be lower than the frequency of the first downlink frequency domain resource, and the frequency of the second uplink frequency domain resource may be greater than the frequency of the first downlink frequency domain resource;
  • the number of frequency domain resource blocks in the first uplink frequency domain resource may be equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first downlink frequency domain resource and the difference between the maximum frequency of the first downlink frequency domain resource and the minimum frequency of the second uplink frequency domain resource may be equal.
  • the subcarrier interval used for measurement may be a predefined subcarrier interval.
  • the first indication information may only be used to indicate that the number of frequency domain resource blocks in the first uplink frequency domain resource the number of frequency-domain resource blocks in the first uplink frequency-domain resource or the number of frequency-domain resource blocks in the second uplink frequency-domain resource
  • the terminal device can determine the number of frequency-domain resource blocks in the first uplink frequency-domain resource and the number of frequency-domain resource blocks in the second uplink frequency-domain resource. The number of frequency domain resource blocks can reduce signaling overhead.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first downlink frequency domain resource is equal to the difference between the maximum frequency of the first downlink frequency domain resource and the minimum frequency of the second uplink frequency domain resource.
  • the frequency domain interval between the first uplink frequency domain resource and the first downlink frequency domain resource is equal to the frequency domain interval between the second uplink frequency domain resource and the first downlink frequency domain resource. That is, the first uplink frequency domain resource and the second uplink frequency domain resource are symmetrical with respect to the center frequency of the first downlink frequency domain resource, and the center frequency of the first downlink frequency domain resource is the minimum frequency sub-frequency of the first uplink frequency domain resource.
  • the center frequency of the first downlink frequency domain resource may be the center frequency of the carrier.
  • the first indication information may directly indicate a frequency domain resource configuration pattern.
  • the first indication information may directly indicate the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource.
  • the manner in which the first indication information directly indicates the first uplink frequency domain resource, the first downlink frequency domain resource and the second uplink frequency domain resource includes: the first indication information respectively indicates the first uplink frequency domain resource, the first downlink frequency domain resource and the first downlink frequency domain resource.
  • the first indication information may indicate the frequency domain resource configuration pattern by means of an index.
  • the index value indicated by the first indication information may be in one-to-one correspondence with a frequency domain resource configuration pattern of uplink and downlink frequency domain resources.
  • the first indication information indicates the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource by means of an index value.
  • the first indication information may indicate consecutive X frequency domain resource blocks for uplink communication, Y frequency domain resource blocks for downlink communication and Z frequency domain resource blocks for uplink communication in sequence, wherein the first The sum of the number of frequency domain resource blocks (X+Y+Z) that can be indicated by the indication information is not greater than the sum of the frequency domain resource blocks within the carrier bandwidth of the terminal equipment, and X, Y, and Z are not less than 0.
  • FIG. 5 is a schematic diagram of a frequency domain resource configuration provided by an embodiment of the present application. As shown in FIG.
  • the first indication information may directly indicate different frequency domain resource configuration patterns.
  • the first indication information indicates a third frequency domain resource configuration pattern, it should be understood that the following first indication information can also be used to indicate Other frequency domain resource configuration patterns:
  • the minimum frequency of the first uplink frequency domain resource may be the minimum frequency of the carrier, or may not be the minimum frequency of the carrier;
  • the maximum frequency of the second uplink frequency domain resource may be the maximum frequency of the carrier, or May not be the maximum frequency of the carrier.
  • the first indication information may include six fields.
  • the first field may indicate the difference between the frequency of the minimum frequency subcarrier of the first uplink frequency domain resource and the frequency of the minimum frequency subcarrier of the carrier, or the sequence number of the resource block with the minimum sequence number of the first uplink frequency domain resource and the minimum frequency of the carrier
  • the second field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resources;
  • the third field may indicate the first frequency domain spacing, or the minimum value of the first downlink frequency domain resources
  • the fourth field can indicate The number of frequency domain resource blocks in the first downlink frequency domain resource;
  • the fifth field may indicate the second frequency domain spacing, or the difference between the frequency of the minimum frequency subcarrier of the
  • the first frequency domain spacing may be the number of frequency domain resource blocks between the frequency domain resource block with the largest sequence number in the first uplink frequency domain resource and the frequency domain resource block with the smallest sequence number in the first downlink frequency domain resource .
  • the second frequency domain spacing may be the number of frequency domain resource blocks between the frequency domain resource block with the highest sequence number in the first downlink frequency domain resource and the frequency domain resource block with the lowest sequence number in the second uplink frequency domain resource. It should be understood that the first frequency domain spacing and the second frequency domain spacing may be zero.
  • the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier
  • the maximum frequency of the second uplink frequency domain resource is the maximum frequency of the carrier.
  • the first indication information may include four fields, wherein the first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource; the second field may indicate the first frequency domain spacing, or the first downlink frequency domain The difference between the frequency of the minimum frequency subcarrier of the resource and the frequency of the minimum frequency subcarrier of the carrier, or the difference between the sequence number of the resource block with the minimum sequence number of the first downlink frequency domain resource and the sequence number of the resource block with the minimum sequence number of the carrier; the third The field can indicate the second frequency domain spacing, or the difference between the frequency of the minimum frequency subcarrier of the second uplink frequency domain resource and the frequency of the minimum frequency subcarrier of the carrier, or the sequence number of the resource block with the minimum sequence number of the second uplink frequency domain resource and the The difference between the sequence numbers of the resource blocks with the smallest sequence number of the carrier;
  • the first frequency domain spacing may be the number of frequency domain resource blocks between the frequency domain resource block with the largest sequence number in the first uplink frequency domain resource and the frequency domain resource block with the smallest sequence number in the first downlink frequency domain resource .
  • the second frequency domain spacing may be the number of frequency domain resource blocks between the frequency domain resource block with the highest sequence number in the first downlink frequency domain resource and the frequency domain resource block with the lowest sequence number in the second uplink frequency domain resource. It should be understood that the first frequency domain spacing and the second frequency domain spacing may be zero.
  • first indication information indicates the fourth frequency domain resource configuration pattern
  • first indication information can also be used to indicate other frequency domain resource configuration patterns:
  • the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier
  • the maximum frequency of the second uplink frequency domain resource is the maximum frequency of the carrier. Since the frequency domain resource configuration pattern is a pattern symmetrical to the center frequency of the first downlink frequency domain resource, it can be determined that the center frequency of the first downlink frequency domain resource is the center frequency of the carrier.
  • the first indication information may include two fields. The first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource, and the second field may indicate the first frequency domain spacing. Alternatively, the first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource, and the second field may indicate the number of frequency domain resource blocks in the first downlink frequency domain resource.
  • the first field may indicate the number of frequency domain resource blocks in the first downlink frequency domain resource
  • the second field may indicate the first frequency domain spacing.
  • the first frequency domain spacing may be 0. It should be understood that the first frequency domain spacing may indicate the distance between the frequency domain resource block with the highest sequence number in the first uplink frequency domain resource and the frequency domain resource block with the lowest sequence number in the first downlink frequency domain resource. and the number of frequency domain resource blocks between the frequency domain resource block with the highest sequence number in the first downlink frequency domain resource and the frequency domain resource block with the lowest sequence number in the second uplink frequency domain resource.
  • the minimum frequency of the first uplink frequency domain resource is not the minimum frequency of the carrier, and the maximum frequency of the second uplink frequency domain resource is not the maximum frequency of the carrier.
  • the center frequency of the first downlink frequency domain resource is the center frequency of the carrier.
  • the first indication information may include three fields.
  • the first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource; the second field may indicate the first frequency domain spacing; and the third field may indicate the number of frequency domain resource blocks in the first downlink frequency domain resource.
  • the first frequency domain spacing may be 0. It should be understood that the first frequency domain spacing may indicate the distance between the frequency domain resource block with the highest sequence number in the first uplink frequency domain resource and the frequency domain resource block with the lowest sequence number in the first downlink frequency domain resource. and the number of frequency domain resource blocks between the frequency domain resource block with the highest sequence number in the first downlink frequency domain resource and the frequency domain resource block with the lowest sequence number in the second uplink frequency domain resource.
  • the center frequency of the first downlink frequency domain resource is not the center frequency of the carrier.
  • the first indication information may include four fields.
  • the first field may indicate the difference between the sequence number of the resource block with the minimum frequency or the minimum sequence number of the first uplink frequency domain resource and the sequence number of the resource block with the minimum frequency or the minimum sequence number of the carrier;
  • the second field may indicate the frequency domain in the first uplink frequency domain resource.
  • the third field may indicate the first frequency domain spacing;
  • the fourth field may indicate the number of frequency domain resource blocks in the first downlink frequency domain resource.
  • the first frequency domain spacing may be 0.
  • the first frequency domain spacing may indicate the distance between the frequency domain resource block with the highest sequence number in the first uplink frequency domain resource and the frequency domain resource block with the lowest sequence number in the first downlink frequency domain resource. and the number of frequency domain resource blocks between the frequency domain resource block with the highest sequence number in the first downlink frequency domain resource and the frequency domain resource block with the lowest sequence number in the second uplink frequency domain resource.
  • the first indication information may be carried in cell-specific signaling and sent to the terminal device. For example, cell-specific semi-static uplink and downlink common configuration information. Further, the first indication information may be transmitted through a physical downlink shared channel (PDSCH), which can reduce signaling overhead.
  • PDSCH physical downlink shared channel
  • the terminal device determines uplink frequency domain resources and downlink frequency domain resources according to the first indication information.
  • the terminal device may determine uplink frequency domain resources and downlink frequency domain resources according to the first indication information.
  • the terminal device may determine the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier within the first time period according to the first indication information. specific:
  • the exemplary when the first indication information indicates the third frequency domain resource configuration pattern:
  • the minimum frequency of the first uplink frequency domain resource may be the minimum frequency of the carrier, or may not be the minimum frequency of the carrier; the maximum frequency of the second uplink frequency domain resource may be the maximum frequency of the carrier, or May not be the maximum frequency of the carrier.
  • the terminal device may determine the offset of the minimum frequency or minimum sequence number resource block of the first uplink frequency domain resource relative to the carrier's minimum frequency or minimum sequence number resource block according to the first field in the first indication information, and determine the first number according to the second field.
  • the number of frequency-domain resource blocks in an uplink frequency-domain resource, the first frequency-domain spacing is determined according to the third field
  • the number of frequency-domain resource blocks in the first downlink frequency-domain resource is determined according to the fourth field
  • the fifth field is determined according to the The second frequency domain spacing
  • the number of frequency domain resource blocks in the second uplink frequency domain resource is determined according to the sixth field.
  • the first indication information may include six fields, wherein the first field may indicate the difference between the frequency of the minimum frequency subcarrier of the first uplink frequency domain resource and the frequency of the minimum frequency subcarrier of the carrier, or the difference of the frequency of the first uplink frequency domain resource.
  • the second field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource;
  • the third field may indicate the first frequency domain spacing, or the difference between the frequency of the minimum frequency subcarrier of the first downlink frequency domain resource and the frequency of the minimum frequency subcarrier of the carrier, or the difference between the sequence number of the minimum sequence number resource block of the first downlink frequency domain resource and the minimum sequence number resource block of the carrier.
  • the fourth field may indicate the number of frequency domain resource blocks in the first downlink frequency domain resource;
  • the fifth field may indicate the second frequency domain spacing, or the minimum frequency subcarrier of the second uplink frequency domain resource
  • the sixth field can indicate the second upstream frequency domain.
  • the number of frequency domain resource blocks in the resource When the first indication information sent by the network device to the terminal device is ⁇ 0,0,0,50,0,0 ⁇ , it may indicate that the first indication information indicates that the terminal devices RB0 to RB49 are used for downlink communication; when the first indication information is When ⁇ 0,4,0,42,0,4 ⁇ , it can indicate that the first indication information indicates the terminal equipment, the sequence number of the minimum frequency domain block of the first uplink frequency domain resource is RB0, and RB0 to RB3 are used for the first uplink communication , RB4 to RB45 are used for downlink communication, RB46 to RB49 are used for second uplink communication, the first frequency domain spacing is 0, and the second frequency domain spacing is 0, that is, the maximum sequence number frequency domain resource block used for the first uplink communication reaches The number of frequency domain resource blocks between the minimum sequence number frequency domain resource blocks used for downlink communication is 0 (0 frequency domain resource blocks are spaced between RB3 and RB4), and the maximum sequence number frequency domain resource
  • the number of frequency domain resource blocks between the minimum sequence number frequency domain resource blocks in the second uplink communication is 0 (the interval between RB45 and RB46 is 0 frequency domain resource blocks); when the first indication information is ⁇ 0,4,1 ,40,1,4 ⁇ , it can indicate that the first indication information indicates the terminal equipment, the sequence number of the minimum frequency domain block of the first uplink frequency domain resource is RB0, RB0 to RB3 are used for the first uplink communication, and RB5 to RB44 are used for the first uplink communication.
  • RB46 to RB49 are used for the second uplink communication
  • the first frequency domain spacing is 1
  • the second frequency domain spacing is 1, that is, there is 1 frequency domain resource block between RB3 and RB5, and 1 interval between RB44 and RB46.
  • the first indication information when the first indication information is ⁇ 1,4,1,40,1,3 ⁇ , it can indicate that the first indication information indicates the terminal equipment, the sequence number of the smallest frequency domain block of the first uplink frequency domain resource RB1, RB1 to RB4 are used for the first uplink communication, RB6 to RB45 are used for the downlink communication, RB47 to RB49 are used for the second uplink communication, the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, RB4 to There is 1 frequency domain resource block between RB6, that is, 1 frequency domain resource block between RB45 and RB47; when the first indication information is ⁇ 1, 4, 1, 30, 1, 3 ⁇ , it can indicate that the first The indication information indicates the terminal equipment, the sequence number of the minimum frequency domain block of the first uplink frequency domain resource is RB1, RB1 to RB4 are used for the first uplink communication, RB5 to RB34 are used for the downlink communication, and RB36 to RB39 are used for the second uplink communication.
  • the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, there is 1 frequency domain resource block between RB4 and RB5, and 1 frequency domain resource block between RB34 and RB36; when the first indication information is ⁇ 1, 4, 2, 30, 1, 3 ⁇ , it can indicate that the first indication information indicates the terminal equipment, the sequence number of the minimum frequency domain block of the first uplink frequency domain resource is RB1, and RB1 to RB4 are used for the first uplink communication, RB7 to RB36 are used for downlink communication, RB38 to RB41 are used for second uplink communication, the first frequency domain spacing is 2, and the second frequency domain spacing is 1, that is, there are 2 frequency domain resources between RB4 and RB7 There is one frequency domain resource block between blocks, RB36 to RB38. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier
  • the maximum frequency of the second uplink frequency domain resource is the maximum frequency of the carrier.
  • the terminal device may determine the number of frequency domain resource blocks in the first uplink frequency domain resource according to the first field in the first indication information, determine the first frequency domain spacing according to the second field, and determine the second frequency domain spacing according to the third field , and the number of frequency domain resource blocks in the second uplink frequency domain resource is determined according to the fourth field.
  • the carrier bandwidth of the terminal equipment is 10MHz, including 50 frequency domain resource blocks, numbered RB0 to RB49, the sequence number of the smallest frequency domain block of the first uplink frequency domain resource is RB0, and the second uplink frequency The sequence number of the largest frequency domain block of the domain resource is RB49.
  • the first indication information may include four fields, wherein the first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource; the second field may indicate the first frequency domain spacing, or the first downlink frequency domain The difference between the frequency of the minimum frequency subcarrier of the resource and the frequency of the minimum frequency subcarrier of the carrier, or the difference between the sequence number of the resource block with the minimum sequence number of the first downlink frequency domain resource and the sequence number of the resource block with the minimum sequence number of the carrier; the third The field can indicate the second frequency domain spacing, or the difference between the frequency of the minimum frequency subcarrier of the second uplink frequency domain resource and the frequency of the minimum frequency subcarrier of the carrier, or the sequence number of the resource block with the minimum sequence number of the second uplink frequency domain resource and the The difference between the sequence numbers of the resource blocks with the smallest sequence number of the carrier; the fourth field may indicate the number of frequency-domain resource blocks in the second uplink frequency-domain resource.
  • the first indication information sent by the network device to the terminal device is ⁇ 0,0,0,0 ⁇
  • it may indicate that the first indication information indicates that the terminal devices RB0-RB49 are used for downlink communication
  • the first indication information is ⁇ 4, 1,1,4 ⁇
  • it can indicate that the first indication information indicates that the terminal equipments RB0 to RB3 are used for the first uplink communication
  • RB5 to RB44 are used for the downlink communication
  • RB46 to RB49 are used for the second uplink communication
  • the first frequency domain spacing is 1
  • the second frequency domain spacing is 1, that is, the number of frequency domain resource blocks between the maximum sequence number frequency domain resource block used for the first uplink communication to the minimum sequence number frequency domain resource block used for downlink communication is 1 (RB3 1 frequency domain resource block is separated from RB5), and the number of frequency domain resource blocks between the maximum sequence number frequency domain resource block used for downlink communication and the minimum sequence number frequency domain resource block used for the second uplink communication is 1 ( The interval between RB44 and RB46
  • the first indication information is ⁇ 2, 1, 1, 4 ⁇
  • RB46 to RB49 are used for the second uplink communication
  • the first frequency domain spacing is 1
  • the second frequency domain spacing is 1, that is, there is one frequency domain resource block between RB1 and RB3, that is, between RB44 and RB46.
  • the interval is 1 frequency domain resource block; when the first indication information is ⁇ 2, 1, 2, 4 ⁇ , it can indicate that the first indication information indicates that the terminal equipments RB0 to RB1 are used for the first uplink communication, and RB3 to RB43 are used for the first uplink communication.
  • RB46 to RB49 are used for the second uplink communication
  • the first frequency domain spacing is 1, and the second frequency domain spacing is 2, that is, the interval between RB1 and RB3 is 1 frequency domain resource block, and the interval between RB43 and RB46 is 2 frequency domain resource blocks
  • the first indication information is ⁇ 2,1,2,3 ⁇
  • RB3-RB44 is used for the downlink communication
  • RB47 to RB49 are used for the second uplink communication
  • the first frequency domain spacing is 1, and the second frequency domain spacing is 2, that is, there is one frequency domain resource block between RB1 and RB3, and two frequency domains between RB43 and RB46. resource block.
  • the terminal device directly indicates the frequency domain resource configuration pattern, exemplarily, when the first indication information indicates the fourth frequency domain resource configuration pattern:
  • the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier
  • the maximum frequency of the second uplink frequency domain resource is the maximum frequency of the carrier
  • the terminal device may determine the number of frequency domain resource blocks in the first uplink frequency domain resource according to the first field in the first indication information, and determine the first frequency domain spacing according to the second field.
  • the first indication information may include two fields.
  • the first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource, and the second field may indicate the first frequency domain spacing.
  • the first indication information sent by the network device to the terminal device is ⁇ 0,0 ⁇ , it may indicate that the first indication information indicates that the terminal devices RB0 to RB49 are used for downlink communication; when the first indication information is ⁇ 4,0 ⁇ , it may be Indicates that the first indication information indicates that the terminal devices RB0 to RB3 are used for the first uplink communication, RB46 to RB49 are used for the second uplink communication, the first frequency domain spacing is 0, and the second frequency domain spacing is also 0, that is, it is used for the first The number of frequency domain resource blocks between the maximum sequence number frequency domain resource block for uplink communication and the minimum sequence number frequency domain resource block for downlink communication is 0 (0 frequency domain resource blocks are spaced between RB3 and RB4), which are used for downlink communication.
  • the number of frequency domain resource blocks between the frequency domain resource block with the highest sequence number of the communication and the frequency domain resource block with the lowest sequence number used for the second uplink communication is 0 (0 frequency domain resource blocks are separated from RB45 to RB46), then RB4 ⁇ RB45 is used for downlink communication; when the first indication information is ⁇ 4,1 ⁇ , it can indicate that the first indication message indicates that the terminal equipment RB0 ⁇ RB3 are used for the first uplink communication, RB46 ⁇ RB49 are used for the second uplink communication, and the first indication information is used for the second uplink communication.
  • the first frequency domain spacing is 1, and the second frequency domain spacing is also 1, that is, there is 1 frequency domain resource block between RB3 and RB5, and 1 frequency domain resource block between RB44 and RB46, then RB5 to RB44 are used for downlink. communication. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the terminal device may determine the number of frequency domain resource blocks in the first uplink frequency domain resource according to the first field in the first indication information, and determine the number of frequency domain resource blocks in the first downlink frequency domain resource according to the second field. quantity. E.g:
  • the first indication information may include two fields, the first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource, and the second field may indicate the number of frequency domain resource blocks in the first downlink frequency domain resource.
  • the first indication information sent by the network device to the terminal device is ⁇ 0,50 ⁇ , it may indicate that the first indication information indicates that the terminal devices RB0 to RB49 are used for downlink communication; when the first indication information is ⁇ 4,42 ⁇ , it may be Indicates that the first indication information indicates that the terminal devices RB0 to RB3 are used for the first uplink communication, RB4 to RB45 are used for the downlink communication, RB46 to RB49 are used for the second uplink communication, the first frequency domain spacing is 0, and the second frequency domain spacing is also is 0, that is, the number of frequency domain resource blocks between the maximum sequence number frequency domain resource block used for the first uplink communication to the minimum sequence number frequency domain resource block used for the downlink communication is 0 (0 frequency interval between RB3 and RB4) domain resource block), the number of frequency domain resource blocks between the maximum sequence number frequency domain resource block used for downlink communication to the minimum sequence number frequency domain resource block used for the second uplink communication is 0 (the interval between RB45 and RB46 is 0 frequency
  • the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, there is one frequency domain resource block between RB3 and RB5, and one frequency domain resource block between RB44 and RB46. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the terminal device may determine the number of frequency domain resource blocks in the first downlink frequency domain resource according to the first field in the first indication information, and determine the first frequency domain spacing according to the second field.
  • the terminal device may determine the number of frequency domain resource blocks in the first downlink frequency domain resource according to the first field in the first indication information, and determine the first frequency domain spacing according to the second field.
  • the first indication information may include two fields, the first field may indicate the number of frequency domain resource blocks in the first downlink frequency domain resource, and the second field may indicate the first frequency domain spacing.
  • the first indication information sent by the network device to the terminal device is ⁇ 0,0 ⁇ , it may indicate that the first indication information indicates that the terminal devices RB0 to RB24 are used for the first uplink communication, and RB25 to RB49 are used for the second uplink communication;
  • the indication information is ⁇ 4,0 ⁇ , it can indicate that the first indication information indicates that the terminal equipment RB0 to RB22 are used for the first uplink communication, RB27 to RB49 are used for the second uplink communication, the first frequency domain spacing is 0, and the second The frequency domain spacing is also 0, that is, the number of frequency domain resource blocks between the maximum sequence number frequency domain resource block used for the first uplink communication to the minimum sequence number frequency domain resource block used for downlink communication is 0 (between RB22 and RB23).
  • the interval is 0 frequency domain resource blocks), and the number of frequency domain resource blocks between the frequency domain resource block with the highest sequence number used for downlink communication and the frequency domain resource block with the lowest sequence number used for the second uplink communication is 0 (between RB26 and RB27) 0 frequency domain resource blocks), then RB23 ⁇ RB26 are used for downlink communication; when the first indication information is ⁇ 4,1 ⁇ , it can indicate that the first indication message instructs the terminal equipment RB0 ⁇ RB21 to be used for the first uplink communication , RB28 ⁇ RB49 are used for the second uplink communication, the first frequency domain spacing is 1, and the second frequency domain spacing is also 1, that is, there is one frequency domain resource block between RB21 and RB23, and one interval between RB26 and RB28.
  • RB23 to RB26 are used for downlink communication. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the minimum frequency of the first uplink frequency domain resource is not the minimum frequency of the carrier, and the maximum frequency of the second uplink frequency domain resource is not the maximum frequency of the carrier.
  • the center frequency of the first downlink frequency domain resource is the center frequency of the carrier, and the terminal device can determine the number of frequency domain resource blocks in the first uplink frequency domain resource according to the first field in the first indication information, and determine the first Frequency domain spacing, the number of frequency domain resource blocks in the first downlink frequency domain resource is determined according to the third field.
  • the terminal device can determine the number of frequency domain resource blocks in the first uplink frequency domain resource according to the first field in the first indication information, and determine the first Frequency domain spacing, the number of frequency domain resource blocks in the first downlink frequency domain resource is determined according to the third field.
  • the first indication information may include three fields, wherein the first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource; the second field may indicate the first frequency domain spacing; the third field may indicate the first downlink frequency domain The number of frequency domain resource blocks in frequency domain resources.
  • the first indication information sent by the network device to the terminal device is ⁇ 4, 0, 42 ⁇ , it may indicate that the first indication information indicates that the terminal devices RB0 to RB3 are used for the first uplink communication, and the first frequency domain spacing is 0, that is, the The number of frequency domain resource blocks between the maximum sequence number frequency domain resource block for the first uplink communication to the minimum sequence number frequency domain resource block for downlink communication is 0 (0 frequency domain resource blocks are spaced between RB3 and RB4), RB4 to RB45 are used for downlink communication, the second frequency domain spacing is 0, and the number of frequency domain resource blocks between the maximum sequence number frequency domain resource block used for downlink communication and the minimum sequence number frequency domain resource block used for the second uplink communication is 0 (the interval between RB45 and RB46 is 0 frequency domain resource blocks), and RB46 to RB49 are used for the second uplink communication; when the first indication information is ⁇ 4, 1, 40 ⁇ , it can indicate that the first indication information indicates the terminal The devices RB0 to RB3 are used for the first up
  • the number of resource blocks is 1 (the interval between RB3 and RB5 is 1 frequency domain resource block), RB5 to RB44 are used for downlink communication, the second frequency domain interval is 1, and the maximum sequence number frequency domain resource block used for downlink communication is available.
  • the number of frequency domain resource blocks between the minimum sequence number frequency domain resource blocks in the second uplink communication is 1 (the interval between RB44 and RB46 is one frequency domain resource block), and RB46 to RB49 are used for the second uplink communication;
  • the indication information is ⁇ 4, 1, 4 ⁇ , it can indicate that the first indication information indicates that the terminal devices RB18 to RB21 are used for the first uplink communication, and the first frequency domain spacing is 1, that is, the maximum sequence number used for the first uplink communication
  • the number of frequency domain resource blocks between the frequency domain resource block and the frequency domain resource block with the minimum sequence number used for downlink communication is 1 (one frequency domain resource block is spaced between RB21 and RB23), and RB23 to RB26 are used for downlink communication.
  • the second frequency domain spacing is 1, and the number of frequency domain resource blocks between the maximum sequence number frequency domain resource block used for downlink communication and the minimum sequence number frequency domain resource block used for the second uplink communication is 1 (between RB26 and RB28 spaced by one frequency domain resource block), RB28 to RB31 are used for the second uplink communication. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the center frequency of the first downlink frequency domain resource is not the center frequency of the carrier
  • the terminal device may determine the minimum frequency of the first uplink frequency domain resource relative to the minimum frequency of the carrier according to the first field in the first indication information. or the offset of the resource block with the minimum sequence number, the number of frequency domain resource blocks in the first uplink frequency domain resource is determined according to the second field, the first frequency domain spacing is determined according to the third field, and the first downlink frequency domain is determined according to the fourth field The number of frequency domain resource blocks in the resource.
  • the first indication information may include four fields.
  • the first field may indicate the offset of the minimum frequency of the first uplink frequency domain resource relative to the minimum frequency of the carrier or the minimum sequence number resource block;
  • the second field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource;
  • the third may indicate the first frequency domain spacing;
  • the fourth field may indicate the number of frequency domain resource blocks in the first downlink frequency domain resource.
  • the first indication information sent by the network device to the terminal device is ⁇ 0,0,0,50 ⁇
  • the first indication information is ⁇ 0,4 ,0,42 ⁇
  • RB46 to RB49 are used for the second uplink communication
  • the first frequency domain spacing is 0, and the second frequency domain spacing is 0, that is, the maximum sequence number frequency domain resource block used for the first uplink communication to the minimum sequence number frequency domain used for downlink communication.
  • the number of frequency domain resource blocks between domain resource blocks is 1 (0 frequency domain resource blocks are spaced between RB3 and RB4), the frequency domain resource block with the highest sequence number used for downlink communication to the minimum sequence number used for the second uplink communication
  • the number of frequency-domain resource blocks between frequency-domain resource blocks is 0 (0 frequency-domain resource blocks are spaced between RB45 and RB46); when the first indication information is ⁇ 0, 4, 1, 40 ⁇ , it can indicate the first One indication information indicates the terminal equipment, the sequence number of the smallest frequency domain block of the first uplink frequency domain resource is RB0, RB0 to RB3 are used for the first uplink communication, RB5 to RB44 are used for the downlink communication, and RB46 to RB49 are used for the second uplink communication , the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, there is 1 frequency domain resource block between RB3 and RB5, and 1 frequency domain resource block between RB44 and RB46; when the first indication information is When ⁇ 1, 4, 1,
  • the interval is 1 frequency domain resource block; when the first indication information is ⁇ 1, 4, 1, 30 ⁇ , it can indicate that the first indication information indicates the terminal equipment, and the sequence number of the minimum frequency domain block of the first uplink frequency domain resource is RB1, RB1 to RB4 are used for the first uplink communication, RB5 to RB34 are used for the downlink communication, RB36 to RB39 are used for the second uplink communication, the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, RB4 to RB5 There is 1 frequency domain resource block between them, and 1 frequency domain resource block between RB34 and RB36; when the first indication information is ⁇ 1, 4, 2, 30 ⁇ , it can indicate that the first indication information indicates the terminal equipment, The sequence number of the minimum frequency domain block of the first uplink frequency domain resource is RB1, RB1 to RB4 are used for the first uplink communication, RB7 to RB36 are used for the downlink communication, RB39 to RB42 are used for the second uplink communication, and the first frequency
  • the second frequency domain interval is 2, that is, 2 frequency domain resource blocks are separated from RB4 to RB7, and 2 frequency domain resource blocks are separated from RB36 to RB39. It should be understood that the above examples are only exemplary descriptions, and are not intended to limit the embodiments of the present application.
  • the frequency domain resource configuration pattern corresponding to the index value may be determined according to the index value, and then the first indication information on the carrier in the first time period may be determined according to the corresponding frequency domain resource configuration pattern.
  • the index value and the frequency domain resource configuration pattern may be in one-to-one correspondence, may be preset by the terminal device in advance, or may be sent to the terminal device after the network device is set, which is not limited in this application.
  • the first indication information received by the terminal device is an index value, exemplarily, when the first indication information indicates a third frequency domain resource configuration pattern:
  • the minimum frequency of the first uplink frequency domain resource may be the minimum frequency of the carrier, or may not be the minimum frequency of the carrier;
  • the maximum frequency of the second uplink frequency domain resource may be the maximum frequency of the carrier, or May not be the maximum frequency of the carrier.
  • the terminal device can determine that the frequency domain resource configuration pattern corresponding to the index value 0 is ⁇ 0, 0, 0, 50, 0, 0 ⁇ , which can indicate that the first indication information indicates that the terminal devices RB0 to RB49 are used for downlink communication; when the first indication When the index value indicated by the information is 1, the terminal device can determine that the frequency domain resource configuration pattern corresponding to the index value 1 is ⁇ 0, 4, 0, 42, 0, 4 ⁇ , which can indicate that the first indication information indicates that the terminal device, the first The sequence number of the smallest frequency domain block of an uplink frequency domain resource is RB0, RB0 to RB3 are used for the first uplink communication, RB4 to RB45 are used for the downlink communication, RB46 to RB49 are used for the second uplink communication, and the first frequency
  • the terminal device can determine that the frequency domain resource configuration pattern corresponding to the index value 3 is ⁇ 1, 4, 1, 40, 1, 3 ⁇ , which can represent the first indication
  • the information indicates the terminal equipment, the sequence number of the smallest frequency domain block of the first uplink frequency domain resource is RB1, RB1 to RB4 are used for the first uplink communication, RB6 to RB45 are used for the downlink communication, RB47 to RB49 are used for the second uplink communication, and
  • the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, there is 1 frequency domain resource block between RB4 and RB6, that is, 1 frequency domain resource block between RB45 and RB47; when the first indication information indicates When the index value is 4, the terminal device can determine that the frequency domain resource configuration pattern corresponding to the index value 4 is ⁇ 1, 4, 1, 30, 1, 3 ⁇ , which can indicate that the first indication information indicates the terminal device, the first uplink frequency
  • the sequence number of the minimum frequency domain block of the domain resource is RB1,
  • the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, there is 1 frequency domain resource block between RB4 and RB5, and 1 frequency domain resource block between RB34 and RB36; when the first indication When the index value indicated by the information is 5, the terminal device may determine that the frequency domain resource configuration pattern corresponding to the index value 5 is ⁇ 1, 4, 2, 30, 1, 3 ⁇ , which may indicate that the first indication information indicates that the terminal device, the first The sequence number of the smallest frequency domain block of an uplink frequency domain resource is RB1, RB1 to RB4 are used for the first uplink communication, RB7 to RB36 are used for the downlink communication, RB38 to RB41 are used for the second uplink communication, and the first frequency domain spacing is 2 , the second frequency domain spacing is 1, that is, there is one frequency domain resource block between RB4 and RB7, and one frequency domain resource block between RB36 and RB38. It should be understood that the above examples are only illustrative, and not intended to limit the embodiment
  • the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier
  • the maximum frequency of the second uplink frequency domain resource is the maximum frequency of the carrier
  • the terminal device may determine that the frequency domain resource configuration pattern corresponding to the index value 0 is ⁇ 0, 0, 0, 0 ⁇ , which may indicate that the first indication information indicates that the terminal devices RB0 to RB49 are used for downlink communication; when the index indicated by the first indication information When the value is 1, the terminal device may determine that the frequency domain resource configuration pattern corresponding to the index value 1 is ⁇ 4, 1, 1, 4 ⁇ , which may indicate that the first indication information indicates that the terminal devices RB0 to RB3 are used for the first uplink communication, RB5 to RB44 are used for downlink communication, RB46 to RB49 are used for second uplink communication, the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, the maximum sequence number frequency domain resource block used for the first uplink communication is available.
  • the number of frequency domain resource blocks between the minimum sequence number frequency domain resource blocks for downlink communication is 1 (one frequency domain resource block is spaced between RB3 and RB5), and the maximum sequence number frequency domain resource block used for downlink communication is to be used for
  • the number of frequency domain resource blocks between the minimum sequence number frequency domain resource blocks of the second uplink communication is 1 (the interval between RB44 and RB46 is 1 frequency domain resource block); when the index value indicated by the first indication information is 2, Then the terminal device can determine that the frequency domain resource configuration pattern corresponding to the index value 2 is ⁇ 4, 0, 0, 4 ⁇ , which can indicate that the first indication information indicates that the terminal devices RB0 to RB3 are used for the first uplink communication, and RB4 to RB45 are used for the first uplink communication.
  • RB46 to RB49 are used for the second uplink communication, the first frequency domain spacing is 0, and the second frequency domain spacing is 0, that is, the interval between RB3 and RB4 is 0 frequency domain resource blocks, and the interval between RB45 and RB46 is 0.
  • the terminal device can determine that the frequency domain resource configuration pattern corresponding to the index value 3 is ⁇ 2, 1, 1, 4 ⁇ , which can represent the first indication
  • the information indicates that the terminal devices RB0 to RB1 are used for the first uplink communication, RB3 to RB44 are used for the downlink communication, RB46 to RB49 are used for the second uplink communication, the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, RB1
  • the domain resource configuration pattern is ⁇ 2, 1, 2, 4 ⁇ , which can indicate that the first indication information indicates that the terminal devices RB0 to RB1 are used for the first uplink communication, RB3 to RB43 are used for the downlink communication, and RB46 to RB49 are used for the second uplink.
  • the first frequency domain spacing is 1, and the second frequency domain spacing is 2, that is, 1 frequency domain resource block is spaced between RB1 and RB3, and 2 frequency domain resource blocks are spaced between RB43 and RB46; when the first indication information When the indicated index value is 5, the terminal device can determine that the frequency domain resource configuration pattern corresponding to the index value 5 is ⁇ 2, 1, 2, 3 ⁇ , It can be indicated that the first indication information indicates that the terminal devices RB0 to RB1 are used for the first uplink communication, RB3 to RB44 are used for the downlink communication, RB47 to RB49 are used for the second uplink communication, the first frequency domain spacing is 1, and the second frequency domain spacing is 1.
  • the first indication information received by the terminal device is an index value, exemplarily, when the first indication information indicates a fourth frequency domain resource configuration pattern:
  • the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier
  • the maximum frequency of the second uplink frequency domain resource is the maximum frequency of the carrier
  • the carrier bandwidth of the terminal device is 10MHz, including 50 frequency domain resource blocks, numbered RB0 to RB49, and when the first indication information sent by the network device to the terminal device is ⁇ 0,0 ⁇ , it can indicate that The first indication information indicates that the terminal equipments RB0 to RB49 are used for downlink communication; when the first indication information is ⁇ 4,0 ⁇ , it may indicate that the first indication information indicates that the terminal equipments RB0 to RB3 are used for the first uplink communication, and RB46 to RB49
  • the first frequency domain spacing is 0, and the second frequency domain spacing is also 0, that is, the maximum sequence number frequency domain resource block used for the first uplink communication to the minimum sequence number frequency domain resource block used for downlink communication.
  • the number of frequency domain resource blocks in between is 0 (0 frequency domain resource blocks are spaced between RB3 and RB4), the frequency domain resource block with the highest sequence number used for downlink communication to the frequency domain resource block with the lowest sequence number used for the second uplink communication
  • the number of frequency domain resource blocks between blocks is 0 (0 frequency domain resource blocks are spaced between RB45 and RB46), then RB4 to RB45 are used for downlink communication; when the first indication information is ⁇ 4,1 ⁇ , you can Indicates that the first indication message instructs the terminal equipment RB0 to RB3 to be used for the first uplink communication, RB46 to RB49 to be used for the second uplink communication, the first frequency domain spacing is 1, and the second frequency domain spacing is also 1, that is, the distance between RB3 and RB5 is 1.
  • RB5 to RB44 are used for downlink communication. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the terminal device may determine that the frequency domain resource configuration pattern corresponding to the index value 0 is ⁇ 0, 50 ⁇ , which may indicate that the first indication information indicates that the terminal devices RB0 to RB49 are used for downlink communication; when the index value indicated by the first indication information is 1 , then the terminal device can determine that the frequency domain resource configuration pattern corresponding to the index value 1 is ⁇ 4, 42 ⁇ , which can indicate that the first indication information indicates that the terminal devices RB0 to RB3 are used for the first uplink communication, and RB4 to RB45 are used for the downlink communication.
  • the first frequency domain spacing is 0, and the second frequency domain spacing is also 0, that is, the maximum sequence number frequency domain resource block used for the first uplink communication to the minimum sequence number frequency domain used for downlink communication.
  • the number of frequency domain resource blocks between domain resource blocks is 0 (0 frequency domain resource blocks are spaced between RB3 and RB4), the frequency domain resource block with the highest sequence number used for downlink communication to the minimum sequence number used for the second uplink communication.
  • the number of frequency domain resource blocks between frequency domain resource blocks is 0 (0 frequency domain resource blocks are spaced between RB45 and RB46); when the index value indicated by the first indication information is 2, the terminal device can determine the index value 2
  • the corresponding frequency domain resource configuration pattern is ⁇ 4, 40 ⁇ , which can indicate that the first indication message instructs the terminal equipment RB0 to RB3 for the first uplink communication, RB5 to RB44 for the downlink communication, and RB46 to RB49 for the second uplink.
  • the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, there is one frequency domain resource block between RB3 and RB5, and one frequency domain resource block between RB44 and RB46. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the terminal device may determine that the frequency domain resource configuration pattern corresponding to the index value 0 is ⁇ 0,0 ⁇ , which may indicate that the first indication information indicates that the terminal device RB0-RB24 is used for the first uplink communication, and RB25-RB49 is used for the second uplink communication; If the index value indicated by the first indication information sent by the network device to the terminal device is 1, the terminal device may determine that the frequency domain resource configuration pattern corresponding to the index value 1 is ⁇ 4,0 ⁇ , which may indicate that the first indication information indicates that the terminal Devices RB0 to RB22 are used for the first uplink communication, RB27 to RB49 are used for the second uplink communication, the first frequency domain spacing is 0, and the second frequency domain spacing is also 0, that is, the maximum sequence number frequency domain used for the first uplink communication
  • the minimum frequency of the first uplink frequency domain resource is not the minimum frequency of the carrier, and the maximum frequency of the second uplink frequency domain resource is not the maximum frequency of the carrier.
  • the center frequency of the first downlink frequency domain resource is the center frequency of the carrier, for example:
  • the terminal device may determine that the frequency domain resource configuration pattern corresponding to the index value 0 is ⁇ 4, 0, 42 ⁇ , which may indicate that the first indication information indicates that the terminal devices RB0 to RB3 are used for the first uplink communication, and the first frequency domain spacing is 0, That is, the number of frequency domain resource blocks between the maximum sequence number frequency domain resource block used for the first uplink communication to the frequency domain resource block with the minimum sequence number used for downlink communication is 0 (0 frequency domain resource blocks are spaced between RB3 and RB4).
  • RB4 to RB45 are used for downlink communication
  • the second frequency domain spacing is 0, the frequency domain resource block between the maximum sequence number frequency domain resource block used for downlink communication and the minimum sequence number frequency domain resource block used for the second uplink communication
  • the number is 0 (the interval between RB45 and RB46 is 0 frequency domain resource blocks), and RB46 to RB49 are used for the second uplink communication; if the index value indicated by the first indication information sent by the network device to the terminal device is 1, then
  • the terminal device may determine that the frequency domain resource configuration pattern corresponding to the index value 1 is ⁇ 4, 1, 40 ⁇ , which may indicate that the first indication information indicates that the terminal devices RB0 to RB3 are used for the first uplink communication, and the first frequency domain spacing is 1, That is, the number of frequency domain resource blocks between the maximum sequence number frequency domain resource block used for the first uplink communication to the frequency domain resource block with the minimum sequence number used for downlink communication is 1 (the interval between RB3 and RB5 is 1 frequency domain resource block).
  • the second frequency domain spacing is 1, and the frequency domain resource block between the maximum sequence number frequency domain resource block used for downlink communication and the minimum sequence number frequency domain resource block used for the second uplink communication
  • the number is 1 (one frequency domain resource block is between RB44 and RB46), and RB46 to RB49 are used for the second uplink communication; if the index value indicated by the first indication information sent by the network device to the terminal device is 2, then The terminal device may determine that the frequency domain resource configuration pattern corresponding to the index value 2 is ⁇ 4, 1, 4 ⁇ , which may indicate that the first indication information indicates that the terminal devices RB18 to RB21 are used for the first uplink communication, and the first frequency domain spacing is 1, That is, the number of frequency domain resource blocks between the maximum sequence number frequency domain resource block used for the first uplink communication to the minimum sequence number frequency domain resource block used for downlink communication is 1 (the interval between RB21 and RB23 is 1 frequency domain resource block).
  • RB23 to RB26 are used for downlink communication
  • the second frequency domain spacing is 1, the frequency domain resource block between the maximum sequence number frequency domain resource block used for downlink communication and the minimum sequence number frequency domain resource block used for the second uplink communication
  • the number is 1 (one frequency domain resource block is spaced between RB26 and RB28), and RB28 to RB31 are used for the second uplink communication.
  • the center frequency of the first downlink frequency domain resource is not the center frequency of the carrier, for example:
  • the terminal device can determine that the frequency domain resource configuration pattern corresponding to the index value 0 is ⁇ 0, 0, 0, 50 ⁇ , which can indicate that the first indication information indicates that the terminal devices RB0 to RB49 are used for downlink communication;
  • the terminal device may determine that the frequency domain resource configuration pattern corresponding to the index value 1 is ⁇ 0, 4, 0, 42 ⁇ , which may indicate that the first indication information indicates that the terminal device, the first The sequence number of the minimum frequency domain block of the uplink frequency domain resource is RB0, RB0 to RB3 are used for the first uplink communication, RB4 to RB45 are used for the downlink communication, RB46 to RB49 are used for the second uplink communication, and the first frequency domain spacing is 0,
  • the second frequency domain spacing is
  • the interval is 0 frequency domain resource blocks), and the number of frequency domain resource blocks between the maximum sequence number frequency domain resource block used for downlink communication to the minimum sequence number frequency domain resource block used for the second uplink communication is 0 (RB45 to RB46 0 frequency domain resource blocks); if the index value indicated by the first indication information sent by the network device to the terminal device is 2, the terminal device may determine that the frequency domain resource configuration pattern corresponding to the index value 2 is ⁇ 0, 4, 1, 40 ⁇ , which can indicate that the first indication information indicates the terminal equipment, the sequence number of the minimum frequency domain block of the first uplink frequency domain resource is RB0, RB0 to RB3 are used for the first uplink communication, and RB5 to RB44 are used for the downlink communication.
  • RB46 ⁇ RB49 are used for the second uplink communication
  • the first frequency domain spacing is 1
  • the second frequency domain spacing is 1, that is, 1 frequency domain resource block is spaced between RB3 and RB5, and 1 frequency domain is spaced between RB44 and RB46.
  • the terminal device can determine that the frequency domain resource configuration pattern corresponding to the index value 3 is ⁇ 1, 4, 1, 40 ⁇ , It can indicate that the first indication information indicates the terminal equipment, the sequence number of the minimum frequency domain block of the first uplink frequency domain resource is RB1, RB1 to RB4 are used for the first uplink communication, RB6 to RB45 are used for the downlink communication, and RB47 to RB49 are used for the first uplink communication.
  • the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, there is 1 frequency domain resource block between RB4 and RB6, that is, 1 frequency domain resource block between RB45 and RB47; if the network
  • the terminal device can determine that the frequency domain resource configuration pattern corresponding to the index value 4 is ⁇ 1, 4, 1, 30 ⁇ , which can represent the first indication information Indicates the terminal equipment that the sequence number of the smallest frequency domain block of the first uplink frequency domain resource is RB1, and RB1 to RB4 are used for the first uplink RB5 to RB34 are used for downlink communication, RB36 to RB39 are used for second uplink communication, the first frequency domain spacing is 1, and the second frequency domain spacing is 1, that is, 1 frequency domain resource block, There is one frequency domain resource block between RB34 and RB36; if the index value indicated by the first indication information sent by the network device to the terminal device is 5, the terminal device can determine that
  • RB39 to RB42 are used for the second uplink communication
  • the first frequency domain spacing is 2
  • the second frequency domain spacing is 2 that is, the interval between RB4 and RB7 is 2 frequency domain resource blocks
  • the interval between RB36 and RB39 is 2 frequency domain resource blocks.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the functions performed by the terminal device in this application may also be performed by modules (eg, chips) in the terminal equipment, and the functions performed by the network devices in this application may also be performed by modules (eg, chips) in the network device. implement.
  • the communication method can be used for terminal equipment to determine uplink and downlink resources. As shown in FIG. 6, the communication method may include the following steps.
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the network device sends the second indication information to the terminal device.
  • the terminal device may receive the second indication information from the network device.
  • the first indication information may be used to indicate the first uplink frequency domain resource and/or the second uplink frequency domain resource on the carrier within the first time period.
  • the first uplink frequency domain resource and/or the second uplink frequency domain resource may be used for uplink communication between the terminal device and the network device.
  • the maximum frequency of the first uplink frequency domain resource may be smaller than the minimum frequency of the first frequency domain resource, and the minimum frequency of the second uplink frequency domain resource may be greater than the maximum frequency of the first frequency domain resource.
  • the sequence number of any frequency domain resource block in the first uplink frequency domain resource is smaller than the sequence number of any frequency domain resource block in the first frequency domain resource, and any frequency domain resource block in the second uplink resource The sequence number of the resource block is greater than the sequence number of any one frequency domain resource block in the first frequency domain resource.
  • the first uplink frequency domain and the second uplink frequency domain resources and the first frequency domain resources belong to the same frequency band.
  • the frequency domain resource blocks may be resource blocks.
  • the resource block (resource block) and the frequency domain resource block in the current NR protocol may have the same physical meaning.
  • the frequency band may be a predefined frequency range. In an NR system, also called an operating band, it can be an uplink operating band, or a downlink operating band, or a continuous spectrum range defined in addition to the existing NR operating band.
  • the subcarriers or resource blocks included in the carrier are determined in advance.
  • the bandwidth of the carrier includes a continuous frequency range, which may be predetermined.
  • the bandwidth of the carrier can be predetermined as 5MHz, 10MHz, and so on.
  • the first uplink frequency resource and/or the second uplink frequency resource are frequency domain resources used by the network device for uplink communication.
  • the first uplink frequency domain resource includes one or more resource blocks.
  • the second uplink frequency domain resource includes one or more resource blocks.
  • the first time period may include one or more time slots.
  • the first indication information can be used to indicate the frequency domain resources used by the terminal device for uplink communication at the current moment when data needs to be transmitted; when the first time period includes multiple time slots, The first indication information may be used to indicate the frequency domain resources used for uplink communication in all time slots of the terminal device in the first time period.
  • the first time period includes the downlink time period in the uplink and downlink time slot format configured at the cell level. That is, the first time period is not less than the downlink time period in the uplink and downlink time slot format configured at the cell level. It can be understood that the first time period may be a time period greater than or equal to the downlink time period in the uplink and downlink time slot formats configured at the cell level, and may include the uplink time period and the downlink time in the uplink and downlink time slot formats configured at the cell level. part. In this way, a more flexible uplink resource configuration can be implemented, that is, to avoid reserving fixed uplink frequency domain resources when there is no uplink signal transmission.
  • the first indication information may be used to indicate the first uplink frequency domain resource and/or the second uplink frequency domain resource on the carrier in the first time period, and may include: the first indication information includes a plurality of Indication information of the first uplink frequency domain resource and/or the second uplink frequency domain resource on the intra-unit carrier.
  • the time unit includes one or more time slots, and the first time period includes a plurality of time units. That is, the first uplink frequency domain resource and/or the second uplink frequency domain resource on the carrier in any time unit within the first time period may be indicated by the first indication information, respectively. In this way, the frequency domain resource configuration of the carriers in the first time period is more flexible.
  • the carrier bandwidth of the terminal equipment is 10MHz, including 50 frequency domain resource blocks, numbered RB0 to RB49, the first frequency domain resources are RB10 to 39, and the first time period includes 20 time slots, numbered as time slot 0 To time slot 19, it can be divided into four time units, numbered as time units 0 to 3.
  • Time units 0 to 3 respectively include time slots 0 to 4, time slots 5 to 9, time slots 10 to 14 and time slots 15 to 15. 19.
  • the first indication information may respectively indicate the first uplink frequency domain resources and/or the second uplink frequency domain resources corresponding to time units 0 to 3: the first indication indicates the RB 0 on the carrier in time unit 0 (time slot 0 to 4).
  • the specific frequency domain resource configuration patterns indicated by the first indication information may be determined by the terminal device according to a preconfigured policy, where the preconfigured policy may be sent by the network device to the terminal device, or may be the terminal device The device is configured at the factory.
  • the second indication information is used to indicate a second time period and a third time period, in which the first frequency domain resources are downlink frequency domain resources, and in the third time period the first frequency domain resources are The frequency domain resources are uplink frequency domain resources.
  • the first frequency domain resource is predetermined.
  • the first time period includes the second time period. That is, the second indication information is used to indicate downlink symbols and uplink symbols.
  • the first frequency domain resources in the second time period corresponding to the downlink symbols are downlink frequency domain resources, and the first frequency domain resources in the third time period corresponding to the uplink symbols are uplink frequency domain resources.
  • the first frequency domain resource is predetermined.
  • the second indication information is used to indicate the uplink and downlink time slot formats configured at the cell level. That is, the second indication information is used to indicate the uplink and downlink time slot formats corresponding to the first frequency domain resource.
  • the first frequency domain resource can be configured in the uplink and downlink time slot format of TDD for uplink communication and downlink communication.
  • the format of the uplink and downlink time slots is used to determine the transmission direction of each symbol in the radio frame.
  • the duration of one radio frame may be 10ms.
  • the uplink and downlink slot format configuration can be semi-static configuration information and signaled to the terminal device through a type 1 system information block (SIB1).
  • SIB1 type 1 system information block
  • the format of the uplink and downlink information can indicate that the symbols are used for downlink (downlink, DL), uplink (uplink, UL), flexible transmission, and so on.
  • the base station notifies the terminal equipment of the uplink and downlink time slot formats configured at the cell level through the cell-specific semi-static uplink and downlink common configuration information in the RRC signaling.
  • the cell-specific semi-static uplink and downlink common configuration information consists of reference subcarrier configuration parameters and a pattern, where the pattern can be composed of the time slot configuration period, the number of downlink transmission time slots, the number of downlink transmission symbols, the number of uplink transmission time slots, and the number of uplink transmission time slots.
  • the number of transmitted symbols is determined by 5 parameters.
  • the number of downlink time slots and the number of downlink symbols indicate the resources used for downlink communication.
  • the number of downlink time slots indicates the number of consecutive full downlink time slots at the beginning of the configured period, and the number of downlink symbols indicates the number of consecutive full downlink time slots after several full downlink time slots.
  • the number of downlink symbols, the number of uplink time slots and the number of uplink symbols indicate the resources used for uplink communication
  • the number of uplink time slots indicates the number of consecutive full uplink time slots before the end of the configured period
  • the number of uplink symbols indicates the number of full uplink time slots before the end of the configured period.
  • the number of consecutive full-up symbols is the number of consecutive full-up symbols.
  • FIG. 7 is a schematic diagram of another frequency domain resource configuration provided by an embodiment of the present application.
  • RB10 to RB39 are the first frequency domain resource configuration, and specifically, the first frequency domain resource is configured in the uplink and downlink time slot format of TDD for uplink communication and downlink communication.
  • the entire first time period may include a second time period, a third time period, and a fourth time period.
  • the first frequency domain resources are downlink frequency domain resources
  • the third time period the first frequency domain resources
  • the first frequency domain resources in the segment are uplink frequency domain resources
  • the fourth time period the first frequency domain resources are flexible frequency domain resources.
  • the terminal device can perform uplink communication or downlink communication.
  • the first frequency domain resource includes one or more resource blocks.
  • the resource blocks included in the first frequency domain resource may be preset by the network device, or may be sent by the network device to the terminal device through other indication information.
  • the second time period is a downlink time period in the uplink and downlink time slot format configured at the cell level. That is, the second time period is the time period corresponding to the downlink symbol determined by the uplink and downlink time slot format configured at the cell level.
  • the third time period is an uplink time period in the uplink and downlink time slot format configured at the cell level. That is, the third time period is the time period corresponding to the uplink symbol determined by the uplink and downlink time slot format configured at the cell level.
  • the first time period includes the second time period. That is, the first time period is not less than the second time period. That is, the first time period is not less than the time period corresponding to the downlink symbol determined by the uplink and downlink time slot format configured at the cell level.
  • the first period of time may include at least the second period of time. That is, the first period of time includes the second period of time, or the first period of time includes the second period of time and the third period of time, or the first period of time includes the second period of time, the third period of time and the second period of time and the third period of time. time period other than the time period.
  • the first indication information and the second indication information may be carried in cell-specific signaling and sent to the terminal device, for example, cell-specific semi-static uplink and downlink common configuration information. Further, the first indication information and the second indication information may be transmitted through a physical downlink shared channel (PDSCH), which can reduce signaling overhead.
  • PDSCH physical downlink shared channel
  • first indication information and the second indication information may be sent by the network device to the terminal device in no particular order, that is, the second indication information may be sent after the network device sends the first indication information to the terminal device; or The network device simultaneously sends the first indication information and the second indication information to the terminal device, which is not limited in this application.
  • the first indication information and the second indication information are used to indicate the frequency domain resource configuration pattern on the carrier within the first time period.
  • the frequency domain resource configuration pattern determines resources used for uplink communication and resources used for downlink communication.
  • the frequency domain resources included in the frequency domain resource configuration pattern are the first frequency domain resources and the first uplink frequency domain resources, or the first frequency domain resources and the second uplink frequency domain resources, or the first frequency domain resources and the first uplink frequency domain resources. frequency domain resources and second uplink frequency domain resources.
  • the first uplink frequency domain resource is an uplink frequency domain resource in the first time period.
  • the second uplink frequency domain resources are uplink resources in the first time period.
  • the maximum frequency of the first uplink frequency domain resource may be smaller than the minimum frequency of the first frequency domain resource, and the minimum frequency of the second uplink frequency domain resource may be greater than the maximum frequency of the first frequency domain resource.
  • the sequence number of any frequency domain resource block in the first uplink frequency domain resource is smaller than the sequence number of any frequency domain resource block in the first frequency domain resource, and any frequency domain resource block in the second uplink resource
  • the sequence number of the resource block is greater than the sequence number of any one frequency domain resource block in the first frequency domain resource.
  • the first uplink frequency domain and the second uplink frequency domain resources and the first frequency domain resources belong to the same frequency band. It should be understood that the frequency band may be a predefined frequency range.
  • the frequency domain resource configuration pattern determines a first time period, a second time period in which the first frequency domain resource is used for downlink communication, and a third time period in which the first frequency domain resource is used for uplink communication. That is, the first frequency domain resources are downlink frequency domain resources in the second time period, and are uplink frequency domain resources in the third time period.
  • the first period of time includes a second period of time.
  • the frequency domain resource configuration pattern may be as shown in FIG. 7 .
  • FIG. 7 is a frequency domain resource configuration pattern invented by an embodiment of the present application.
  • the first frequency domain resources are RBs 10 to 39, and the first frequency domain resources are Predetermined or notified by other signaling, the first uplink frequency domain resources are RBs 0 to 9, the second uplink frequency domain resources are 40 to 49 RBs per RB, the first time period is time slots 0 to 4, and the second time period is time Slots 0 to 2, the third time period is time slot 4, the second time period is included in the first time period, the third time period is included in the first time period, and the first frequency domain resources are used in time slots 0 to 2 for uplink For communication, the first frequency domain resource in time slot 4 is the downlink frequency domain resource.
  • the maximum frequency of the frequency domain resource can be understood as the frequency corresponding to the subcarrier with the highest frequency in the frequency domain resource; the minimum frequency of the frequency domain resource can be understood as the frequency corresponding to the subcarrier with the smallest frequency in the frequency domain resource.
  • the maximum frequency of the first uplink frequency domain resource can be understood as the frequency corresponding to the subcarrier with the largest frequency in the first uplink frequency domain resource; the minimum frequency of the first frequency domain resource can be understood as the first frequency domain
  • the frequency corresponding to the subcarrier with the smallest frequency in the resource; the maximum frequency of the first frequency domain resource can be understood as the frequency corresponding to the subcarrier with the largest frequency in the first frequency domain resource; the minimum frequency of the second uplink frequency domain resource can be It is understood as the frequency corresponding to the subcarrier with the smallest frequency in the second uplink frequency domain resource.
  • a second frequency domain spacing exists between the first uplink frequency domain resource and the first frequency domain resource.
  • a third frequency domain interval exists between the first frequency domain resource and the second uplink frequency domain resource. This makes the adjacent channel interference between uplink communication and downlink communication smaller.
  • the second frequency domain spacing is a frequency domain spacing between the first uplink frequency domain resource and the first frequency domain resource.
  • the second frequency domain spacing is the number of resource blocks between the frequency domain resource block with the highest sequence number of the first uplink frequency domain resource and the frequency domain resource block with the lowest sequence number of the first frequency domain resource.
  • the third frequency domain spacing is the number of resource blocks between the frequency domain resource block with the highest sequence number of the first frequency domain resource and the frequency domain resource block with the lowest sequence number of the second uplink frequency domain resource. It should be understood that the second frequency domain spacing and the third frequency domain spacing may be zero. Or the second frequency domain spacing is the difference between the frequency of the maximum frequency subcarrier of the first uplink frequency domain resource and the frequency of the minimum frequency subcarrier of the first frequency domain resource.
  • the third frequency domain spacing is the frequency domain spacing between the first frequency domain resource and the second uplink frequency domain resource.
  • the third frequency domain spacing is the difference between the frequency of the maximum frequency subcarrier of the first frequency domain resource and the frequency of the minimum frequency subcarrier of the second downlink frequency domain resource.
  • the first frequency domain spacing may be used to determine the second frequency domain spacing and/or the third frequency domain spacing. That is, the first frequency domain spacing may include the second frequency domain spacing and/or the third frequency domain spacing.
  • the first interval can be used to determine the second frequency domain interval/third frequency domain interval; or when the first frequency domain interval When equal to the second frequency domain spacing, the first frequency domain spacing can be used to determine the second frequency domain spacing and the third frequency domain spacing.
  • the first uplink frequency domain resource may include a frequency domain resource block with the smallest frequency or the smallest sequence number in the carrier
  • the second uplink frequency domain resource may include a frequency domain resource block with the largest frequency or the largest sequence number in the carrier.
  • the terminal device may determine the first uplink frequency domain resource and/or the second uplink frequency domain resource in the frequency domain resource configuration pattern by using the first indication information, and determine the frequency domain resource by using the predetermined first frequency domain resource and the second indication information
  • the uplink symbols and downlink symbols corresponding to the first frequency domain resources in the configuration pattern may further determine the frequency domain resource configuration pattern.
  • the uplink symbol corresponding to the first frequency domain resource in the frequency domain resource configuration pattern is determined according to the second time period indicated by the second indication information.
  • the uplink symbol corresponding to the first frequency domain resource in the frequency domain resource configuration pattern is determined by the third time period indicated by the second indication information.
  • the frequency domain resource configuration pattern can be divided into a first frequency domain resource configuration pattern and a second frequency domain resource configuration pattern.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource and the second uplink frequency domain resource may not be equal, and/or the second frequency domain interval and the third frequency domain interval may be different equal.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first frequency domain resource and the difference between the maximum frequency of the first frequency domain resource and the second uplink frequency domain resource is equal. That is, the second frequency domain spacing and the third frequency domain spacing are equal. That is, the first frequency domain spacing is equal to the second frequency domain spacing, and the first frequency domain spacing is equal to the third frequency domain spacing.
  • the first indication information may only be used to indicate the first uplink frequency domain resource.
  • the terminal device can determine the number of frequency-domain resource blocks in the first uplink frequency-domain resource and the second uplink frequency-domain resource.
  • the number of frequency domain resource blocks in the system can reduce signaling overhead.
  • the second frequency domain spacing is equal to the third frequency domain spacing, that is, the second frequency domain resource configuration pattern is symmetrical with respect to the center frequency of the first frequency domain resource.
  • the center frequency of the first frequency domain resource is the middle value of the frequency of the minimum frequency subcarrier of the first frequency domain resource and the frequency of the maximum frequency subcarrier of the first frequency domain resource.
  • the first indication information may directly indicate the first uplink frequency domain resource and/or the second uplink frequency domain resource. Including: the first indication information respectively indicates the resource block sequence numbers included on the carrier by the first uplink frequency domain resource and/or the second uplink frequency domain resource, or the first indication information respectively indicates the first uplink frequency domain resource and/or the second uplink frequency domain resource.
  • the minimum sequence number resource block and the maximum sequence number resource block of the uplink frequency domain resource on the carrier, or the first indication information respectively indicates the minimum sequence number resource block and all the first uplink frequency domain resource and/or the second uplink frequency domain resource on the carrier. The number of resource blocks included, etc.
  • the first indication information may indicate the first uplink frequency domain resource and/or the second uplink frequency domain resource by means of an index value.
  • the index value and the configuration of the first uplink frequency domain resource and/or the second uplink frequency domain resource may be in one-to-one correspondence.
  • the index value indicated by the first indication information may correspond to a configuration of the first uplink frequency domain resource and/or the second uplink frequency domain resource.
  • the first indication information indicates the number of resource blocks in the first uplink frequency domain resource and/or the second uplink frequency domain resource.
  • the first indication information described below may also be used to indicate the first uplink frequency domain resource and/or the second frequency domain resource configuration pattern of other frequency domain resource configuration patterns.
  • the first indication information may include two fields. The first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource, and the second field may indicate the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information described below may also be used to indicate the first uplink frequency domain resources of other frequency domain resource configuration patterns and/or the second uplink frequency domain resource: the first indication information may include a field, and the field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource or the second uplink frequency domain resource. Since the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource, this field only needs to indicate the first uplink frequency domain resource or the second uplink frequency domain resource. The number of frequency domain resource blocks in the first uplink frequency domain resource and the number of frequency domain resource blocks in the second uplink frequency domain resource can be determined by the terminal device through this field. In this way, signaling overhead can be reduced.
  • the first indication information may indicate the number of resource blocks in the first uplink frequency domain resource and/or the second uplink frequency domain resource, and the second frequency domain spacing and/or the third frequency domain spacing:
  • the first indication information described below may also be used to indicate the first uplink frequency domain resources and /or second uplink frequency domain resource: the first indication information may include four fields.
  • the first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource
  • the second field may indicate the second frequency domain spacing
  • the third field may indicate the third frequency domain spacing
  • the fourth field may indicate the first frequency domain spacing 2 The number of frequency domain resource blocks in the uplink frequency domain resources.
  • the first indication information described below may also be used to indicate the first uplink frequency domain resources and /or second uplink frequency domain resource: the first indication information may include two fields, that is, a first field and a second field.
  • the first field may indicate the first uplink frequency domain resource or the number of frequency domain resource blocks in the second uplink frequency domain resource, and the second field may indicate the second frequency domain spacing or the third frequency domain spacing.
  • the terminal device can determine the number of frequency-domain resource blocks in the first uplink frequency-domain resource and the number of frequency-domain resource blocks in the second uplink frequency-domain resource through the first field;
  • the second frequency domain spacing is equal to the third frequency domain spacing, and the second field only needs to indicate the second frequency domain spacing or the third frequency domain spacing, and the terminal device can determine the second frequency domain spacing and the third frequency domain spacing through the second field. In this way, signaling overhead can be reduced.
  • the terminal device may determine the first uplink frequency domain resource and/or the second uplink frequency domain resource according to the first indication information.
  • the terminal determines the second time period and the third time period according to the second indication information.
  • the first frequency domain resources in the second time period are downlink frequency domain resources
  • the first frequency domain resources in the third time period are uplink frequency domain resources.
  • the first frequency domain resource is predetermined.
  • the terminal device may determine the frequency domain resource configuration pattern according to the first indication information and the second indication information.
  • the terminal device may determine the first uplink frequency domain resource and/or the second uplink frequency domain resource according to the first indication information, specifically:
  • the terminal device may determine the first uplink frequency domain resource and/or the second uplink frequency domain resource according to the first indication information and the first frequency domain spacing.
  • the first frequency domain spacing may be predetermined, or may be determined according to the bandwidth of the first frequency domain resource. specific:
  • the terminal device When the first indication information received by the terminal device directly indicates the first uplink frequency domain resource and/or the second uplink frequency domain resource, for example, for the first frequency domain resource configuration pattern, for example:
  • the first indication information may include two fields, wherein the first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource, and the second field may indicate the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information sent by the network device to the terminal device is ⁇ 0,0 ⁇ , it may indicate that the first indication information indicates that the terminal device does not need additional first uplink frequency domain resources and The second uplink frequency domain resource; when the first indication information is ⁇ 1,1 ⁇ , the second frequency domain spacing is preset to 0, and the third frequency domain spacing is preset to 0, it can indicate that the first indication information indicates the terminal equipment RB9 It is used for the first uplink communication, and the RB40 is used for the second uplink communication; when the first indication information is ⁇ 1,1 ⁇ , the second frequency domain spacing is preset to 1, and the third frequency domain spacing is preset to 1, you can Indicates that the first indication information indicates that the terminal equipment RB8 is used for the first uplink communication, and RB41 is used for the second uplink communication; when the first indication information is ⁇ 1,1 ⁇ , the second frequency domain spacing is preset to 1, and the third frequency When the domain spacing is preset to 2, it can indicate that the first indication information indicates that the terminal equipment RB8 is used for the first
  • the first indication information received by the terminal device directly indicates the first uplink frequency domain resource and/or the second uplink frequency domain resource, exemplarily, for the second frequency domain resource configuration pattern, for example:
  • the first indication information may include a field, and the field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource or the second uplink frequency domain resource.
  • the first indication information sent by the network device to the terminal device is ⁇ 0 ⁇ , it may indicate that the first indication information indicates that the terminal device does not need additional first uplink frequency domain resources and second frequency domain resources based on the first frequency domain resources.
  • Uplink frequency domain resources when the first indication information is ⁇ 1 ⁇ , the second frequency domain spacing or the third frequency domain spacing is preset to 0, it can indicate that the first indication information indicates that the terminal equipment RB9 is used for the first uplink communication, RB40 It is used for the second uplink communication; when the first indication information is ⁇ 2 ⁇ , and the second frequency domain spacing or the third frequency domain spacing is preset to 1, it may indicate that the first indication information indicates that the terminal devices RB7 to RB8 are used for the first indication information. For one uplink communication, RB41 to RB42 are used for the second uplink communication. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the first uplink frequency domain resource and/or the second uplink frequency domain resource corresponding to the index value may be determined according to the index value.
  • the index value and the configuration of the first uplink frequency domain resource and/or the second uplink frequency domain resource may be in one-to-one correspondence, may be preset by the terminal device in advance, or may be sent to the terminal device after the network device is set, This application does not limit this.
  • the terminal device may, on the basis of pre-determining the first frequency domain resource, according to the first uplink frequency domain resource and/or the corresponding index value indicated by the first indication information Or the second uplink frequency domain resource configuration determines the first uplink frequency domain resource and/or the second uplink frequency domain resource on the carrier within the first time period.
  • the first indication information received by the terminal device is an index value, exemplarily, for the first frequency domain resource configuration pattern, for example:
  • the carrier bandwidth of the terminal device is 10 MHz, including 50 frequency domain resource blocks, numbered RB0 to RB49, and RB10 to RB39 are predetermined as the first frequency domain resources.
  • the terminal device may determine that the first uplink frequency domain resource and/or the second uplink frequency domain resource corresponding to the index value 0 is configured as ⁇ 0, 0 ⁇ , it can indicate that the first indication information indicates that the terminal equipment does not need additional first uplink frequency domain resources and second uplink frequency domain resources on the basis of the first frequency domain resources; when the index value indicated by the first indication information is When the value is 1, the terminal device can determine that the first uplink frequency domain resource and/or the second uplink frequency domain resource corresponding to the index value 1 is configured as ⁇ 1, 1 ⁇ .
  • the domain spacing When the domain spacing is preset to 0, it can indicate that the first indication information indicates that the terminal equipment RB9 is used for the first uplink communication, and RB40 is used for the second uplink communication. If the second frequency domain spacing is preset to 1, the third frequency domain spacing is preset. When set to 1, it can indicate that the first indication information indicates that the terminal equipment RB8 is used for the first uplink communication, and RB41 is used for the second uplink communication.
  • the second frequency domain spacing is preset to 1, and the third frequency domain spacing is preset to 2 , it can indicate that the first indication information indicates that the terminal equipment RB8 is used for the first uplink communication, and RB42 is used for the second uplink communication; when the index value indicated by the first indication information is 2, the terminal equipment can determine that the index value 2 corresponds to The first uplink frequency domain resource and/or the second uplink frequency domain resource is configured as ⁇ 2, 3 ⁇ , if the second frequency domain spacing is preset to 1 and the third frequency domain spacing is preset to 2, it can indicate the first indication
  • the information indicates that the terminal devices RB7 to RB8 are used for the first uplink communication, and RB42 to RB44 are used for the second uplink communication. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the first indication information received by the terminal device is an index value, exemplarily, for the second frequency domain resource configuration pattern, for example:
  • the carrier bandwidth of the terminal device is 10 MHz, including 50 frequency domain resource blocks, numbered RB0 to RB49, and RB10 to RB39 are predetermined as the first frequency domain resources.
  • the terminal device may determine that the first uplink frequency domain resource and/or the second uplink frequency domain resource corresponding to the index value 0 is configured as ⁇ 0 ⁇ , it can indicate that the first indication information indicates that the terminal equipment does not need additional first uplink frequency domain resources and second uplink frequency domain resources on the basis of the first frequency domain resources; when the index value indicated by the first indication information is 1 , the terminal device may determine that the first uplink frequency domain resource and/or the second uplink frequency domain resource corresponding to the index value 1 is configured as ⁇ 1 ⁇ , if the second frequency domain spacing or the third frequency domain spacing is preset to 0, It can be indicated that the first indication information indicates that the terminal equipment RB9 is used for the first uplink communication, and
  • the uplink frequency domain resources and/or the second uplink frequency domain resources are configured as ⁇ 2 ⁇ . If the second frequency domain spacing or the third frequency domain spacing is preset to 1, it may indicate that the first indication information indicates that the terminal devices RB7 to RB8 use For the first uplink communication, RB41 to RB42 are used for the second uplink communication. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the terminal device may determine the first uplink frequency domain resource and/or the second uplink frequency domain according to the first indication information, the second frequency domain interval and/or the third frequency domain interval domain resources.
  • the second frequency domain spacing and/or the third frequency domain spacing are indicated by the first indication information. specific:
  • the terminal device When the first indication information received by the terminal device directly indicates the first uplink frequency domain resource and/or the second uplink frequency domain resource, for the configuration pattern of the first frequency domain resource, an example:
  • the first indication information may include four fields, wherein the first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource, the second field may indicate the second frequency domain spacing, and the third field may indicate the third Frequency domain spacing, the fourth field may indicate the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information sent by the network device to the terminal device is ⁇ 0,0,0,0 ⁇
  • the first indication information is ⁇ 4, 1, 1, 4 ⁇
  • the first indication information is ⁇ 4,0,0,4 ⁇
  • the first indication information when the first indication information is ⁇ 2, 1, 1, 4 ⁇ , it can indicate that the first indication information indicates that the terminal devices RB7 to RB8 are used for the first uplink communication, and RB41 to RB44 are used for the second uplink communication; when When the first indication information is ⁇ 2, 1, 2, 4 ⁇ , it may indicate that the first indication information indicates that the terminal devices RB7 to RB8 are used for the first uplink communication, and RB43 to RB45 are used for the second uplink communication. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the first indication information received by the terminal device directly indicates the configuration of the first uplink frequency domain resource and/or the second uplink frequency domain resource, exemplarily, for the second frequency domain resource configuration pattern, for example:
  • the first indication information may include two fields, namely a first field and a second field, the first field may indicate the number of frequency domain resource blocks in the first uplink frequency domain resource or the second uplink frequency domain resource, and the second The field may indicate the second frequency domain spacing or the third frequency domain spacing.
  • the first indication information sent by the network device to the terminal device is ⁇ 0,0 ⁇ , it may indicate that the first indication information indicates that the terminal device does not need additional first uplink frequency domain resources and The second uplink frequency domain resource; when the first indication information is ⁇ 4,1 ⁇ , it can indicate that the first indication information indicates that the terminal equipment RB5-RB8 is used for the first uplink communication, and RB41-RB44 is used for the second uplink communication; when When the first indication information is ⁇ 4,0 ⁇ , it may indicate that the first indication information indicates that the terminal devices RB6 to RB9 are used for the first uplink communication, and RB40 to RB43 are used for the second uplink communication. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the terminal device may, on the basis of pre-determining the first frequency domain resource, according to the first uplink frequency domain resource and/or the corresponding index value indicated by the first indication information Or the second uplink frequency domain resource configuration determines the first uplink frequency domain resource and/or the second uplink frequency domain resource on the carrier within the first time period.
  • the first indication information received by the terminal device is an index value, exemplarily, for the first frequency domain resource configuration pattern, for example:
  • the carrier bandwidth of the terminal device is 10 MHz, including 50 frequency domain resource blocks, numbered RB0 to RB49, and RB10 to RB39 are predetermined as the first frequency domain resources.
  • the terminal device may determine that the first uplink frequency domain resource and/or the second uplink frequency domain resource corresponding to the index value 0 is configured as ⁇ 0, 0,0,0 ⁇ , it can indicate that the first indication information indicates that the terminal equipment does not need additional first uplink frequency domain resources and second uplink frequency domain resources on the basis of the first frequency domain resources; when the first indication information indicates When the index value of 1 is 1, the terminal device may determine that the first uplink frequency domain resource and/or the second uplink frequency domain resource corresponding to the index value 1 is configured as ⁇ 4, 1, 1, 4 ⁇ , which can indicate the first indication information Instruct the terminal equipment RB5 to RB8 to be used for the first uplink communication, and RB41 to RB44 to be
  • the terminal device can determine that the first uplink frequency domain resource and/or the second uplink frequency domain resource corresponding to the index value 3 is configured as ⁇ 2, 1, 1, 4 ⁇ , it can indicate that the first indication information indicates that the terminal equipment RB7-RB8 is used for the first uplink communication, and RB41-RB44 is used for the second uplink communication; when the index value indicated by the first indication information is 4, the terminal equipment can determine the index The first uplink frequency domain resource and/or the second uplink frequency domain resource corresponding to the value 4 is configured as ⁇ 2, 1, 2, 4 ⁇ , which may indicate that the first indication information indicates that the terminal devices RB7 to RB8 are used for the first uplink communication, RB43 to RB45 are used for the second uplink communication. It should be understood that the above examples are only illustrative, and not intended to limit the embodiments of the present application.
  • the first indication information received by the terminal device is an index value, exemplarily, for the second frequency domain resource configuration pattern, for example:
  • the carrier bandwidth of the terminal device is 10 MHz, including 50 frequency domain resource blocks, numbered RB0 to RB49, and RB10 to RB39 are predetermined as the first frequency domain resources.
  • the terminal device may determine that the first uplink frequency domain resource and/or the second uplink frequency domain resource corresponding to the index value 0 is configured as ⁇ 0, 0 ⁇ , it can indicate that the first indication information indicates that the terminal equipment does not need additional first uplink frequency domain resources and second uplink frequency domain resources on the basis of the first frequency domain resources; when the index value indicated by the first indication information is When the value is 1, the terminal device can determine that the first uplink frequency domain resource and/or the second uplink frequency domain resource corresponding to the index value 1 is configured as ⁇ 4, 1 ⁇ , which can indicate that the first indication information instructs the terminal device RB5 to RB8 to be used for For the first uplink communication, RB41 to RB44 are used for
  • the terminal device may determine the frequency domain resource configuration pattern according to the first indication information and the second indication information.
  • the terminal device may determine the frequency domain resource configuration pattern according to the first indication information and the second indication information.
  • the terminal device may also determine the second time period and the third time period according to the second indication information, and the first frequency domain resources RB10 to RB39 are downlink frequency domain resources in the second time period , the first frequency domain resources RB10 to RB39 are uplink frequency domain resources in the third time period. Further, the terminal device may determine the frequency domain resource configuration pattern according to the first indication information and the second indication information.
  • FIG. 8 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus may be a terminal device, or may be a module (eg, a chip) in the terminal device.
  • the communication device 800 includes at least: a receiving unit 801 and a determining unit 802; wherein:
  • a receiving unit 801 configured to receive first indication information from a network device, where the first indication information is used to indicate a first uplink frequency domain resource, a second uplink frequency domain resource and a first downlink frequency domain resource on a carrier within a first time period frequency domain resources, the first time period includes one or more time slots, wherein the frequency of the first uplink frequency domain resource is less than the frequency of the first downlink frequency domain resource, and the second uplink frequency domain resource The frequency of the resource is greater than the frequency of the first downlink frequency domain resource; or the sequence number of any frequency domain resource block in the first uplink frequency domain resource is smaller than that of any frequency domain in the first downlink frequency domain resource the sequence number of the resource block, the sequence number of any frequency domain resource block in the second uplink resource is greater than the sequence number of any frequency domain resource block in the downlink frequency domain resource;
  • a determining unit 802 configured to determine the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier according to the first indication information.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first downlink frequency domain resource and the maximum frequency of the first downlink frequency domain resource and the first The difference between the minimum frequencies of the two uplink frequency domain resources is equal.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information includes a first field and a second field, and the first field indicates the first uplink frequency domain resource or a frequency domain resource block in the second uplink frequency domain resource
  • the second field indicates the number of frequency domain resource blocks in the first downlink frequency domain.
  • the determining unit 802 determines the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier according to the first indication information, including: according to the The first field determines the first uplink frequency domain resource and the second uplink frequency domain resource, wherein the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier, and the second uplink frequency domain
  • the maximum frequency of the domain resource is the maximum frequency of the carrier; the first downlink frequency domain resource is determined according to the second field, and the center frequency of the first downlink frequency domain resource is the center frequency of the carrier.
  • the first time period includes a downlink time period in an uplink and downlink time slot format configured at the cell level.
  • the first indication information is carried in cell-specific signaling.
  • receiving unit 801 and determining unit 802 For more detailed description of the foregoing receiving unit 801 and determining unit 802, reference may be made directly to the relevant description of the terminal device in the method embodiment shown in FIG. 4 , which will not be repeated here.
  • FIG. 9 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus may be a network device, or may be a module (eg, a chip) in the network device.
  • the communication device 900 includes at least: a determining unit 901 and a sending unit 902; wherein:
  • the determining unit 901 is used for first indication information, where the first indication information is used to indicate the first uplink frequency domain resource, the second uplink frequency domain resource and the first downlink frequency domain resource on the carrier in the first time period, wherein , the frequency of the first uplink frequency domain resource is less than the frequency of the downlink frequency domain resource, the frequency of the second uplink frequency domain resource is greater than the frequency of the downlink frequency domain resource; or the first uplink frequency domain resource
  • the sequence number of any frequency domain resource block in the first downlink frequency domain resource block is smaller than the sequence number of any frequency domain resource block in the first downlink frequency domain resource, and the sequence number of any frequency domain resource block in the second uplink resource is greater than that of the downlink frequency domain resource block.
  • the sending unit 902 is configured to send the first indication information to the terminal device.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first downlink frequency domain resource and the maximum frequency of the first downlink frequency domain resource and the first The difference between the minimum frequencies of the two uplink frequency domain resources is equal.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information includes a first field and a second field, and the first field indicates the first uplink frequency domain resource or a frequency domain resource block in the second uplink frequency domain resource
  • the second field indicates the number of frequency domain resource blocks in the first downlink frequency domain.
  • the minimum frequency of the first uplink frequency domain resource is the minimum frequency of the carrier, and the maximum frequency of the second uplink frequency domain resource is the maximum frequency of the carrier; the first downlink frequency domain
  • the center frequency of the frequency domain resource is the center frequency of the carrier.
  • the first time period includes a downlink time period in an uplink and downlink time slot format configured at the cell level.
  • the first indication information is carried in cell-specific signaling.
  • FIG. 10 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus may be a terminal device, or may be a module (eg, a chip) in the terminal device.
  • the communication apparatus 1000 includes at least: a first receiving unit 1001, a determining unit 1002 and a second receiving unit 1003; wherein:
  • a first receiving unit 1001 configured to receive first indication information from a network device, where the first indication information is used to indicate a first uplink frequency domain resource and/or a second uplink frequency domain resource on a carrier within a first time period, wherein, the maximum frequency of the first uplink frequency domain resource is less than the minimum frequency of the first frequency domain resource, the minimum frequency of the second uplink frequency domain resource is greater than the maximum frequency of the first frequency domain resource, and the first The uplink frequency domain and/or the second uplink frequency domain resource and the first frequency domain resource belong to the same frequency band;
  • a determining unit 1002 configured to determine the first uplink frequency domain resource and/or the second uplink frequency domain resource according to the first indication information.
  • the communication device may further include:
  • the second receiving unit 1003 is configured to receive second indication information from a network device, where the second indication information is used to indicate a second time period and a third time period, during which the first frequency domain resources are downlink frequency domain resources, the first frequency domain resources are uplink frequency domain resources in the third time period, the first time period includes the second time period, the first frequency domain resources is predetermined.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first frequency domain resource and the maximum frequency of the first frequency domain resource and the second uplink frequency domain is equal.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information indicates the number of resource blocks in the first uplink frequency domain resource and/or the second uplink frequency domain resource.
  • the determining unit 1002 determining the first uplink frequency domain resource and/or the second uplink frequency domain resource according to the first indication information includes: according to the first indication information and the first indication information A frequency domain interval, determining the first uplink frequency domain resource and/or the second uplink frequency domain resource, wherein the first frequency domain interval is predetermined, or according to the first frequency domain resource bandwidth is determined.
  • the first indication information and the second indication information are carried in cell-specific signaling.
  • first receiving unit 1001, determining unit 1002, and second receiving unit 1003 For more detailed description of the above-mentioned first receiving unit 1001, determining unit 1002, and second receiving unit 1003, reference may be made directly to the relevant description of the terminal device in the method embodiment shown in FIG. 6, which will not be repeated here.
  • FIG. 11 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus may be a network device, or may be a module (eg, a chip) in the network device.
  • the communication device 1100 includes at least: a determining unit 1101, a first sending unit 1102 and a second sending unit 1103; wherein:
  • a determining unit 1101 configured to determine first indication information, where the first indication information is used to indicate a first uplink frequency domain resource and/or a second uplink frequency domain resource on a carrier within a first time period, wherein the first The maximum frequency of the uplink frequency domain resource is less than the minimum frequency of the first frequency domain resource, the minimum frequency of the second uplink frequency domain resource is greater than the maximum frequency of the first frequency domain resource, the first uplink frequency domain and/or the second uplink frequency domain resource and the first frequency domain resource belong to the same frequency band;
  • the first sending unit 1102 is configured to send the first indication information to the terminal device.
  • the communication device may further include:
  • the second sending unit 1103 is configured to send second indication information to the terminal device, where the second indication information is used to indicate the first frequency domain resource, and the first frequency domain resource in the second time period is
  • the downlink frequency domain resources are uplink frequency domain resources in the third time period, and the first time period includes the second time period.
  • the difference between the maximum frequency of the first uplink frequency domain resource and the minimum frequency of the first frequency domain resource and the maximum frequency of the first frequency domain resource and the second uplink frequency domain is equal.
  • the number of frequency domain resource blocks in the first uplink frequency domain resource is equal to the number of frequency domain resource blocks in the second uplink frequency domain resource.
  • the first indication information indicates the number of resource blocks in the first uplink frequency domain resource and/or the second uplink frequency domain resource.
  • the first indication information and the second indication information are carried in cell-specific signaling.
  • FIG. 12 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the apparatus 1200 may include one or more processors 1201, and the processors 1201 may also be referred to as processing units, which may implement certain control functions.
  • the processor 1201 may be a general-purpose processor or a special-purpose processor, or the like.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (eg, base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, process software program data.
  • the processor 1201 may also store instructions and/or data 1203, and the instructions and/or data 1203 may be executed by the processor, so that the apparatus 1200 performs the above method embodiments method described.
  • the processor 1201 may include a transceiver unit for implementing receiving and transmitting functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit, or a communication interface.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the apparatus 1200 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the apparatus 1200 may include one or more memories 1202, on which instructions 1204 may be stored, and the instructions may be executed on the processor, so that the apparatus 1200 executes the above method embodiments method described.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and the memory can be provided separately or integrated together. For example, the corresponding relationship described in the above method embodiments may be stored in a memory or in a processor.
  • the apparatus 1200 may further include a transceiver 1205 and/or an antenna 1206 .
  • the processor 1201 may be referred to as a processing unit, and controls the apparatus 1200.
  • the transceiver 1205 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, a transceiver device, or a transceiver module, etc., and is used to implement a transceiver function.
  • the apparatus 1200 in this embodiment of the present application may be used to execute the methods described in FIG. 4 and FIG. 6 in the embodiment of the present application.
  • the communication apparatus 1200 may be a terminal device, or may be a module (eg, a chip) in the terminal device.
  • the processor 1201 is used to control the determination unit 802 performs the operations performed in the foregoing embodiments
  • the transceiver 1205 is configured to perform the operations performed by the receiving unit 801 in the foregoing embodiments
  • the transceiver 1205 is further configured to send information to other communication devices other than the communication device.
  • the foregoing terminal device or modules in the terminal device may also be used to execute various methods executed by the terminal device in the foregoing method embodiment of FIG. 4 , and details are not described again.
  • the communication apparatus 1200 may be a network device, or may be a module (eg, a chip) in the network device.
  • the processor 1201 is configured to control the determination unit 901 performs the operations performed in the foregoing embodiments
  • the transceiver 1205 is configured to receive information from other communication devices other than the communication device, and the transceiver 1205 is further configured to perform the operations performed by the sending unit 902 in the foregoing embodiments.
  • the foregoing network device or modules within the network device may also be used to execute various methods performed by the network device in the foregoing method embodiment in FIG. 4 , and details are not described again.
  • the communication apparatus 1200 may be a terminal device, or may be a module (eg, a chip) in the terminal device.
  • the processor 1201 is used to control the determination unit 1002 performs the operations performed in the above-mentioned embodiments
  • the transceiver 1205 is used for performing the operations performed by the first receiving unit 1001 and the second receiving unit 1003 in the above-mentioned embodiments
  • the transceiver 1205 is also used for communicating with other devices other than the communication device.
  • the device sends information.
  • the foregoing terminal device or modules in the terminal device may also be used to execute various methods performed by the terminal device in the foregoing method embodiment of FIG. 6 , which will not be described again.
  • the communication apparatus 1200 may be a network device, or may be a module (eg, a chip) in the network device.
  • the processor 1201 is configured to control the determination unit 1101 performs the operations performed in the foregoing embodiments
  • the transceiver 1205 is configured to receive information from other communication devices other than the communication device, and the transceiver 1205 is further configured to execute the first sending unit 1102 and the second sending unit in the foregoing embodiments The operation performed by 1103.
  • the foregoing network device or modules in the network device may also be used to execute various methods performed by the network device in the foregoing method embodiment of FIG. 6 , which will not be described again.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • the apparatus described in the above embodiments may be network equipment or terminal equipment, but the scope of the apparatus described in this application is not limited thereto, and the structure of the apparatus may not be limited by FIG. 12 .
  • An apparatus may be a stand-alone device or may be part of a larger device.
  • the means may be:
  • a set with one or more ICs may also include storage components for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • FIG. 13 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal device 1300 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and processes the data. deal with.
  • Figure 13 shows only one memory and processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device, execute A software program that processes data from the software program.
  • the processor in FIG. 13 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • an antenna and a control circuit with a transceiving function can be regarded as a transceiving unit 1301 of the terminal device 1300
  • a processor having a processing function can be regarded as a processing unit 1302 of the terminal device 1300
  • the terminal device 1300 includes a transceiver unit 1301 and a processing unit 1302 .
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
  • the device for implementing the receiving function in the transceiver unit 1301 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver unit 1301 may be regarded as a transmitting unit, that is, the transceiver unit 1301 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the above-mentioned receiving unit and transmitting unit may be an integrated unit, or may be multiple independent units.
  • the above-mentioned receiving unit and transmitting unit may be located in one geographic location, or may be dispersed in multiple geographic locations.
  • the processing unit 1302 is configured to perform the operations performed by the determination unit 802 and the determination unit 1002 in the foregoing embodiment
  • the transceiving unit 1301 is configured to execute the receiving unit 801, the first receiving unit 1001 and the second receiving unit in the foregoing embodiment Operations performed by unit 1003.
  • the terminal 1300 may also be configured to execute various methods performed by the terminal in the above method embodiments shown in FIG. 4 and FIG. 6 , which will not be described again.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, can implement a process related to a terminal device in the communication method provided by the above method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, can implement the processes related to the network device in the communication method provided by the above method embodiments.
  • Embodiments of the present application also provide a computer program product, which, when run on a computer or a processor, causes the computer or processor to execute one or more steps in any one of the above communication methods. If each component module of the above-mentioned device is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in the computer-readable storage medium.
  • An embodiment of the present application further discloses a communication system, where the communication system includes a terminal device and a network device.
  • the communication system includes a terminal device and a network device.
  • the non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a hard disk drive (HDD), a solid-state drive (SSD), a read-only memory (ROM), a programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous dRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory direct rambus RAM, DR RAM
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • processors mentioned in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk, and other media that can store program codes.
  • modules/units in the apparatus of the embodiment of the present application may be combined, divided, and deleted according to actual needs.

Abstract

本申请提供了一种通信方法、装置及计算机可读存储介质。其中,该方法包括:接收来自网络设备的第一指示信息,第一指示信息用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,第一时间段包括一个或多个时隙;根据第一指示信息确定载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源。通过本申请提供的技术方案,可以实现终端设备在频分全双工场景下同一时间同一载波内上下行资源的确定,进而终端设备可以在频分全双工场景的同一时间同一载波内进行上下行通信。

Description

一种通信方法、装置及计算机可读存储介质 技术领域
本申请涉及无线通信技术领域,具体涉及一种通信方法、装置及计算机可读存储介质。
背景技术
目前,无线通信系统中存在多种双工模式,如时分双工(time division duplex,TDD)和频分全双工(full-duplex frequency division duplex,full-duplex FDD)等。在TDD场景中,为了提高灵活性,可以以时隙和符号为单位进行上下行资源的配置。而针对full-duplex FDD场景,如果以时隙和符号为单位进行上下行资源的配置,则无法满足同一时间同一载波内配置上下行资源的需求,即无法满足在同一载波内同时进行上下行通信的需求。
发明内容
本申请提供了一种通信方法、装置及计算机可读存储介质,可以实现full-duplex FDD场景中终端设备在同一时间同一载波内进行上下行通信。
第一方面,本申请提供了一种通信方法,该方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片),下面以应用于终端设备为例进行描述。该通信方法可以用于确定上下行资源,可以包括:接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,所述第一时间段包括一个或多个时隙,其中,所述第一上行频域资源的频率小于所述第一下行频域资源的频率,所述第二上行频域资源的频率大于所述第一下行频域资源的频率;或,所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一下行频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述下行频域资源中的任意一个频域资源块的序号;根据所述第一指示信息确定所述载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源。
在本申请提供的方案中,终端设备可以接收来自网络设备的第一指示信息,第一指示信息可以指示终端设备在第一时间段内的某一载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源。终端设备接收第一指示信息之后,可以根据第一指示信息确定载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源。这样,可以实现full-duplex FDD场景中终端设备在同一时间同一载波内上下行资源的确定,进而full-duplex FDD场景中终端设备可以在同一时间同一载波内进行上下行通信。
应理解,第一指示信息指示的可以是一个时间段内的某一载波的频域资源配置,该载波的频域可以是提前预置好的,第一时间段可以包括一个或多个时隙。第一上行频域资源可以包括载波内的最小频率或最小序号的频域资源块,第二上行频域资源可以包括载波内的最大频率或最大序号的频域资源块。
在一种可能的实现方式中,所述第一上行频域资源的最大频率与所述第一下行频域资源的最小频率的差值和所述第一下行频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在本申请提供的方案中,频域资源的最大频率,可以理解为,频域资源中频率最大的子载波对应的频率;频域资源的最小频率,可以理解为,频域资源中频率最小的子载波对应的频率。具体的,第一上行频域资源的最大频率,可以理解为,第一上行频域资源中频率最大的子载波对应的频率;第一下行频域资源的最小频率,可以理解为,第一下行频域资源中频率最小的子载波对应的频率;第一下行频域资源的最大频率,可以理解为,第一下行频域资源中频率最大的子载波对应的频率;第二上行频域资源的最小频率,可以理解为,第二上行频域资源中频率最小的子载波对应的频率。其中,用于度量的子载波间隔可以为预先定义的子载波间隔。第一上行频域资源的最大频率与第一下行频域资源的最小频率的差值和第一下行频域资源的最大频率与第二上行频域资源的最小频率的差值相等,可以理解为,第一上行频域资源与第一下行频域资源的频域间距和第二上行频域资源与第一下行频域资源的频域间距相等。
在一种可能的实现方式中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在本申请提供的方案中,第一上行频域资源中的频域资源块的数量可以等于第二上行频域资源中的频域资源块的数量,这样,第一指示信息可以只用指示第一上行频域资源中的频域资源块的数量或者第二上行频域资源中的频域资源块的数量,终端设备就可以确定第一上行频域资源中的频域资源块的数量和第二上行频域资源中的频域资源块的数量,从而可以减少信令开销。
在一种可能的实现方式中,所述第一指示信息包括第一字段和第二字段,所述第一字段指示所述第一上行频域资源或所述第二上行频域资源中的频域资源块的数量,所述第二字段指示所述第一下行频域资源中的频域资源块的数量。
在本申请提供的方案中,网络设备可以通过两个字段来指示终端设备,即第一指示信息可以包括第一字段和第二字段。由于第一上行频域资源中的频域资源块的数量等于第二上行频域资源中的频域资源块的数量,第一字段只需要指示第一上行频域资源或者第二上行频域资源中的频域资源块的数量,终端设备就可以通过第一字段确定第一上行频域资源中的频域资源块的数量和第二上行频域资源中的频域资源块的数量;第二字段可以指示第一下行频域中的频域资源块的数量,终端设备可以通过第二字段确定第一下行频域资源中的频域资源块的数量,进而可以减少信令开销。
在一种可能的实现方式中,所述根据所述第一指示信息确定所述载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源,包括:根据所述第一字段确定所述第一上行频域资源和所述第二上行频域资源,其中,所述第一上行频域资源的最小频率为所述载波的最小频率,所述第二上行频域资源的最大频率为所述载波的最大频率;根据所述第二字段确定所述第一下行频域资源,所述第一下行频域资源的中心频率为所述载波的中心频率。
在本申请提供的方案中,某一载波可以是提前预置的,终端设备可以通过第一字段确定第一上行频域资源中的频域资源块的数量和第二上行频域资源中的频域资源块的数量,还可以通过第二字段确定第一下行频域资源中的频域资源块的数量,第一上行频域资源的频率小于第一下行频域资源的频率,第二上行频域资源的频率大于第一下行频域资源的频 率。当终端设备可以确定第一上行频域资源的最小频率为该载波的最小频率,第二上行频域资源的最大频率为该载波的最大频率时,因为第一下行频域资源是在第一上行频域资源和第二上行频域资源的中间,第一上行频域资源与第一下行频域资源的频域间距和第二上行频域资源与第一下行频域资源的频域间距相等,载波的频域长度是提前设置好的,则可以确定第一下行频域资源的中心频率为该载波的中心频率。这样,频域资源配置的图样可以是一个对称的图样,即第一上行频域资源、第二上行频域资源和第一下行频域资源以第一下行频域资源的中心频率对称。这样,网络设备可以通过第一指示信息只用指示一半图样的频域资源配置,终端设备就可以确定该载波的全部上下行资源的配置,进而可以减少信令开销。
应理解,载波的中心频率对应的频率和载波上最小频率的偏差值等于载波的中心频率对应的频率和载波上最大频率的偏差值。第一下行频域资源的中心频率对应的频率和第一下行频域资源的最小频率的偏差值等于第一下行频域资源的中心频率对应的频率和第一下行频域资源的最大频率的偏差值。
在一种可能的实现方式中,所述第一时间段包括小区级配置的上下行时隙格式中的下行时间段。
在本申请提供的方案中,第一时间段可以指某一载波在时域上的某一时间段,该第一时间段可以是至少不小于小区级配置的上下行时隙格式中的下行时间段的时间段。这样,第一指示信息可以实现更为灵活的上下行资源配置。
在一种可能的实现方式中,所述第一指示信息承载于小区专用的信令中。
在本申请提供的方案中,第一指示信息可以承载于小区专用的信令中,网络设备可以不需要单独使用一个信令来向终端设备发送第一指示信息,进而可以减少信令开销。
第二方面,本申请提供了一种通信方法,该方法可以应用于网络设备,也可以应用于网络设备中的模块(例如,芯片),下面以应用于网络设备为例进行描述。该通信方法可以用于确定上下行资源,可以包括:确定第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,其中,所述第一上行频域资源的频率小于所述下行频域资源的频率,所述第二上行频域资源的频率大于所述下行频域资源的频率;或所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一下行频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述下行频域资源中的任意一个频域资源块的序号;向终端设备发送所述第一指示信息。
在本申请提供的方案中,网络设备可以先确定第一指示信息,第一指示信息可以指示终端设备在第一时间段内的某一载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源,再向终端设备发送该第一指示信息,终端设备接收到第一指示信息后,可以根据第一指示信息确定在第一时间段内的某一载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源。这样,可以实现full-duplex FDD场景中终端设备在同一时间同一载波内上下行资源的确定,进而full-duplex FDD场景中终端设备可以在同一时间同一载波内进行上下行通信。
应理解,第一指示信息指示的可以是一个时间段内的某一载波的频域资源配置,该载波的频域可以是提前预置好的,第一时间段可以包括一个或多个时隙。
应理解,第二方面的执行主体为网络设备,第二方面的具体内容与第一方面的内容对应,第二方面相应特征以及达到的有益效果可以参考第一方面的描述,为避免重复,此处适当省略详细描述。
在一种可能的实现方式中,所述第一上行频域资源的最大频率与所述第一下行频域资源的最小频率的差值与所述第一下行频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在一种可能的实现方式中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在一种可能的实现方式中,所述第一指示信息包括第一字段和第二字段,所述第一字段指示所述第一上行频域资源或所述第二上行频域资源中的频域资源块的数量,所述第二字段指示所述第一下行频域中的频域资源块的数量。
在一种可能的实现方式中,所述第一上行频域资源的最小频率为所述载波的最小频率,所述第二上行频域资源的最大频率为所述载波的最大频率;所述第一下行频域资源的中心频率为所述载波的中心频率。
在一种可能的实现方式中,所述第一时间段包括小区级配置的上下行时隙格式中的下行时间段。
在一种可能的实现方式中,所述第一指示信息承载于小区专用的信令中。
第三方面,本申请提供了一种通信方法,该方法可以应用于终端设备,也可以应用于终端设备中的模块(例如,芯片),下面以应用于终端设备为例进行描述。该通信方法可以用于确定上下行资源,可以包括:接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源和/或第二上行频域资源,其中,所述第一上行频域资源的最大频率小于第一频域资源的最小频率,所述第二上行频域资源的最小频率大于所述第一频域资源的最大频率,所述第一上行频域和/或所述第二上行频域资源与所述第一频域资源属于同一个频段;根据所述第一指示信息确定所述第一上行频域资源和/或所述第二上行频域资源。
在本申请提供的方案中,第一频域资源配置可以以TDD的时隙格式配置其用于上行通信和下行通信。可以在第一频域资源配置的基础上,增加第一上行频域资源和/或第二上行频域资源,其中,第一上行频域资源的最大频率可以小于第一频域资源的最小频率,第二上行频域资源的最小频率可以大于第一频域资源的最大频率。即网络设备可以通过向终端设备发送第一指示信息,第一指示信息用于指示第一时间段内载波上第一上行频域资源和/或第二上行频域资源,终端设备接收到第一指示信息之后,可以确定第一上行频域资源和/或第二上行频域资源。本申请提供的方案可以在以TDD的时隙格式配置的第一频域资源的信令基础上额外增加第一指示信息,第一指示信息指示在第一频域资源基础上增加的第一上行频域资源和/或第二上行频域资源。这样,可以实现full-duplex FDD场景中终端设备在同一时间同一载波内上下行资源的确定,进而full-duplex FDD场景中终端设备可以在同一 时间同一载波内进行上下行通信。
应理解,频段可以为预先定义的一段频率范围。第一上行频域资源可以包括载波内的最小频率或最小序号的频域资源块,第二上行频域资源可以包括载波内的最大频率或最大序号的频域资源块。
在一种可能的实现方式中,该通信方法还可以包括:接收来自网络设备的第二指示信息,所述第二指示信息用于指示第二时间段和第三时间段,在所述第二时间段内所述第一频域资源为下行频域资源,在所述第三时间段内所述第一频域资源为上行频域资源,所述第一时间段包括所述第二时间段,所述第一频域资源为预先确定的。
在本申请提供的方案中,网络设备还可以向终端设备发送第二指示信息,第二指示信息可以指示第二时间段和第三时间段,可以理解为,第二指示信息指示的是第一频域资源所对应的下行符号和上行符号,第二指示信息指示终端设备在第二时间段内第一频域资源为下行频域资源,在第三时间段内第一频域资源为上行频域资源。其中,第一频域资源可以是其他指示信息指示的,也可以是预先设置的。第一时间段可以至少包括第二时间段,即第一时间段可以包括第二时间段,也可以包括第二时间段和第三时间段。
在一种可能的实现方式中,所述第一上行频域资源的最大频率与所述第一频域资源的最小频率的差值和所述第一频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在本申请提供的方案中,频域资源的最大频率,可以理解为,频域资源中频率最大的子载波对应的频率;频域资源的最小频率,可以理解为,频域资源中频率最小的子载波对应的频率。具体的,第一上行频域资源的最大频率,可以理解为,第一上行频域资源中频率最大的子载波对应的频率;第一下行频域资源的最小频率,可以理解为,第一下行频域资源中频率最小的子载波对应的频率;第一下行频域资源的最大频率,可以理解为,第一下行频域资源中频率最大的子载波对应的频率;第二上行频域资源的最小频率,可以理解为,第二上行频域资源中频率最小的子载波对应的频率。其中,用于度量的子载波间隔可以为预先定义的子载波间隔。第一上行频域资源的最大频率与第一频域资源的最小频率的差值和第一频域资源的最大频率与第二上行频域资源的最小频率的差值相等,可以理解为,第一上行频域资源与第一频域资源的频域间距和第二上行频域资源与第一频域资源的频域间距相等。
在一种可能的实现方式中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在本申请提供的方案中,第一上行频域资源中的频域资源块的数量可以等于第二上行频域资源中的频域资源块的数量,这样,第一指示信息可以只用指示第一上行频域资源中的频域资源块的数量或者第二上行频域资源中的频域资源块的数量,终端设备就可以确定第一上行频域资源中的频域资源块的数量和第二上行频域资源中的频域资源块的数量,从而可以减少信令开销。
在一种可能的实现方式中,所述第一指示信息指示所述第一上行频域资源和/或所述第二上行频域资源中的资源块的数量。
在本申请提供的方案中,第一指示信息可以指示第一上行频域资源中的资源块的数量、 也可以指示第二上行频域资源中的资源块的数量,还可以指示第一上行频域资源中的资源块的数量和第二上行频域资源中的资源块的数量。在第一指示信息指示第一上行频域资源和第二上行频域资源的情况下,由于第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量,第一指示信息可以只需要指示一个上行频域资源中的频域资源块的数量,即第一上行频域资源中的频域资源块的数量或者是第二上行频域资源中的频域资源块的数量,终端设备就可以确定第一上行频域资源中的频域资源块和第二上行频域资源中的频域资源块的数量,这样可以减少信令开销。
在一种可能的实现方式中,所述根据所述第一指示信息确定所述第一上行频域资源和/或所述第二上行频域资源,包括:根据所述第一指示信息和第一频域间距,确定所述第一上行频域资源和/或所述第二上行频域资源,其中,所述第一频域间距为预先确定的,或根据所述第一频域资源的带宽确定的。
在本申请提供的方案中,终端设备接收来自网络设备的第一指示信息之后,可以根据第一指示信息确定第一上行频域资源和/或第二上行频域资源。具体的,可以根据第一指示信息和第一频域间距,确定第一上行频域资源和/或第二上行频域资源。在第一指示信息指示第一上行频域资源的情况下,第一频域间距可以指的是第一上行频域资源与第一频域资源的频域间距,终端设备可以根据该频域间距和第一指示信息确定第一上行频域资源;在第一指示信息指示第二上行频域资源的情况下,第一频域间距可以指的是第二上行频域资源与第一频域资源的频域间距,终端设备可以根据该频域间距和第一指示信息确定第二上行频域资源;在第一指示信息指示第一上行频域资源和第二上行频域资源的情况下,第一频域间距可以指的是第一上行频域资源与第一频域资源的频域间距以及第二上行频域资源与第一频域资源的频域间距,终端设备可以根据第一指示信息和这两个频域间距来确定第一上行频域资源和第二上行频域资源。应理解,第一频域间距可以为0。
在一种可能的实现方式中,所述第一指示信息和所述第二指示信息承载于小区专用的信令中。
在本申请提供的方案中,第一指示信息和第二指示信息可以承载于小区专用的信令中,网络设备可以不需要单独使用一个信令来向终端设备发送第一指示信息和/或第二指示信息,进而可以减少信令开销。
第四方面,本申请提供了一种通信方法,该方法可以应用于网络设备,也可以应用于网络设备中的模块(例如,芯片),下面以应用于网络设备为例进行描述。该通信方法可以用于确定频域资源,可以包括:确定第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源和/或第二上行频域资源,其中,所述第一上行频域资源的最大频率小于第一频域资源的最小频率,所述第二上行频域资源的最小频率大于所述第一频域资源的最大频率,所述第一上行频域和/或所述第二上行频域资源与所述第一频域资源属于同一个频段;向终端设备发送所述第一指示信息。
在本申请提供的方案中,网络设备可以先确定第一指示信息,第一指示信息可以用于指示第一时间段内载波上第一上行频域资源和/或第二上行频域资源,再向终端设备发送该第一指示信息,终端设备接收到该第一指示信息之后,可以确定第一上行频域资源和/或第 二上行频域资源。第一指示信息可以是在以TDD的时隙格式配置的第一频域资源的信令基础上额外增加的,用于指示在第一频域资源基础上增加的第一上行频域资源和/或第二上行频域资源。其中,第一上行频域资源的最小频率可以小于第一频域资源的最大频率,第二上行频域资源的最小频率可以大于第一频域资源的最大频率。这样,可以实现full-duplex FDD场景中终端设备在同一时间同一载波内上下行资源的确定,进而full-duplex FDD场景中终端设备可以在同一时间同一载波内进行上下行通信。
应理解,第四方面的执行主体为网络设备,第四方面的具体内容与第三方面的内容对应,第四方面相应特征以及达到的有益效果可以参考第三方面的描述,为避免重复,此处适当省略详细描述。
在一种可能的实现方式中,该通信方法还可以包括:向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一频域资源,所述第一频域资源在第二时间段内为下行频域资源,在第三时间段内为上行频域资源,所述第一时间段包括所述第二时间段。
在一种可能的实现方式中,所述第一上行频域资源的最大频率与所述第一频域资源的最小频率的差值和所述第一频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在一种可能的实现方式中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在一种可能的实现方式中,所述第一指示信息指示所述第一上行频域资源和/或所述第二上行频域资源中的资源块的数量。
在一种可能的实现方式中,所述第一指示信息和所述第二指示信息承载于小区专用的信令中。
第五方面,提供了一种通信装置,该通信装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。该通信装置可以包括:
接收单元,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,所述第一时间段包括一个或多个时隙,其中,所述第一上行频域资源的频率小于所述第一下行频域资源的频率,所述第二上行频域资源的频率大于所述第一下行频域资源的频率;或所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一下行频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述下行频域资源中的任意一个频域资源块的序号;
确定单元,用于根据所述第一指示信息确定所述载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源。
在一种可能的实现方式中,所述第一上行频域资源的最大频率与所述第一下行频域资源的最小频率的差值和所述第一下行频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在一种可能的实现方式中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在一种可能的实现方式中,所述第一指示信息包括第一字段和第二字段,所述第一字段指示所述第一上行频域资源或所述第二上行频域资源中的频域资源块的数量,所述第二字段指示所述第一下行频域中的频域资源块的数量。
在一种可能的实现方式中,所述确定单元根据所述第一指示信息确定所述载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源,包括:根据所述第一字段确定所述第一上行频域资源和所述第二上行频域资源,其中,所述第一上行频域资源的最小频率为所述载波的最小频率,所述第二上行频域资源的最大频率为所述载波的最大频率;根据所述第二字段确定所述第一下行频域资源,所述第一下行频域资源的中心频率为所述载波的中心频率。
在一种可能的实现方式中,所述第一时间段包括小区级配置的上下行时隙格式中的下行时间段。
在一种可能的实现方式中,所述第一指示信息承载于小区专用的信令中。
第六方面,提供了一种通信装置,该通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。该通信装置可以包括:
确定单元,用于第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,其中,所述第一上行频域资源的频率小于所述下行频域资源的频率,所述第二上行频域资源的频率大于所述下行频域资源的频率;或所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一下行频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述下行频域资源中的任意一个频域资源块的序号;
发送单元,用于向终端设备发送所述第一指示信息。
在一种可能的实现方式中,所述第一上行频域资源的最大频率与所述第一下行频域资源的最小频率的差值与所述第一下行频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在一种可能的实现方式中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在一种可能的实现方式中,所述第一指示信息包括第一字段和第二字段,所述第一字段指示所述第一上行频域资源或所述第二上行频域资源中的频域资源块的数量,所述第二字段指示所述第一下行频域中的频域资源块的数量。
在一种可能的实现方式中,所述第一上行频域资源的最小频率为所述载波的最小频率,所述第二上行频域资源的最大频率为所述载波的最大频率;所述第一下行频域资源的中心频率为所述载波的中心频率。
在一种可能的实现方式中,所述第一时间段包括小区级配置的上下行时隙格式中的下行时间段。
在一种可能的实现方式中,所述第一指示信息承载于小区专用的信令中。
第七方面,提供了一种通信装置,该通信装置可以为终端设备,也可以为终端设备中 的模块(例如,芯片)。该通信装置可以包括:
第一接收单元,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源和/或第二上行频域资源,其中,所述第一上行频域资源的最大频率小于第一频域资源的最小频率,所述第二上行频域资源的最小频率大于所述第一频域资源的最大频率,所述第一上行频域和/或所述第二上行频域资源与所述第一频域资源属于同一个频段;
确定单元,用于根据所述第一指示信息确定所述第一上行频域资源和/或所述第二上行频域资源。
在一种可能的实现方式中,该通信装置还可以包括:
第二接收单元,用于接收来自网络设备的第二指示信息,所述第二指示信息用于指示第二时间段和第三时间段,在所述第二时间段内所述第一频域资源为下行频域资源,在所述第三时间段内所述第一频域资源为上行频域资源,所述第一时间段包括所述第二时间段,所述第一频域资源为预先确定的。
在一种可能的实现方式中,所述第一上行频域资源的最大频率与所述第一频域资源的最小频率的差值和所述第一频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在一种可能的实现方式中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在一种可能的实现方式中,所述第一指示信息指示所述第一上行频域资源和/或所述第二上行频域资源中的资源块的数量。
在一种可能的实现方式中,所述确定单元根据所述第一指示信息确定所述第一上行频域资源和/或所述第二上行频域资源,包括:根据所述第一指示信息和第一频域间距,确定所述第一上行频域资源和/或所述第二上行频域资源,其中,所述第一频域间距为预先确定的,或根据所述第一频域资源的带宽确定的。
在一种可能的实现方式中,所述第一指示信息和所述第二指示信息承载于小区专用的信令中。
第八方面,提供了一种通信装置,该通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。该通信装置可以包括:
确定单元,用于确定第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源和/或第二上行频域资源,其中,所述第一上行频域资源的最大频率小于第一频域资源的最小频率,所述第二上行频域资源的最小频率大于所述第一频域资源的最大频率,所述第一上行频域和/或所述第二上行频域资源与所述第一频域资源属于同一个频段;
第一发送单元,用于向终端设备发送所述第一指示信息。
在一种可能的实现方式中,该通信装置还可以包括:
第二发送单元,用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一频域资源,所述第一频域资源在第二时间段内为下行频域资源,在第三时间段内 为上行频域资源,所述第一时间段包括所述第二时间段。
在一种可能的实现方式中,所述第一上行频域资源的最大频率与所述第一频域资源的最小频率的差值和所述第一频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在一种可能的实现方式中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在一种可能的实现方式中,所述第一指示信息指示所述第一上行频域资源和/或所述第二上行频域资源中的资源块的数量。
在一种可能的实现方式中,所述第一指示信息和所述第二指示信息承载于小区专用的信令中。
第九方面,提供了一种通信装置,该通信装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序执行第一方面或第一方面的任一实施方式提供的通信方法;或者
第三方面或第三方面的任一实施方式提供的通信方法。
第十方面,提供了一种通信装置,该通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序执行第二方面或第二方面的任一实施方式提供的通信方法;或者
第四方面或第四方面的任一实施方式提供的通信方法。
第十一方面,本申请提供了一种通信系统,该通信系统包括第九方面的通信装置和第十方面的通信装置。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序或计算机指令,当该计算机程序或计算机指令运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现、第三方面及其任一种可能的实现和第四方面及其任一种可能的实现中所述的通信方法的部分或全部步骤被执行。
第十三方面,本申请提供了一种包括可执行指令的计算机程序产品,当所述计算机程序产品在用户设备上运行时,使得上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现、第三方面及其任一种可能的实现和第四方面及其任一种可能的实现中所述的通信方法的部分或全部步骤被执行。
第十四方面,本申请提供了芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面及其任一种可能的实现、第二方面及其任一种可能的实现、第三方面及其任一种可能的实现和第四方面及其任一种可能的实现中所述的通信方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1是本申请实施例提供的一种双工模式的数据传输方式示意图;
图2是本申请实施例提供的一种应用场景示意图;
图3是本申请实施例提供的另一种应用场景示意图;
图4是本申请实施例提供的一种通信方法的流程示意图;
图5是本申请实施例提供的一种频域资源配置的示意图;
图6是本申请实施例提供的另一种通信方法的流程示意图;
图7是本申请实施例提供的另一种频域资源配置的示意图;
图8是本申请实施例提供的一种通信装置的结构示意图;
图9是本申请实施例提供的另一种通信装置的结构示意图;
图10是本申请实施例提供的又一种通信装置的结构示意图;
图11是本申请实施例提供的又一种通信装置的结构示意图;
图12是本申请实施例提供的又一种通信装置的结构示意图;
图13是本申请实施例提供的一种终端的结构示意图。
具体实施方式
为了便于理解本申请,首先在此介绍本申请实施例涉及的相关技术知识。
1、双工模式
在无线通信系统中,按照发送节点和接收节点种类的不同,可以将通信分为不同的类型。通常,将网络设备向终端设备发送信息称为下行(downlink,DL)通信,将终端设备向网络设备发送信息称为上行(uplink,UL)通信。
请参阅图1,图1是本申请实施例提供的一种双工模式的数据传输方式示意图。现有的双工模式可以分为TDD、频分双工(frequency division duplex,FDD)和full-duplex FDD:
1)TDD,实际上是一种半双工技术,即同一时刻只能接收或只能发送数据,时分双工的上行链路和下行链路传输在时间上是分离的,接收和发送发生在同一载波(频带)的不同时隙,如图1的(a)所示;
2)FDD,指同时在不同的频带内的载波上分别进行上行和下行链路传输的数据传输方式,上行载波和下行载波的频率差距较大,如图1的(b)所示,下行链路使用频带1载波传输,上行链路使用频带2内的载波传输;
3)full-duplex FDD也可以称为带内full-duplex FDD,指同时在一个频带内的不同频率上分别进行上行链路传输和下行链路传输的数据传输方式,如图1的(c)所示,上行链路和下行链路使用频带1内的不同频率进行传输。
2、第五代移动网络(5th generation mobile networks,5G)新无线接入技术(new radio access technology,NR)的帧结构配置方式
在第五代无线通信系统—NR系统中,在时域上可以划分为多个无线帧,每个无线帧长10ms;一个无线帧又包括多个时隙。一个时隙(slot)可以包括14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号;对于子载波间隔(subcarrierspace,SCS)为15kHz的情况,一个时隙的时域长度为1ms。每个时隙中的符号可以被分为三类:下行 符号(标记为D)、上行符号(标记为U)和灵活符号(标记为X)。下行数据发送可以在下行符号和灵活符号进行,上行数据发送可以在上行符号和灵活符号进行。
NR的帧结构配置采用半静态RRC配置和动态下行控制信息(downlinkcontrol information,DCI)配置结合的方式进行灵活配置。RRC配置支持小区专用的RRC配置和UE专用的RRC配置两种方式。DCI配置的方式支持有时隙格式指示(slotformat indicator,SFI)直接指示和DCI调度决定两种方式。
3、频域资源
频域资源为网络设备配置给终端设备的一部分频带(band),用于进行数据传输,具体的,频域资源可以为分量载波(component carrier,CC),也可以为带宽部分(bandwidth part,BWP),还可以为载波频带(carrier band)等。本申请实施例对此不进行限定,其中,BWP可以为连续的频域资源,也可以为不连续的频域资源。
其中,频域资源可以包括上行频域资源和下行频域资源,具体的,上行频域资源为网络设备配置给终端设备用于传输上行数据的频域资源,下行频域资源为网络设备配置给终端设备用于传输下行数据的频域资源,应理解,本申请实施例涉及的上行数据指的是终端设备发送给网络设备的数据,下行数据指的是网络设备发送给终端设备的数据。
频域资源配置信息,用于指示终端设备和网络设备之间传输数据时所使用的上行频域资源和下行频域资源,具体的频域资源配置信息可以包括带宽参数、频域位置参数等信息。例如,当频域资源为BWP时,频域资源配置信息又可称为BWP配置信息(BWP configuration information)。
资源块(resource block,RB),频域上连续的N个子载波可称为一个资源块。例如,LTE系统中的一个资源块包括12个子载波,5G中NR系统的一个资源块也包括12子载波。随着通信系统的演进,一个资源块包括的子载波个数也可以是其他值。
频域资源块可以包括多个子载波,频域资源块中子载波的数量等于资源块中子载波的数量。可以理解为,频域资源块为资源块。
上行/下行频域资源的最大频率:最大频率为上行/下行频域资源中频率最大的子载波对应的频率。
上行/下行频域资源的最小频率:最小频率为上行/下行频域资源中频率最小的子载波对应的频率。
中心频率,为一个信道带宽所对应的频率范围内的中间频率。载波的中心频率指载波的带宽对应的频率范围内的中间频率,载波中心频率对应的频率和载波中最小频率的偏差值等于中心频率对应的频率和载波中最大频率的偏差值。
4、时隙
时隙(slot),为传输数据的资源在时域上的单位,一个时隙通常包含多个符号/码片,每个符号/码片可能有相同或不同的传输方向。5G中NR系统的一个时隙包括14个OFDM符号,15kHz子载波间隔对应的时隙长度为1ms,30kHz子载波间隔对应的时隙长度为0.5ms。OFDM符号为OFDM系统中时域上最小的时间单元。
时隙格式(slot format),用于指示终端设备的上下行时域资源配置,例如,一个时隙包括14个符号,则时隙的格式中规定了一个时隙内用于上行传输、下行传输和灵活传输的符 号,如第一个到第四个符号用于上行传输,第五个符号到十一个符号用于灵活传输,第十二个符号到第十四个符号用于上行传输等。
5、子载波
OFDM系统中将频域资源划分为若干个子资源,每个频域上的子资源可称为一个子载波。子载波也可以理解为频域资源的最小粒度。
时频资源单元为OFDM系统中最小的资源粒度,时域上为一个OFDM符号,频域上为一个子载波。
子载波间隔,OFDM系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。例如,长期演进(long term evolution,LTE)系统中的子载波间隔为15kHz,5G中NR系统的子载波间隔可以是15kHz,或30kHz,或60kHz,或120kHz等。
载波:载波的带宽包括频段中的一段连续的频率范围,所述频率范围可以是预先确定的,如NR系统中预先确定了载波的带宽可以为5MHz、10MHz、15MHz等等。
频段:也可称作频带,或也称操作频段,包括上行操作频段和下行操作频段。所述上行/下行操作频段为一段连续的频率范围,其由上行/下行操作频段的最小频率和上行/下行频段的最大频率所确定。当系统采用时分双工时,上行操作频段即为下行操作频段;当系统采用频分双工时,上行操作频段不为下行操作频段。
网络设备可以通过小区专用的半静态上下行公共配置信息通知终端设备上下行资源,小区专用的半静态上下行公共配置信息可以由参考子载波配置参数和图样(pattern)组成,所述图样可以为小区级配置的上下行时隙格式,图样可以由时隙配置周期、下行传输时隙数、下行传输符号数、上行传输时隙数和上行传输符号数5个参数确定。其中,下行时隙数和下行符号数表示下行资源,即下行时间段,下行时隙数表示配置的周期内开始时连续的全下行时隙数,下行符号数表示在数个全下行时隙后连续的全下行符号数;上行时隙数和上行符号数表示上行资源,即上行时间段,上行时隙数表示配置的周期结束前连续的全上行时隙数,上行符号数表示在数个全上行时隙前连续全上行符号的个数。
在TDD场景中,为了提高灵活性,可以以时隙和符号为单位进行上下行资源的配置。而针对full-duplex FDD场景,终端设备在同一时间同一载波内进行上下行通信,如果网络设备通过时隙和符号为单位进行对终端设备的上下行资源配置,则无法满足同一时间同一载波内的不同频域资源的上下行配置需求。
基于上述问题,本申请提供一种通信方法,能够实现full-duplex FDD场景中终端设备在同一时间同一载波内进行上下行通信。
本申请实施例中,可以有两种方案解决上述问题。第一种方案:网络设备可以向终端设备发送第一指示信息,用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,终端设备可以根据第一指示信息确定所述载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源。第二种方案:网络设备可以向终端设备发送第一指示信息,第一指示信息可以在第一频域资源基础上指示第一时间段内载波上增加的第一上行频域资源和/或第二上行频域资源,终端设备可以根据第一指示信息确定所述载波上第一上行频域资源和/或第二上行频域资源;第一频域资源可以通过其他指示信息指示其以时隙和符号为单位进行上下行通信。这样,可以实现full-duplex FDD场景中终端设 备在同一时间同一载波内上下行资源的确定,进而full-duplex FDD场景中终端设备可以在同一时间同一载波内进行上下行通信。
为了更好地理解本申请实施例提供的一种通信方法、装置及计算机可读存储介质,下面先对本申请实施例的应用场景进行描述。根据终端设备是否支持带内full-duplex FDD,可以分为以下应用场景,具体的:
请参阅图2,图2是本申请实施例提供的一种应用场景示意图。如图2所示,该应用场景可以包括第一终端设备201、第二终端设备202和网络设备203。其中,第一终端设备201和第二终端设备202不支持带内full-duplex FDD,不支持带内full-duplex FDD终端设备可以接收网络设备发送的下行信号或者向网络设备发送上行信号,例如,网络设备203可以向第一终端设备201发送下行信号,第二终端设备202可以向网络设备203发送上行信号。
请参阅图3,图3是本申请实施例提供的另一种应用场景示意图。如图3所示,该应用场景可以包括第一终端设备301、第二终端设备302和网络设备303。其中,第一终端设备301和第二终端设备302支持full-duplex FDD,支持带内full-duplex FDD终端设备可以同时接收网络设备发送的下行信号和向网络设备发送上行信号,例如,网络设备303可以向第一终端设备301发送下行信号,同时第一终端设备301可以向网络设备303发送上行信号;网络设备303可以向第二终端设备302发送下行信号,同时第二终端设备302可以向网络设备303发送上行信号。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信系统(global system for mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码多分址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信(universal mobile telecommunications system,UMTS)系统、增强型数据速率GSM演进(enhanced data rate for GSM evolution,EDGE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统。本申请实施例的技术方案还可以应用于其他通信系统,例如公共陆地移动网络(public land mobile network,PLMN)系统,第五代(5th generation,5G)系统或5G之后的通信系统或新无线(new radio,NR)等,本申请实施例对此不作限定。
本申请实施例中的终端设备也可以称为用户终端。用户终端可以为包含无线收发功能、且可以与网络设备配合为用户提供通讯服务的设备。具体的,用户终端可以指UE、用户、卫星电话、卫星终端、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能手机(smart phone)、智能手表(smart watch)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。例如,终端设备可以是车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无 人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络或者未来通信网络中的终端设备等,本申请实施例对此不作具体限定。
本申请实施例中的网络设备可以是用于与终端设备进行通信的设备,例如,可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional Node B,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络或5G之后的网络中的网络设备或者未来演进的PLMN网络中的网络设备等,例如,NR系统中传输点(TRP或TP)、NR系统中的基站(gNB)、5G系统中的基站的一个或一组(包括多个天线面板)天线面板等,本申请实施例对此不作限定。
可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、下一代基站(gNodeB,gNB)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等,本申请实施例对此不作具体限定。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasableprogrammableread-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本申请描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
基于上述的网络架构,请参阅图4,图4是本申请实施例提供的一种通信方法的流程示意图。其中,本申请中由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,本申请中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行。该通信方法可以用于终端设备确定上下行资源。如图4所示,该通信方法可以包括以下步骤。
401、网络设备向终端设备发送第一指示信息。
相应的,终端设备可以接收来自网络设备的第一指示信息。
可选的,第一指示信息用于指示第一时间段内载波上的频域资源配置图样。所述频域资源配置图样用于确定第一时间段内载波上的上行频域资源和下行频域资源。即,第一指示信息用于指示第一时间段内载波上的上行频域资源和下行频域资源。其中,所述上行频域资源为用于上行通信的频域资源块,所述下行频域资源为用于下行通信的频域资源块。
本申请实施例中,所述频域资源块可以为资源块。当前NR协议中的资源块(resource block)与频域资源块可以是相同的物理含义。
本申请实施例中,所述载波所包含的子载波或资源块是提前确定好的。所述载波的带宽包括一段连续的频率范围,所述频率范围可以是预先确定的。如NR系统中预先确定了载波的带宽可以为5MHz、10MHz等等。
本申请实施例中,所述第一时间段包括一个或多个时隙。第一时间段可以指的是某一载波在时域上的某一时间段。当第一时间段包括一个时隙时,第一指示信息可以用来指示终端设备在需要传输数据的当前时刻的频域资源配置图样;当第一时间段包括多个时隙时,第一指示信息可以用来指示终端设备在第一时间段内全部时隙的频域资源配置图样。
可选的,第一时间段包括小区级配置的上下行时隙格式中的下行时间段。即该第一时间段不小于小区级配置的上下行时隙格式确定的下行符号对应的时间段。可以理解为,第一时间段可以是大于或等于小区级配置的上下行时隙格式中的下行时间段的时间段。即第一时间段可以包括小区级配置的上下行时隙格式中的上行时间段和下行时间段。即第一时间段可以包括小区级配置的上下行时隙格式确定的上行符号和下行符号。假设第一时间段包括小区级配置的上下行时隙格式中一个配置周期内的全部时间段,将整个第一时间段都配置为如上行频域资源、下行频域资源和上行频域资源,那么如果最后的部分时间单元中,网络设备没有下行数据传输,由于提前配置了下行频域资源,这部分的频谱资源就无法利用,从而会造成资源浪费。所以,第一指示信息指示的第一时间段可以是至少不小于小区级配置的上下行时隙格式中的下行时间段的时间段,可以实现更为灵活的上下行资源配置。
可选的,第一指示信息可以用于指示第一时间段内载波上的频域资源配置图样,可以包括:第一指示信息用于指示第一时间段内载波上的多个频域资源配置图样,所述任意一个频域资源配置图样用于确定第一时间段的一个时间单元内载波上的上行频域资源和下行频域资源。其中,所述时间单元包含于所述第一时间段,所述时间单元包含一个或多个时隙。即第一指示信息包括多个用于指示时间单元内载波上的上行频域资源和下行频域资源的指示信息,所述时间单元包括一个或多个时隙,所述第一时间段包括多个时间单元。这样对第一时间段内载波的频域资源配置更为灵活。例如,终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,第一时间段内包括20个时隙,编号为时隙0到时隙19,可以分为四个时间单元,编号为时间单元0到3,时间单元0到3分别包括时隙0到4、时隙5到9、时隙10到14和时隙15到19,第一指示信息指示4个频域资源配置图样,4个频域资源配置图样分别用于确定时间单元0到3内载波上的上行频域资源和下行频域资源:频域资源配置图样0指示时隙0到4内载波上RB 0到9和RB39到49用于上行通信,RB 10到38用于下行通信;频域资源配置图样1指示时隙5到9内载波上RB 0到9和RB35到49用于上行通信, RB 10到34用于下行通信;频域资源配置图样2指示时隙10到14内载波上RB 0到14和RB35到49用于上行通信,RB 15到34用于下行通信;频域资源配置图样3指示时隙15到19内载波上RB 0到19和RB30到49用于上行通信,RB 20到29用于下行通信。具体的第一指示信息指示的频域资源配置图样为哪些频域资源配置图样可以由终端设备根据预配置的策略确定,其中预配置的策略可以为网络设备发送给终端设备的,也可以为终端设备在出厂时配置好的。
频域资源配置图样可以分为第一频域资源配置图样和第二频域资源配置图样。包括如下几种可能性:
(一)针对第一频域资源配置图样:
第一频域资源配置图样用于确定第一时间段内载波上的至少一个上行频域资源和至少一个下行频域资源。其中,所述上行频域资源为用于上行通信的频域资源块,所述下行频域资源为用于下行通信的频域资源块。可以理解为,所述第一频域资源配置图样用于确定第一上行频域资源和第一下行频域资源,或者第一下行频域资源和第一上行频域资源,或者第一上行频域资源、第一下行频域资源、第二下行频域资源,或者是第一下行频域资源、第二下行频域资源、第一上行频域资源,或者是第一下行频域资源、第一上行频域资源、第二上行频域资源、第二下行行频域资源,或者是第一下行频域资源、第一上行频域资源、第二下行频域资源、第二下行频域资源等等。
可选的,所述第一频域资源配置图样用于确定第一上行频域资源和第一下行频域资源。第一指示信息用于指示第一上行频域资源和第一下行频域资源。所述第一上行频域资源的频率小于第一下行频域资源的频率,或所述第一上行频域资源的任意一个资源块的序号小于第一下行频域资源的任意一个资源块的序号。
或者所述第一频域资源配置图样用于指示第一下行频域资源和第一上行频域资源。第一指示信息用于指示第一下行频域资源和第一上行频域资源。所述第一下行频域资源的频率小于第一上行频域资源的频率,或所述第一下行频域资源的任意一个资源块的序号小于第一上行频域资源的任意一个资源块的序号。
可选的,所述第一频域资源配置图样用于确定第一下行频域资源、第一上行频域资源、第二上行频域资源和第二下行频域资源。所述第一指示信息用于指示第一下行频域资源、第一上行频域资源、第二上行频域资源和第二下行频域资源。所述第一下行频域资源的频率小于所述第一上行频域资源的频率和第二上行频域资源的频率,所述第二下行频域资源的频率大于所述第一上行频域资源的频率和所述第二上行频域资源的频率;或所述第一下行频域资源的任意一个资源块序号小于所述第一上行频域资源任意一个资源块块的序号和第二上行频域资源的任意一个资源块的序号,所述第二下行频域资源的任意一个资源块的序号大于所述第一上行频域资源的任意一个资源块的序号和所述第二上行频域资源的任意一个资源块的序号。
(二)针对于第二频域资源配置图样:
所述第二频域资源配置图样用于确定第一时间段内载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源。第一指示信息用于指示第一时间段内载波上第一上行 频域资源、第二上行频域资源和第一下行频域资源。其中,第一上行频域资源和第二上行频域资源可以用于终端设备与网络设备的上行通信,第一下行频域资源可以用于网络设备与终端设备的下行通信。其中,第一上行频域资源的频率小于第一下行频域资源的频率,第二上行频域资源的频率大于第一下行频域资源的频率;或第一上行频域资源中的任意一个频域资源块的序号小于第一下行频域资源中任意一个频域资源块的序号,第二上行资源中的任意一个频域资源块的序号大于下行频域资源中的任意一个频域资源块的序号。
可选的,第一上行频域资源与第一下行频域资源之间、第一下行频域资源与第二上行频域资源之间存在频域间距。即第一上行频域资源与第一下行频域资源之间的频域间距可以为第一频域间距,第一下行频域资源与第二上行频域资源之间的频域间距可以为第二频域间距。所述第一频域间距为第一上行频域资源的最大序号资源块和第一下行频域资源的最小序号资源块之间的资源块数量。或第一频域间距为第一上行频域资源的最大序号资源块的序号和第一下行频域资源的最小序号资源块的序号的差值减一。所述第二频域间距为第一下行频域资源的最大序号资源块和第二上行频域资源的最小序号资源块之间的资源块数量。或第二频域间距为第一下行频域资源的最大序号资源块的序号和第二上行频域资源的最小序号资源块的序号的差值减一。第一频域间距和第二频域间距可以为0。应理解,由于第一频域间距和第二频域间距的存在,可以减少上行通信和下行通信之间的邻频干扰。
可选的,第一上行频域资源可以包括载波内的最小频率或最小序号的频域资源块,第二上行频域资源可以包括载波内的最大频率或最大序号的频域资源块。
第二频域资源配置图样可以分为两种,即第二频域资源配置图样可以为第三频域资源配置图样或者第四频域资源配置图样。
具体的,在第二频域资源配置图样的基础上,第三频域资源配置图样:第一上行频域资源和第二上行频域资源中的频域资源块的数量可以不相同,和/或第一上行频域资源的最大频率与第一下行频域资源的最小频率的差值和第一下行频域资源的最大频率与第二上行频域资源的最小频率的差值可以不相等。
频域资源的最大频率,可以理解为,频域资源中频率最大的子载波对应的频率;频域资源的最小频率,可以理解为,频域资源中频率最小的子载波对应的频率。具体的,第一上行频域资源的最大频率,可以理解为,第一上行频域资源中频率最大的子载波对应的频率;第一下行频域资源的最小频率,可以理解为,第一下行频域资源中频率最小的子载波对应的频率;第一下行频域资源的最大频率,可以理解为,第一下行频域资源中频率最大的子载波对应的频率;第二上行频域资源的最小频率,可以理解为,第二上行频域资源中频率最小的子载波对应的频率。
在第二频域资源配置图样的基础上,第四频域资源配置图样可以是一个以第一下行频域资源的中心频率对称的图样:
第四频域资源配置图样用于确定第一上行频域资源、第一下行频域资源和第二上行频域资源。其中,第一上行频域资源的频率可以小于第一下行频域资源的频率,第二上行频域资源的频率可以大于第一下行频域资源的频率;或第一上行频域资源中的任意一个频域资源块的序号可以小于第一下行频域资源中任意一个频域资源块的序号,第二上行资源中的任意一个频域资源块的序号可以大于下行频域资源中的任意一个频域资源块的序号。第 一上行频域资源中的频域资源块的数量可以等于第二上行频域资源中的频域资源块的数量。第一上行频域资源的最大频率与第一下行频域资源的最小频率的差值和第一下行频域资源的最大频率与第二上行频域资源的最小频率的差值可以相等。其中,用于度量的子载波间隔可以为预先定义的子载波间隔。
应理解,当第一上行频域资源中的频域资源块的数量等于第二上行频域资源中的频域资源块的数量时,第一指示信息可以只用指示第一上行频域资源中的频域资源块的数量或者第二上行频域资源中的频域资源块的数量,终端设备就可以确定第一上行频域资源中的频域资源块的数量和第二上行频域资源中的频域资源块的数量,从而可以减少信令开销。
第一上行频域资源的最大频率与第一下行频域资源的最小频率的差值和第一下行频域资源的最大频率与第二上行频域资源的最小频率的差值相等。可以理解为,第一上行频域资源与第一下行频域资源的频域间距和第二上行频域资源与第一下行频域资源的频域间距相等。即第一上行频域资源和第二上行频域资源关于第一下行频域资源的中心频率对称,所述第一下行频域资源的中心频率为第一上行频域资源的最小频率子载波的频率和第二上行频域资源的最大频率子载波的频率的中间值。可选的,第一下行频域资源的中心频率可以为载波的中心频率。
可选的,第一指示信息可以直接指示频域资源配置图样。具体的,第一指示信息可以通过直接指示第一上行频域资源、第二上行频域资源和第一下行频域资源。第一指示信息直接指示第一上行频域资源、第一下行频域资源和第二上行频域资源的方式,包括:第一指示信息分别指示第一上行频域资源、第一下行频域资源和第二上行频域资源在载波上包括的资源块序号,或者第一指示信息分别指示第一下行频域资源、第一下行频域资源和第二上行频域资源在载波上的最小序号资源块和最大序号资源块,或者第一指示信息分别指示第一下行频域资源、第一下行频域资源和第二上行频域资源在载波上的最小序号资源块和所包括的资源块数量等等。
或者,第一指示信息可以通过索引的方式指示频域资源配置图样。其中,第一指示信息指示的索引值可以与一种上下行频域资源的频域资源配置图样一一对应。具体的,第一指示信息通过索引值的方式指示第一上行频域资源、第二上行频域资源和第一下行频域资源。
举例说明,第一指示信息可以按顺序指示连续的X个频域资源块用于上行通信、Y个频域资源块用于下行通信和Z个频域资源块用于上行通信,其中,第一指示信息所能指示的频域资源块数量总和(X+Y+Z)不大于终端设备载波带宽内的频域资源块总和,且X、Y、Z不小于0。例如,请参阅图5,图5是本申请实施例提供的一种频域资源配置的示意图。如图5所示,假设终端设备载波带宽为10MHz,包括50个频域资源块,编号可以是RB0~RB49,网络设备可以通过第一指示信息指示X=10、Y=30、Z=10,即指示终端设备当前时隙内10个频域资源块(RB0~RB9)为上行传输资源,30个频域资源块(RB10~RB39)为下行传输资源,10个频域资源块(RB40~RB49)为上行传输资源。
第一指示信息可以直接指示不同的频域资源配置图样,示例性的,当第一指示信息指 示的是第三频域资源配置图样时,应理解以下所述第一指示信息也可以用于指示其他频域资源配置图样:
在一种可能的实施方式中,第一上行频域资源的最小频率可以是载波的最小频率,也可以不是载波的最小频率;第二上行频域资源的最大频率可以是载波的最大频率,也可以不是载波的最大频率。
第一指示信息可以包括六个字段。其中,第一字段可以指示第一上行频域资源的最小频率子载波的频率与载波最小频率子载波的频率的差值,或第一上行频域资源的最小序号资源块的序号与载波的最小序号资源块的序号的差值;第二字段可以指示第一上行频域资源中的频域资源块的数量;第三字段可以指示第一频域间距,或第一下行频域资源的最小频率子载波的频率与载波最小频率子载波的频率的差值,或第一下行频域资源的最小序号资源块的序号与载波的最小序号资源块的序号的差值;第四字段可以指示第一下行频域资源中的频域资源块的数量;第五字段可以指示第二频域间距,或第二上行频域资源的最小频率子载波的频率与载波最小频率子载波的频率的差值,或第二上行频域资源的最小序号资源块的序号与载波的最小序号资源块的序号的差值;第六字段可以指示第二上行频域资源中频域资源块的数量。其中,第一频域间距可以为第一上行频域资源中的最大序号的频域资源块和第一下行频域资源中的最小序号的频域资源块之间的频域资源块的数量。第二频域间距可以为第一下行频域资源中的最大序号的频域资源块和第二上行频域资源中的最小序号的频域资源块之间的频域资源块的数量。应理解,第一频域间距和第二频域间距可以为0。
在另一种可能的实施方式中,第一上行频域资源的最小频率是载波的最小频率,第二上行频域资源的最大频率是载波的最大频率。第一指示信息可以包括四个字段,其中,第一字段可以指示第一上行频域资源中的频域资源块的数量;第二字段可以指示第一频域间距,或第一下行频域资源的最小频率子载波的频率与载波最小频率子载波的频率的差值,或第一下行频域资源的最小序号资源块的序号与载波的最小序号资源块的序号的差值;第三字段可以指示第二频域间距,或第二上行频域资源的最小频率子载波的频率与载波最小频率子载波的频率的差值,或第二上行频域资源的最小序号资源块的序号与载波的最小序号资源块的序号的差值;第四字段可以指示第二上行频域资源中频域资源块的数量。其中,第一频域间距可以为第一上行频域资源中的最大序号的频域资源块和第一下行频域资源中的最小序号的频域资源块之间的频域资源块的数量。第二频域间距可以为第一下行频域资源中的最大序号的频域资源块和第二上行频域资源中的最小序号的频域资源块之间的频域资源块的数量。应理解,第一频域间距和第二频域间距可以为0。
可选的,当第一指示信息指示的是第四频域资源配置图样时,应理解以下所述第一指示信息也可以用于指示其他频域资源配置图样:
在一种可能的实施方式中,第一上行频域资源的最小频率是载波的最小频率,第二上行频域资源的最大频率是载波的最大频率。由于该频域资源配置图样是以第一下行频域资源的中心频率对称的图样,可以确定第一下行频域资源的中心频率为载波的中心频率。第一指示信息可以包括两个字段。第一字段可以指示第一上行频域资源中频域资源块的数量, 第二字段可以指示第一频域间距。或者,第一字段可以指示第一上行频域资源中频域资源块的数量,第二字段可以指示第一下行频域资源中频域资源块的数量。或者,第一字段可以指示第一下行频域资源中频域资源块的数量,第二字段可以指示第一频域间距。第一频域间距可以为0。应理解,第一频域间距可以指示第一上行频域资源中的最大序号的频域资源块和第一下行频域资源中的最小序号的频域资源块之间的频域资源块的数量,和第一下行频域资源中的最大序号的频域资源块和第二上行频域资源中的最小序号的频域资源块之间的频域资源块的数量。
在另一种可能的实施方式中,第一上行频域资源的最小频率不是载波的最小频率,第二上行频域资源的最大频率不是载波的最大频率。
可选的,第一下行频域资源的中心频率为载波的中心频率。第一指示信息可以包括三个字段。其中,第一字段可以指示第一上行频域资源中频域资源块的数量;第二字段可以指示第一频域间距;第三字段可以指示第一下行频域资源中频域资源块的数量。第一频域间距可以为0。应理解,第一频域间距可以指示第一上行频域资源中的最大序号的频域资源块和第一下行频域资源中的最小序号的频域资源块之间的频域资源块的数量,和第一下行频域资源中的最大序号的频域资源块和第二上行频域资源中的最小序号的频域资源块之间的频域资源块的数量。
可选的,第一下行频域资源的中心频率不为载波的中心频率。第一指示信息可以包括四个字段。第一字段可以指示第一上行频域资源的最小频率或最小序号资源块的序号和载波最小的频率或最小序号资源块的序号的差值;第二字段可以指示第一上行频域资源中频域资源块的数量;第三字段可以指示第一频域间距;第四字段可以指示第一下行频域资源中频域资源块的数量。第一频域间距可以为0。应理解,第一频域间距可以指示第一上行频域资源中的最大序号的频域资源块和第一下行频域资源中的最小序号的频域资源块之间的频域资源块的数量,和第一下行频域资源中的最大序号的频域资源块和第二上行频域资源中的最小序号的频域资源块之间的频域资源块的数量。
第一指示信息可以承载于小区专用的信令中发送给终端设备。例如,小区专用的半静态上下行公共配置信息。进一步的,第一指示信息可以通过物理下行共享信道(physicaldownlink shared channel,PDSCH)传输,这样可以减少信令开销。
402、终端设备根据第一指示信息确定上行频域资源和下行频域资源。
终端设备接收到第一指示信息之后,可以根据第一指示信息确定上行频域资源和下行频域资源。
可选的,终端设备可以根据第一指示信息确定第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源。具体的:
若终端设备接收到的第一指示信息直接指示频域资源配置图样时,即第一指示信息直接指示第一上行频域资源、第二上行频域资源和第一下行频域资源,示例性的,当第一指示信息指示的是第三频域资源配置图样时:
在一种可能的实施方式中,第一上行频域资源的最小频率可以是载波的最小频率,也可以不是载波的最小频率;第二上行频域资源的最大频率可以是载波的最大频率,也可以不是载波的最大频率。终端设备可以根据第一指示信息中的第一字段确定第一上行频域资 源的最小频率或最小序号资源块相对于载波最小的频率或最小序号资源块的偏移量,根据第二字段确定第一上行频域资源中的频域资源块的数量,根据第三字段确定第一频域间距,根据第四字段确定第一下行频域资源中的频域资源块的数量,根据第五字段确定第二频域间距,根据第六字段确定第二上行频域资源中频域资源块的数量。例如:
表1
Figure PCTCN2020125546-appb-000001
如表1所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49。第一指示信息可以包括六个字段,其中,第一字段可以指示第一上行频域资源的最小频率子载波的频率与载波最小频率子载波的频率的差值,或第一上行频域资源的最小序号资源块的序号与载波的最小序号资源块的序号的差值;第二字段可以指示第一上行频域资源中的频域资源块的数量;第三字段可以指示第一频域间距,或第一下行频域资源的最小频率子载波的频率与载波最小频率子载波的频率的差值,或第一下行频域资源的最小序号资源块的序号与载波的最小序号资源块的序号的差值;第四字段可以指示第一下行频域资源中的频域资源块的数量;第五字段可以指示第二频域间距,或第二上行频域资源的最小频率子载波的频率与载波最小频率子载波的频率的差值,或第二上行频域资源的最小序号资源块的序号与载波的最小序号资源块的序号的差值;第六字段可以指示第二上行频域资源中频域资源块的数量。网络设备向终端设备发送的第一指示信息为{0,0,0,50,0,0}时,可以表示第一指示信息指示终端设备RB0~RB49用于下行通信;当第一指示信息为{0,4,0,42,0,4}时,可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB0,RB0~RB3用于第一上行通信,RB4~RB45用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为0,第二频域间距为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为0(RB3到RB4之间间隔0个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB45到RB46之间间隔0个频域资源块);当第一指示信息为{0,4,1,40,1,4}时,可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB0,RB0~RB3用于第一上行通信,RB5~RB44用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB3到RB5之间间隔1个频域资源块、RB44到RB46之间间隔1个频域资源块;当第一指示信息为{1,4,1,40,1,3} 时,可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB6~RB45用于下行通信,RB47~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB4到RB6之间间隔1个频域资源块、即RB45到RB47之间间隔1个频域资源块;当第一指示信息为{1,4,1,30,1,3}时,可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB5~RB34用于下行通信,RB36~RB39用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB4到RB5之间间隔1个频域资源块、RB34到RB36之间间隔1个频域资源块;当第一指示信息为{1,4,2,30,1,3}时,可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB7~RB36用于下行通信,RB38~RB41用于第二上行通信,第一频域间距为2,第二频域间距为1,即RB4到RB7之间间隔2个频域资源块、RB36到RB38之间间隔1个频域资源块。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
在另一种可能的实施方式中,第一上行频域资源的最小频率是载波的最小频率,第二上行频域资源的最大频率是载波的最大频率。终端设备可以根据第一指示信息中的第一字段确定第一上行频域资源中的频域资源块的数量,根据第二字段确定第一频域间距,根据第三字段确定第二频域间距,根据第四字段确定第二上行频域资源中频域资源块的数量。例如:
表2
Figure PCTCN2020125546-appb-000002
如表2所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,那么第一上行频域资源的最小频域块的序号为RB0,第二上行频域资源的最大频域块的序号为RB49。第一指示信息可以包括四个字段,其中,第一字段可以指示第一上行频域资源中的频域资源块的数量;第二字段可以指示第一频域间距,或第一下行频域资源的最小频率子载波的频率与载波最小频率子载波的频率的差值,或第一下行频域资源的最小序号资源块的序号与载波的最小序号资源块的序号的差值;第三字段可以指示第二频域间距,或第二上行频域资源的最小频率子载波的频率与载波最小频率子载波的频率的差值,或第二上行频域资源的最小序号资源块的序号与载波的最小序号资源块的序号的差值;第四字段可以指示第二上行频域资源中频域资源块的数量。当网络设备向终端设备发送的 第一指示信息为{0,0,0,0}时,可以表示第一指示信息指示终端设备RB0~RB49用于下行通信;当第一指示信息为{4,1,1,4}时,可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,RB5~RB44用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为1(RB3到RB5之间间隔1个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为1(RB44到RB46之间间隔1个频域资源块);当第一指示信息为{4,0,0,4}时,可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,RB4~RB45用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为0,第二频域间距为0,即RB3到RB4之间间隔0个频域资源块、RB45到RB46之间间隔0个频域资源块;当第一指示信息为{2,1,1,4}时,可以表示第一指示信息指示终端设备RB0~RB1用于第一上行通信,RB3~RB44用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB1到RB3之间间隔1个频域资源块、即RB44到RB46之间间隔1个频域资源块;当第一指示信息为{2,1,2,4}时,可以表示第一指示信息指示终端设备RB0~RB1用于第一上行通信,RB3~RB43用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为2,即RB1到RB3之间间隔1个频域资源块、RB43到RB46之间间隔2个频域资源块;当第一指示信息为{2,1,2,3}时,可以表示第一指示信息指示终端设备RB0~RB1用于第一上行通信,RB3~RB44用于下行通信,RB47~RB49用于第二上行通信,第一频域间距为1,第二频域间距为2,即RB1到RB3之间间隔1个频域资源块、RB43到RB46之间间隔2个频域资源块。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
若终端设备接收到的第一指示信息直接指示频域资源配置图样时,示例性的,当第一指示信息指示的是第四频域资源配置图样时:
在一种可能的实施方式中,第一上行频域资源的最小频率是载波的最小频率,第二上行频域资源的最大频率是载波的最大频率。
终端设备可以根据第一指示信息中的第一字段确定第一上行频域资源中的频域资源块的数量,根据第二字段确定第一频域间距。例如:
表3
Figure PCTCN2020125546-appb-000003
如表3所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49。第一指示信息可以包括两个字段。第一字段可以指示第一上行频域资源中频域资源块的数量,第二字段可以指示第一频域间距。网络设备向终端设备发送的第一指示信 息为{0,0}时,可以表示第一指示信息指示终端设备RB0~RB49用于下行通信;当第一指示信息为{4,0}时,可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,RB46~RB49用于第二上行通信,第一频域间距为0,第二频域间距也为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为0(RB3到RB4之间间隔0个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB45到RB46之间间隔0个频域资源块),则RB4~RB45用于下行通信;当第一指示信息为{4,1}时,可以表示第一指示消息指示终端设备RB0~RB3用于第一上行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距也为1,即RB3到RB5之间间隔1个频域资源块、RB44到RB46之间间隔1个频域资源块,则RB5~RB44用于下行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
可选的,终端设备可以根据第一指示信息中的第一字段确定第一上行频域资源中的频域资源块的数量,根据第二字段确定第一下行频域资源中频域资源块的数量。例如:
表4
Figure PCTCN2020125546-appb-000004
如表4所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49。第一指示信息可以包括两个字段,第一字段可以指示第一上行频域资源中频域资源块的数量,第二字段可以指示第一下行频域资源中频域资源块的数量。网络设备向终端设备发送的第一指示信息为{0,50}时,可以表示第一指示信息指示终端设备RB0~RB49用于下行通信;当第一指示信息为{4,42}时,可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,RB4~RB45用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为0,第二频域间距也为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为0(RB3到RB4之间间隔0个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB45到RB46之间间隔0个频域资源块);当第一指示信息为{4,40}时,可以表示第一指示消息指示终端设备RB0~RB3用于第一上行通信,RB5~RB44用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB3到RB5之间间隔1个频域资源块、RB44到RB46之间间隔1个频域资源块。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
可选的,终端设备可以根据第一指示信息中的第一字段确定第一下行频域资源中频域资源块的数量,根据第二字段确定第一频域间距。例如:
表5
Figure PCTCN2020125546-appb-000005
如表5所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49。第一指示信息可以包括两个字段,第一字段可以指示第一下行频域资源中频域资源块的数量,第二字段可以指示第一频域间距。网络设备向终端设备发送的第一指示信息为{0,0}时,可以表示第一指示信息指示终端设备RB0~RB24用于第一上行通信,RB25~RB49用于第二上行通信;当第一指示信息为{4,0}时,可以表示第一指示信息指示终端设备RB0~RB22用于第一上行通信,RB27~RB49用于第二上行通信,第一频域间距为0,第二频域间距也为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为0(RB22到RB23之间间隔0个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB26到RB27之间间隔0个频域资源块),则RB23~RB26用于下行通信;当第一指示信息为{4,1}时,可以表示第一指示消息指示终端设备RB0~RB21用于第一上行通信,RB28~RB49用于第二上行通信,第一频域间距为1,第二频域间距也为1,即RB21到RB23之间间隔1个频域资源块、RB26到RB28之间间隔1个频域资源块,则RB23~RB26用于下行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
在另一种可能的实施方式中,第一上行频域资源的最小频率不是载波的最小频率,第二上行频域资源的最大频率不是载波的最大频率。
第一下行频域资源的中心频率为载波的中心频率,终端设备可以根据第一指示信息中的第一字段确定第一上行频域资源中频域资源块的数量,根据第二字段确定第一频域间距,根据第三字段确定第一下行频域资源中频域资源块的数量。例如:
表6
Figure PCTCN2020125546-appb-000006
如表6所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49。第一指示信息可以包括三个字段,其中,第一字段可以指示第一上行频域资源中频域资源块的数量;第二字段可以指示第一频域间距;第三字段可以指示第一下行频域资源中频域资源块的数量。网络设备向终端设备发送的第一指示信息为{4,0,42}时,可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,第一频域间距为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为0(RB3到RB4之间间隔0个频域资源块),RB4~RB45用于下行通信,第二频域间距为0,用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB45到RB46之间间隔0个频域资源块),RB46~RB49用于第二上行通信;当第一指示信息为{4,1,40}时,可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,第一频域间距为1,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为1(RB3到RB5之间间隔1个频域资源块),RB5~RB44用于下行通信,第二频域间距为1,用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为1(RB44到RB46之间间隔1个频域资源块),RB46~RB49用于第二上行通信;当第一指示信息为{4,1,4}时,可以表示第一指示信息指示终端设备RB18~RB21用于第一上行通信,第一频域间距为1,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为1(RB21到RB23之间间隔1个频域资源块),RB23~RB26用于下行通信,第二频域间距为1,用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为1(RB26到RB28之间间隔1个频域资源块),RB28~RB31用于第二上行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
可选的,第一下行频域资源的中心频率不为载波的中心频率,终端设备可以根据第一指示信息中的第一字段确定第一上行频域资源的最小频率相对于载波最小的频率或最小序号资源块的偏移量,根据第二字段确定第一上行频域资源中频域资源块的数量,根据第三字段确定第一频域间距,根据第四字段确定第一下行频域资源中频域资源块的数量。例如:
表7
Figure PCTCN2020125546-appb-000007
如表7所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49。第一指示信息可以包括四个字段。第一字段可以指示第一上行频域资源的最小频率相对于载波最小的频率或最小序号资源块的偏移量;第二字段可以指示第一上行频域资源中频域资源块的数量;第三字段可以指示第一频域间距;第四字段可以指示第一下行频域资源中频域资源块的数量。网络设备向终端设备发送的第一指示信息为{0,0,0,50}时,可以表示第一指示信息指示终端设备RB0~RB49用于下行通信;当第一指示信息为{0,4,0,42}时,可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB0,RB0~RB3用于第一上行通信,RB4~RB45用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为0,第二频域间距为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为1(RB3到RB4之间间隔0个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB45到RB46之间间隔0个频域资源块);当第一指示信息为{0,4,1,40}时,可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB0,RB0~RB3用于第一上行通信,RB5~RB44用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB3到RB5之间间隔1个频域资源块、RB44到RB46之间间隔1个频域资源块;当第一指示信息为{1,4,1,40}时,可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB6~RB45用于下行通信,RB47~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB4到RB6之间间隔1个频域资源块、即RB45到RB47之间间隔1个频域资源块;当第一指示信息为{1,4,1,30}时,可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB5~RB34用于下行通信,RB36~RB39用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB4到RB5之间间隔1个频域资源块、RB34到RB36之间间隔1个频域资源块;当第一指示信息为{1,4,2,30}时,可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB7~RB36用于下行通信,RB39~RB42用于第二上行通信,第一频域间距为2,第二频域间距为2,即RB4到RB7之间间隔2个频域资源块、RB36到RB39之间间隔2个频域资源块。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
若终端设备接收到的第一指示信息是索引值时,可以根据索引值确定该索引值对应的频域资源配置图样,再根据对应的频域资源配置图样确定第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源。其中,索引值和频域资源配置图样可以是一一对应的,可以是终端设备提前预置好的,也可以是网络设备设置好之后发送给终端设备的,本申请对此不作限定。
若终端设备接收到的第一指示信息是索引值时,示例性的,当第一指示信息指示的是第三频域资源配置图样时:
在一种可能的实施方式中,第一上行频域资源的最小频率可以是载波的最小频率,也可以不是载波的最小频率;第二上行频域资源的最大频率可以是载波的最大频率,也可以 不是载波的最大频率。例如:
表8
Figure PCTCN2020125546-appb-000008
如表8所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,若网络设备向终端设备发送的第一指示信息指示的索引值为0时,则终端设备可以确定索引值0对应的频域资源配置图样为{0,0,0,50,0,0},可以表示第一指示信息指示终端设备RB0~RB49用于下行通信;当第一指示信息指示的索引值为1时,则终端设备可以确定索引值1对应的频域资源配置图样为{0,4,0,42,0,4},可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB0,RB0~RB3用于第一上行通信,RB4~RB45用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为0,第二频域间距为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为1(RB3到RB4之间间隔0个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB45到RB46之间间隔0个频域资源块);当第一指示信息指示的索引值为2时,则终端设备可以确定索引值2对应的频域资源配置图样为{0,4,1,40,1,4},可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB0,RB0~RB3用于第一上行通信,RB5~RB44用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB3到RB5之间间隔1个频域资源块、RB44到RB46之间间隔1个频域资源块;当第一指示信息指示的索引值为3时,则终端设备可以确定索引值3对应的频域资源配置图样为{1,4,1,40,1,3},可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB6~RB45用于下行通信,RB47~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB4到RB6之间间隔1个频域资源块、即RB45到RB47之间间隔1个频域资源块;当第一指示信息指示的索引值为4时,则终端设备可以确定索引值4对应的频域资源配置图样为{1,4,1,30,1,3},可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB5~RB34用于下行通信,RB36~RB39用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB4到RB5之间间隔1个频域资源块、RB34到RB36之间间隔1个频域资源块;当第一指示信息指示的索引值为5时,则终端设备可以确定索引值5对应的频域资源配置图样 为{1,4,2,30,1,3},可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB7~RB36用于下行通信,RB38~RB41用于第二上行通信,第一频域间距为2,第二频域间距为1,即RB4到RB7之间间隔1个频域资源块、RB36到RB38之间间隔1个频域资源块。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
在另一种可能的实施方式中,第一上行频域资源的最小频率是载波的最小频率,第二上行频域资源的最大频率是载波的最大频率。例如:
表9
Figure PCTCN2020125546-appb-000009
如表9所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,若网络设备向终端设备发送的第一指示信息指示的索引值为0时,则终端设备可以确定索引值0对应的频域资源配置图样为{0,0,0,0},可以表示第一指示信息指示终端设备RB0~RB49用于下行通信;当第一指示信息指示的索引值为1时,则终端设备可以确定索引值1对应的频域资源配置图样为{4,1,1,4},可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,RB5~RB44用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为1(RB3到RB5之间间隔1个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为1(RB44到RB46之间间隔1个频域资源块);当第一指示信息指示的索引值为2时,则终端设备可以确定索引值2对应的频域资源配置图样为{4,0,0,4},可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,RB4~RB45用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为0,第二频域间距为0,即RB3到RB4之间间隔0个频域资源块、RB45到RB46之间间隔0个频域资源块;当第一指示信息指示的索引值为3时,则终端设备可以确定索引值3对应的频域资源配置图样为{2,1,1,4},可以表示第一指示信息指示终端设备RB0~RB1用于第一上行通信,RB3~RB44用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB1到RB3之间间隔1个频域资源块、即RB44到RB46之间间隔1个频域资源块;当第一指示信息指示的索引值为4时,则终端设备可以确定索引值4对应的频域资源配置图样为{2,1,2,4},可以表示第一指示信息指示终端设备 RB0~RB1用于第一上行通信,RB3~RB43用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为2,即RB1到RB3之间间隔1个频域资源块、RB43到RB46之间间隔2个频域资源块;当第一指示信息指示的索引值为5时,则终端设备可以确定索引值5对应的频域资源配置图样为{2,1,2,3},可以表示第一指示信息指示终端设备RB0~RB1用于第一上行通信,RB3~RB44用于下行通信,RB47~RB49用于第二上行通信,第一频域间距为1,第二频域间距为2,即RB1到RB3之间间隔1个频域资源块、RB43到RB46之间间隔2个频域资源块。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
若终端设备接收到的第一指示信息是索引值时,示例性的,当第一指示信息指示的是第四频域资源配置图样时:
在一种可能的实施方式中,第一上行频域资源的最小频率是载波的最小频率,第二上行频域资源的最大频率是载波的最大频率。
例如:
表10
Figure PCTCN2020125546-appb-000010
如表10所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,网络设备向终端设备发送的第一指示信息为{0,0}时,可以表示第一指示信息指示终端设备RB0~RB49用于下行通信;当第一指示信息为{4,0}时,可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,RB46~RB49用于第二上行通信,第一频域间距为0,第二频域间距也为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为0(RB3到RB4之间间隔0个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB45到RB46之间间隔0个频域资源块),则RB4~RB45用于下行通信;当第一指示信息为{4,1}时,可以表示第一指示消息指示终端设备RB0~RB3用于第一上行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距也为1,即RB3到RB5之间间隔1个频域资源块、RB44到RB46之间间隔1个频域资源块,则RB5~RB44用于下行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
可选的,例如:
表11
Figure PCTCN2020125546-appb-000011
Figure PCTCN2020125546-appb-000012
如表11所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,若网络设备向终端设备发送的第一指示信息指示的索引值为0时,则终端设备可以确定索引值0对应的频域资源配置图样为{0,50},可以表示第一指示信息指示终端设备RB0~RB49用于下行通信;当第一指示信息指示的索引值为1时,则终端设备可以确定索引值1对应的频域资源配置图样为{4,42},可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,RB4~RB45用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为0,第二频域间距也为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为0(RB3到RB4之间间隔0个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB45到RB46之间间隔0个频域资源块);当第一指示信息指示的索引值为2时,则终端设备可以确定索引值2对应的频域资源配置图样为{4,40},可以表示第一指示消息指示终端设备RB0~RB3用于第一上行通信,RB5~RB44用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB3到RB5之间间隔1个频域资源块、RB44到RB46之间间隔1个频域资源块。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
可选的,例如:
表12
Figure PCTCN2020125546-appb-000013
如表12所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,若网络设备向终端设备发送的第一指示信息指示的索引值为0时,则终端设备可以确定索引值0对应的频域资源配置图样为{0,0},可以表示第一指示信息指示终端设备RB0~RB24用于第一上行通信,RB25~RB49用于第二上行通信;若网络设备向终端设备发送的第一指示信息指示的索引值为1时,则终端设备可以确定索引值1对应的频域资源配置图样为{4,0},可以表示第一指示信息指示终端设备RB0~RB22用于第一上行通信,RB27~RB49用于第二上行通信,第一频域间距为0,第二频域间距也为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数 量为0(RB22到RB23之间间隔0个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB26到RB27之间间隔0个频域资源块),则RB23~RB26用于下行通信;若网络设备向终端设备发送的第一指示信息指示的索引值为2时,则终端设备可以确定索引值2对应的频域资源配置图样为{4,1},可以表示第一指示消息指示终端设备RB0~RB21用于第一上行通信,RB28~RB49用于第二上行通信,第一频域间距为1,第二频域间距也为1,即RB21到RB23之间间隔1个频域资源块、RB26到RB28之间间隔1个频域资源块,则RB23~RB26用于下行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
在另一种可能的实施方式中,第一上行频域资源的最小频率不是载波的最小频率,第二上行频域资源的最大频率不是载波的最大频率。
第一下行频域资源的中心频率为载波的中心频率,例如:
表13
Figure PCTCN2020125546-appb-000014
如表13所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,若网络设备向终端设备发送的第一指示信息指示的索引值为0时,则终端设备可以确定索引值0对应的频域资源配置图样为{4,0,42},可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,第一频域间距为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为0(RB3到RB4之间间隔0个频域资源块),RB4~RB45用于下行通信,第二频域间距为0,用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB45到RB46之间间隔0个频域资源块),RB46~RB49用于第二上行通信;若网络设备向终端设备发送的第一指示信息指示的索引值为1时,则终端设备可以确定索引值1对应的频域资源配置图样为{4,1,40},可以表示第一指示信息指示终端设备RB0~RB3用于第一上行通信,第一频域间距为1,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为1(RB3到RB5之间间隔1个频域资源块),RB5~RB44用于下行通信,第二频域间距为1,用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为1(RB44到RB46之间间隔1个频域资源块),RB46~RB49用于第二上行通信;若网络设备向终端设备发送的第一指示信息指示的索引值为2时,则终端设备可以确定索引值2对应的频域资源配置图样为{4,1,4},可以表示第一指示信息指示终端设备RB18~RB21用于第一上行通信,第一频域间距为1,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频 域资源块的数量为1(RB21到RB23之间间隔1个频域资源块),RB23~RB26用于下行通信,第二频域间距为1,用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为1(RB26到RB28之间间隔1个频域资源块),RB28~RB31用于第二上行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
可选的,第一下行频域资源的中心频率不为载波的中心频率,例如:
表14
Figure PCTCN2020125546-appb-000015
如表14所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,若网络设备向终端设备发送的第一指示信息指示的索引值为0时,则终端设备可以确定索引值0对应的频域资源配置图样为{0,0,0,50},可以表示第一指示信息指示终端设备RB0~RB49用于下行通信;若网络设备向终端设备发送的第一指示信息指示的索引值为1时,则终端设备可以确定索引值1对应的频域资源配置图样为{0,4,0,42},可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB0,RB0~RB3用于第一上行通信,RB4~RB45用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为0,第二频域间距为0,即用于第一上行通信的最大序号频域资源块到用于下行通信的最小序号频域资源块之间的频域资源块的数量为1(RB3到RB4之间间隔0个频域资源块),用于下行通信的最大序号频域资源块到用于第二上行通信的最小序号频域资源块之间的频域资源块的数量为0(RB45到RB46之间间隔0个频域资源块);若网络设备向终端设备发送的第一指示信息指示的索引值为2时,则终端设备可以确定索引值2对应的频域资源配置图样为{0,4,1,40},可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB0,RB0~RB3用于第一上行通信,RB5~RB44用于下行通信,RB46~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB3到RB5之间间隔1个频域资源块、RB44到RB46之间间隔1个频域资源块;若网络设备向终端设备发送的第一指示信息指示的索引值为3时,则终端设备可以确定索引值3对应的频域资源配置图样为{1,4,1,40},可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB6~RB45用于下行通信,RB47~RB49用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB4到RB6之间间隔1个频域资源块、即RB45到RB47之间间隔1 个频域资源块;若网络设备向终端设备发送的第一指示信息指示的索引值为4时,则终端设备可以确定索引值4对应的频域资源配置图样为{1,4,1,30},可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB5~RB34用于下行通信,RB36~RB39用于第二上行通信,第一频域间距为1,第二频域间距为1,即RB4到RB5之间间隔1个频域资源块、RB34到RB36之间间隔1个频域资源块;若网络设备向终端设备发送的第一指示信息指示的索引值为5时,则终端设备可以确定索引值5对应的频域资源配置图样为{1,4,2,30},可以表示第一指示信息指示终端设备,第一上行频域资源的最小频域块的序号为RB1,RB1~RB4用于第一上行通信,RB7~RB36用于下行通信,RB39~RB42用于第二上行通信,第一频域间距为2,第二频域间距为2,即RB4到RB7之间间隔2个频域资源块、RB36到RB39之间间隔2个频域资源块。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
基于上述的网络架构,请参阅图6,图6是本申请实施例提供的另一种通信方法的流程示意图。其中,本申请中由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,本申请中由网络设备执行的功能也可以由网络设备中的模块(例如,芯片)来执行。该通信方法可以用于终端设备确定上下行资源。如图6所示,该通信方法可以包括以下步骤。
601、网络设备向终端设备发送第一指示信息。
相应的,终端设备接收来自网络设备的第一指示信息。
可选的,网络设备向终端设备发送第二指示信息。相应的,终端设备可以接收来自网络设备的第二指示信息。
第一指示信息可以用于指示第一时间段内载波上的第一上行频域资源和/或第二上行频域资源。其中,第一上行频域资源和/或第二上行频域资源可以用于终端设备与网络设备的上行通信。第一上行频域资源的最大频率可以小于第一频域资源的最小频率,第二上行频域资源的最小频率可以大于第一频域资源的最大频率。或者,所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述第一频域资源中的任意一个频域资源块的序号。第一上行频域和第二上行频域资源与第一频域资源属于同一个频段。应理解,所述频域资源块可以为资源块。当前NR协议中的资源块(resource block)与频域资源块可以是相同的物理含义。应理解,频段可以为预先定义的一段频率范围。在NR系统中,也称操作频段,可以为上行操作频段(uplink operating band),或者为下行操作频段(downlink operating band),或者除现有NR操作频段外定义的一段连续的频谱范围。
本申请实施例中,所述载波所包含的子载波或资源块是提前确定好的。所述载波的带宽包括一段连续的频率范围,所述频率范围可以是预先确定的。如NR系统中预先确定了载波的带宽可以为5MHz、10MHz等等。
所述第一上行频域资源和/或第二上行频率资源为网络设备用于上行通信的频域资源。所述第一上行频域资源包括一个或多个资源块。所述第二上行频域资源包括一个或多个资源块。
可选的,第一时间段可以包括一个或多个时隙。当第一时间段包括一个时隙时,第一指示信息可以用来指示终端设备在需要传输数据的当前时刻的用于上行通信的频域资源;当第一时间段包括多个时隙时,第一指示信息可以用来指示终端设备在第一时间段内全部时隙的用于上行通信的频域资源。
可选的,第一时间段包括小区级配置的上下行时隙格式中的下行时间段。即第一时间段不小于小区级配置的上下行时隙格式中的下行时间段。可以理解为,第一时间段可以是大于或等于小区级配置的上下行时隙格式中的下行时间段的时间段,可以包括小区级配置的上下行时隙格式中的上行时间段和下行时间段。这样可以实现更为灵活的上行资源配置,即避免在无上行信号传输时,预留固定的上行频域资源。
可选的,第一指示信息可以用于指示第一时间段内载波上的第一上行频域资源和/或第二上行频域资源,可以包括:第一指示信息包括多个用于指示时间单元内载波上的第一上行频域资源和/或第二上行频域资源的指示信息。所述时间单元包括一个或多个时隙,所述第一时间段包括多个时间单元。即第一时间段内的任意一个时间单元内载波上的第一上行频域资源和/或第二上行频域资源可以由第一指示信息分别指示。这样对第一时间段内的载波的频域资源配置更为灵活。例如,终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,第一频域资源为RB10到39,第一时间段内包括20个时隙,编号为时隙0到时隙19,可以分为四个时间单元,编号为时间单元0到3,时间单元0到3分别包括时隙0到4、时隙5到9、时隙10到14和时隙15到19,第一指示信息可以分别指示时间单元0到3对应的第一上行频域资源和/或第二上行频域资源:第一指示时间单元0(时隙0到4)内载波上RB 0到9为第一上行频域资源和RB39到49为第二上行频域资源;指示时间单元1(时隙5到9)内载波上RB 5到9为第一上行频域资源和RB39到49为第二上行频域资源;指示时间单元2(时隙10到14)内载波上RB 0到9为第一上行频域资源和RB39到45为第二上行频域资源;指示时间单元3(时隙15到19)内载波上RB 0到9为第一上行频域资源。具体的第一指示信息指示的频域资源配置图样为哪些频域资源配置图样可以由终端设备根据预配置的策略确定,其中预配置的策略可以为网络设备发送给终端设备的,也可以为终端设备在出厂时配置好的。
第二指示信息用于指示第二时间段和第三时间段,在所述第二时间段内所述第一频域资源为下行频域资源,在所述第三时间段内所述第一频域资源为上行频域资源。所述第一频域资源为预先确定的。所述第一时间段包括所述第二时间段。即,第二指示信息用于指示下行符号和上行符号。所述下行符号对应的第二时间段内第一频域资源为下行频域资源,所述上行符号对应的第三时间段内第一频域资源为上行频域资源。所述第一频域资源为预先确定的。
可选的,第二指示信息用于指示小区级配置的上下行时隙格式。即第二指示信息用于指示第一频域资源对应的上下行时隙格式。可以理解为,可以以TDD的上下行时隙格式配置第一频域资源用于上行通信和下行通信。其中,上下行时隙格式用于确定无线电帧中的每个符号的传输方向。一个无线电帧的持续时间可为10ms。上下行时隙格式配置可以是半静态配置信息,并通过类型1的系统信息块(SIB1)发信号通知终端设备。在NR中,上下 行示信息格式可以指示符号用于下行链路(downlink,DL)、上行链路(uplink,UL)、灵活传输等。具体的:基站通过RRC信令中小区专用的半静态上下行公共配置信息将小区级配置的上下行时隙格式通知终端设备。小区专用的半静态上下行公共配置信息由参考子载波配置参数和图样(pattern)组成,其中图样可以由时隙配置周期、下行传输时隙数、下行传输符号数、上行传输时隙数和上行传输符号数5个参数确定。下行时隙数和下行符号数指示用于下行通信的资源,下行时隙数表示配置的周期内开始时连续的全下行时隙数,下行符号数表示在数个全下行时隙后连续的全下行符号数,上行时隙数和上行符号数指示用于上行通信的资源,上行时隙数表示配置的周期结束前连续的全上行时隙数,上行符号数表示在数个全上行时隙前连续全上行符号的个数。
例如,请参阅图7,图7是本申请实施例提供的另一种频域资源配置的示意图。如图7所示,RB10~RB39为第一频域资源配置,具体以TDD的上下行时隙格式配置第一频域资源用于上行通信和下行通信。在RB10~RB39上,整个第一时间段内可以包括第二时间段、第三时间段和第四时间段,在第二时间段内第一频域资源为下行频域资源,在第三时间段内第一频域资源为上行频域资源,在第四时间段内第一频域资源为灵活频域资源,在灵活频域资源上,终端设备可以进行上行通信或者下行通信。
可选的,第一频域资源包括一个或多个资源块。第一频域资源包括的资源块可以是网络设备预先设置的,也可以是网络设备通过其他指示信息发送给终端设备的。
可选的,第二时间段为小区级配置的上下行时隙格式中的下行时间段。即第二时间段为小区级配置的上下行时隙格式确定的下行符号对应的时间段。
可选的,第三时间段为小区级配置的上下行时隙格式中的上行时间段。即第三时间段为小区级配置的上下行时隙格式确定的上行符号对应的时间段。
可选的,第一时间段包括第二时间段。即第一时间段不小于第二时间段。即第一时间段不小于小区级配置的上下行时隙格式确定的下行符号对应的时间段。第一时间段可以至少包括第二时间段。即第一时间段包括第二时间段,或第一时间段包括第二时间段和第三时间段,或第一时间段包括第二时间段、第三时间和除第二时间段和第三时间段以外的其他时间段。
第一指示信息和第二指示信息可以承载于小区专用的信令中发送给终端设备,例如,小区专用的半静态上下行公共配置信息。进一步的,第一指示信息和第二指示信息可以通过物理下行共享信道(physical downlink shared channel,PDSCH)传输,这样可以减少信令开销。
应理解,第一指示信息和第二指示信息可以不分先后顺序由网络设备向终端设备发送,即可以是网络设备向终端设备发送第一指示信息之后,再发送第二指示信息;也可以是网络设备向终端设备同时发送第一指示信息和第二指示信息,本申请对此不作限定。
可选的,第一指示信息和第二指示信息用于指示第一时间段内载波上的频域资源配置图样。所述频域资源配置图样确定用于上行通信的资源和用于下行通信的资源。所述频域资源配置图样包括的频域资源为第一频域资源和第一上行频域资源,或第一频域资源和第 二上行频域资源,或第一频域资源、第一上行频域资源和第二上行频域资源。所述第一上行频域资源在第一时间段内为上行频域资源。所述第二上行频域资源在第一时间段内为上行资源。其中,第一上行频域资源的最大频率可以小于第一频域资源的最小频率,第二上行频域资源的最小频率可以大于第一频域资源的最大频率。或者,所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述第一频域资源中的任意一个频域资源块的序号。第一上行频域和第二上行频域资源与第一频域资源属于同一个频段。应理解,频段可以为预先定义的一段频率范围。所述频域资源配置图样确定第一时间段、第一频域资源用于下行通信的第二时间段和第一频域资源用于上行通信的第三时间段。即所述第一频域资源在第二时间段内为下行频域资源,在第三时间段内为上行频域资源。所述第一时间段包括第二时间段。
示例的,频域资源配置图样可以如图7所示,图7为本申请实施例所发明的一种频域资源配置图样,第一频域资源为RB 10到39,第一频域资源为预先确定或其他信令通知的,第一上行频域资源为RB 0到9,第二上行频域资源每RB 40到49,第一时间段为时隙0到4,第二时间段为时隙0到2,第三时间段为时隙4,第二时间段包含于第一时间段,第三时间段包含于第一时间段,第一频域资源在时隙0到2用于上行通信,第一频域资源在时隙4为下行频域资源。
频域资源的最大频率,可以理解为,频域资源中频率最大的子载波对应的频率;频域资源的最小频率,可以理解为,频域资源中频率最小的子载波对应的频率。具体的,第一上行频域资源的最大频率,可以理解为,第一上行频域资源中频率最大的子载波对应的频率;第一频域资源的最小频率,可以理解为,第一频域资源中频率最小的子载波对应的频率;第一频域资源的最大频率,可以理解为,第一频域资源中频率最大的子载波对应的频率;第二上行频域资源的最小频率,可以理解为,第二上行频域资源中频率最小的子载波对应的频率。
可选的,第一上行频域资源与第一频域资源之间存在第二频域间距。第一频域资源与第二上行频域资源之间存在第三频域间距。这样使上行通信和下行通信之间的邻频干扰更小。
可选的,第二频域间距为第一上行频域资源与第一频域资源之间的频域间距。第二频域间距为第一上行频域资源的最大序号的频域资源块与第一频域资源的最小序号的频域资源块之间的资源块数量。第三频域间距为第一频域资源的最大序号的频域资源块与第二上行频域资源的最小序号的频域资源块之间的资源块数量。应理解,第二频域间距和第三频域间距可以为0。或第二频域间距为第一上行频域资源的最大频率子载波的频率和第一频域资源的最小频率子载波的频率的差值。第三频域间距为第一频域资源与第二上行频域资源之间的频域间距。或第三频域间距为第一频域资源最大频率子载波的频率和第二下行频域资源最小频率子载波的频率的差值。
可选的,第一频域间距可以用于确定第二频域间距和/或第三频域间距。即第一频域间距可以包括第二频域间距和/或第三频域间距。举例说明,当第一指示信息仅指示第一上行频域资源/第二频域资源时,第一间距可以用来确定第二频域间距/第三频域间距;或当第一 频域间距等于第二频域间距时,第一频域间距可以用来确定第二频域间距和第三频域间距。
可选的,第一上行频域资源可以包括载波内的最小频率或最小序号的频域资源块,第二上行频域资源可以包括载波内的最大频率或最大序号的频域资源块。
终端设备可以通过第一指示信息确定频域资源配置图样中的第一上行频域资源和/或第二上行频域资源,通过预先确定的第一频域资源和第二指示信息确定频域资源配置图样中的第一频域资源对应的上行符号和下行符号,进一步地可以确定频域资源配置图样。频域资源配置图样中的第一频域资源对应的上行符号即为根据第二指示信息指示的第二时间段确定的。频域资源配置图样中的第一频域资源对应的上行符号即为第二指示信息指示的第三时间段确定的。
频域资源配置图样可以分为第一频域资源配置图样和第二频域资源配置图样。
针对第一频域资源配置图样:第一上行频域资源和第二上行频域资源中的频域资源块的数量可以不相等,和/或第二频域间距和第三频域间距可以不相等。
针对第二上行资源配置图样:
可选的,第一上行频域资源中的频域资源块的数量等于第二上行频域资源中的频域资源块的数量。
可选的,所述第一上行频域资源的最大频率与所述第一频域资源的最小频率的差值与所述第一频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。即第二频域间距和第三频域间距相等。即第一频域间距等于第二频域间距,且第一频域间距等于第三频域间距。
可以理解为,当第一上行频域资源中的频域资源块的数量等于第二上行频域资源中的频域资源块的数量时,第一指示信息可以只用指示第一上行频域资源中的频域资源块的数量或者第二上行频域资源中的频域资源块的数量,终端设备就可以确定第一上行频域资源中的频域资源块的数量和第二上行频域资源中的频域资源块的数量,从而可以减少信令开销。进一步的,第二频域间距等于第三频域间距,即第二频域资源配置图样关于第一频域资源的中心频率对称。第一频域资源的中心频率即为第一频域资源的最小频率子载波的频率与第一频域资源最大频率子载波的频率的中间值。
第一指示信息可以直接指示第一上行频域资源和/或第二上行频域资源。包括:第一指示信息分别指示第一上行频域资源和/或第二上行频域资源在载波上包括的资源块序号,或者第一指示信息分别指示第一上行频域资源和/或第二上行频域资源在载波上的最小序号资源块和最大序号资源块,或者第一指示信息分别指示第一上行频域资源和/或第二上行频域资源在载波上的最小序号资源块和所包括的资源块数量等等。
或者,第一指示信息可以通过索引值的方式指示第一上行频域资源和/或第二上行频域资源。其中,索引值与第一上行频域资源和/或第二上行频域资源配置可以一一对应。第一指示信息指示的索引值可以对应于一种第一上行频域资源和/或第二上行频域资源的配置。
可选的,第一指示信息指示第一上行频域资源和/或第二上行频域资源中的资源块的数量。
在一种可能的实施方式中,针对第一频域资源配置图样,应理解以下所述第一指示信息还可以用于指示其他频域资源配置图样的第一上行频域资源和/或第二上行频域资源:第一指示信息可以包括两个字段。其中,第一字段可以指示第一上行频域资源中的频域资源块的数量,第二字段可以指示第二上行频域资源中频域资源块的数量。
在另一种可能的实施方式中,示例的,如针对第二频域资源配置图样,应理解以下所述第一指示信息还可以用于指示其他频域资源配置图样的第一上行频域资源和/或第二上行频域资源:第一指示信息可以包括一个字段,该字段可以指示第一上行频域资源或第二上行频域资源中的频域资源块的数量。由于第一上行频域资源中的频域资源块的数量等于第二上行频域资源中的频域资源块的数量,该字段只需要指示第一上行频域资源或者第二上行频域资源中的频域资源块的数量,终端设备就可以通过该字段确定第一上行频域资源中的频域资源块的数量和第二上行频域资源中的频域资源块的数量。这样,可以减少信令开销。
可选的,第一指示信息可以指示第一上行频域资源和/或第二上行频域资源中的资源块的数量,和第二频域间距和/或第三频域间距:
在一种可能的实施方式中,示例的,如针对第一频域资源配置图样,应理解以下所述第一指示信息还可以用于指示其他频域资源配置图样的第一上行频域资源和/或第二上行频域资源:第一指示信息可以包括四个字段。其中,第一字段可以指示第一上行频域资源中的频域资源块的数量,第二字段可以指示第二频域间距,第三字段可以指示第三频域间距,第四字段可以指示第二上行频域资源中频域资源块的数量。
在一种可能的实施方式中,示例的,如针对第二频域资源配置图样,应理解以下所述第一指示信息还可以用于指示其他频域资源配置图样的第一上行频域资源和/或第二上行频域资源:第一指示信息可以包括两个字段,即第一字段和第二字段。其中,第一字段可以指示第一上行频域资源或第二上行频域资源中的频域资源块的数量,第二字段可以指示第二频域间距或第三频域间距。由于第一上行频域资源中的频域资源块的数量等于第二上行频域资源中的频域资源块的数量,第一字段只需要指示第一上行频域资源或者第二上行频域资源中的频域资源块的数量,终端设备就可以通过第一字段确定第一上行频域资源中的频域资源块的数量和第二上行频域资源中的频域资源块的数量;由于第二频域间距等于第三频域间距,第二字段只需要指示第二频域间距或者第三频域间距,终端设备就可以通过第二字段确定第二频域间距和第三频域间距。这样,可以减少信令开销。
602、根据第一指示信息确定第一上行频域资源和/或第二上行频域资源。
终端设备可以根据第一指示信息确定第一上行频域资源和/或第二上行频域资源。
可选的,终端根据第二指示信息确定第二时间段和第三时间段。所述第二时间段内第一频域资源为下行频域资源,所述第三时间段内第一频域资源为上行频域资源。所述第一频域资源为预先确定的。
可选的,终端设备可以根据第一指示信息和第二指示信息确定频域资源配置图样。
终端设备可以根据第一指示信息确定第一上行频域资源和/或第二上行频域资源,具体的:
(一)在一种可能的实施方式中,终端设备可以根据第一指示信息和第一频域间距,确定第一上行频域资源和/或第二上行频域资源。其中,第一频域间距可以为预先确定的,也可以是根据第一频域资源的带宽确定的。具体的:
当终端设备接收到的第一指示信息直接指示第一上行频域资源和/或第二上行频域资源时,示例的,针对第一频域资源配置图样,例如:
表15
Figure PCTCN2020125546-appb-000016
如表15所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,预先确定RB10~RB39为第一频域资源。第一指示信息可以包括两个字段,其中,第一字段可以指示第一上行频域资源中的频域资源块的数量,第二字段可以指示第二上行频域资源中频域资源块的数量。当网络设备向终端设备发送的第一指示信息为{0,0}时,可以表示第一指示信息指示终端设备在第一频域资源的基础上,不需要额外的第一上行频域资源和第二上行频域资源;当第一指示信息为{1,1}、第二频域间距预设为0、第三频域间距预设为0时,可以表示第一指示信息指示终端设备RB9用于第一上行通信,RB40用于第二上行通信;当第一指示信息为{1,1}时、第二频域间距预设为1、第三频域间距预设为1时,可以表示第一指示信息指示终端设备RB8用于第一上行通信,RB41用于第二上行通信;当第一指示信息为{1,1}时、第二频域间距预设为1、第三频域间距预设为2时,可以表示第一指示信息指示终端设备RB8用于第一上行通信,RB42用于第二上行通信;当第一指示信息为{2,3}时、第二频域间距预设为1、第三频域间距预设为2时,可以表示第一指示信息指示终端设备RB7~RB8用于第一上行通信,RB42~RB44用于第二上行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
若终端设备接收到的第一指示信息直接指示第一上行频域资源和/或第二上行频域资源,示例性的,针对第二频域资源配置图样,例如:
表16
Figure PCTCN2020125546-appb-000017
Figure PCTCN2020125546-appb-000018
如表16所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,预先确定RB10~RB39为第一频域资源。第一指示信息可以包括一个字段,该字段可以指示第一上行频域资源或第二上行频域资源中的频域资源块的数量。当网络设备向终端设备发送的第一指示信息为{0}时,可以表示第一指示信息指示终端设备在第一频域资源的基础上,不需要额外的第一上行频域资源和第二上行频域资源;当第一指示信息为{1}、第二频域间距或第三频域间距预设为0时,可以表示第一指示信息指示终端设备RB9用于第一上行通信,RB40用于第二上行通信;当第一指示信息为{2}时、第二频域间距或第三频域间距预设为1时,可以表示第一指示信息指示终端设备RB7~RB8用于第一上行通信,RB41~RB42用于第二上行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
若终端设备接收到的第一指示信息是索引值时,可以根据索引值确定该索引值对应的第一上行频域资源和/或第二上行频域资源。索引值和第一上行频域资源和/或第二上行频域资源配置可以是一一对应的,可以是终端设备提前预置好的,也可以是网络设备设置好之后发送给终端设备的,本申请对此不作限定。
若终端设备接收到的第一指示信息是索引值时,终端设备可以在预先确定第一频域资源的基础上,根据该第一指示信息指示的索引值对应的第一上行频域资源和/或第二上行频域资源配置确定第一时间段内载波上第一上行频域资源和/或第二上行频域资源。
若终端设备接收到的第一指示信息是索引值,示例性的,针对第一频域资源配置图样,例如:
表17
Figure PCTCN2020125546-appb-000019
如表17所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为 RB0~RB49,预先确定RB10~RB39为第一频域资源。当网络设备向终端设备发送的第一指示信息指示的索引值为0时,则终端设备可以确定索引值0对应的第一上行频域资源和/或第二上行频域资源配置为{0,0},可以表示第一指示信息指示终端设备在第一频域资源的基础上,不需要额外的第一上行频域资源和第二上行频域资源;当第一指示信息指示的索引值为1时,则终端设备可以确定索引值1对应的第一上行频域资源和/或第二上行频域资源配置为{1,1},若第二频域间距预设为0、第三频域间距预设为0时,可以表示第一指示信息指示终端设备RB9用于第一上行通信,RB40用于第二上行通信,若第二频域间距预设为1、第三频域间距预设为1时,可以表示第一指示信息指示终端设备RB8用于第一上行通信,RB41用于第二上行通信,若第二频域间距预设为1、第三频域间距预设为2时,可以表示第一指示信息指示终端设备RB8用于第一上行通信,RB42用于第二上行通信;当第一指示信息指示的索引值为2时,则终端设备可以确定索引值2对应的第一上行频域资源和/或第二上行频域资源配置为{2,3},若第二频域间距预设为1、第三频域间距预设为2时,可以表示第一指示信息指示终端设备RB7~RB8用于第一上行通信,RB42~RB44用于第二上行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
若终端设备接收到的第一指示信息是索引值,示例性的,针对第二频域资源配置图样,例如:
表18
Figure PCTCN2020125546-appb-000020
如表18所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,预先确定RB10~RB39为第一频域资源。当网络设备向终端设备发送的第一指示信息指示的索引值为0时,则终端设备可以确定索引值0对应的第一上行频域资源和/或第二上行频域资源配置为{0},可以表示第一指示信息指示终端设备在第一频域资源的基础上,不需要额外的第一上行频域资源和第二上行频域资源;当第一指示信息指示的索引值为1时,则终端设备可以确定索引值1对应的第一上行频域资源和/或第二上行频域资源配置为{1},若第二频域间距或第三频域间距预设为0时,可以表示第一指示信息指示终端设备RB9用于第一上行通信,RB40用于第二上行通信;当第一指示信息指示的索引值为2时,则终端设备可以确定索引值2对应的第一上行频域资源和/或第二上行频域资源配置为{2},若第二频域间距或第三频域间距预设为1时,可以表示第一指示信息指示终端设备RB7~RB8用于第一上行通信,RB41~RB42用于第二上行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
(二)在另一种可能的实施方式中,终端设备可以根据第一指示信息、第二频域间距和/或第三频域间距,确定第一上行频域资源和/或第二上行频域资源。其中,第二频域间距和/或第三频域间距为第一指示信息指示的。具体的:
当终端设备接收到的第一指示信息直接指示第一上行频域资源和/或第二上行频域资源时,针对于第一频域资源配置图样,示例的:
表19
Figure PCTCN2020125546-appb-000021
如表19所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,预先确定RB10~RB39为第一频域资源。第一指示信息可以包括四个字段,其中,第一字段可以指示第一上行频域资源中的频域资源块的数量,第二字段可以指示第二频域间距,第三字段可以指示第三频域间距,第四字段可以指示第二上行频域资源中频域资源块的数量。当网络设备向终端设备发送的第一指示信息为{0,0,0,0}时,可以表示第一指示信息指示终端设备在第一频域资源的基础上,不需要额外的第一上行频域资源和第二上行频域资源;当第一指示信息为{4,1,1,4}时,可以表示第一指示信息指示终端设备RB5~RB8用于第一上行通信,RB41~RB44用于第二上行通信;当第一指示信息为{4,0,0,4}时,可以表示第一指示信息指示终端设备RB6~RB9用于第一上行通信,RB40~RB43用于第二上行通信;当第一指示信息为{2,1,1,4}时,可以表示第一指示信息指示终端设备RB7~RB8用于第一上行通信,RB41~RB44用于第二上行通信;当第一指示信息为{2,1,2,4}时,可以表示第一指示信息指示终端设备RB7~RB8用于第一上行通信,RB43~RB45用于第二上行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
若终端设备接收到的第一指示信息直接指示第一上行频域资源和/或第二上行频域资源配置,示例性的,针对第二频域资源配置图样,例如:
表20
Figure PCTCN2020125546-appb-000022
Figure PCTCN2020125546-appb-000023
如表20所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,预先确定RB10~RB39为第一频域资源。第一指示信息可以包括两个字段,其中,即第一字段和第二字段,第一字段可以指示第一上行频域资源或第二上行频域资源中的频域资源块的数量,第二字段可以指示第二频域间距或第三频域间距。当网络设备向终端设备发送的第一指示信息为{0,0}时,可以表示第一指示信息指示终端设备在第一频域资源的基础上,不需要额外的第一上行频域资源和第二上行频域资源;当第一指示信息为{4,1}时,可以表示第一指示信息指示终端设备RB5~RB8用于第一上行通信,RB41~RB44用于第二上行通信;当第一指示信息为{4,0}时,可以表示第一指示信息指示终端设备RB6~RB9用于第一上行通信,RB40~RB43用于第二上行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
若终端设备接收到的第一指示信息是索引值时,终端设备可以在预先确定第一频域资源的基础上,根据该第一指示信息指示的索引值对应的第一上行频域资源和/或第二上行频域资源配置确定第一时间段内载波上第一上行频域资源和/或第二上行频域资源。
若终端设备接收到的第一指示信息是索引值,示例性的,针对第一频域资源配置图样,例如:
表21
Figure PCTCN2020125546-appb-000024
如表21所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,预先确定RB10~RB39为第一频域资源。当网络设备向终端设备发送的第一指示信息指示的索引值为0时,则终端设备可以确定索引值0对应的第一上行频域资源和/或第二上行频域资源配置为{0,0,0,0},可以表示第一指示信息指示终端设备在第一频域资源的基础上,不需要额外的第一上行频域资源和第二上行频域资源;当第一指示信息指示的索引值为1时,则终端设备可以确定索引值1对应的第一上行频域资源和/或第二上行频域资源配置为{4,1,1,4},可以表示第一指示信息指示终端设备RB5~RB8用于第一上行通信,RB41~RB44用于第二上行通信;当第一指示信息指示的索引值为2时,则终端设备可以确定索引值2对应的第一上行频域资源和/或第二上行频域资源配置为{4,0,0,4},可以表示第一指示信 息指示终端设备RB6~RB9用于第一上行通信,RB40~RB43用于第二上行通信;当第一指示信息指示的索引值为3时,则终端设备可以确定索引值3对应的第一上行频域资源和/或第二上行频域资源配置为{2,1,1,4},可以表示第一指示信息指示终端设备RB7~RB8用于第一上行通信,RB41~RB44用于第二上行通信;当第一指示信息指示的索引值为4时,则终端设备可以确定索引值4对应的第一上行频域资源和/或第二上行频域资源配置为{2,1,2,4},可以表示第一指示信息指示终端设备RB7~RB8用于第一上行通信,RB43~RB45用于第二上行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
若终端设备接收到的第一指示信息是索引值,示例性的,针对第二频域资源配置图样,例如:
表22
Figure PCTCN2020125546-appb-000025
如表22所示,假设终端设备的载波带宽为10MHz,包括50个频域资源块,编号为RB0~RB49,预先确定RB10~RB39为第一频域资源。当网络设备向终端设备发送的第一指示信息指示的索引值为0时,则终端设备可以确定索引值0对应的第一上行频域资源和/或第二上行频域资源配置为{0,0},可以表示第一指示信息指示终端设备在第一频域资源的基础上,不需要额外的第一上行频域资源和第二上行频域资源;当第一指示信息指示的索引值为1时,则终端设备可以确定索引值1对应的第一上行频域资源和/或第二上行频域资源配置为{4,1},可以表示第一指示信息指示终端设备RB5~RB8用于第一上行通信,RB41~RB44用于第二上行通信;当第一指示信息指示的索引值为2时,则终端设备可以确定索引值2对应的第一上行频域资源和/或第二上行频域资源配置为{4,0},可以表示第一指示信息指示终端设备RB6~RB9用于第一上行通信,RB40~RB43用于第二上行通信。应理解,上述举例只是示例性说明,并不作为对本申请实施例的限定。
可选的,终端设备可以根据第一指示信息和第二指示信息确定频域资源配置图样。例如:
基于表15-表22所述的示例,终端设备还可以根据第二指示信息确定第二时间段和第三时间段,在第二时间段内第一频域资源RB10~RB39为下行频域资源,在第三时间段内第一频域资源RB10~RB39为上行频域资源。进一步地,终端设备可以根据第一指示信息和第二指示信息确定频域资源配置图样。
基于上述的网络架构,请参阅图8,图8是本申请实施例提供的一种通信装置的结构示意图。该通信装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。如图8 所示,该通信装置800,至少包括:接收单元801和确定单元802;其中:
接收单元801,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,所述第一时间段包括一个或多个时隙,其中,所述第一上行频域资源的频率小于所述第一下行频域资源的频率,所述第二上行频域资源的频率大于所述第一下行频域资源的频率;或所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一下行频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述下行频域资源中的任意一个频域资源块的序号;
确定单元802,用于根据所述第一指示信息确定所述载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源。
在一个实施例中,所述第一上行频域资源的最大频率与所述第一下行频域资源的最小频率的差值和所述第一下行频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在一个实施例中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在一个实施例中,所述第一指示信息包括第一字段和第二字段,所述第一字段指示所述第一上行频域资源或所述第二上行频域资源中的频域资源块的数量,所述第二字段指示所述第一下行频域中的频域资源块的数量。
在一个实施例中,所述确定单元802根据所述第一指示信息确定所述载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源,包括:根据所述第一字段确定所述第一上行频域资源和所述第二上行频域资源,其中,所述第一上行频域资源的最小频率为所述载波的最小频率,所述第二上行频域资源的最大频率为所述载波的最大频率;根据所述第二字段确定所述第一下行频域资源,所述第一下行频域资源的中心频率为所述载波的中心频率。
在一个实施例中,所述第一时间段包括小区级配置的上下行时隙格式中的下行时间段。
在一个实施例中,所述第一指示信息承载于小区专用的信令中。
有关上述接收单元801和确定单元802更详细的描述可以直接参考上述图4所示的方法实施例中终端设备的相关描述,这里不加赘述。
基于上述的网络架构,请参阅图9,图9是本申请实施例提供的另一种通信装置的结构示意图。该通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。如图9所示,该通信装置900,至少包括:确定单元901和发送单元902;其中:
确定单元901,用于第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,其中,所述第一上行频域资源的频率小于所述下行频域资源的频率,所述第二上行频域资源的频率大于所述下行频域资源的频率;或所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一下行频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述下行频域资源中的任意一个频域资源块的序号;
发送单元902,用于向终端设备发送所述第一指示信息。
在一个实施例中,所述第一上行频域资源的最大频率与所述第一下行频域资源的最小频率的差值与所述第一下行频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在一个实施例中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在一个实施例中,所述第一指示信息包括第一字段和第二字段,所述第一字段指示所述第一上行频域资源或所述第二上行频域资源中的频域资源块的数量,所述第二字段指示所述第一下行频域中的频域资源块的数量。
在一个实施例中,所述第一上行频域资源的最小频率为所述载波的最小频率,所述第二上行频域资源的最大频率为所述载波的最大频率;所述第一下行频域资源的中心频率为所述载波的中心频率。
在一个实施例中,所述第一时间段包括小区级配置的上下行时隙格式中的下行时间段。
在一个实施例中,所述第一指示信息承载于小区专用的信令中。
有关上述确定单元901和发送单元902更详细的描述可以直接参考上述图4所示的方法实施例中网络设备的相关描述,这里不加赘述。
基于上述的网络架构,请参阅图10,图10是本申请实施例提供的又一种通信装置的结构示意图。该通信装置可以为终端设备,也可以为终端设备中的模块(例如,芯片)。如图10所示,该通信装置1000,至少包括:第一接收单元1001、确定单元1002和第二接收单元1003;其中:
第一接收单元1001,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源和/或第二上行频域资源,其中,所述第一上行频域资源的最大频率小于第一频域资源的最小频率,所述第二上行频域资源的最小频率大于所述第一频域资源的最大频率,所述第一上行频域和/或所述第二上行频域资源与所述第一频域资源属于同一个频段;
确定单元1002,用于根据所述第一指示信息确定所述第一上行频域资源和/或所述第二上行频域资源。
在一个实施例中,该通信装置还可以包括:
第二接收单元1003,用于接收来自网络设备的第二指示信息,所述第二指示信息用于指示第二时间段和第三时间段,在所述第二时间段内所述第一频域资源为下行频域资源,在所述第三时间段内所述第一频域资源为上行频域资源,所述第一时间段包括所述第二时间段,所述第一频域资源为预先确定的。
在一个实施例中,所述第一上行频域资源的最大频率与所述第一频域资源的最小频率的差值和所述第一频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在一个实施例中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在一个实施例中,所述第一指示信息指示所述第一上行频域资源和/或所述第二上行频 域资源中的资源块的数量。
在一个实施例中,所述确定单元1002根据所述第一指示信息确定所述第一上行频域资源和/或所述第二上行频域资源,包括:根据所述第一指示信息和第一频域间距,确定所述第一上行频域资源和/或所述第二上行频域资源,其中,所述第一频域间距为预先确定的,或根据所述第一频域资源的带宽确定的。
在一个实施例中,所述第一指示信息和所述第二指示信息承载于小区专用的信令中。
有关上述第一接收单元1001、确定单元1002和第二接收单元1003更详细的描述可以直接参考上述图6所示的方法实施例中终端设备的相关描述,这里不加赘述。
基于上述的网络架构,请参阅图11,图11是本申请实施例提供的又一种通信装置的结构示意图。该通信装置可以为网络设备,也可以为网络设备中的模块(例如,芯片)。如图11所示,该通信装置1100,至少包括:确定单元1101、第一发送单元1102和第二发送单元1103;其中:
确定单元1101,用于确定第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源和/或第二上行频域资源,其中,所述第一上行频域资源的最大频率小于第一频域资源的最小频率,所述第二上行频域资源的最小频率大于所述第一频域资源的最大频率,所述第一上行频域和/或所述第二上行频域资源与所述第一频域资源属于同一个频段;
第一发送单元1102,用于向终端设备发送所述第一指示信息。
在一个实施例中,该通信装置还可以包括:
第二发送单元1103,用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第一频域资源,所述第一频域资源在第二时间段内为下行频域资源,在第三时间段内为上行频域资源,所述第一时间段包括所述第二时间段。
在一个实施例中,所述第一上行频域资源的最大频率与所述第一频域资源的最小频率的差值和所述第一频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
在一个实施例中,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
在一个实施例中,所述第一指示信息指示所述第一上行频域资源和/或所述第二上行频域资源中的资源块的数量。
在一个实施例中,所述第一指示信息和所述第二指示信息承载于小区专用的信令中。
有关上述确定单元1101、第一发送单元1102和第二发送单元1103更详细的描述可以直接参考上述图6所示的方法实施例中网络设备的相关描述,这里不加赘述。
基于上述网络架构,请参阅图12,图12是本申请实施例提供的又一种通信装置的结构示意图。如图12所示,该装置1200可以包括一个或多个处理器1201,处理器1201也可以称为处理单元,可以实现一定的控制功能。处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片, DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1201也可以存有指令和/或数据1203,所述指令和/或数据1203可以被所述处理器运行,使得所述装置1200执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器1201中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路,或者是通信接口。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,装置1200可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述装置1200中可以包括一个或多个存储器1202,其上可以存有指令1204,所述指令可在所述处理器上被运行,使得所述装置1200执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述装置1200还可以包括收发器1205和/或天线1206。所述处理器1201可以称为处理单元,对所述装置1200进行控制。所述收发器1205可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选的,本申请实施例中的装置1200可以用于执行本申请实施例中图4和图6中描述的方法。
在一个实施例中,该通信装置1200可以为终端设备,也可以为终端设备中的模块(例如,芯片),存储器1202中存储的计算机程序指令被执行时,该处理器1201用于控制确定单元802执行上述实施例中执行的操作,收发器1205用于执行上述实施例中接收单元801执行的操作,收发器1205还用于向该通信装置之外的其它通信装置发送信息。上述终端设备或者终端设备内的模块还可以用于执行上述图4方法实施例中终端设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置1200可以为网络设备,也可以为网络设备中的模块(例如,芯片),存储器1202中存储的计算机程序指令被执行时,该处理器1201用于控制确定单元901执行上述实施例中执行的操作,收发器1205用于接收来自该通信装置之外的其它通信装置的信息,收发器1205还用于执行上述实施例中发送单元902执行的操作。上述网络设备或者网络设备内的模块还可以用于执行上述图4方法实施例中网络设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置1200可以为终端设备,也可以为终端设备中的模块(例如,芯片),存储器1202中存储的计算机程序指令被执行时,该处理器1201用于控制确定单元1002执行上述实施例中执行的操作,收发器1205用于执行上述实施例中第一接收单元1001和第二接收单元1003执行的操作,收发器1205还用于向该通信装置之外的其它通信装置发送信息。上述终端设备或者终端设备内的模块还可以用于执行上述图6方法实施例中终端设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置1200可以为网络设备,也可以为网络设备中的模块(例如,芯片),存储器1202中存储的计算机程序指令被执行时,该处理器1201用于控制确定单元1101执行上述实施例中执行的操作,收发器1205用于接收来自该通信装置之外的其它通信装置的信息,收发器1205还用于执行上述实施例中第一发送单元1102和第二发送单元1103执行的操作。上述网络设备或者网络设备内的模块还可以用于执行上述图6方法实施例中网络设备执行的各种方法,不再赘述。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的装置可以是网络设备或者终端设备,但本申请中描述的装置的范围并不限于此,而且装置的结构可以不受图12的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等;
(6)其他等等。
基于上述网络架构,请参阅图13,图13是本申请实施例提供的一种终端的结构示意图。为了便于说明,图13仅示出了终端设备的主要部件。如图13所示,终端设备1300包括处理器、存储器、控制电路、天线、以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器, 处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图13仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图13中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1300的收发单元1301,将具有处理功能的处理器视为终端设备1300的处理单元1302。如图13所示,终端设备1300包括收发单元1301和处理单元1302。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1301中用于实现接收功能的器件视为接收单元,将收发单元1301中用于实现发送功能的器件视为发送单元,即收发单元1301包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
在一个实施例中,处理单元1302用于执行上述实施例中确定单元802和确定单元1002执行的操作,收发单元1301用于执行上述实施例中接收单元801、第一接收单元1001和第二接收单元1003执行的操作。该终端1300还可以用于执行上述图4和图6方法实施例中终端执行的各种方法,不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与网络设备相关的流程。
本申请实施例还提供了一种计算机程序产品,当其在计算机或处理器上运行时,使得计算机或处理器执行上述任一个通信方法中的一个或多个步骤。上述所涉及的设备的各组成模块如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在所述计算机可读取存储介质中。
本申请实施例还公开一种通信系统,该通信系统包括终端设备和网络设备,具体描述可以参考图4和图6所示的通信方法。
应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是硬盘(hard disk drive,HDD)、固态硬盘(solid-state drive,SSD)、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static rAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous dRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
还应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所提供的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间 接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块/单元可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (32)

  1. 一种通信方法,其特征在于,包括:
    接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,所述第一时间段包括一个或多个时隙,其中,
    所述第一上行频域资源的频率小于所述第一下行频域资源的频率,所述第二上行频域资源的频率大于所述第一下行频域资源的频率;或,
    所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一下行频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述下行频域资源中的任意一个频域资源块的序号;
    根据所述第一指示信息确定所述载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源。
  2. 根据权利要求1所述的方法,其特征在于,包括:
    所述第一上行频域资源的最大频率与所述第一下行频域资源的最小频率的差值和所述第一下行频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
  4. 根据权利要求3所述的方法,其特征在于,包括:
    所述第一指示信息包括第一字段和第二字段,所述第一字段指示所述第一上行频域资源或所述第二上行频域资源中的频域资源块的数量,所述第二字段指示所述第一下行频域中的频域资源块的数量。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一指示信息确定所述载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源,包括:
    根据所述第一字段确定所述第一上行频域资源和所述第二上行频域资源,其中,所述第一上行频域资源的最小频率为所述载波的最小频率,所述第二上行频域资源的最大频率为所述载波的最大频率;
    根据所述第二字段确定所述第一下行频域资源,所述第一下行频域资源的中心频率为所述载波的中心频率。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,包括:
    所述第一时间段包括小区级配置的上下行时隙格式中的下行时间段。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一指示信息承载于小区专用的信令中。
  8. 一种通信方法,其特征在于,包括:
    确定第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,其中,
    所述第一上行频域资源的频率小于所述下行频域资源的频率,所述第二上行频域资源的频率大于所述下行频域资源的频率;或,
    所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一下行频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述下行频域资源中的任意一个频域资源块的序号;
    向终端设备发送所述第一指示信息。
  9. 根据权利要求8所述的方法,其特征在于,包括:
    所述第一上行频域资源的最大频率与所述第一下行频域资源的最小频率的差值与所述第一下行频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
  11. 根据权利要求10所述的方法,其特征在于,包括:
    所述第一指示信息包括第一字段和第二字段,所述第一字段指示所述第一上行频域资源或所述第二上行频域资源中的频域资源块的数量,所述第二字段指示所述第一下行频域中的频域资源块的数量。
  12. 根据权利要求11所述的方法,其特征在于,所述第一上行频域资源的最小频率为所述载波的最小频率,所述第二上行频域资源的最大频率为所述载波的最大频率;
    所述第一下行频域资源的中心频率为所述载波的中心频率。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,包括:
    所述第一时间段包括小区级配置的上下行时隙格式中的下行时间段。
  14. 根据权利要求8-13任一项所述的方法,其特征在于,所述第一指示信息承载于小区专用的信令中。
  15. 一种通信装置,其特征在于,包括:
    接收单元,用于接收来自网络设备的第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,所述第一时间段包括一个或多个时隙,其中,
    所述第一上行频域资源的频率小于所述第一下行频域资源的频率,所述第二上行频域资源的频率大于所述第一下行频域资源的频率;或,
    所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一下行频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述下行频域资源中的任意一个频域资源块的序号;
    确定单元,用于根据所述第一指示信息确定所述载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源。
  16. 根据权利要求15所述的装置,其特征在于,包括:
    所述第一上行频域资源的最大频率与所述第一下行频域资源的最小频率的差值和所述第一下行频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
  17. 根据权利要求15或16所述的装置,其特征在于,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
  18. 根据权利要求17所述的装置,其特征在于,包括:
    所述第一指示信息包括第一字段和第二字段,所述第一字段指示所述第一上行频域资源或所述第二上行频域资源中的频域资源块的数量,所述第二字段指示所述第一下行频域中的频域资源块的数量。
  19. 根据权利要求18所述的装置,其特征在于,所述确定单元根据所述第一指示信息确定所述载波上的第一上行频域资源、第二上行频域资源和第一下行频域资源,包括:
    根据所述第一字段确定所述第一上行频域资源和所述第二上行频域资源,其中,所述第一上行频域资源的最小频率为所述载波的最小频率,所述第二上行频域资源的最大频率为所述载波的最大频率;
    根据所述第二字段确定所述第一下行频域资源,所述第一下行频域资源的中心频率为所述载波的中心频率。
  20. 根据权利要求15-19任一项所述的装置,其特征在于,包括:
    所述第一时间段包括小区级配置的上下行时隙格式中的下行时间段。
  21. 根据权利要求15-20任一项所述的装置,其特征在于,所述第一指示信息承载于小区专用的信令中。
  22. 一种通信装置,其特征在于,包括:
    确定单元,用于第一指示信息,所述第一指示信息用于指示第一时间段内载波上第一上行频域资源、第二上行频域资源和第一下行频域资源,其中,
    所述第一上行频域资源的频率小于所述下行频域资源的频率,所述第二上行频域资源的频率大于所述下行频域资源的频率;或,
    所述第一上行频域资源中的任意一个频域资源块的序号小于所述第一下行频域资源中任意一个频域资源块的序号,所述第二上行资源中的任意一个频域资源块的序号大于所述下行频域资源中的任意一个频域资源块的序号;
    发送单元,用于向终端设备发送所述第一指示信息。
  23. 根据权利要求22所述的装置,其特征在于,包括:
    所述第一上行频域资源的最大频率与所述第一下行频域资源的最小频率的差值与所述第一下行频域资源的最大频率与所述第二上行频域资源的最小频率的差值相等。
  24. 根据权利要求22或23所述的装置,其特征在于,所述第一上行频域资源中的频域资源块的数量等于所述第二上行频域资源中的频域资源块的数量。
  25. 根据权利要求24所述的装置,其特征在于,包括:
    所述第一指示信息包括第一字段和第二字段,所述第一字段指示所述第一上行频域资源或所述第二上行频域资源中的频域资源块的数量,所述第二字段指示所述第一下行频域中的频域资源块的数量。
  26. 根据权利要求25所述的装置,其特征在于,所述第一上行频域资源的最小频率为所述载波的最小频率,所述第二上行频域资源的最大频率为所述载波的最大频率;
    所述第一下行频域资源的中心频率为所述载波的中心频率。
  27. 根据权利要求22-26任一项所述的装置,其特征在于,包括:
    所述第一时间段包括小区级配置的上下行时隙格式中的下行时间段。
  28. 根据权利要求22-27任一项所述的装置,其特征在于,所述第一指示信息承载于小区专用的信令中。
  29. 一种通信装置,其特征在于,包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序执行
    如权利要求1-7任一项所述的方法;或者
    如权利要求8-14任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,
    权利要求1-7任一项所述的方法被执行;或者
    权利要求8-14任一项所述的方法被执行。
  31. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器、存储器和接口电路,所述存储器、所述接口电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,使得所述芯片系统
    执行权利要求1-7任一项所述的方法;或者
    执行如权利要求8-14任一项所述的方法。
  32. 一种通信系统,其特征在于,包括如权利要求29所述的装置。
PCT/CN2020/125546 2020-10-30 2020-10-30 一种通信方法、装置及计算机可读存储介质 WO2022088105A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/125546 WO2022088105A1 (zh) 2020-10-30 2020-10-30 一种通信方法、装置及计算机可读存储介质
CN202080105974.XA CN116326051A (zh) 2020-10-30 2020-10-30 一种通信方法、装置及计算机可读存储介质
EP20959266.6A EP4228356A4 (en) 2020-10-30 2020-10-30 COMMUNICATION METHOD AND APPARATUS, AND COMPUTER-READABLE STORAGE MEDIUM
US18/307,301 US20230262673A1 (en) 2020-10-30 2023-04-26 Communication method and apparatus and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125546 WO2022088105A1 (zh) 2020-10-30 2020-10-30 一种通信方法、装置及计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/307,301 Continuation US20230262673A1 (en) 2020-10-30 2023-04-26 Communication method and apparatus and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2022088105A1 true WO2022088105A1 (zh) 2022-05-05

Family

ID=81383471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125546 WO2022088105A1 (zh) 2020-10-30 2020-10-30 一种通信方法、装置及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230262673A1 (zh)
EP (1) EP4228356A4 (zh)
CN (1) CN116326051A (zh)
WO (1) WO2022088105A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090296609A1 (en) * 2008-06-02 2009-12-03 Hyung-Nam Choi Adaptive operational full-duplex and half-duplex FDD modes in wireless networks
CN106162656A (zh) * 2015-03-30 2016-11-23 中国电信股份有限公司 数据传输的方法、基站、终端及通信系统
CN106171028A (zh) * 2015-02-13 2016-11-30 华为技术有限公司 一种数据传输方法和设备
CN109756314A (zh) * 2017-11-02 2019-05-14 成都鼎桥通信技术有限公司 一种随机接入响应的发送方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600845A (zh) * 2017-09-30 2019-04-09 华为技术有限公司 一种资源调度方法、网络设备以及通信设备
US11917683B2 (en) * 2019-02-22 2024-02-27 Electronics And Telecommunications Research Institute Method and apparatus for transmitting/receiving signal by using variable band width in communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090296609A1 (en) * 2008-06-02 2009-12-03 Hyung-Nam Choi Adaptive operational full-duplex and half-duplex FDD modes in wireless networks
US20200228301A1 (en) * 2008-06-02 2020-07-16 Apple Inc. Adaptive Operational Full-Duplex and Half-Duplex FDD Modes in Wireless Networks
CN106171028A (zh) * 2015-02-13 2016-11-30 华为技术有限公司 一种数据传输方法和设备
CN106162656A (zh) * 2015-03-30 2016-11-23 中国电信股份有限公司 数据传输的方法、基站、终端及通信系统
CN109756314A (zh) * 2017-11-02 2019-05-14 成都鼎桥通信技术有限公司 一种随机接入响应的发送方法和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Summary for WI Further enhanced MTC for LTE", 3GPP DRAFT; RP-171441 WI SUMMARY FOR WI FURTHER ENHANCED MTC FOR LTE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. West Palm Beach, USA; 20170605 - 20170608, 7 June 2017 (2017-06-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051280914 *
See also references of EP4228356A4 *

Also Published As

Publication number Publication date
CN116326051A (zh) 2023-06-23
EP4228356A1 (en) 2023-08-16
EP4228356A4 (en) 2023-11-29
US20230262673A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
CN111586872B (zh) 基于多个下行控制信息的传输方法、设备及系统、存储介质
US10917303B2 (en) Data transmission method and device
WO2020233420A1 (zh) 时隙格式指示的方法和通信装置
CN111148237B (zh) 一种通信方法及装置
CN111436089B (zh) 通信的方法和装置
WO2020238992A1 (zh) 一种通信方法及装置
CN111867038B (zh) 一种通信方法及装置
TW202008829A (zh) 資源配置的方法和終端設備
CN112640525A (zh) 侧链路信息传输的方法和装置、终端装置和网络装置
WO2020088054A1 (zh) 通信资源的配置方法、通信装置、通信设备及存储介质
CN110351032B (zh) 资源配置方法及装置
WO2021017611A1 (zh) 数据传输方法和装置
WO2021146867A1 (zh) 一种跳频方法、电子设备及存储介质
CN116868651A (zh) 用于物理上行链路控制信道增强的重复指示
EP3557921A1 (en) Data multiplexing device, method, and communication system
WO2022088105A1 (zh) 一种通信方法、装置及计算机可读存储介质
CN116266964A (zh) 射频链路切换方法和通信装置
JP2023522532A (ja) 初期アクセス信号またはチャネルを伝送する方法、デバイス、およびシステム
CN116636272A (zh) 一种系统信息的传输方法、通信装置及相关设备
WO2022141420A1 (zh) 一种传输配置指示tci状态切换的方法和通信装置
WO2023143011A1 (zh) 一种通信方法和装置
WO2022151390A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022036527A1 (zh) 上行控制信息的传输方法、通信装置及相关设备
CN111757479B (zh) 通信的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020959266

Country of ref document: EP

Effective date: 20230510

NENP Non-entry into the national phase

Ref country code: DE