WO2021146867A1 - 一种跳频方法、电子设备及存储介质 - Google Patents

一种跳频方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2021146867A1
WO2021146867A1 PCT/CN2020/073319 CN2020073319W WO2021146867A1 WO 2021146867 A1 WO2021146867 A1 WO 2021146867A1 CN 2020073319 W CN2020073319 W CN 2020073319W WO 2021146867 A1 WO2021146867 A1 WO 2021146867A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
terminal device
hop
transmission
frequency domain
Prior art date
Application number
PCT/CN2020/073319
Other languages
English (en)
French (fr)
Inventor
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/073319 priority Critical patent/WO2021146867A1/zh
Priority to EP20915677.7A priority patent/EP4089971A4/en
Priority to CN202080093878.8A priority patent/CN115004636A/zh
Publication of WO2021146867A1 publication Critical patent/WO2021146867A1/zh
Priority to US17/811,717 priority patent/US20220352923A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a frequency hopping method, electronic equipment and storage medium.
  • the embodiments of the present application provide a square frequency hopping method, electronic equipment, and storage medium, which can improve data transmission performance and increase system coverage.
  • an embodiment of the present application provides a frequency hopping method, the method includes: a terminal device receives instruction information;
  • the terminal device Based on the indication information, the terminal device transmits data in a frequency hopping manner in the activated first bandwidth part (Band Width Part, BWP) and the frequency domain outside the first BWP.
  • BWP Band Width Part
  • an embodiment of the present application provides a frequency hopping method, the method includes: a network device sends instruction information, the instruction information is used for the terminal device to activate the first BWP and the frequency other than the first BWP The domain transmits data in a frequency hopping manner.
  • an embodiment of the present application provides a terminal device, the terminal device includes: a receiving unit configured to receive instruction information;
  • the processing unit is configured to transmit data in a frequency hopping manner in a frequency domain other than the activated first BWP and the first BWP based on the indication information.
  • an embodiment of the present application provides a network device, and the network device includes:
  • the sending unit is configured to send instruction information, where the instruction information is used for the terminal device to transmit data in a frequency hopping manner in the activated first BWP and the frequency domain outside the first BWP.
  • an embodiment of the present application provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, where:
  • the processor is used to execute the steps of the frequency hopping method executed by the terminal device when running the computer program.
  • an embodiment of the present application provides a network device, including a processor and a memory for storing a computer program that can run on the processor, where:
  • the processor is used to execute the steps of the frequency hopping method executed by the network device when running the computer program.
  • an embodiment of the present application provides a chip, including a processor, configured to call and run a computer program from a memory, so that a terminal device installed with the chip executes the frequency hopping method described above.
  • an embodiment of the present application provides a chip, including a processor, configured to call and run a computer program from a memory, so that a network device installed with the chip executes the frequency hopping method described above.
  • an embodiment of the present application provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above-mentioned frequency hopping method executed by the terminal device is implemented.
  • an embodiment of the present application provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above-mentioned frequency hopping method executed by the network device is implemented.
  • an embodiment of the present application provides a computer program product, including computer program instructions, which cause a computer to execute the frequency hopping method performed by the above terminal device.
  • an embodiment of the present application provides a computer program product, including computer program instructions that cause a computer to execute the frequency hopping method performed by the above-mentioned network device.
  • an embodiment of the present application provides a computer program that enables a computer to execute the frequency hopping method performed by the above terminal device.
  • an embodiment of the present application provides a computer program that enables a computer to execute the frequency hopping method performed by the above-mentioned network device.
  • the frequency hopping method provided by the embodiment of the present application includes: a terminal device receives indication information; the terminal device performs frequency hopping in the activated first bandwidth part BWP and the frequency domain outside the first BWP based on the indication information Way to transfer data.
  • terminal equipment can transmit data in a frequency hopping manner between different BWPs; especially for narrow bandwidth terminal equipment, it can perform frequency hopping transmission in a wider frequency range, thereby improving data transmission performance and system coverage.
  • Figure 1 is a schematic diagram of the frequency hopping method of this application.
  • FIG. 2 is a schematic diagram of the composition structure of a communication system according to an embodiment of the application.
  • FIG. 3 is a schematic diagram of an optional processing flow applied to the frequency hopping method of terminal equipment according to an embodiment of the application;
  • FIG. 4 is a schematic diagram of a frequency hopping method implemented based on formula (3) in an embodiment of the application;
  • Fig. 5 is a schematic diagram 1 of a frequency hopping method implemented based on formula (7) in an embodiment of the application;
  • Fig. 6 is a schematic diagram of a frequency hopping method implemented based on formula (8) in an embodiment of the application;
  • Fig. 7 is a second schematic diagram of a frequency hopping method implemented based on formula (7) in an embodiment of the application;
  • FIG. 8 is a schematic diagram of a frequency hopping method after at least one symbol is reserved in an embodiment of the application.
  • FIG. 9 is a schematic diagram of an optional processing flow applied to the frequency hopping method of network equipment according to an embodiment of this application.
  • FIG. 10 is a schematic diagram of the composition structure of a terminal device according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of the composition structure of a network device according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of the hardware composition structure of an electronic device according to an embodiment of the application.
  • MTC/eMTC and NB-IOT terminal equipment have technical advantages such as low production cost, low price, support for ultra-low power consumption, and support for deep and extensive coverage scenarios, so they are conducive to the rapid popularization of IoT technology in the early development stage.
  • these technologies also have limitations in application scenarios; for example, since the design goals of MTC/eMTC and NB-IoT are to support some applications with low data rates and high transmission delays, they require relatively high data rates in some applications.
  • NR MTC terminal equipment that not only supports medium transmission rate and medium delay requirements, but also has a lower cost.
  • 3GPP calls this type of NR MTC terminal equipment. It is NR-light terminal equipment.
  • NR terminal equipment needs to support at least 2 receiving channels, and NR terminal equipment on some frequency bands needs to support 4 receiving channels; each receiving channel includes receiving antenna, filter, (Power Amplifier, PA) power amplifier, modulus (Analog to Digital, AD) samplers and other components; therefore, reducing the number of RF channels that NR terminal equipment needs to be equipped with will significantly reduce terminal costs. If the terminal with two radio frequency channels is reduced to one radio frequency channel, the cost of the chip module can be reduced by about 1/3. Therefore, the NR-light terminal can be equipped with a smaller number of antennas to reduce the cost of the terminal.
  • PA Power Amplifier
  • AD Analog to Digital
  • NR terminal equipment also needs to support a wider transmission bandwidth.
  • FR1 terminal equipment needs to support a maximum bandwidth of 100MHz.
  • NR-light terminal equipment can support a smaller terminal bandwidth, for example, only 5MHz, or 10MHz, or 20MHz terminal bandwidth is supported in FR1.
  • the system bandwidth and terminal bandwidth may reach hundreds of MHz or even several GHz to support high-speed mobile data transmission.
  • a large bandwidth is not required all the time; for example, in a working scenario that only needs to support low data rate transmission (such as WeChat chat), the terminal device only needs to use a smaller working bandwidth. For example, a bandwidth of 10MHz is sufficient.
  • the NR system introduces the concept of BWP.
  • the BWP can be a part of the system bandwidth (cell carrier bandwidth), for example, the system bandwidth is 100MHz, and the terminal device can use a bandwidth less than 100MHz, such as 20MHz and 50MHz bandwidth parts for data transmission within the system bandwidth.
  • NR terminal equipment can be configured with up to 4 BWPs by high-level signaling, and different BWPs can have different bandwidth sizes, different frequency positions, and different subcarrier intervals.
  • Network equipment can switch between multiple BWPs according to the service requirements of the terminal equipment. For example, when transmitting at a higher service rate, use a BWP with a larger bandwidth, and use a BWP with a smaller bandwidth for transmission at a lower service data rate. .
  • the NR system supports switching of the BWP of the terminal equipment through Downlink Control Information (DCI), timer-based or Radio Resource Control (Radio Resource Control, RRC) signaling reconfiguration.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the DCI triggering the terminal device to perform BWP switching takes as an example: the DCI that performs data scheduling on the terminal device carries a bandwidth part indicator (Bandwidth part indicator), which depends on the number of BWPs configured by the network device to the terminal device.
  • the indicator field can be 0,1 or 2bits.
  • the bit length is Bits, where
  • n BWP n BWP, RRC +1, if n BWP, RRC ⁇ 3, the bandwidth part indicator is the same as the BWP-Id configured by the upper layer parameters;
  • n BWP n BWP,RRC , the bandwidth part indicator is shown in Table 1 below:
  • the network device When the BWP of the terminal device needs to be switched, the network device indicates a BWP different from the BWP where the terminal device is currently located in the BWP indication field in the DCI sent to the terminal device, and the terminal device performs the BWP switch after receiving the BWP instruction .
  • the physical uplink shared channel (PUSCH) and physical uplink control channel (PUCCH) of the NR system support frequency hopping (frequency hopping) transmission.
  • PUSCH transmission supports intra-slot frequency hopping and inter-slot frequency hopping.
  • the schematic diagram of the frequency hopping method of the present application is shown in Figure 1, where the starting PRB of each hop is determined based on the following formula:
  • RB start is the starting physical resource block (PRB) for PUSCH transmission in the uplink BWP, which is indicated by the uplink grant based on resource allocation type 1.
  • PRB physical resource block
  • RB offset is the frequency offset between two hops, using PRB Number to express.
  • the number of symbols for the first hop is The number of symbols for the second jump is in It is the number of Orthogonal Frequency Division Multiplexing (OFDM) symbols allocated for PUSCH transmission in a time slot.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the starting PRB is:
  • RB start is the starting PRB allocated for PUSCH transmission in the uplink BWP. It is indicated by the uplink grant based on resource allocation type 1, and the RB offset is two hops. The frequency offset between the two is represented by the number of PRBs.
  • the terminal device determines that the PRB index of the first hop of PUCCH transmission is And determine that the PRB index of the second hop is Where N CS is the total number of cyclic shifts.
  • NR-light terminal data Transmission also requires frequency hopping to enhance data transmission performance; however, NR-light terminals have some natural limitations when performing frequency hopping transmission.
  • the frequency hopping transmission of PUSCH and PUCCH is carried out in the uplink BWP configured for the terminal device; but some NR-light terminals only support a particularly small terminal bandwidth, such as 5MHz; the bandwidth of the BWP allocated for the terminal device will also be Restricted within the terminal bandwidth, the BWP bandwidth will be less than or equal to 5MHz. Since the frequency hopping technology requires sufficient frequency intervals between the transmission bands before and after the frequency hopping to obtain a significant frequency hopping gain, performing frequency hopping within such a small bandwidth will not bring the desired frequency hopping gain. Therefore, the applicant found that increasing the frequency hopping gain of the small bandwidth terminal can improve the data transmission performance and system coverage.
  • the embodiment of this application provides a frequency hopping method.
  • the frequency hopping method of the embodiment of this application can be applied to various communication systems, such as: global system of mobile communication (GSM) system, code division multiple access (code division multiple access, GSM) system multiple access (CDMA) system, wideband code division multiple access (WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, LTE frequency division Duplex (frequency division duplex, FDD) system, LTE time division duplex (TDD) system, advanced long term evolution (LTE-A) system, new radio (NR) system, The evolution of the NR system, the LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the unlicensed frequency band, the NR (NR-based access to unlicensed spectrum, NR-U) system on the unlicensed frequency band, and General Mobile Communication system (universal mobile telecommunication system, UMTS), global interoperability for microwave access (WiMAX) communication system, wireless local area networks (W
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the network equipment involved in the embodiments of this application may be a common base station (such as NodeB or eNB or gNB), a new radio controller (NR controller), a centralized network element (centralized unit), a new radio base station, Radio remote module, micro base station, relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • a common base station such as NodeB or eNB or gNB
  • NR controller new radio controller
  • a centralized network element centralized unit
  • a new radio base station Radio remote module
  • micro base station relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP), or any other equipment.
  • TRP transmission reception point
  • TP transmission point
  • the terminal device may be any terminal.
  • the terminal device may be a user equipment for machine-type communication. That is to say, the terminal equipment can also be called user equipment, mobile station (MS), mobile terminal (mobile terminal), terminal (terminal), etc., and the terminal equipment can be accessed through a radio access network. , RAN) communicates with one or more core networks.
  • the terminal device can be a mobile phone (or called a "cellular" phone), a computer with a mobile terminal, etc., for example, the terminal device can also be portable, pocket-sized, Hand-held, computer-built or vehicle-mounted mobile devices that exchange language and/or data with wireless access networks.
  • the embodiments of this application There is no specific limitation in the embodiments of this application.
  • network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and terminal equipment at the same time. Unlicensed spectrum for communication.
  • Between network equipment and terminal equipment and between terminal equipment and terminal equipment can communicate through the frequency spectrum below 7 gigahertz (gigahertz, GHz), can also communicate through the frequency spectrum above 7 GHz, and can also use the frequency spectrum below 7 GHz and Communication is performed in the frequency spectrum above 7GHz.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 2.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is configured to receive/transmit communication signals; and/or IoT device.
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a "wireless terminal” or a "mobile terminal".
  • Examples of mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • Terminal equipment can refer to an access terminal, UE, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal devices 120 may perform direct terminal connection (Device to Device, D2D) communication.
  • D2D Direct terminal connection
  • the 5G system or 5G network may also be referred to as NR system or NR network.
  • An optional processing procedure applied to the frequency hopping method of terminal equipment provided by the embodiment of the present application, as shown in FIG. 3, includes the following steps:
  • Step S201 The terminal device receives the instruction information.
  • the terminal device receives the indication information sent by the network device, and the indication information may be carried in at least one of the following: RRC signaling, MAC CE, and DCI.
  • the indication information is used to indicate the starting PRB number of the first hop transmission of the terminal device within the first BWP.
  • Step S202 The terminal device transmits data in a frequency hopping manner in a frequency domain other than the activated first BWP and the first BWP based on the indication information.
  • the transmission of data by the terminal device in a frequency hopping manner may occur in a time slot, that is, intra-slot frequency hopping.
  • the transmission of data by the terminal device in a frequency hopping manner may occur between time slots, that is, inter-slot frequency hopping.
  • the frequency hopping methods provided in the embodiments of the present application will be described based on intra-slot frequency hopping and inter-slot frequency hopping, respectively.
  • the initial PRB of the second hop transmission in the frequency domain outside the first BWP is: the initial PRB of the first hop transmission of the terminal device within the first BWP
  • the sum of the offset from the second frequency domain is shown in the following formula:
  • RB start, FH are the start PRB numbers of the second hop transmission in the frequency domain outside the first BWP, and RB start is the first BWP.
  • the start PRB of the second hop transmission is: the sum of the start PRB of the first hop transmission of the terminal device within the first BWP and the second frequency domain offset
  • the PRB corresponding to the value obtained by modulo the number of PRBs in the carrier is shown in the following formula:
  • the sum of the initial PRB and the second frequency domain offset of the first hop transmission of the terminal device within the first BWP and the value obtained by modulo the number of PRBs in the carrier may be within the range of the carrier The PRB number corresponding to the PRB.
  • the number of PRBs in the carrier is modulated by the sum of the initial PRB number of the first hop transmission in the first BWP and the second frequency domain offset, which can limit the frequency hopping transmission of the terminal device.
  • the frequency band range of the terminal equipment frequency hopping transmission is thus restricted.
  • the initial PRB of the second hop transmission is: the sum of the initial PRB of the first hop transmission of the terminal device within the first BWP and the third frequency domain offset , The sum of the PRB corresponding to the value obtained by modulo the number of PRBs included in the first BWP and the fourth frequency domain offset, as shown in the following formula:
  • RB start, FH is the starting PRB number of the second hop transmission in the frequency domain outside the first BWP
  • RB start is the starting PRB number of the first hop transmission within the first BWP
  • RB offset is the third frequency domain offset
  • RB offset2 is the fourth frequency domain offset
  • the start PRB of the second hop transmission is: the sum of the start PRB of the first hop transmission of the terminal device within the first BWP and the third frequency domain offset ,
  • the PRB corresponding to the value obtained by modulo the number of PRBs included in the first BWP and the sum of the fourth frequency domain offset and then the value obtained by modulo the number of PRBs in the carrier PRB, as shown in the following formula:
  • the terminal device For intra-slot frequency hopping, the terminal device performs the first hop transmission within the first BWP, and the terminal device performs the second hop transmission within the second BWP.
  • the second BWP is the Part of the frequency domain outside of the first BWP.
  • the second BWP is any one of the following: any BWP other than the first BWP among the BWPs configured by the network device for the terminal device; the network device is the terminal device Any one of the multiple BWPs configured by the device for data transmission; the network device is one BWP in the subset of the BWP set composed of multiple BWPs configured for the terminal device for data transmission; the network device is the A BWP in the BWP set configured by the terminal device for data transmission in a frequency hopping manner.
  • both the first BWP and the second BWP are BWPs configured by the network device for the terminal device in the prior art, and the first BWP is the currently activated BWP, and the second BWP is a BWP different from the first BWP.
  • the parameters of the first BWP and the parameters of the second BWP such as the bandwidth size (the number of PRBs included) and the subcarrier spacing, may be the same or different, or partly the same, or partly different.
  • the index of the second BWP may be pre-configured by the network device; for example, the index of the second BWP is carried in at least one of the following: RRC signaling, medium access control unit (Medium Access Control Unit) Control Control Element, MAC CE) and DCI.
  • the initial PRB number of the second hop transmission within the second BWP may be: the initial PRB number of the first hop transmission of the terminal device within the first BWP and the first frequency domain offset
  • the sum of shifts is a value obtained by modulo the number of PRBs included in the second BWP, as shown in the following formula:
  • the starting PRB number transmitted within the first BWP, and the RB offset is the first frequency domain offset
  • the initial PRB number of the second hop transmission within the second BWP may also be: the initial PRB number of the first hop transmission of the terminal device within the first BWP, as shown in the following formula :
  • the starting PRB numbers used are all starting PRB numbers based on the uplink authorization indication: RB start .
  • the second BWP is a virtual mirror BWP having a second correspondence with the first BWP; the virtual mirror BWP is used for data transmission in a frequency hopping manner.
  • the virtual image BWP is configured by the network device, which is different from the four BWPs configured by the network device for the terminal device in the prior art.
  • the frequency domains of the virtual image BWP and the first BWP may be different.
  • the virtual image BWP and the corresponding BWP satisfy a certain frequency relationship and have a certain frequency interval.
  • the virtual image BWP and the corresponding BWP may have the same bandwidth, subcarrier spacing and other parameters; or the virtual image BWP and the corresponding BWP may have different or partially different bandwidth, subcarrier spacing and other parameters.
  • a network device may configure its virtual image BWP for the BWP on the basis of a BWP, such as obtaining the configuration of the virtual image BWP by configuring the frequency relationship between its virtual image BWP and the one BWP, For example, the frequency position, other parameters except the frequency position are the same. Or, for the one BWP, the network device configures another BWP as its virtual mirror BWP through RRC signaling.
  • the process of acquiring the initial PRB number transmitted by the second hop within the second BWP may be as described in the above formula (7) and the above formula (8) As shown; the second schematic diagram of the frequency hopping method implemented based on formula (7), as shown in Figure 7.
  • the terminal device performs the first hop transmission within the first BWP, and the terminal device performs the second hop transmission in the frequency domain outside the first BWP; optionally, the The terminal device may also perform second-hop transmission in the frequency domain outside the first BWP.
  • the second BWP may be the virtual mirror BWP mentioned in the aforementioned scenario 2), or the second BWP mentioned in the aforementioned scenario 1).
  • the start PRB number of the second hop transmission in the transmission time slot corresponding to the second BWP is: the first hop transmission of the terminal device is in the The sum of the starting PRB number in the first BWP and the fifth frequency domain offset is the value obtained by modulo the number of PRBs included in the second BWP; the pair of timeslot numbers of the current transmission timeslot The value of 2 modulo 1 is shown in the following formula (9):
  • RB start is the starting PRB number of the first hop transmission within the first BWP
  • RB offset is the fifth frequency domain offset
  • the start PRB number of the second hop transmission in the transmission time slot corresponding to the second BWP is: the first hop transmission of the terminal device is in the first BWP The starting PRB number within; the value of the time slot number modulo 2 of the current transmission time slot is 1. As shown in the following formula (10):
  • RB start is the starting PRB number of the first hop transmission within the first BWP.
  • the terminal device performs the first hop transmission, the second hop transmission, and the third hop transmission as an example and a brief description:
  • the start PRB number of the second hop transmission in the transmission slot corresponding to the second BWP is: the first hop transmission of the terminal device is within the first BWP
  • the sum of the initial PRB number and the fifth frequency domain offset is the value obtained by modulo the number of PRBs included in the second BWP; the time slot number of the current transmission time slot is a value modulo 3 Is 1.
  • the initial PRB number of the transmission slot corresponding to the third BWP for the third hop transmission is: the initial PRB number of the first hop transmission of the terminal device within the first BWP and the fifth frequency domain offset
  • the sum of the shifts is a value obtained by modulo the number of PRBs included in the third BWP; the value of the time slot number of the current transmission time slot modulo 3 is 2, as shown in the following formula (11):
  • RB start is the starting PRB number of the first hop transmission within the first BWP
  • RB offset is the sixth frequency domain offset
  • the frequency offset for the second hop transmission and the frequency offset for the third hop transmission may be the same or different.
  • the first BWP is the currently activated BWP
  • the RB start can be indicated by the network device through resource allocation type 1, and the RB start can be determined based on the bandwidth of the first BWP
  • RB offset and RB offset2 are also indicated by the network device to the terminal device.
  • RB start , RB offset, and RB offset2 may be carried in the same indication information, or may be carried in different indication information.
  • the terminal since the terminal performs frequency hopping between multiple BWPs, a certain frequency modulation time is required between two hops. Therefore, a certain number of symbols may need to be reserved for the terminal between the two hops.
  • FM that is, at least one symbol is reserved between the first hop transmission and the second hop transmission in which the terminal device transmits data in a frequency hopping manner; the at least one symbol is used for frequency modulation of the terminal device.
  • the at least one symbol may be located within the symbol transmitted by the first hop; or, the at least one symbol may be located within the symbol transmitted by the second hop. Or, in a case where the number of reserved symbols is greater than one, both the symbols transmitted by the first hop and the symbols transmitted by the second hop include the reserved symbols.
  • the first hop transmission includes 8 symbols.
  • the first hop transmission occupies 6 symbols during data transmission.
  • the 2 symbols reserved for frequency modulation can be located in the 8 symbols of the first hop transmission.
  • Within 2 symbols of untransmitted data It can be understood that the number of symbols transmitted by the first hop includes N, and the first hop transmission occupies M symbols when transmitting data, and 1 ⁇ M ⁇ N.
  • the number of the at least one symbol is at least one of the following: predefined, configured by a network device, and corresponding to the capability of the terminal device.
  • the number of the at least one symbol is a predefined value corresponding to the capability of the terminal device; or the number of the at least one symbol is a value configured by the network device corresponding to the capability of the terminal device.
  • the capability of the terminal device corresponds to what the terminal device can support.
  • FIG. 8 A schematic diagram of the frequency hopping method after reserving at least one symbol is shown in FIG. 8. Compared with the frequency hopping without reserving symbols shown in FIG. 6, there is an interval between the first BWP and the second BWP in the time domain.
  • the terminal device determines that the PRB index of the first hop of PUCCH transmission is And determine the PRB index of the second hop of PUCCH transmission or Wherein, the PRB index of the second hop is the PRB index transmitted by the second hop within the second BWP, N CS is the total number of cyclic shifts, r PUCCH is the index number of the PUCCH resource, Is the frequency offset, and Can be the same or different; Is the number of PRBs included in the second BWP.
  • the aforementioned PUSCH and PUCCH are taken as examples to illustrate the frequency hopping method provided in the embodiment of this application; the frequency hopping method provided in the embodiment of this application can also be applied to downlink traffic channels, such as PUSCH and physical downlink control channel ( Physical Downlink Control Channel, PDCCH). Therefore, it can be understood that in the embodiments of the present application, the data transmitted by the terminal device in a frequency hopping manner may be service data or data related to control information.
  • An optional processing procedure applied to the frequency hopping method for network equipment provided by the embodiment of the present application, as shown in FIG. 9, includes the following steps:
  • Step S301 The network device sends instruction information, where the instruction information is used by the terminal device to transmit data in a frequency hopping manner in the activated first BWP and the frequency domain outside the first BWP.
  • the description of the frequency domain other than the indication information, the first BWP, and the second BWP is the same as the related description in the embodiment shown in FIG. 3, and will not be repeated here.
  • Step S300 The network device configures the virtual mirror BWP for the terminal device.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the composition structure of the terminal device 400 includes:
  • the receiving unit 401 is configured to receive instruction information
  • the processing unit 402 is configured to transmit data in a frequency hopping manner in a frequency domain outside the activated first BWP and the first BWP based on the indication information.
  • the indication information is used to indicate the starting PRB number of the first hop transmission of the terminal device within the first BWP.
  • the frequency domain outside the first BWP includes a second BWP.
  • any BWP other than the first BWP among the BWPs configured by the network device for the terminal device ;
  • the network device is one BWP in a subset of the BWP set formed by multiple BWPs configured for data transmission by the terminal device;
  • the network device is a BWP in the BWP set configured for the terminal device to perform data transmission in a frequency hopping manner.
  • the index of the second BWP is pre-configured by the network device.
  • the index of the second BWP is carried in at least one of the following: RRC signaling, MAC CE, and DCI.
  • the index of the second BWP and the index of the first BWP satisfy a first correspondence.
  • the second BWP is a virtual mirror BWP having a second correspondence with the first BWP; the virtual mirror BWP is used for data transmission in a frequency hopping manner.
  • the virtual mirror BWP and the first BWP have different frequency domains.
  • the virtual image BWP is configured by a network device.
  • the processing unit 402 is configured to perform second-hop transmission in the second BWP.
  • the start PRB number of the second hop transmission within the second BWP is: the start PRB number of the first hop transmission of the terminal device within the first BWP and
  • the sum of the first frequency domain offset is a value obtained by performing a modulo operation on the number of PRBs included in the second BWP.
  • the starting PRB number of the second hop transmission within the second BWP is: the starting PRB number of the first hop transmission of the terminal device within the first BWP.
  • the processing unit 402 is configured to perform second-hop transmission in a frequency domain outside the first BWP.
  • the start PRB number of the second hop transmission in the frequency domain outside the first BWP is: the first hop transmission of the terminal device starts within the first BWP The sum of the initial PRB number and the second frequency domain offset.
  • the initial PRB of the second hop transmission is: the sum of the initial PRB of the first hop transmission of the terminal device within the first BWP and the second frequency domain offset The PRB corresponding to the value obtained by modulo the number of PRBs in the carrier.
  • the initial PRB of the second hop transmission is: the sum of the initial PRB of the first hop transmission of the terminal device within the first BWP and the third frequency domain offset, The PRB corresponding to the sum of the value obtained by performing a modulo operation on the number of PRBs included in the first BWP and the fourth frequency domain offset.
  • the start PRB of the second hop transmission is: the sum of the start PRB of the first hop transmission of the terminal device within the first BWP and the third frequency domain offset, The sum of the value obtained by modulo the number of PRBs included in the first BWP and the fourth frequency domain offset is then the value obtained by modulo the number of PRBs in the carrier.
  • the start PRB number of the second hop transmission in the transmission slot corresponding to the second BWP is: the first hop transmission of the terminal device is in the The sum of the starting PRB number in the first BWP and the fifth frequency domain offset is the value obtained by modulo the number of PRBs included in the second BWP; the pair of timeslot numbers of the current transmission timeslot The value of 2 modulo 1 is.
  • the start PRB number of the second hop transmission in the transmission time slot corresponding to the second BWP is: the first hop transmission of the terminal device is in all the The starting PRB number within the first BWP; the value of the time slot number of the current transmission time slot modulo 2 is 1.
  • At least one symbol is reserved between the first hop transmission and the second hop transmission in which the terminal device transmits data in a frequency hopping manner; the at least one symbol is used for frequency modulation of the terminal device.
  • the at least one symbol is located within the symbol transmitted by the first hop; or, the at least one symbol is located within the symbol transmitted by the second hop.
  • both the symbols transmitted by the first hop and the symbols transmitted by the second hop include the reserved symbols.
  • the number of the at least one symbol is at least one of the following: predefined, configured by a network device, and corresponding to the capability of the terminal device.
  • the indication information is carried in at least one of the following: RRC signaling, MAC CE, and DCI.
  • the composition structure of the network device 500 includes:
  • the sending unit 501 is configured to send instruction information, where the instruction information is used for the terminal device to transmit data in a frequency domain other than the activated first BWP and the first BWP in a frequency hopping manner.
  • the indication information is used to indicate the starting PRB number of the first hop transmission of the terminal device within the first BWP.
  • the frequency domain outside the first BWP includes a second BWP.
  • the second BWP is any one of the following:
  • the network device is any one of the multiple BWPs configured by the terminal device for data transmission;
  • the network device is one BWP in a subset of a BWP set composed of multiple BWPs configured by the terminal device for data transmission;
  • the network device is one BWP in a BWP set configured by the terminal device for data transmission in a frequency hopping manner.
  • the sending unit 501 is further configured to configure the index of the second BWP for the terminal device.
  • the index of the second BWP is carried in at least one of the following: RRC signaling, MAC CE, and DCI.
  • the index of the second BWP and the index of the first BWP satisfy a first correspondence.
  • the second BWP is a virtual mirror BWP having a second correspondence with the first BWP
  • the virtual image BWP is used for data transmission in a frequency hopping manner.
  • the virtual mirror BWP and the first BWP have different frequency domains.
  • the sending unit 501 is further configured to configure the virtual mirror BWP for the terminal device.
  • An embodiment of the present application also provides a terminal device, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to execute the above-mentioned terminal device when the computer program is running. Steps of frequency hopping method.
  • the electronic device 700 includes: at least one processor 701, a memory 702, and at least one network interface 704.
  • the various components in the electronic device 700 are coupled together through the bus system 705. It can be understood that the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clear description, various buses are marked as the bus system 705 in FIG. 12.
  • the memory 702 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), and electrically erasable Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM (CD) -ROM, Compact Disc Read-Only Memory); Magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • Synchronous Static Random Access Memory Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection dynamic random access memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 702 described in the embodiment of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 in the embodiment of the present application is used to store various types of data to support the operation of the electronic device 700.
  • Examples of such data include: any computer program used to operate on the electronic device 700, such as an application program 7022.
  • the program for implementing the method of the embodiment of the present application may be included in the application program 7022.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 701 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 700 may be used by one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), and complex programmable logic device (CPLD). , Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components to implement the foregoing method.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • PLD programmable logic device
  • CPLD complex programmable logic device
  • FPGA field-programmable Logic Device
  • controller MCU
  • MPU or other electronic components to implement the foregoing method.
  • the embodiment of the present application also provides a storage medium for storing computer programs.
  • the storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process in each method of the embodiment of the present application.
  • An embodiment of the present application also provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the above-mentioned frequency hopping method.
  • An embodiment of the present application also provides a computer program product, including computer program instructions, which cause a computer to execute the frequency hopping method described above.
  • An embodiment of the present application also provides a computer program, which causes a computer to execute the above-mentioned frequency hopping method.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种跳频方法,包括:终端设备接收指示信息;所述终端设备基于所述指示信息,在激活的第一带宽部分(BWP)和所述第一BWP之外的频域以跳频的方式传输数据。本申请还公开了另一种跳频方法、电子设备及存储介质。

Description

一种跳频方法、电子设备及存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及一种跳频方法、电子设备及存储介质。
背景技术
在新无线(New Radio,NR)系统中,如何提高数据的传输性能以及提高系统的覆盖率成为技术趋势。
发明内容
本申请实施例提供一种方跳频方法、电子设备及存储介质,能够提高数据的传输性能以及提高系统的覆盖率。
第一方面,本申请实施例提供一种跳频方法,所述方法包括:终端设备接收指示信息;
所述终端设备基于所述指示信息,在激活的第一带宽部分(BandWidth Part,BWP)和所述第一BWP之外的频域以跳频的方式传输数据。
第二方面,本申请实施例提供一种跳频方法,所述方法包括:网络设备发送指示信息,所述指示信息用于终端设备在激活的第一BWP和所述第一BWP之外的频域以跳频的方式传输数据。
第三方面,本申请实施例提供一种终端设备,所述终端设备包括:收单元,配置为接收指示信息;
处理单元,配置为基于所述指示信息,在激活的第一BWP和所述第一BWP之外的频域以跳频的方式传输数据。
第四方面,本申请实施例提供一种网络设备,所述网络设备包括:
发送单元,配置为发送指示信息,所述指示信息用于终端设备在激活的第一BWP和所述第一BWP之外的频域以跳频的方式传输数据。
第五方面,本申请实施例提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
所述处理器用于运行所述计算机程序时,执行上述终端设备执行的跳频方法的步骤。
第六方面,本申请实施例提供一种网络设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
所述处理器用于运行所述计算机程序时,执行上述网络设备执行的跳频方法的步骤。
第七方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的终端设备执行上述的跳频方法。
第八方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的网络设备执行上述的跳频方法。
第九方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述终端设备执行的跳频方法。
第十方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述网络设备执行的跳频方法。
第十一方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述终端设备执行的跳频方法。
第十二方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述网络设备执行的跳频方法。
第十三方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述终端设备执行的跳频方法。
第十四方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述网络设备执行的跳频方法。
本申请实施例提供的跳频方法,包括:终端设备接收指示信息;所述终端设备基于所述指示信息,在激活的第一带宽部分BWP和所述第一BWP之外的频域以跳频的方式传输数据。如此,终端设备能够在不同的BWP之间以跳频的方式传输数据;尤其对于窄带宽的终端设备,能够在更宽的频率范围内进行跳频传输,进而提升数据传输性能和系统的覆盖率。
附图说明
图1为本申请跳频方法的示意图;
图2为本申请实施例通信系统的组成结构示意图;
图3为本申请实施例提供的应用于终端设备跳频方法的一种可选处理流程示意图;
图4为本申请实施例基于公式(3)实施的跳频方法的示意图;
图5为本申请实施例基于公式(7)实施的跳频方法的示意图一;
图6为本申请实施例基于公式(8)实施的跳频方法的示意图;
图7为本申请实施例基于公式(7)实施的跳频方法的示意图二;
图8为本申请实施例预留至少一个符号后的跳频方法的示意图;
图9为本申请实施例提供的应用于网络设备跳频方法的一种可选处理流程示意图;
图10为本申请实施例终端设备的组成结构示意图;
图11为本申请实施例网络设备的组成结构示意图;
图12为本申请实施例电子设备的硬件组成结构示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点和技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
在对本申请实施例提供的跳频方法进行详细说明之前,先对相关技术进行简要说明。
在无线通信技术的不断演进与助力下,物联网(Internet Of Things,IOT)技术飞速发展。如3GPP组织推动发展的大规模机器类通信(Massive Machine Type Communication,mMTC)MTC/eMTC,NB-IOT系列标准成为5G mMTC技术的候选技术标准。这些技术标准有望在智能家居,智慧城市,智慧工厂、远程监测、智慧交通等人们生产与生活的方方面面发挥巨大作用。
MTC/eMTC和NB-IOT终端设备具有制作成本较低、价格便宜、支持超低功耗、以及支持深广大覆盖场景等技术优势,因此有利于物联网技术的发展初期的快速普及。 然而,这些技术也具有应用场景的限制;举例来说,由于MTC/eMTC和NB-IoT的设计目标是支持一些低数据速率、较高传输时延的应用,因此在一些需要具有相对较高速率的物联网场景,如智能安防中的视频监控、要求相对较低时延工业应用,MTC/eMTC和NB-IoTz终端设备则不能应用,而如直接采用NR终端,NR终端的设计指标,如传输速率、传输时延等方面有远超过这些场景的实际需求,而成本上相对较高不利于市场竞争。
因此,为了完善5G mMTC场景的终端设备体系,需要设计一种即支持中等传输速率、中等时延要求,又具有较低成本的NR MTC终端设备类型,目前3GPP称这种NR MTC类型的终端设备为NR-light终端设备。
目前NR终端设备至少需要支持2个接收通道,某些频段上的NR终端设备需要支持4个接收通道;每一个接收通道均包含接收天线,滤波器,(Power Amplifier,PA)功率放大器,模数(Analog to Digital,AD)采样器等元器件;因此,减少NR终端设备需要配备的射频通道数目将可显著降低终端成本。如将具有两个射频通道的终端缩减为一个射频通道,则芯片模组的成本可降低约1/3。因此NR-light终端可以装配较少的天线数目用于降低终端的成本。
NR终端设备还需要支持较宽的传输带宽,如FR1终端设备需要支持最大100MHz的带宽。为降低NR-light终端设备的成本以及降低NR-light终端设备的功耗,NR-light终端设备可以支持较小的终端带宽,例如在FR1仅支持5MHz,、或者10MHz、或者20MHz的终端带宽。
NR系统中,系统带宽与终端带宽可能都会达到数百MHz甚至数GHz以支持高速移动数据传输。但是,在实际数据传输时,并非时时刻刻都需要如此大的带宽;例如,在仅需支持低数据速率传输的工作场景时(如微信聊天),终端设备仅需要采用较小的工作带宽,例如10MHz的带宽就已经足够。为了灵活支持上述不同场景的不同带宽需求,NR系统引入了BWP的概念。BWP可以是系统带宽(小区载波带宽)的一部分,例如系统带宽为100MHz,终端设备可以采用小于100MHz的带宽,例如20MHz、50MHz的带宽部分在系统带宽内部进行数据传输。NR终端设备可以被高层信令配置最多4个BWP,不同的BWP可以具有不同的带宽大小、不同的频率位置以及不同的子载波间隔。网络设备可以根据终端设备的业务需求使得终端设备在多个BWP之间进行切换,例如较高业务速率传输时,使用较大带宽的BWP,较小的业务数据速率传输时使用较小带宽的BWP。
目前NR系统支持通过下行控制信令(Downlink Control Information,DCI)的方式对终端设备的BWP进行切换、基于定时器方式或基于无线资源控制(Radio Resource Control,RRC)信令重配置的方式进行切换。以DCI触发终端设备进行BWP切换为例:在对终端设备进行数据调度的DCI中携带带宽部分指示域(Bandwidth part indicator),取决于网络设备向终端设备配置的BWP的数量,该指示域可以是0,1或2bits。比特长度为
Figure PCTCN2020073319-appb-000001
比特,其中,
一种情况下,n BWP=n BWP,RRC+1,如果n BWP,RRC≤3,此时bandwidth part indicator与高层参数配置的BWP-Id相同;
另一种情况下,n BWP=n BWP,RRC,此时bandwidth part indicator如下表1所示:
Figure PCTCN2020073319-appb-000002
Figure PCTCN2020073319-appb-000003
表1
在需要对终端设备的BWP进行切换时,网络设备在向终端设备发送的DCI中的BWP指示域中指示与终端设备当前所在的BWP不同的BWP,终端设备收到该BWP指示后执行BWP的切换。
为提升上行传输的频率选择性增益和系统的覆盖率,NR系统的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)以及物理上行控制信道(Physical Uplink Control Channel,PUCCH)支持跳频(frequency hopping)传输。
以PUSCH为例,当DCI调度的PUSCH采用资源分配类型1时,PUSCH传输支持时隙内(intra-slot)frequency hopping以及时隙间(inter-slot)frequency hopping。本申请跳频方法的示意图,如图1所示,其中每一跳的起始PRB基于下述公式确定:
Figure PCTCN2020073319-appb-000004
其中i=0和i=1分别表示第一跳和第二跳。RB start是PUSCH在上行BWP传输的起始物理资源块(Physical Resource Block,PRB),由上行授权基于资源分配类型1的方式进行指示,RB offset是两跳之间的频率偏移量,用PRB数来表示。
对于配置的intra-slot frequency hopping,第一跳的符号数目为
Figure PCTCN2020073319-appb-000005
第二跳的符号数目为
Figure PCTCN2020073319-appb-000006
其中
Figure PCTCN2020073319-appb-000007
是在一个时隙内为PUSCH传输分配的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数目。
对于配置的inter-slot frequency hopping时,在slot
Figure PCTCN2020073319-appb-000008
的起始PRB为:
Figure PCTCN2020073319-appb-000009
其中
Figure PCTCN2020073319-appb-000010
是在无线帧中多时隙PUSCH传输所在的当前时隙号,RB start是在上行BWP的PUSCH传输所分配的起始PRB,由上行授权基于资源分配类型1的方式进行指示,RB offset是两跳之间的频率偏移量,用PRB数来表示。
类似地,对于采用跳频方式传输PUCCH,终端设备确定PUCCH传输的第一跳的PRB索引为
Figure PCTCN2020073319-appb-000011
并确定第二跳的PRB索引为
Figure PCTCN2020073319-appb-000012
其中N CS是循环移位的总数。
在NR系统中,致力于研究如何提高数据的传输性能以及提高系统的覆盖率。申请人在实施方案过程中发现,部分终端设备进行数据传输时传输性能低,并且系统覆盖率低是由于终端设备的带宽小导致的跳频增益低引起的;原因如下:NR-light终端的数据传输也需要采用跳频的方式进行传输以增强数据传输性能;然而NR-light终端进行跳频传输时有一些天然的限制。如PUSCH和PUCCH的跳频传输均是在为终端设备配置的上行BWP内进行的;但是有些NR-light终端仅支持特别小的终端带宽,如5MHz;则为终端设备分配的BWP的带宽也会限制在终端带宽之内,BWP带宽会小于或等于5MHz。由于跳频技术需要使得跳频前后的传输频带之间有足够的频率间隔才可以获得明显的跳频增益,因此在如此小的带宽内进行跳频,不会带来期望的跳频增益。因此,申请人发现提高小带宽终端的跳频增益才能够提高数据传输性能和系统覆盖率。
本申请实施例提供一种跳频方法,本申请实施例的跳频方法可以应用于各种通信系 统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、新无线(new radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中涉及的网络设备,可以是普通的基站(如NodeB或eNB或者gNB)、新无线控制器(new radio controller,NR controller)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、中继(relay)、分布式网元(distributed unit)、接收点(transmission reception point,TRP)、传输点(transmission point,TP)或者任何其它设备。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
在本申请实施例中,终端设备可以是任意的终端,比如,终端设备可以是机器类通信的用户设备。也就是说,该终端设备也可称之为用户设备、移动台(mobile station,MS)、移动终端(mobile terminal)、终端(terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。本申请实施例中不做具体限定。
可选的,网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
可选的,网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过非授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和非授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过7吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过7GHz以上的频谱进行通信,还可以同时使用7GHz以下的频谱和7GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
示例性的,本申请实施例应用的通信系统100如图2所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或IoT设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、UE、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为NR系统或NR网络。
本申请实施例提供的应用于终端设备跳频方法的一种可选处理流程,如图3所示,包括以下步骤:
步骤S201,终端设备接收指示信息。
在一些实施例中,所述终端设备接收网络设备发送的所述指示信息,所述指示信息可以携带于下述中的至少一项中:RRC信令、MAC CE和DCI。
在一些实施例中,所述指示信息用于指示所述终端设备的第一跳传输在第一BWP之内的起始PRB编号。
步骤S202,所述终端设备基于所述指示信息,在激活的第一BWP和所述第一BWP 之外的频域以跳频的方式传输数据。
所述终端设备以跳频的方式传输数据可以发生在时隙内,即intra-slot frequency hopping。所述终端设备以跳频的方式传输数据可以发生在时隙间,即inter-slot frequency hopping。
下面以PUSCH传输为例,分别基于intra-slot frequency hopping和inter-slot frequency hopping对本申请实施例提供的跳频方法进行说明。
1)针对intra-slot frequency hopping,所述终端设备在第一BWP之内的第一跳传输,所述终端设备在所述第一BWP之外的频域进行第二跳传输的场景:
在一些实施例中,所述第二跳传输在所述第一BWP之外的频域的起始PRB为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第二频域偏移量之和,如下述公式所示:
Figure PCTCN2020073319-appb-000013
基于公式(3)实施的跳频方法的示意图,如图4所示,RB start,FH为第二跳传输的在所述第一BWP之外的频域的起始PRB编号,RB start为第一跳传输在所述第一BWP之内的起始PRB编号,RB offset为第二频域偏移量,i=0表示第一跳,i=1表示第二跳。
在另一些实施例中,所述第二跳传输的起始PRB为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第二频域偏移量之和对载波内的PRB数量进行取模运算得到的值所对应的PRB,如下述公式所示:
Figure PCTCN2020073319-appb-000014
所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第二频域偏移量之和对载波内的PRB数量进行取模运算得到的值可以为在载波范围内的PRB编号,所述PRB编号对应于PRB。
其中,
Figure PCTCN2020073319-appb-000015
表示载波内的PRB数量,RB start,FH为第二跳传输的在所述第一BWP之外的频域的起始PRB编号,RB start为第一跳传输在所述第一BWP之内的起始PRB编号,RB offset为第二频域偏移量,i=0表示第一跳,i=1表示第二跳。
如此,通过第一跳传输在所述第一BWP之内的起始PRB编号与第二频域偏移量之和对载波内的PRB数量进行取模运算,能够限制终端设备的跳频传输在系统带宽之内,进而限制了终端设备跳频传输的频带范围。
在又一些实施例中,所述第二跳传输的起始PRB为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第三频域偏移量之和,对所述第一BWP所包括的PRB数量进行取模运算得到的值所对应的PRB与第四频域偏移量之和,如下述公式所示:
Figure PCTCN2020073319-appb-000016
其中,RB start,FH为第二跳传输的在所述第一BWP之外的频域的起始PRB编号,RB start为第一跳传输在所述第一BWP之内的起始PRB编号,RB offset为第三频域偏移量,RB offset2为第四频域偏移量,
Figure PCTCN2020073319-appb-000017
表示所述第一BWP所包括的PRB数量,i=0表示第一跳,i=1表示第二跳。
还有一些实施例中,所述第二跳传输的起始PRB为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第三频域偏移量之和,对所述第一BWP所包括的PRB数量进行取模运算得到的值所对应的PRB,与第四频域偏移量之和再对载波内的 PRB数量取模运算得到的值所对应的PRB,如下述公式所示:
Figure PCTCN2020073319-appb-000018
其中,
Figure PCTCN2020073319-appb-000019
表示载波内的PRB数量,RB start,FH为第二跳传输的在所述第一BWP之外的频域的起始PRB编号,RB start为第一跳传输在所述第一BWP之内的起始PRB编号,RB offset为第三频域偏移量,RB offset2为第四频域偏移量,
Figure PCTCN2020073319-appb-000020
表示所述第一BWP所包括的PRB数量,i=0表示第一跳,i=1表示第二跳。
2)针对intra-slot frequency hopping,所述终端设备在第一BWP之内进行第一跳传输,所述终端设备在第二BWP之内进行第二跳传输的场景,所述第二BWP为所述第一BWP之外的频域的一部分。
在一些实施例中,所述第二BWP为下述中的任意一种:网络设备为所述终端设备配置的BWP中除所述第一BWP之外的任意一个BWP;网络设备为所述终端设备配置的用于数据传输的多个BWP中的任意一个BWP;网络设备为所述终端设备配置的用于数据传输的多个BWP构成的BWP集合的子集中的一个BWP;网络设备为所述终端设备配置的用于以跳频方式进行数据传输的BWP集合中的一个BWP。可以理解为,第一BWP和第二BWP均为现有技术中网络设备为终端设备配置的BWP,且第一BWP为当前激活的BWP,第二BWP是与第一BWP不同的BWP。所述第一BWP的参数与所述第二BWP的参数,如带宽大小(包含的PRB数目)和子载波间隔等可以相同,也可以不同,或部分相同、或部分不同。
在具体实施时,所述第二BWP的索引可以由网络设备预先配置;如所述第二BWP的索引携带于下述中的至少一项中:RRC信令、媒体接入控制单元(Medium Access Control Control Element,MAC CE)和DCI。所述第二BWP的索引也可以为与第一BWP的索引满足预定义第一对应关系,如第二BWP的索引=(第一BWP的索引+1)/4,其中/为取模操作;根据第一对应关系和第一BWP的索引,能够确定第二BWP的索引,进而确定第二跳传输对应的第二BWP。
所述第二跳传输在所述第二BWP之内的起始PRB编号可以为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第一频域偏移量之和对所述第二BWP所包括的PRB数量进行取模运算得到的值,如下公式所示:
Figure PCTCN2020073319-appb-000021
基于公式(7)实施的跳频方法的示意图一,如图5所示,RB start,FH为第二跳传输的在所述第二BWP之内的起始PRB编号,RB start为第一跳传输在所述第一BWP之内的起始PRB编号,RB offset为第一频域偏移量,
Figure PCTCN2020073319-appb-000022
为所述第二BWP所包括的PRB数量,i=0表示第一跳,i=1表示第二跳。
所述第二跳传输在所述第二BWP之内的起始PRB编号还可以为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号,如下公式所示:
RB start,FH=RB start,i=0,1            (8)
基于公式(8)实施的跳频方法的示意图,如图6所示,无论终端设备在第一BWP内的第一跳传输还是在第二BWP内的第二跳传输,在两个BWP内传输使用的起始的PRB的编号均为基于上行授权指示的起始PRB编号:RB start
在另一些实施例中,所述第二BWP为与所述第一BWP具有第二对应关系的虚拟镜像BWP;所述虚拟镜像BWP用于以跳频方式进行数据传输。
在具体实施时,所述虚拟镜像BWP由网络设备配置的,与现有技术中网络设备为 终端设备配置的4个BWP不同。虚拟镜像BWP与所述第一BWP的频域可以不同,如虚拟镜像BWP与对应的BWP之间满足一定的频率关系,具有一定的频率间隔。所述虚拟镜像BWP与对应的BWP可以具有相同的带宽、子载波间隔等参数;或者所述虚拟镜像BWP与对应的BWP具有不同的,或者部分不同的带宽、子载波间隔等参数。
举例来说,网络设备可以在一个BWP的基础上,为该BWP配置其虚拟镜像BWP,如通过配置其虚拟镜像BWP与所述一个BWP之间的频率关系来获得所述虚拟镜像BWP的配置,如频率位置,除频率位置以外的其他参数均相同。或者网络设备针对所述一个BWP,通过RRC信令配置另外一个BWP作为其虚拟镜像BWP。
在所述第二BWP为虚拟镜像BWP的场景下,所述第二跳传输在所述第二BWP之内的起始PRB编号的获取过程,可以如上述公式(7)和上述公式(8)所示;基于公式(7)实施的跳频方法的示意图二,如图7所示。
3)针对inter-slot frequency hopping,所述终端设备在第一BWP之内进行第一跳传输,所述终端设备在第一BWP之外的频域进行第二跳传输;可选地,所述终端设备也可以在第一BWP之外的频域进行第二跳传输。其中,所述第二BWP可以是前述场景2)提及的虚拟镜像BWP,也可以是前述场景1)提及的第二BWP。
在具体实施时,在所述第二BWP之内,所述第二跳传输在所述第二BWP对应的传输时隙的起始PRB编号为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第五频域偏移量之和对所述第二BWP所包括的PRB数量进行取模运算得到的值;所述当前传输时隙的时隙号对2取模的值为1;如下公式(9)所示:
Figure PCTCN2020073319-appb-000023
其中,
Figure PCTCN2020073319-appb-000024
是在无线帧中多时隙PUSCH传输所在的当前时隙号,RB start为第一跳传输在所述第一BWP之内的起始PRB编号,RB offset为第五频域偏移量,
Figure PCTCN2020073319-appb-000025
为所述第二BWP所包括的PRB数量。
或者,在所述第二BWP之内,所述第二跳传输在所述第二BWP对应的传输时隙的起始PRB编号为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号;所述当前传输时隙的时隙号对2取模的值为1。如下公式(10)所示:
Figure PCTCN2020073319-appb-000026
其中,
Figure PCTCN2020073319-appb-000027
是在无线帧中多时隙PUSCH传输所在的当前时隙号,RB start为第一跳传输在所述第一BWP之内的起始PRB编号。
前述对终端设备的第一跳传输和第二跳传输进行了详细描述,本申请实施例提供的跳频方法还适用于终端设备进行的第三跳传输或第三跳传输之后的传输;下面以inter-slot frequency hopping的场景,终端设备进行第一跳传输、第二跳传输和第三跳传输为例简要说明:
在所述第二BWP之内,所述第二跳传输在所述第二BWP对应的传输时隙的起始PRB编号为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第五频域偏移量之和对所述第二BWP所包括的PRB数量进行取模运算得到的值;所述当前传输时隙的时隙号对3取模的值为1。
所述第三跳传输在第三BWP对应的传输时隙的起始PRB编号为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第五频域偏移量之和对所述第三BWP所包括的PRB数量进行取模运算得到的值;所述当前传输时隙的时隙号对3取模 的值为2;如下公式(11)所示:
Figure PCTCN2020073319-appb-000028
其中,
Figure PCTCN2020073319-appb-000029
是在无线帧中多时隙PUSCH传输所在的当前时隙号,RB start为第一跳传输在所述第一BWP之内的起始PRB编号,RB offset为第六频域偏移量,
Figure PCTCN2020073319-appb-000030
为所述第二BWP所包括的PRB数量,
Figure PCTCN2020073319-appb-000031
为所述第三BWP所包括的PRB数量。其中,针对第二跳传输的频率偏移量和针对第三跳传输的频率偏移量可以相同也可以不同。
需要说明的是,本申请上述各实施例中,所述第一BWP为当前激活的BWP,RB start可以由网络设备通过资源分配类型1的方式指示,RB start可以基于第一BWP的带宽确定;RB offset和RB offset2也由网络设备指示给终端设备。RB start、RB offset和RB offset2可以携带于同一指示信息内,也可以携带于不同指示信息内。
本申请上述各实施例中,由于终端在多个BWP之间进行跳频,因此两跳传输之间需要一定的调频时间,因此,可以在两跳之间需要预留一定的符号数用于终端调频。即:所述终端设备以跳频的方式传输数据的第一跳传输与第二跳传输之间预留至少一个符号;所述至少一个符号用于所述终端设备调频。
在具体实施时,所述至少一个符号可以位于所述第一跳传输的符号内;或者,所述至少一个符号可以位于所述第二跳传输的符号内。或者,在预留的符号数目大于一个的情况下,所述第一跳传输的符号内和所述第二跳传输的符号内均包括所述预留的符号。
举例来说,第一跳传输的符号包括8个,第一跳传输在传输数据的过程中占用6个符号,预留的用于调频的2个符号可位于第一跳传输的8个符号中未传输数据的2个符号内。可以理解为,第一跳传输的符号数目包括N个,第一跳传输在传输数据时占用M个符号,1≤M≤N。
其中,所述至少一个符号的数目为下述中的至少一项:预定义的、由网络设备配置以及与所述终端设备的能力对应的。如,所述至少一个符号的数目为所述终端设备的能力对应的、预定义的值;或者,所述至少一个符号的数目为所述终端设备的能力对应的、由网络设备配置的值。其中,所述终端设备的能力对应的,可以是所述终端设备能够支持的。
预留至少一个符号后的跳频方法的示意图,如图8所示,与图6所示的不预留符号的跳频相比,第一BWP和第二BWP在时域上存在间隔。
下面再以传输PUCCH为例,终端设备确定PUCCH传输的第一跳的PRB索引为
Figure PCTCN2020073319-appb-000032
并确定PUCCH传输的第二跳的PRB索引为
Figure PCTCN2020073319-appb-000033
或者
Figure PCTCN2020073319-appb-000034
其中,所述第二跳的PRB索引为所述第二跳传输在第二BWP之内的PRB索引,N CS为循环移位的总数,r PUCCH为PUCCH资源的索引号,
Figure PCTCN2020073319-appb-000035
为频率偏移量,
Figure PCTCN2020073319-appb-000036
Figure PCTCN2020073319-appb-000037
可以相同,也可以不同;
Figure PCTCN2020073319-appb-000038
为第二BWP所包括的PRB数量。
需要说明的是,前述以PUSCH和PUCCH为例,对本申请实施例提供的跳频方法进行说明;本申请实施例提供的跳频方法还可应用于下行业务信道,如PUSCH和物理下行控制信道(Physical Downlink Control Channel,PDCCH)。因此,可以理解为本申请各实施例中,终端设备以跳频的方式所传输的数据可以是业务数据,也可以是与控制信息相关的数据。
本申请实施例提供的应用于网络设备跳频方法的一种可选处理流程,如图9所示,包括以下步骤:
步骤S301,网络设备发送指示信息,所述指示信息用于终端设备在激活的第一BWP和所述第一BWP之外的频域以跳频的方式传输数据。
本申请实施例中,针对指示信息、第一BWP、第二BWP之外的频域的说明与上述图3所示实施例中相关说明相同,这里不再赘述。
本申请实施例提供的跳频方法还可以包括:
步骤S300,网络设备为所述终端设备配置所述虚拟镜像BWP。
本申请实施例中,针对虚拟镜像的说明与上述图3所示实施例中相关说明相同,这里不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
为实现本申请实施例所述跳频方法,本申请实施例提供一种终端设备,所述终端设备400的组成结构,如图10所示,包括:
接收单元401,配置为接收指示信息;
处理单元402,配置为基于所述指示信息,在激活的第一BWP和所述第一BWP之外的频域以跳频的方式传输数据。
在一些实施例中,所述指示信息用于指示所述终端设备的第一跳传输在第一BWP之内的起始PRB编号。
在一些实施例中,所述第一BWP之外的频域包括第二BWP。
在一些实施例中,网络设备为所述终端设备配置的BWP中除所述第一BWP之外的任意一个BWP;
网络设备为所述终端设备配置的用于数据传输的多个BWP中的任意一个BWP;
网络设备为所述终端设备配置的用于数据传输的多个BWP构成的BWP集合的子集中的一个BWP;
网络设备为所述终端设备配置的用于以跳频方式进行数据传输的BWP集合中的一个BWP。
在一些实施例中,所述第二BWP的索引由网络设备预先配置。
在一些实施例中,所述第二BWP的索引携带于下述中的至少一项中:RRC信令、MAC CE和DCI。
在一些实施例中,所述第二BWP的索引与第一BWP的索引满足第一对应关系。
在一些实施例中,所述第二BWP为与所述第一BWP具有第二对应关系的虚拟镜像BWP;所述虚拟镜像BWP用于以跳频方式进行数据传输。
在一些实施例中,所述虚拟镜像BWP与所述第一BWP的频域不同。
在一些实施例中,所述虚拟镜像BWP由网络设备配置。
在一些实施例中,其中,所述处理单元402,配置为在所述第二BWP进行第二跳传输。
在一些实施例中,所述第二跳传输在所述第二BWP之内的起始PRB编号为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第一频域偏移量之和对所述第二BWP所包括的PRB数量进行取模运算得到的值。
在一些实施例中,所述第二跳传输在所述第二BWP之内的起始PRB编号为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号。
在一些实施例中,所述处理单元402,配置为在所述第一BWP之外的频域进行第 二跳传输。
在一些实施例中,所述第二跳传输的在所述第一BWP之外的频域的起始PRB编号为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第二频域偏移量之和。
在一些实施例中,所述第二跳传输的起始PRB为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第二频域偏移量之和对载波内的PRB数量进行取模运算得到的值所对应的PRB。
在一些实施例中,所述第二跳传输的起始PRB为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第三频域偏移量之和,对所述第一BWP所包括的PRB数量进行取模运算得到的值与第四频域偏移量之和所对应的PRB。
在一些实施例中,所述第二跳传输的起始PRB为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第三频域偏移量之和,对所述第一BWP所包括的PRB数量进行取模运算得到的值与第四频域偏移量之和再对载波内的PRB数量取模运算得到的值。
在一些实施例中,在所述第二BWP之内所述第二跳传输在所述第二BWP对应的传输时隙的起始PRB编号为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第五频域偏移量之和对所述第二BWP所包括的PRB数量进行取模运算得到的值;所述当前传输时隙的时隙号对2取模的值为1。
在一些实施例中,在所述第二BWP之内,所述第二跳传输在所述第二BWP对应的传输时隙的起始PRB编号为:所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号;所述当前传输时隙的时隙号对2取模的值为1。
在一些实施例中,所述终端设备以跳频的方式传输数据的第一跳传输与第二跳传输之间预留至少一个符号;所述至少一个符号用于所述终端设备调频。
在一些实施例中,所述至少一个符号位于所述第一跳传输的符号内;或者,所述至少一个符号位于所述第二跳传输的符号内。
在一些实施例中,在预留的符号数目大于一个的情况下,所述第一跳传输的符号内和所述第二跳传输的符号内均包括所述预留的符号。
在一些实施例中,所述至少一个符号的数目为下述中的至少一项:预定义的、由网络设备配置以及与所述终端设备的能力对应的。
在一些实施例中,所述指示信息携带于下述中的至少一项中:RRC信令、MAC CE和DCI。
为实现本申请实施例所述跳频方法,本申请实施例提供一种网络设备,所述网络设备500的组成结构,如图11所示,包括:
发送单元501,配置为发送指示信息,所述指示信息用于终端设备在激活的第一BWP和所述第一BWP之外的频域以跳频的方式传输数据。
在一些实施例中,所述指示信息用于指示所述终端设备的第一跳传输在第一BWP之内的起始PRB编号。
在一些实施例中,所述第一BWP之外的频域包括第二BWP。
在一些实施例中,所述第二BWP为下述中的任意一种:
所述网络设备为所述终端设备配置的BWP中除所述第一BWP之外的任意一个BWP;
所述网络设备为所述终端设备配置的用于数据传输的多个BWP中的任意一个BWP;
所述网络设备为所述终端设备配置的用于数据传输的多个BWP构成的BWP集合 的子集中的一个BWP;
所述网络设备为所述终端设备配置的用于以跳频方式进行数据传输的BWP集合中的一个BWP。
在一些实施例中,所述发送单元501,还配置为为所述终端设备配置所述第二BWP的索引。
在一些实施例中,所述第二BWP的索引携带于下述中的至少一项中:RRC信令、MAC CE和DCI。
在一些实施例中,所述第二BWP的索引与第一BWP的索引满足第一对应关系。
在一些实施例中,所述第二BWP为与所述第一BWP具有第二对应关系的虚拟镜像BWP;
所述虚拟镜像BWP用于以跳频方式进行数据传输。
在一些实施例中,所述虚拟镜像BWP与所述第一BWP的频域不同。
在一些实施例中,所述发送单元501,还配置为为所述终端设备配置所述虚拟镜像BWP。
本申请实施例还提供一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述终端设备执行的跳频方法的步骤。
图12是本申请实施例的电子设备(终端设备或网络设备)的硬件组成结构示意图,电子设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。电子设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图12中将各种总线都标为总线系统705。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中的存储器702用于存储各种类型的数据以支持电子设备700的操作。这些数据的示例包括:用于在电子设备700上操作的任何计算机程序,如应用程序 7022。实现本申请实施例方法的程序可以包含在应用程序7022中。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请实施例还提供了一种存储介质,用于存储计算机程序。
可选的,该存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述的跳频方法。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的跳频方法。
本申请实施例还提供了一种计算机程序,所述计算机程序使得计算机执行上述的跳频方法。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应理解,本申请中术语“系统”和“网络”在本文中常被可互换使用。本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围,凡在 本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (82)

  1. 一种跳频方法,所述方法包括:
    终端设备接收指示信息;
    所述终端设备基于所述指示信息,在激活的第一带宽部分BWP和所述第一BWP之外的频域以跳频的方式传输数据。
  2. 根据权利要求1所述的方法,其中,所述指示信息用于指示所述终端设备的第一跳传输在第一BWP之内的起始物理资源块PRB编号。
  3. 根据权利要求1或2所述的方法,其中,所述第一BWP之外的频域包括第二BWP。
  4. 根据权利要求3所述的方法,其中,所述第二BWP为下述中的任意一种:
    网络设备为所述终端设备配置的BWP中除所述第一BWP之外的任意一个BWP;
    网络设备为所述终端设备配置的用于数据传输的多个BWP中的任意一个BWP;
    网络设备为所述终端设备配置的用于数据传输的多个BWP构成的BWP集合的子集中的一个BWP;
    网络设备为所述终端设备配置的用于以跳频方式进行数据传输的BWP集合中的一个BWP。
  5. 根据权利要求3或4所述的方法,其中,所述第二BWP的索引由网络设备预先配置。
  6. 根据权利要求5所述的方法,其中,所述第二BWP的索引携带于下述中的至少一项中:
    无线资源控制RRC信令、媒体接入控制单元MAC CE和下行控制信令DCI。
  7. 根据权利要求5或6所述的方法,其中,所述第二BWP的索引与第一BWP的索引满足第一对应关系。
  8. 根据权利要求3所述的方法,其中,所述第二BWP为与所述第一BWP具有第二对应关系的虚拟镜像BWP;
    所述虚拟镜像BWP用于以跳频方式进行数据传输。
  9. 根据权利要求8所述的方法,其中,所述虚拟镜像BWP与所述第一BWP的频域不同。
  10. 根据权利要求8或9所述的方法,其中,所述虚拟镜像BWP由网络设备配置。
  11. 根据权利要求3至10任一项所述的方法,其中,所述终端设备在所述第二BWP进行第二跳传输。
  12. 根据权利要求11所述的方法,其中,所述第二跳传输在所述第二BWP之内的起始PRB编号为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第一频域偏移量之和,对所述第二BWP所包括的PRB数量进行取模运算得到的值。
  13. 根据权利要求12所述的方法,其中,所述第二跳传输在所述第二BWP之内的起始PRB编号为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号。
  14. 根据权利要求1或2所述的方法,其中,所述终端设备在所述第一BWP之外的频域进行第二跳传输。
  15. 根据权利要求14所述的方法,其中,所述第二跳传输的在所述第一BWP之外的频域的起始PRB编号为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第二频域偏 移量之和。
  16. 根据权利要求14所述的方法,其中,所述第二跳传输的起始PRB为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第二频域偏移量之和对载波内的PRB数量进行取模运算得到的值所对应的PRB。
  17. 根据权利要求14所述的方法,其中,所述第二跳传输的起始PRB为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第三频域偏移量之和,对所述第一BWP所包括的PRB数量进行取模运算得到的值与第四频域偏移量之和所对应的PRB。
  18. 根据权利要求14所述的方法,其中,所述第二跳传输的起始PRB为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第三频域偏移量之和,对所述第一BWP所包括的PRB数量进行取模运算得到的值与第四频域偏移量之和再对载波内的PRB数量取模运算得到的值所对应的PRB。
  19. 根据权利要求11或14所述的方法,其中,在所述第二BWP之内,所述第二跳传输在所述第二BWP对应的传输时隙的起始PRB编号为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第五频域偏移量之和对所述第二BWP所包括的PRB数量进行取模运算得到的值;
    所述当前传输时隙的时隙号对2取模的值为1。
  20. 根据权利要求11或14所述的方法,其中,在所述第二BWP之内,所述第二跳传输在所述第二BWP对应的传输时隙的起始PRB编号为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号;
    所述当前传输时隙的时隙号对2取模的值为1。
  21. 根据权利要求1至20任一项所述的方法,其中,所述终端设备以跳频的方式传输数据的第一跳传输与第二跳传输之间预留至少一个符号;
    所述至少一个符号用于所述终端设备调频。
  22. 根据权利要求21所述的方法,其中,所述至少一个符号位于所述第一跳传输的符号内;
    或者,所述至少一个符号位于所述第二跳传输的符号内。
  23. 根据权利要求21所述的方法,在预留的符号数目大于一个的情况下,所述第一跳传输的符号内和所述第二跳传输的符号内均包括所述预留的符号。
  24. 根据权利要求21至23任一项所述的方法,其中,所述至少一个符号的数目为下述中的至少一项:
    预定义的、由网络设备配置以及与所述终端设备的能力对应的。
  25. 根据权利要求1至24任一项所述的方法,其中,所述指示信息携带于下述中的至少一项中:
    RRC信令、MAC CE和DCI。
  26. 一种跳频方法,所述方法包括:
    网络设备发送指示信息,所述指示信息用于终端设备在激活的第一带宽部分BWP和所述第一BWP之外的频域以跳频的方式传输数据。
  27. 根据权利要求26所述的方法,其中,所述指示信息用于指示所述终端设备的第一跳传输在第一BWP之内的起始物理资源块PRB编号。
  28. 根据权利要求26或27所述的方法,其中,所述第一BWP之外的频域包括第二BWP。
  29. 根据权利要求28所述的方法,其中,所述第二BWP为下述中的任意一种:
    所述网络设备为所述终端设备配置的BWP中除所述第一BWP之外的任意一个 BWP;
    所述网络设备为所述终端设备配置的用于数据传输的多个BWP中的任意一个BWP;
    所述网络设备为所述终端设备配置的用于数据传输的多个BWP构成的BWP集合的子集中的一个BWP;
    所述网络设备为所述终端设备配置的用于以跳频方式进行数据传输的BWP集合中的一个BWP。
  30. 根据权利要求28或29所述的方法,其中,所述方法还包括:
    所述网络设备为所述终端设备配置所述第二BWP的索引。
  31. 根据权利要求30所述的方法,其中,所述第二BWP的索引携带于下述中的至少一项中:
    无线资源控制RRC信令、媒体接入控制单元MAC CE和下行控制信令DCI。
  32. 根据权利要求30或31所述的方法,其中,所述第二BWP的索引与第一BWP的索引满足第一对应关系。
  33. 根据权利要求28所述的方法,其中,所述第二BWP为与所述第一BWP具有第二对应关系的虚拟镜像BWP;
    所述虚拟镜像BWP用于以跳频方式进行数据传输。
  34. 根据权利要求33所述的方法,其中,所述虚拟镜像BWP与所述第一BWP的频域不同。
  35. 根据权利要求33或34所述的方法,其中,所述方法还包括:
    所述网络设备为所述终端设备配置所述虚拟镜像BWP。
  36. 根据权利要求26至35任一项所述的方法,其中,所述指示信息携带于下述中的至少一项中:
    RRC信令、MAC CE和DCI。
  37. 一种终端设备,所述终端设备包括:
    接收单元,配置为接收指示信息;
    处理单元,配置为基于所述指示信息,在激活的第一带宽部分BWP和所述第一BWP之外的频域以跳频的方式传输数据。
  38. 根据权利要求37所述的终端设备,其中,所述指示信息用于指示所述终端设备的第一跳传输在第一BWP之内的起始物理资源块PRB编号。
  39. 根据权利要求37或38所述的终端设备,其中,所述第一BWP之外的频域包括第二BWP。
  40. 根据权利要求39所述的终端设备,其中,网络设备为所述终端设备配置的BWP中除所述第一BWP之外的任意一个BWP;
    网络设备为所述终端设备配置的用于数据传输的多个BWP中的任意一个BWP;
    网络设备为所述终端设备配置的用于数据传输的多个BWP构成的BWP集合的子集中的一个BWP;
    网络设备为所述终端设备配置的用于以跳频方式进行数据传输的BWP集合中的一个BWP。
  41. 根据权利要求39或40所述的终端设备,其中,所述第二BWP的索引由网络设备预先配置。
  42. 根据权利要求41所述的终端设备,其中,所述第二BWP的索引携带于下述中的至少一项中:
    无线资源控制RRC信令、媒体接入控制单元MAC CE和下行控制信令DCI。
  43. 根据权利要求41或42所述的终端设备,其中,所述第二BWP的索引与第一BWP的索引满足第一对应关系。
  44. 根据权利要求39所述的终端设备,其中,所述第二BWP为与所述第一BWP具有第二对应关系的虚拟镜像BWP;
    所述虚拟镜像BWP用于以跳频方式进行数据传输。
  45. 根据权利要求44所述的终端设备,其中,所述虚拟镜像BWP与所述第一BWP的频域不同。
  46. 根据权利要求44或45所述的终端设备,其中,所述虚拟镜像BWP由网络设备配置。
  47. 根据权利要求39至46任一项所述的终端设备,其中,所述处理单元,配置为在所述第二BWP进行第二跳传输。
  48. 根据权利要求47所述的终端设备,其中,所述第二跳传输在所述第二BWP之内的起始PRB编号为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第一频域偏移量之和对所述第二BWP所包括的PRB数量进行取模运算得到的值。
  49. 根据权利要求48所述的终端设备,其中,所述第二跳传输在所述第二BWP之内的起始PRB编号为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号。
  50. 根据权利要求37或38所述的终端设备,其中,所述处理单元,配置为在所述第一BWP之外的频域进行第二跳传输。
  51. 根据权利要求50所述的终端设备,其中,所述第二跳传输的在所述第一BWP之外的频域的起始PRB编号为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第二频域偏移量之和。
  52. 根据权利要求50所述的终端设备,其中,所述第二跳传输的起始PRB为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第二频域偏移量之和对载波内的PRB数量进行取模运算得到的值所对应的PRB。
  53. 根据权利要求50所述的终端设备,其中,所述第二跳传输的起始PRB为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第三频域偏移量之和,对所述第一BWP所包括的PRB数量进行取模运算得到的值与第四频域偏移量之和所对应的PRB。
  54. 根据权利要求50所述的终端设备,其中,所述第二跳传输的起始PRB为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB与第三频域偏移量之和,对所述第一BWP所包括的PRB数量进行取模运算得到的值与第四频域偏移量之和再对载波内的PRB数量取模运算得到的值所对应的PRB。
  55. 根据权利要求47或50所述的终端设备,其中,在所述第二BWP之内,所述第二跳传输在所述第二BWP对应的传输时隙的起始PRB编号为:
    所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号与第五频域偏移量之和对所述第二BWP所包括的PRB数量进行取模运算得到的值;
    所述当前传输时隙的时隙号对2取模的值为1。
  56. 根据权利要求47或50所述的终端设备,其中,在所述第二BWP之内,所述第二跳传输在所述第二BWP对应的传输时隙的起始PRB编号为:
    在所述第二BWP之内,所述终端设备的第一跳传输在所述第一BWP之内的起始PRB编号;
    所述当前传输时隙的时隙号对2取模的值为1。
  57. 根据权利要求37至56任一项所述的终端设备,其中,所述终端设备以跳频的方式传输数据的第一跳传输与第二跳传输之间预留至少一个符号;
    所述至少一个符号用于所述终端设备调频。
  58. 根据权利要求57所述的终端设备,其中,所述至少一个符号位于所述第一跳传输的符号内;
    或者,所述至少一个符号位于所述第二跳传输的符号内。
  59. 根据权利要求57所述的终端设备,其中,在预留的符号数目大于一个的情况下,所述第一跳传输的符号内和所述第二跳传输的符号内均包括所述预留的符号。
  60. 根据权利要求57至59任一项所述的终端设备,其中,所述至少一个符号的数目为下述中的至少一项:
    预定义的、由网络设备配置以及与所述终端设备的能力对应的。
  61. 根据权利要求37至60任一项所述的终端设备,其中,所述指示信息携带于下述中的至少一项中:
    RRC信令、MAC CE和DCI。
  62. 一种网络设备,所述网络设备包括:
    发送单元,配置为发送指示信息,所述指示信息用于终端设备在激活的第一带宽部分BWP和所述第一BWP之外的频域以跳频的方式传输数据。
  63. 根据权利要求62所述的网络设备,其中,所述指示信息用于指示所述终端设备的第一跳传输在第一BWP之内的起始物理资源块PRB编号。
  64. 根据权利要求62或63所述的网络设备,其中,所述第一BWP之外的频域包括第二BWP。
  65. 根据权利要求64所述的网络设备,其中,所述第二BWP为下述中的任意一种:
    所述网络设备为所述终端设备配置的BWP中除所述第一BWP之外的任意一个BWP;
    所述网络设备为所述终端设备配置的用于数据传输的多个BWP中的任意一个BWP;
    所述网络设备为所述终端设备配置的用于数据传输的多个BWP构成的BWP集合的子集中的一个BWP;
    所述网络设备为所述终端设备配置的用于以跳频方式进行数据传输的BWP集合中的一个BWP。
  66. 根据权利要求64或65所述的网络设备,其中,所述发送单元,还配置为为所述终端设备配置所述第二BWP的索引。
  67. 根据权利要求66所述的网络设备,其中,所述第二BWP的索引携带于下述中的至少一项中:
    无线资源控制RRC信令、媒体接入控制单元MAC CE和下行控制信令DCI。
  68. 根据权利要求66或67所述的网络设备,其中,所述第二BWP的索引与第一BWP的索引满足第一对应关系。
  69. 根据权利要求64所述的网络设备,其中,所述第二BWP为与所述第一BWP具有第二对应关系的虚拟镜像BWP;
    所述虚拟镜像BWP用于以跳频方式进行数据传输。
  70. 根据权利要求69所述的网络设备,其中,所述虚拟镜像BWP与所述第一BWP的频域不同。
  71. 根据权利要求69或70所述的网络设备,其中,所述发送单元,还配置为为所述终端设备配置所述虚拟镜像BWP。
  72. 根据权利要求62至71任一项所述的方法,其中,所述指示信息携带于下述中的至少一项中:
    RRC信令、MAC CE和DCI。
  73. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求1至25任一项所述的跳频方法的步骤。
  74. 一种终端设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求26至36任一项所述的跳频方法的步骤。
  75. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至25中任一项所述的跳频方法。
  76. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求26至36中任一项所述的跳频方法。
  77. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至25任一项所述的跳频方法。
  78. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求26至36任一项所述的跳频方法。
  79. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至25中任一项所述的跳频方法。
  80. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求26至36中任一项所述的跳频方法。
  81. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的跳频方法。
  82. 一种计算机程序,所述计算机程序使得计算机执行如权利要求26至36中任一项所述的跳频方法。
PCT/CN2020/073319 2020-01-20 2020-01-20 一种跳频方法、电子设备及存储介质 WO2021146867A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/073319 WO2021146867A1 (zh) 2020-01-20 2020-01-20 一种跳频方法、电子设备及存储介质
EP20915677.7A EP4089971A4 (en) 2020-01-20 2020-01-20 FREQUENCY HOPPING METHOD, ELECTRONIC DEVICE AND STORAGE MEDIA
CN202080093878.8A CN115004636A (zh) 2020-01-20 2020-01-20 一种跳频方法、电子设备及存储介质
US17/811,717 US20220352923A1 (en) 2020-01-20 2022-07-11 Frequency hopping methods, electronic device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073319 WO2021146867A1 (zh) 2020-01-20 2020-01-20 一种跳频方法、电子设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/811,717 Continuation US20220352923A1 (en) 2020-01-20 2022-07-11 Frequency hopping methods, electronic device, and storage medium

Publications (1)

Publication Number Publication Date
WO2021146867A1 true WO2021146867A1 (zh) 2021-07-29

Family

ID=76991881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073319 WO2021146867A1 (zh) 2020-01-20 2020-01-20 一种跳频方法、电子设备及存储介质

Country Status (4)

Country Link
US (1) US20220352923A1 (zh)
EP (1) EP4089971A4 (zh)
CN (1) CN115004636A (zh)
WO (1) WO2021146867A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230068012A1 (en) * 2021-08-25 2023-03-02 Qualcomm Incorporated Narrow bandwidth part hopping pattern

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220022188A1 (en) * 2020-07-15 2022-01-20 Qualcomm Incorporated Facilitating communication based on frequency ranges

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521850A (zh) * 2017-11-16 2018-09-11 北京小米移动软件有限公司 跳频配置方法及装置
US20190036665A1 (en) * 2017-07-28 2019-01-31 Kt Corporation Apparatus and method for transmitting and receiving uplink channel
WO2019095834A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种上行控制信道的资源配置方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166209B (zh) * 2018-02-14 2024-05-24 华为技术有限公司 下行控制信息传输方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190036665A1 (en) * 2017-07-28 2019-01-31 Kt Corporation Apparatus and method for transmitting and receiving uplink channel
CN108521850A (zh) * 2017-11-16 2018-09-11 北京小米移动软件有限公司 跳频配置方法及装置
WO2019095834A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种上行控制信道的资源配置方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PANASONIC: "On PUSCH enhancements for NR URLLC", 3GPP DRAFT; R1-1813133_PANASONIC_NR_URLLC_PUSCH_ENHANCEMENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051555115 *
See also references of EP4089971A4 *
ZTE, SANECHIPS: "Remaining issues for UL data transmission procedure", 3GPP DRAFT; R1-1803797 REMAINING ISSUES FOR UL DATA TRANSMISSION PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051426092 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230068012A1 (en) * 2021-08-25 2023-03-02 Qualcomm Incorporated Narrow bandwidth part hopping pattern
US11942983B2 (en) * 2021-08-25 2024-03-26 Qualcomm Incorporated Narrow bandwidth part hopping pattern

Also Published As

Publication number Publication date
CN115004636A (zh) 2022-09-02
EP4089971A1 (en) 2022-11-16
US20220352923A1 (en) 2022-11-03
EP4089971A4 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
KR102600542B1 (ko) 무선 통신 시스템에서의 다수의 tti pusch 송신들
US20210160852A1 (en) Resource configuration method and terminal device
US20220352923A1 (en) Frequency hopping methods, electronic device, and storage medium
US20230403689A1 (en) Method for determining random access resource, and electronic device and storage medium
CN112789874B (zh) 用于传输能力信息的方法及设备
EP3972351B1 (en) Power saving method, terminal device and network device
WO2018107457A1 (zh) 数据复用装置、方法以及通信系统
WO2022183455A1 (zh) 一种随机接入资源确定方法、电子设备及存储介质
WO2023010550A1 (en) Scheduling for multiple pdsch/pusch operations
WO2021226794A1 (zh) 数据传输方法及相关装置
WO2022021136A1 (zh) 无线通信方法、终端设备和网络设备
JP7437425B2 (ja) アップリンク伝送方法、電子機器及び記憶媒体
CN112673587B (zh) 一种信道处理方法、终端设备及存储介质
WO2021102787A1 (en) Uci multiplexing enhancements
WO2020056777A1 (zh) 无线通信的方法、发送节点和接收节点
WO2020024250A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019192003A1 (zh) 资源分配的方法和装置
WO2022188110A1 (zh) 一种信息传输方法、电子设备及存储介质
WO2022104755A1 (zh) 一种随机接入方法、通信设备及存储介质
WO2022205019A1 (zh) 一种重复传输指示方法、电子设备及存储介质
WO2022151189A1 (zh) 一种信道传输方法、电子设备及存储介质
WO2023143011A1 (zh) 一种通信方法和装置
US20230132121A1 (en) Method for transmitting control information, electronic device and storage medium
US20230328791A1 (en) Apparatus, system, and method of multi access point (ap) (m-ap) operation over a wide channel bandwidth (bw)
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020915677

Country of ref document: EP

Effective date: 20220812

NENP Non-entry into the national phase

Ref country code: DE