WO2022087992A1 - 天线组件、可移动设备、可移动设备的控制方法和存储介质 - Google Patents

天线组件、可移动设备、可移动设备的控制方法和存储介质 Download PDF

Info

Publication number
WO2022087992A1
WO2022087992A1 PCT/CN2020/124956 CN2020124956W WO2022087992A1 WO 2022087992 A1 WO2022087992 A1 WO 2022087992A1 CN 2020124956 W CN2020124956 W CN 2020124956W WO 2022087992 A1 WO2022087992 A1 WO 2022087992A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna assembly
antenna
movable device
assembly
state information
Prior art date
Application number
PCT/CN2020/124956
Other languages
English (en)
French (fr)
Inventor
尹航
李博
李栋
龚云
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/124956 priority Critical patent/WO2022087992A1/zh
Publication of WO2022087992A1 publication Critical patent/WO2022087992A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/18Means for stabilising antennas on an unstable platform

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to an antenna assembly, a movable device, a control method for a movable device, and a storage medium.
  • An antenna assembly can be installed on the mobile device to receive the radio signal sent by the satellite and convert the radio signal by the receiver.
  • existing antenna assemblies are usually fixedly attached to the body of the mobile device. In this way, in the case of large maneuvering motion of the mobile device, as the posture of the mobile device changes, the coverage of the directional map of the antenna component will also change, which will lead to unsatisfactory satellite search performance and inaccurate positioning information.
  • the present application provides an antenna assembly, a movable device, a control method for the movable device, and a storage medium, which aim to improve the satellite search performance and the positioning accuracy in the process of changing the attitude of the movable device.
  • an embodiment of the present application provides an antenna assembly, which is applied to a movable device, and the antenna assembly includes a base, an adjustment structure, and an antenna structure;
  • the adjustment structure includes a rotating assembly, which is rotatably connected to the base and fixedly connected to the antenna structure, and the rotating assembly includes a counterweight.
  • the The counterweight can drive the antenna structure to rotate under the action of gravity, so that the maximum radiation direction of the antenna structure faces a preset direction.
  • an embodiment of the present application provides a movable device, including:
  • the antenna assembly according to the first aspect is provided on the body.
  • an embodiment of the present application provides a method for controlling a movable device, where the movable device includes a first antenna assembly and a second antenna assembly, and both the first antenna assembly and the second antenna assembly include The adjustment structure and the antenna structure, the adjustment structure of the first antenna assembly can stabilize the antenna structure of the first antenna assembly when the attitude of the movable device changes along the first direction, so that the The maximum radiation direction of the antenna structure faces a preset direction, and the adjustment structure of the second antenna assembly can stabilize the antenna structure of the second antenna assembly when the attitude of the movable device changes along the second direction, so that the The maximum radiation direction of the antenna structure of the second antenna component faces a preset direction, and the method includes:
  • the position information of the movable device is calculated according to the satellite navigation signal obtained by the target antenna assembly.
  • an embodiment of the present application provides a movable device, the movable device includes a first antenna assembly, a second antenna assembly, a memory, and a processor, the first antenna assembly and the second antenna assembly Both include an adjustment structure and an antenna structure, and the adjustment structure of the first antenna assembly can stabilize the antenna structure of the first antenna assembly when the attitude of the movable device changes along the first direction, so that the first antenna The maximum radiation direction of the antenna structure of the component is toward a preset direction, and the adjustment structure of the second antenna component can stabilize the antenna structure of the second antenna component when the attitude of the movable device changes along the second direction, so that the The maximum radiation direction of the antenna structure of the second antenna component faces a preset direction;
  • the memory is used to store program codes
  • the processor calls the program code, and when the program code is executed, is configured to perform the following steps:
  • the position information of the movable device is calculated according to the satellite navigation signal obtained by the target antenna assembly.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the foregoing method.
  • Embodiments of the present application provide an antenna assembly, a movable device, a control method for the movable device, and a storage medium.
  • the counterweight can drive the antenna structure to rotate under the action of its own gravity, thereby It can dynamically adjust the attitude or position of the antenna structure according to the attitude of the movable device, and then adjust the maximum radiation direction of the antenna structure to the desired direction to obtain better satellite search performance, improve positioning accuracy and positioning reliability, without the need for Additional control circuitry controls the rotation of the antenna structure.
  • Figure 1 is a directional diagram of a common navigation antenna in the navigation L1 frequency band (1.575GHZ).
  • Figure 2 is the direction diagram of the common navigation antenna fixed on the UAV in the navigation L1 frequency band (1.575GHZ) during the attitude change process of the UAV;
  • FIG. 3 is a schematic structural diagram of a movable device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 5 is an exploded schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 6 is a cross-sectional view of an antenna assembly provided by an embodiment of the present application.
  • Fig. 7 is the partial enlarged schematic diagram of Fig. 6 at A;
  • FIG. 8 is a schematic structural diagram of an angle of an adjustment structure provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another angle of the adjustment structure provided by the embodiment of the present application.
  • FIG. 10 is a partial structural schematic diagram of an antenna assembly provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a movable device provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a method for controlling a movable device provided by an embodiment of the present application
  • FIG. 13 is a schematic structural diagram of a movable device provided by an embodiment of the present application.
  • 100 an antenna assembly
  • 101 a first antenna assembly
  • 102 a second antenna assembly
  • antenna structure 31, second connection part; 32, housing; 321, first housing part; 322, second housing part; 323, receiving space; 33, antenna body; 331, circuit board; 332, radiation part ; 333, feeder;
  • the fuselage 201
  • the center frame 202
  • the arm 2021, the first arm; 2022, the second arm.
  • the inventors of the present application have found that with the increasing demand for high-precision positioning of drones, the performance requirements for navigation antennas are also getting higher and higher. In how to receive more effective satellite navigation signals, in addition to improving the gain of the navigation antenna itself and the 10dB beam width, it is also important to analyze the distribution of satellites. Combining with the satellite distribution of the current GPS/Glonass/Beidou/Galileo navigation systems, it can be found that satellites with high elevation angles account for a large proportion. The following statistics show the distribution of the number of satellites in different time periods in Shenzhen on a certain day (10:00-22:00), as shown in Table 1:
  • RTK Real-time Kinematic
  • the 4-system requires 15-18 effective dual-frequency satellites. Judging from the distribution of the number of satellites at different times, the number of satellites with an elevation angle above 30° can meet the requirements in 4 systems. However, in some cases where the occlusion is serious, such as the semi-occlusion environment in the large maneuvering state (the maximum pitch angle can reach 40°), the number of satellites will also be reduced by about 40%. At this time, the number of satellites above the 30-degree elevation angle cannot be fulfil requirements. If you want to meet the number of satellites, you need to introduce some satellites with an angle below 30°.
  • the navigation data sent by the satellites with low elevation angles themselves will not contain false information, but the path that the navigation signals take from the satellites to the ground receivers is different than that of the satellites with high elevation angles. All position calculations are based on the assumption that navigation signals are usually treated as standard electromagnetic signals, propagating at the speed of light in a vacuum. The signal of the low-elevation satellite needs to pass through more atmosphere, and this part of the atmosphere is denser, so the propagation characteristics of the navigation signal in the atmosphere are quite different from that in the vacuum. The ionospheric delay, tropospheric delay, multipath effect and observation noise of low-elevation satellite signals during the propagation process are more affected.
  • GNSS Global Navigation Positioning System
  • consumer drones usually use GPS ceramic antennas, which are patch-type and fixed to the fuselage, and will not change with the pitch of the fuselage.
  • Industry-grade UAVs usually use a separate RTK antenna, and the connection to the fuselage is also fixed, and cannot adaptively change its attitude or position. Whether it is a ceramic antenna or a separate RTK antenna, the maximum gain of the pattern is directed towards the zenith and the beam is not semi-omnidirectional, with a typical 3dB beam width of less than 120°.
  • the UAV is in dynamic flight, especially in the case of large maneuvering flight or fast flight (large pitch angle) of the UAV, as the UAV's own attitude changes, the coverage of the direction map of the navigation antenna also changes.
  • the antenna pattern cannot cover the sky area with the most satellites, the satellite search performance will be degraded and the positioning information will be inaccurate.
  • Figure 1 is a directional diagram of a common navigation antenna in the navigation L1 frequency band (1.575GHZ).
  • Fig. 2 is a directional diagram of an ordinary navigation antenna fixed on the UAV in the navigation L1 frequency band (1.575GHZ) during the attitude change of the UAV.
  • the attitude angle range of the UAV is usually 0 degrees to 45 degrees, that is, the maximum attitude angle is 45 degrees. If the ordinary navigation antenna is fixed on the UAV, when the attitude angle of the UAV is 45 degrees, the direction map of the ordinary navigation antenna will also be deflected by about 45 degrees.
  • the directional diagram of the deflected L1 frequency band is shown in Figure 2 (taking the deflection to one side as an example).
  • the direction map of the navigation antenna will also be deflected in the same way. This deflection will cause the navigation antenna to fail to receive satellite signals on a certain side to varying degrees, resulting in reduced satellite search performance and positioning accuracy.
  • the inventors of the present application have improved the antenna assembly, the movable device, the control method of the movable device, and the storage medium, so as to make the maximum radiation direction of the antenna structure face in the process of changing the attitude of the movable device. Preset directions to improve star search performance and positioning accuracy.
  • an antenna assembly 100 provided by an embodiment of the present application is applied to a movable device 1000 .
  • the movable device 1000 may include at least one of an unmanned aerial vehicle, a gimbal, an unmanned vehicle, an unmanned boat, and the like.
  • the aircraft may be a rotary-wing UAV, such as a quad-rotor UAV, a hexa-rotor UAV, an octa-rotor UAV, or a fixed-wing UAV.
  • the antenna assembly 100 includes a base 10 , an adjustment structure 20 and an antenna structure 30 .
  • the adjustment structure 20 includes a rotating assembly 21 .
  • the rotating assembly 21 is rotatably connected with the base 10 .
  • the rotating assembly 21 is fixedly connected with the antenna structure 30 .
  • the rotating assembly 21 includes a counterweight 211 .
  • the counterweight 211 can drive the antenna structure 30 to rotate under the action of gravity, so that the maximum radiation direction of the antenna structure 30 faces a preset direction.
  • the counterweight 211 can drive the antenna structure 30 to rotate under the action of its own gravity, so that the antenna structure 30 can be dynamically adjusted according to the attitude of the movable device 1000 . Then adjust the maximum radiation direction of the antenna structure 30 to the desired direction to obtain better satellite search performance, improve positioning accuracy and positioning reliability, and do not need to set an additional control circuit to control the rotation of the antenna structure 30. Simple structure, high reliability and low cost.
  • the movable device 1000 Take the movable device 1000 as an unmanned aerial vehicle as an example.
  • the counterweight 211 can drive the antenna structure 30 to rotate under its own gravity , so that the attitude of the antenna structure 30 can be dynamically adjusted according to the attitude of the unmanned aerial vehicle, and then the maximum radiation direction of the antenna structure 30 can be adjusted to the desired direction to improve the satellite search performance and positioning accuracy. Due to the influence of the fuselage 200 of the human aircraft, the satellite search performance is degraded.
  • the angle between the preset direction and the zenith direction is smaller than a preset angle threshold.
  • the preset included angle threshold can be designed according to actual requirements, such as 5°, 10°, 20°, 30°, 45°, and any other suitable angle between 5° and 45°.
  • the included angle between the preset direction and the zenith direction is 0° or approximately 0°. That is, the counterweight 211 can drive the antenna structure 30 to rotate under the action of gravity, so that the maximum radiation direction of the antenna structure 30 is directed toward or approximately toward the zenith, so that the maximum radiation direction of the antenna structure 30 can be directed toward the sky where the positioning satellites are most distributed. area.
  • the preset direction may be determined according to at least one of the position of the movable device 1000, the distribution of positioning satellites, etc., so that the maximum radiation direction of the antenna structure 30 can be directed toward the area where the positioning satellites are most distributed, Thus, the satellite search performance and positioning accuracy of the antenna structure 30 are improved.
  • the adjusting structure 20 further includes a fixing portion 22 .
  • the fixing portion 22 is connected to the base 10 .
  • the fixed part 22 is rotatably connected with the rotating assembly 21 .
  • the counterweight 211 can drive the antenna structure 30 to rotate relative to the fixed part 22 under the action of its own gravity, so that the attitude of the antenna structure 30 can be dynamically and adaptively adjusted according to the attitude of the movable device 1000 . , and then adjust the maximum radiation direction of the antenna structure 30 to the preset direction.
  • the base 10 includes a base body 11 and a mounting portion 12 .
  • the mounting portion 12 is arranged on the base body 11 .
  • the mounting portion 12 is connected to the fixing portion 22 .
  • the mounting portion 12 may be detachably connected with the base body 11, or may be fixed and non-detachable, or an integral structure.
  • the mounting portion 12 is protruded on the base body 11 .
  • the fixing portion 22 is detachably connected to the mounting portion 12 .
  • the fixing portion 22 is detachably connected to the mounting portion 12 through a snap connection, a magnetic connection, a quick-release connection or the like.
  • the fixing portion 22 may be integrally structured with at least part of the mounting portion 12 or be fixed and non-detachable.
  • an end of the mounting portion 12 facing the antenna structure 30 is provided with a concave groove 13 .
  • the recessed groove 13 is engaged with the fixing portion 22 .
  • the shape of the recessed groove 13 is adapted to the shape of the fixing portion 22 .
  • the shape of the recessed groove 13 is arc-shaped.
  • the fixed portion 22 is annular.
  • the annular outer surface of the fixing portion 22 is matched with the arc-shaped groove wall of the recessed groove 13 .
  • the rotating assembly 21 includes a rotating shaft 2121 .
  • the antenna structure 30 can rotate around the rotation axis 2121 .
  • Both the number of the mounting parts 12 and the number of the fixing parts 22 are two.
  • the two mounting portions 12 are arranged at intervals along the axial direction of the rotating shaft 2121 .
  • Each mounting portion 12 is correspondingly engaged with one fixing portion 22 .
  • the fixing portion 22 is annular, and the axis of the fixing portion 22 is coincident or substantially coincident with the axis of the rotating shaft 2121 .
  • the rotating assembly 21 further includes a rotating member 212 and a movable member 213 .
  • Both the antenna structure 30 and the weight member 211 are connected to the rotating member 212 .
  • the rotating member 212 and the fixed portion 22 form an annular gap 214 .
  • the movable piece 213 is movably arranged in the annular gap 214 .
  • the arrangement of the movable member 213 provides a guarantee for the rotation of the rotating member 212 relative to the fixed portion 22 .
  • the counterweight 211 can drive the rotating member 212 to rotate under the action of gravity, thereby driving the antenna structure 30 connected to the rotating member 212 to rotate.
  • the counterweight member 211 and the rotating member 212 are fixedly and non-detachably connected, or the two are integrally formed.
  • the counterweight member 211 is fixedly connected to the middle of the rotating member 212 .
  • the counterweight member 211 can also be detachably connected with the rotating member 212 .
  • the movable member 213 is at least partially accommodated in the annular gap 214 .
  • the antenna structure 30 and the weight member 211 are respectively disposed on opposite sides of the rotating member 212 . In this way, when the counterweight 211 drives the antenna structure 30 to rotate under the action of gravity, the maximum radiation direction of the antenna structure 30 can be kept in the predetermined direction, so that the antenna structure 30 can obtain good satellite search performance.
  • the rotating member 212 includes a rotating shaft 2121 , a first connecting portion 2122 and a matching portion 2123 .
  • the middle part of the rotating shaft 2121 is fixedly connected with the counterweight 211 .
  • the first connecting portion 2122 is disposed on the rotating shaft 2121 .
  • the first connection portion 2122 is connected to the antenna structure 30 .
  • the matching portion 2123 is provided at the end of the rotating shaft 2121 .
  • the matching portion 2123 is rotatably connected with the fixed portion 22 through the movable member 213 .
  • the counterweight 211 and the rotating member 212 cooperate to drive the antenna structure 30 to rotate around the rotating shaft 2121, and there is no need to set an additional control circuit for controlling the rotation of the antenna structure 30.
  • the attitude of the antenna structure 30 is quickly adjusted as the attitude of the device 1000 changes.
  • the counterweight 211 and the rotating member 212 cooperate to adjust the posture of the antenna structure 30, so that the posture of the antenna structure 30 changes with the posture change of the movable device 100, which is beneficial to avoid the antenna structure
  • the phase center of the antenna structure 30 changes drastically, thereby improving the satellite search performance and the positioning accuracy of the antenna structure 30 .
  • the rotating shaft 2121 can only be rotated in one dimension. Therefore, after the antenna assembly 100 is fixed on the movable device 1000, the attitude of the antenna structure 30 can only be adjusted back and forth in one direction.
  • the rotating shaft 2121 and the first connecting portion 2122 are manufactured by integral molding, and the matching portion 2123 is sleeved on the end of the rotating shaft 2121 .
  • the center of the annular gap 214 coincides with the center of the matching portion 2123 .
  • the fixing portion 22 is sleeved outside the matching portion 2123 at intervals, and the fixing portion 22 and the matching portion 2123 are arranged concentrically.
  • the fitting portion 2123 is a bearing structure.
  • the fixed portion 22 is also a bearing structure.
  • the axis of the fitting portion 2123 coincides or substantially coincides with the axis of the fixing portion 22 .
  • the fixing portion 22 is sleeved outside the matching portion 2123 , and the fixing portion 22 and the matching portion 2123 are spaced apart to form an annular gap 214 .
  • the first connecting portion 2122 is fixedly connected to the position of the rotating shaft 2121 close to the matching portion 2123 .
  • the number of the first connecting parts 2122 can be set according to actual requirements, such as one, two, three or more.
  • the number of the first connection parts 2122 is two.
  • the two first connecting portions 2122 are arranged at intervals along the axial direction of the rotating shaft 2121 , so that the rotating shaft 2121 can be reliably connected with the antenna structure 30 , and the cost and the weight of the antenna assembly 100 can be reduced as much as possible.
  • the antenna structure 30 is provided with a second connecting portion 31 .
  • the first connecting portion 2122 is connected with the second connecting portion 31 through a locking member (not shown), so as to lock the antenna structure 30 and the rotating assembly 21.
  • the locking member passes through the first connecting portion 2122 and the second connecting portion 31 , thereby locking and fixing the first connecting portion 2122 and the second connecting portion 31 .
  • the locking member can be a screw or the like.
  • the movable member 213 includes a plurality of steel balls.
  • the movable member 213 may comprise a plurality of spheres, and the spheres may be made of any other suitable rigid material.
  • a plurality of steel balls are arranged at intervals along the circumferential direction of the annular gap 214 or the matching portion 2123 , so that the rotating member 212 can smoothly rotate relative to the fixed portion 22 .
  • the weight member 211 includes a weight connecting portion 2111 and a weight portion 2112 .
  • the weight connecting portion 2111 is connected with the rotating member 212 .
  • the weight portion 2112 is connected to an end of the weight connecting portion 2111 away from the rotating member 212 .
  • the counterweight portion 2112 can drive the counterweight connecting portion 2111 and the rotating member 212 to rotate relative to the fixed portion 22 under the action of gravity, thereby driving the antenna structure 30 connected to the rotating member 212 to rotate.
  • the weight connecting portion 2111 and the weight portion 2112 are manufactured by integral molding. Both ends of the weight connecting portion 2111 are fixedly connected to the rotating member 212 and the weight portion 2112 respectively.
  • the outer circumference of the weight portion 2112 is larger than the circumference of the weight connection portion 2111 .
  • the weight of the weight portion 2112 is greater than the weight of the weight connection portion 2111 .
  • the antenna structure 30 includes a housing 32 and an antenna body 33 .
  • the housing 32 is connected to the adjustment structure 20 .
  • At least part of the antenna body 33 is disposed in the casing 32 , and the casing 32 is used to protect the antenna body 33 and prevent external liquid and/or dust from affecting the normal operation of the antenna body 33 .
  • the second connecting portion 31 is provided on the housing 32 .
  • the housing 32 can be fixedly connected to the rotating member 212 of the adjusting structure 20 through the first connection portion 2122 and the second connection portion 31 .
  • the housing 32 includes a first housing portion 321 and a second housing portion 322 .
  • the first shell portion 321 is connected to the adjustment structure 20 .
  • the second shell portion 322 cooperates with the first shell portion 321 to form an accommodation space 323 for accommodating at least part of the antenna body 33 .
  • the first shell part 321 and the second shell part 322 are detachably connected.
  • the second connecting portion 31 is provided on the first shell portion 321 .
  • the second shell part 322 , the first shell part 321 and the adjusting structure 20 are arranged in sequence.
  • the second case portion 322 is provided to cover the outside of the antenna main body 33 .
  • the antenna body 33 is an antenna capable of receiving at least one navigation system signal from GPS, Glonass, Beidou, and Galileo.
  • the antenna body 33 includes a circuit board 331 , a radiation portion 332 and a feeder 333 .
  • the circuit board 331 is disposed in the casing 32 .
  • the radiation portion 332 is disposed in the casing 32 and is electrically connected to the circuit board 331 .
  • the feeder 333 is electrically connected to the circuit board 331 . Part of the feeder 333 is provided outside the casing 32 .
  • the circuit board 331 and the radiation portion 332 are both disposed in the receiving space 323 .
  • Part of the feed line 333 extends into the receiving space 323 to be electrically connected to the circuit board 331 .
  • Another part of the feeder 333 is located outside the receiving space 323 and is used for connecting with other modules of the movable device 1000 .
  • an embodiment of the present application further provides a movable device 1000 including a body 200 and the antenna assembly 100 of any of the foregoing embodiments.
  • the antenna assembly 100 is provided on the body 200 .
  • the movable device 1000 includes at least one of the following: an unmanned aerial vehicle, an unmanned vehicle, an unmanned boat, or a robot, and the like.
  • the movable device 1000 is an unmanned aerial vehicle.
  • the fuselage 200 includes a center frame 201 and an arm 202 .
  • the arm 202 is connected to the center frame 201 , and the antenna assembly 100 is arranged on the arm 202 .
  • one end of the machine arm 202 is fixedly connected to the center frame 201
  • the base 10 of the antenna assembly 100 is fixedly connected to the other end of the machine arm 202 .
  • the base 11 of the base 10 and the other end of the machine arm 202 may be connected in a fixed and non-detachable manner, or may be connected in a detachable manner.
  • the antenna assembly 100 is disposed at one end of the arm 202 away from the center frame 201 .
  • the arrangement of the adjustment structure 20 is beneficial to reduce the possible impact on the antenna structure 30 , thereby protecting the antenna structure 30 .
  • the antenna assembly 100 is disposed above the end of the arm 202 away from the center frame 201 .
  • the maximum radiation direction of the antenna structure 30 is toward the zenith direction, so as to realize the clearance of the antenna structure 30 .
  • the antenna assembly 100 includes a first antenna assembly 101 and a second antenna assembly 102 .
  • the arm 202 includes a first arm 2021 and a second arm 2022 .
  • the first antenna assembly 101 and the second antenna assembly 102 are respectively disposed on the first arm 2021 and the second arm 2022 .
  • Both the first antenna assembly 101 and the second antenna assembly 102 include the base 10 , the adjustment structure 20 and the antenna structure 30 according to any of the above embodiments.
  • both the first machine arm 2021 and the second machine arm 2022 are fixedly connected to the center frame 201 .
  • the first antenna assembly 101 is disposed at one end of the first arm 2021 away from the center frame 201
  • the second antenna assembly 102 is disposed at one end of the second arm 2022 away from the center frame 201 .
  • the first arm 2021 and the second arm 2022 are disposed adjacent to each other.
  • the number of the machine arms 202 can be set according to actual requirements, such as four, six, eight and so on.
  • the number of the machine arms 202 is four, including a first machine arm 2021 and a second machine arm 2022, and the first machine arms 2021 and the second machine arms 2022 are adjacent and spaced apart.
  • the first arm 2021 and the second arm 2022 are disposed close to the nose of the fuselage 200 .
  • the vertical in the embodiments of the present application includes the cases where the included angle is 90 degrees and approximately 90 degrees.
  • one of the first antenna assembly 101 and the second antenna assembly 102 can be used to complete. In other embodiments, during the actual positioning process, the first antenna assembly 101 and the second antenna assembly 102 may be jointly completed.
  • the rotating shaft 2121 of the first antenna assembly 101 and the rotating shaft 2121 of the second antenna assembly 102 are perpendicular to each other.
  • the first antenna assembly 101 and the second antenna assembly 102 may form a baseline vector to measure heading and pitch angles.
  • the rotation axis 2121 of the first antenna assembly 101 is perpendicular to the direction of the head of the movable device 1000 .
  • the rotation axis 2121 of the second antenna assembly 102 is parallel to the head direction of the movable device 1000 .
  • the adjustment structure 20 of the first antenna assembly 101 can adjust the attitude of the antenna structure 30 of the first antenna assembly 101 or stabilize the attitude of the first antenna assembly 101
  • the antenna structure 30 is configured such that the maximum radiation direction of the antenna structure 30 of the first antenna assembly 101 faces a preset direction.
  • the adjustment structure 20 of the second antenna assembly 102 can adjust the attitude of the antenna structure 30 of the second antenna assembly 102 or stabilize the antenna structure 30 of the second antenna assembly 102 so that the The maximum radiation direction of the antenna structure 30 of the second antenna assembly 102 faces a predetermined direction.
  • the preset direction in this embodiment of the present application may refer to the preset direction in any of the foregoing embodiments.
  • the first direction is perpendicular to the second direction.
  • the first direction is a pitch direction
  • the second direction is a roll direction
  • the first antenna assembly 101 is placed at the end of the first arm 2021 (that is, at position 1), the rotation axis 2121 of the first antenna assembly 101 is perpendicular to the direction of the head of the movable device 1000, Then when the movable device 1000 flies in front of the nose of the movable device 1000 at a constant speed (ie, +Y direction) or flies in front of the tail of the movable device 1000 (ie, -Y direction), the The fuselage 200 itself will present a certain tilt angle (forward/backward tilt). At this time, under the gravitational force of the counterweight 211 of the first antenna assembly, the maximum radiation direction of the antenna structure 30 of the first antenna assembly 101 can always be directed toward a preset direction.
  • the second antenna assembly 102 is placed at the end of the second arm 2022 (ie, position 2), and the rotation axis 2121 of the second antenna assembly 102 is parallel to the direction of the head of the movable device 1000, then when When the movable device 1000 flies to the right (ie +X direction) or to the left (ie -X direction) at a constant speed at a certain speed, the body 200 of the movable device 1000 itself will present a certain tilt angle (right tilt/left tilt). ). At this time, under the gravitational force of the counterweight of the second antenna assembly 102, the maximum radiation direction of the antenna structure 30 of the second antenna assembly 102 can always be directed toward the preset direction.
  • At least one of the first antenna assembly 101 and the second antenna assembly 102 can dynamically adjust the attitude of the corresponding antenna structure 30, thereby ensuring that the attitude of the mobile device 1000 can be changed during the attitude change.
  • the mobile device 1000 can always obtain better satellite search performance and positioning accuracy.
  • the movable device 1000 may acquire motion state information of the movable device 1000 . Based on the obtained motion state information, a target antenna assembly is determined in the first antenna assembly 101 and the second antenna assembly 102, and the position information of the movable device 1000 is calculated according to the satellite navigation signal obtained by the target antenna assembly.
  • the motion state information includes attitude information or speed information.
  • Attitude information includes pitch angle or roll angle.
  • Velocity information includes velocity direction and velocity value.
  • the command can be controlled to the movable device 1000 through the terminal device.
  • the movable device 1000 receives the control instruction, and acquires motion information of the movable device 1000 according to the control instruction.
  • the terminal device may include at least one of a mobile phone, a tablet computer, a notebook computer, a desktop computer, a personal digital assistant, a wearable device, a remote control, and the like.
  • control instruction automatically generated by the movable device 1000 may be acquired, and the motion state information of the movable device 1000 may be acquired according to the control instruction.
  • the first antenna assembly 101 is determined as the target antenna assembly. If the roll angle of the movable device 1000 is greater than or equal to the second preset angle, the second antenna assembly 102 is determined as the target antenna assembly. Both the first preset angle and the second preset angle can be set according to actual needs. For example, the first preset angle is 10 degrees and the like.
  • the first antenna assembly 101 is determined as the target antenna assembly. If the speed value of the movable device 1000 in the direction perpendicular to the nose of the movable device 1000 is greater than or equal to the second preset speed threshold, the second antenna assembly 102 is determined as the target antenna assembly. Both the first preset speed threshold and the second speed threshold may be set according to actual requirements, which are not limited herein.
  • the satellite search information corresponding to the first antenna assembly 101 and the second antenna assembly 102 may be obtained.
  • a target antenna assembly is determined in the first antenna assembly 101 and the second antenna assembly 102 according to the motion state information of the movable device 1000 and the acquired satellite search information.
  • the conduction state information corresponding to the first antenna assembly 101 and the second antenna assembly 102 may be acquired.
  • a target antenna assembly is determined in the first antenna assembly 101 and the second antenna assembly 102 according to the motion state information of the movable device 1000 and the obtained conduction state information. For example, when the circuit inside the antenna body 33 of the first antenna assembly 101 is connected and the circuit inside the antenna body 33 of the second antenna assembly 102 is not connected, the first antenna assembly 101 is determined as the target antenna assembly. For another example, when the circuit inside the antenna body 33 of the first antenna assembly 101 is not conducting and the circuit inside the antenna body 33 of the second antenna assembly 102 is conducting, the second antenna assembly 102 is determined as the target antenna assembly.
  • the other of the first antenna assembly 101 and the second antenna assembly 102 can realize that the movable device 1000 is in motion or omnidirectional Satellite tracking during flight improves the flight safety of the mobile device 1000 . That is, when one of the first antenna assembly 101 and the second antenna assembly 102 fails, the other of the first antenna assembly 101 and the second antenna assembly 102 can implement the positioning function.
  • FIG. 12 is a schematic flowchart of a method for controlling a movable device provided by an embodiment of the present application.
  • the control method can be applied to a movable device, and is used for processes such as determining a target antenna assembly in the first antenna assembly and the second antenna assembly when the attitude of the movable device changes.
  • the movable device may include at least one of an unmanned aerial vehicle, a gimbal, an unmanned vehicle, an unmanned boat, and the like.
  • the aircraft may be a rotary-wing UAV, such as a quad-rotor UAV, a hexa-rotor UAV, an octa-rotor UAV, or a fixed-wing UAV.
  • the antenna assembly may be integrally provided with the movable device, or may be detachably connected.
  • the movable device includes a first antenna assembly and a second antenna assembly
  • the first antenna assembly and the second antenna assembly each include an adjustment structure and an antenna structure
  • the adjustment structure of the first antenna assembly The antenna structure of the first antenna assembly can be stabilized when the attitude of the movable device changes along the first direction, so that the maximum radiation direction of the antenna structure of the first antenna assembly faces a preset direction
  • the second The adjustment structure of the antenna assembly can stabilize the antenna structure of the second antenna assembly when the posture of the movable device changes along the second direction, so that the maximum radiation direction of the antenna structure of the second antenna assembly is toward a preset direction .
  • the method for controlling a mobile device includes steps S101 to S103 .
  • control method can be implemented by a processor, or can be implemented by a control circuit constructed by multiple electronic devices.
  • the motion state information includes attitude information or velocity information.
  • acquiring the motion state information of the movable device includes: acquiring a control instruction of the movable device sent by a terminal device; and acquiring motion state information of the movable device according to the control instruction.
  • the acquiring the motion state information of the movable device includes: acquiring a control instruction automatically generated by the movable device; and acquiring the motion state information of the movable device according to the control instruction.
  • the first direction is a pitch direction
  • the second direction is a roll direction
  • the attitude information includes a pitch angle or a roll angle
  • the velocity information includes a velocity direction and a velocity value
  • the determining a target antenna assembly in the first antenna assembly and the second antenna assembly according to the motion state information of the movable device includes: if the pitch angle of the movable device is If the angle is greater than or equal to the first preset angle, the first antenna assembly is determined as the target antenna assembly; if the roll angle of the movable device is greater than or equal to the second preset angle, the second antenna assembly is determined as the target antenna components.
  • the determining a target antenna assembly in the first antenna assembly and the second antenna assembly according to the motion state information of the movable device includes: if the movable device is moving The speed value of the head direction of the device is greater than or equal to the first preset speed threshold, and the first antenna assembly is determined to be the target antenna assembly; if the speed value of the movable device in the nose direction perpendicular to the movable device is greater than or equal to the second preset speed threshold, determine that the second antenna assembly is the target antenna assembly.
  • the determining a target antenna assembly in the first antenna assembly and the second antenna assembly according to the motion state information of the movable device includes: acquiring the first antenna assembly and the second antenna assembly.
  • the determining a target antenna assembly in the first antenna assembly and the second antenna assembly according to the motion state information of the movable device includes: acquiring the first antenna assembly and the second antenna assembly. Conduction state information corresponding to the two antenna assemblies; determining a target antenna assembly in the first antenna assembly and the second antenna assembly according to the motion state information of the movable device and the conduction state information.
  • FIG. 13 is a schematic block diagram of a movable device 3000 provided by an embodiment of the present application.
  • the movable device 3000 includes a first antenna assembly, a second antenna assembly, a memory 3001 and a processor 3002, and both the first antenna assembly and the second antenna assembly include an adjustment structure and an antenna structure, so
  • the adjustment structure of the first antenna assembly can stabilize the antenna structure of the first antenna assembly when the attitude of the movable device changes along the first direction, so that the maximum radiation direction of the antenna structure of the first antenna assembly is oriented toward Presetting the direction
  • the adjustment structure of the second antenna assembly can stabilize the antenna structure of the second antenna assembly when the attitude of the movable device changes along the second direction, so that the antenna structure of the second antenna assembly
  • the maximum radiation direction is towards the preset direction.
  • the memory 3001 is used to store program codes.
  • the processor 3002 invokes the program code, and when the program code is executed, is used to execute the steps of the aforementioned control method of the movable device.
  • the memory 3001 and the processor 3002 are connected through a bus 3003, and the bus 3003 is, for example, an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the memory 3001 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • ROM Read-Only Memory
  • the memory 3001 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) magnetic disk, an optical disk, a U disk, a mobile hard disk, and the like.
  • the processor 3002 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP) or the like.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the processor 3002 is configured to run the computer program stored in the memory 3001, and implement the aforementioned control method of the movable device when the computer program is executed.
  • the processor 3002 is configured to run a computer program stored in the memory 3001, and implement the following steps when executing the computer program:
  • the position information of the movable device is calculated according to the satellite navigation signal obtained by the target antenna assembly.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and the computer program includes program instructions, and the processor executes the program instructions to realize the provision of the above embodiments.
  • the steps of a control method of a removable device are described.
  • the computer-readable storage medium may be an internal storage unit of the removable device described in any of the foregoing embodiments, such as a hard disk or a memory of the removable device.
  • the computer-readable storage medium can also be an external storage device of the removable device, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital) equipped on the removable device , SD) card, flash memory card (Flash Card), etc.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线组件(100)包括底座(10)、调节结构(20)和天线结构(30);调节结构(20)的转动组件(21)与底座(10)转动连接,并与天线结构(30)固定连接,转动组件(21)包括配重件(211),可移动设备(1000)姿态变化的过程中,配重件(211)能够在重力作用下带动天线结构(30)转动,以使得天线结构(30)的最大辐射方向朝向预设方向,该天线组件(100)能够实现动态调节天线结构(30)的姿态,提高搜星性能。

Description

天线组件、可移动设备、可移动设备的控制方法和存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及一种天线组件、可移动设备、可移动设备的控制方法和存储介质。
背景技术
可移动设备上可以设置天线组件,用于接收卫星发送的无线电信号,并由接收机对无线电信号进行转换。然而,现有的天线组件与可移动设备的机身通常是固定连接的。如此,在可移动设备大机动运动的情况下,随着可移动设备自身姿态发生变化,天线组件的方向图的覆盖范围也会发生改变,因而会导致搜星性能不够理想、定位信息不准确。
发明内容
本申请提供了一种天线组件、可移动设备、可移动设备的控制方法和存储介质,旨在在可移动设备姿态变化的过程中,提高搜星性能和定位精度。
第一方面,本申请实施例提供了一种天线组件,应用于可移动设备,所述天线组件包括底座、调节结构和天线结构;
所述调节结构包括转动组件,所述转动组件与所述底座转动连接,并与所述天线结构固定连接,所述转动组件包括配重件,所述可移动设备姿态变化的过程中,所述配重件能够在重力作用下带动所述天线结构转动,以使得所述天线结构的最大辐射方向朝向预设方向。
第二方面,本申请实施例提供了一种可移动设备,包括:
机身;
第一方面所述的天线组件,设于所述机身上。
第三方面,本申请实施例提供了一种可移动设备的控制方法,所述可移动设备包括第一天线组件和第二天线组件,所述第一天线组件和所述第二天线组件均包括调节结构和天线结构,所述第一天线组件的调节结构能够在所述可移动设备的姿态沿第一方向变化时稳定所述第一天线组件的天线结构,以使得所述第一天线组件的天线结构的最大辐射方向朝向预设方向,所述第二天线组件的调节结构能够在所述可移动设备的姿态沿第二方向变化时稳定所述第二天线组件的天线结构,以使得所述第二天线组件的天线结构的最大辐射方向朝向预设方向,所述方法包括:
获取所述可移动设备的运动状态信息;
根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件;
根据所述目标天线组件获取到的卫星导航信号计算所述可移动设备的位置信息。
第四方面,本申请实施例提供了一种可移动设备,所述可移动设备包括第一天线组件、第二天线组件、存储器和处理器,所述第一天线组件和所述第二天线组件均包括调节结构和天线结构,所述第一天线组件的调节结构能够在所述可移动设备的姿态沿第一方向变化时稳定所述第一天线组件的天线结构,以使得所述第一天线组件的天线结构的最大辐射方向朝向预设方向,所述第二天线组件的调节结构能够在所述可移动设备的姿态沿第二方向变化时稳定所述第二天线组件的天线结构,以使得所述第二天线组件的天线结构的最大辐射方向朝向预设方向;
所述存储器用于存储程序代码;
所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下步骤:
获取所述可移动设备的运动状态信息;
根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件;
根据所述目标天线组件获取到的卫星导航信号计算所述可移动设备的位置信息。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可 读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述的方法。
本申请实施例提供了一种天线组件、可移动设备、可移动设备的控制方法和存储介质,在可移动设备姿态变化过程中,配重件能够在自身的重力作用下带动天线结构转动,从而能够根据可移动设备的姿态实现动态调节天线结构的姿态或者位置,进而将天线结构的最大辐射方向调整到所期望的方向上以获得更好的搜星性能,提高定位精度和定位可靠性,无需额外的控制电路控制天线结构转动。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是普通的导航天线在导航L1频段(1.575GHZ)的方向图。
图2是在无人机姿态变化过程中,固定于无人机上的普通的导航天线在导航L1频段(1.575GHZ)的方向图;
图3是本申请实施例提供的可移动设备的结构示意图;
图4是本申请实施例提供的天线组件的结构示意图;
图5是本申请实施例提供的天线组件的分解示意图;
图6是本申请实施例提供的天线组件的剖视图;
图7是图6在A处的局部放大示意图;
图8是本申请实施例提供的调节结构一角度的结构示意图;
图9是本申请实施例提供的调节结构另一角度的结构示意图;
图10是本申请实施例提供的天线组件的部分结构示意图;
图11是本申请实施例提供的可移动设备的结构示意图;
图12是本申请实施例提供的一种可移动设备的控制方法的流程示意图;
图13是本申请实施例提供的一种可移动设备的结构示意图。
附图标记:
1000、可移动设备;
100、天线组件;101、第一天线组件;102、第二天线组件;
10、底座;11、座体;12、安装部;13、凹陷槽;
20、调节结构;21、转动组件;211、配重件;2111、配重连接部;2112、配重部;
212、转动件;2121、转轴;2122、第一连接部;2123、配合部;
213、活动件;214、环形间隙;22、固定部;
30、天线结构;31、第二连接部;32、壳体;321、第一壳部;322、第二壳部;323、收容空间;33、天线主体;331、电路板;332、辐射部;333、馈线;
200、机身;201、中心架;202、机臂;2021、第一机臂;2022、第二机臂。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请的发明人发现,随着无人机对高精度定位需求的增强,对于导航天线的性能要求也越来越高。在如何接收更多有效的卫星导航信号上,除了提高导航天线本身的增益及10dB波束宽度外,分析卫星的分布也很重要。结合目前GPS/Glonass/北斗/Galileo导航系统的卫星分布可以发现,高仰角的卫星占比较大。以下统计了深圳地区某一天(10:00~22:00)不同时段卫星数目分布情况如表1所示:
表1深圳地区某一天(10:00~22:00)不同时段卫星数目分布情况
Figure PCTCN2020124956-appb-000001
通常实时动态差分(Real-time Kinematic,RTK)需要有效双频卫星数在12-15颗,每加一个导航系统则卫星数目加1,4系统需要有效双频卫星数在15-18颗。从不同时刻卫星数目分布情况来看,4系统时30°仰角以上的卫星数目可满足要求。但是在一些遮挡比较严重的情况下,例如大机动状态下(俯仰角最大可达40°)的半遮挡环境,卫星数量也会相应的减少约40%,此时30度仰角以上的卫星数无法满足要求。如果想要满足卫星数目,则需要引入一些角度低于30°的卫星。
低仰角的卫星本身发送的导航数据不会含有错误信息,但是与高仰角卫星相比,其导航信号从卫星到地面接收机所走的路径是不同的。通常将导航信号当作标准的电磁信号,在真空中以光速传播,所有的位置计算都是基于这样的假设。低仰角卫星的信号需要穿过更多的大气层,并且这部分大气层的密度较大,从而导航信号在大气层中的传播特性与真空中相差较大。低仰角卫星信号在传播过程中受到的电离层延迟、对流层延迟、多路径效应和观测噪声等影响更大,如果直接将低仰角卫星的观测数据参与位置解算,会对定位精度造成影响。因此,在全球导航定位系统GNSS(Global Navigation Positioning System,GNSS)定位中,一般会选取某一截止高度角(一般在20°-35°之间),对截止高度角以下的卫星数据不参与位置的解算,以避免低仰角卫星观测数中包含的误差影响定位精度。
目前,消费级无人机通常采用GPS陶瓷天线,该天线为贴片式,与机身的连接方式为固定式,不会随着机身的俯仰而做出变化。行业级无人机通常采用单独的RTK天线,与机身的连接同样采用固定式,无法自适应改变自身姿态或者位置。无论是陶瓷天线还是单独的RTK天线,其方向图的最大增益均指向天 顶方向且波束非半全向,通常的3dB波束宽度不到120°。当无人机在动态飞行时,尤其是在无人机大机动飞行或者快速飞行(俯仰角较大)的情况下,随着无人机自身姿态发生变化,导航天线的方向图的覆盖范围也会发生改变,此时由于天线的方向图无法覆盖卫星分布最多的天空区域,因而会导致搜星性能下降、定位信息不准确。
请参阅图1,图1是普通的导航天线在导航L1频段(1.575GHZ)的方向图。
请参阅图2,图2是在无人机姿态变化过程中,固定于无人机上的普通的导航天线在导航L1频段(1.575GHZ)的方向图。
无人机的姿态角范围通常为0度至45度,即最大姿态角为45度。若普通的导航天线固定在无人机上,在无人机的姿态角为45度的情况下,普通的导航天线的方向图也会发生约45度的偏转。偏转后的L1频段的方向图如图2所示(以向一侧偏转为例)。
显然,当导航天线跟随无人机进行姿态的偏转时,导航天线的方向图也会发生同样的偏转。这种偏转会不同程度地导致导航天线无法收到某一侧的卫星信号,从而导致搜星性能和定位精度下降。
为此,本申请的发明人对天线组件、可移动设备、可移动设备的控制方法和存储介质进行了改进,以在可移动设备姿态变化的过程中,使得所述天线结构的最大辐射方向朝向预设方向,从而提高搜星性能和定位精度。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图3,本申请实施例提供的一种天线组件100,应用于可移动设备1000。可移动设备1000可以包括无人飞行器、云台、无人驾驶车、无人驾驶船等中的至少一种。进一步而言,飞行器可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。
请参阅图4至图6,天线组件100包括底座10、调节结构20和天线结构30。调节结构20包括转动组件21。转动组件21与底座10转动连接。转动组件21与天线结构30固定连接。转动组件21包括配重件211,可移动设备1000姿态变化的过程中,配重件211能够在重力作用下带动天线结构30转动,以使得天线结构30的最大辐射方向朝向预设方向。
上述实施例的天线组件100,在可移动设备1000姿态变化过程中,配重件211能够在自身的重力作用下带动天线结构30转动,从而能够根据可移动设备1000的姿态实现动态调节天线结构30的姿态或者位置,进而将天线结构30的最大辐射方向调整到所期望的方向上以获得更好的搜星性能,提高定位精度和定位可靠性,无需设置额外的控制电路控制天线结构30转动,结构简单、可靠性高、成本低。
以可移动设备1000为无人飞行器为例。当无人飞行器在动态飞行(包括大角度机动飞行)时,尤其是在无人飞行器快速飞行(俯仰角较大)的情况下,配重件211能够在自身的重力作用下带动天线结构30转动,从而能够根据无人飞行器的姿态实现动态调节天线结构30的姿态,进而将天线结构30的最大辐射方向调整到所期望的方向上以提高搜星性能和定位精度,天线结构30不会受到无人飞行器的机身200的影响而导致搜星性能下降。
在一些实施例中,预设方向与天顶方向的夹角小于预设夹角阈值。该预设夹角阈值可以根据实际需求进行设计,比如为5°、10°、20°、30°、45°以及5°-45°之间的任意其他合适角度。
示例性地,预设方向与天顶方向的夹角为0°或者大致为0°。即配重件211能够在重力作用下带动天线结构30转动,从而使得天线结构30的最大辐射方向朝向或者大致朝向天顶方向,从而使得天线结构30的最大辐射方向能够朝向定位卫星分布最多的天空区域。
在一些实施例中,预设方向可以根据可移动设备1000的位置、定位卫星的分布情况等中的至少一者进行确定,以使得天线结构30的最大辐射方向能够朝向定位卫星分布最多的区域,从而提高天线结构30的搜星性能和定位精度。
请参阅图7至图9,在一些实施例中,调节结构20还包括固定部22。固定部22与底座10连接。固定部22与转动组件21转动连接。在可移动设备1000姿态变化过程中,配重件211能够在自身的重力作用下带动天线结构30相对固定部22转动,从而能够根据可移动设备1000的姿态实现动态自适应调节天线结构30的姿态,进而将天线结构30的最大辐射方向调整到预设方向上。
请参阅图5,在一些实施例中,底座10包括座体11和安装部12。安装部12设于座体11上。安装部12与固定部22连接。安装部12可以与座体11可 拆卸连接,也可以为固定不可拆卸连接,或者为一体结构。示例性地,安装部12凸设于座体11上。
在一些实施方式中,固定部22与安装部12可拆卸连接。比如,固定部22通过卡合连接、磁吸连接、快拆件连接等方式与安装部12可拆卸连接。在另一些实施方式中,固定部22可以与至少部分安装部12为一体结构或者固定不可拆卸连接。
请参阅图5至图7,在一些实施例中,安装部12朝向天线结构30的一端设有凹陷槽13。凹陷槽13与固定部22卡合配合。凹陷槽13的形状与固定部22的形状适配。示例性地,凹陷槽13的形状呈弧形。固定部22呈环状。固定部22的环形外表面与凹陷槽13的弧形槽壁配合。
请参阅图8和图9,在一些实施例中,转动组件21包括转轴2121。天线结构30能够绕转轴2121旋转。安装部12的数量和固定部22的数量均为两个。两个安装部12沿转轴2121的轴向间隔设置。每个安装部12对应与一个固定部22卡合配合。示例性地,固定部22呈环状,固定部22的轴线与转轴2121的轴线重合或者大致重合。
请参阅图7至图9,在一些实施例中,转动组件21还包括转动件212和活动件213。天线结构30和配重件211均与转动件212连接。转动件212与固定部22形成环形间隙214。活动件213活动设于环形间隙214内。活动件213的设置,为转动件212相对固定部22转动提供了保障。可移动设备1000姿态变化的过程中,配重件211能够在重力作用下带动转动件212转动,从而带动与转动件212连接的天线结构30转动。
在一些实施方式中,配重件211与转动件212固定不可拆卸连接,或者二者为一体结构。示例性地,配重件211固定连接在转动件212的中部。在另一些实施方式中,配重件211也可以与转动件212可拆卸连接。
可以理解地,活动件213至少部分容纳于环形间隙214内。
在一些实施例中,天线结构30和配重件211分别设于转动件212的相对两侧。如此,当配重件211在重力作用下带动天线结构30转动时,天线结构30的最大辐射方向可以保持朝向前述预设方向,从而使得天线结构30获得良好搜星性能。
请参阅图7至图9,在一些实施例中,转动件212包括转轴2121、第一连接部2122和配合部2123。转轴2121的中部与配重件211固定连接。第一连接部2122设于转轴2121上。第一连接部2122与天线结构30连接。配合部2123设于转轴2121的端部。配合部2123通过活动件213与固定部22转动连接。
可以理解地,可移动设备1000姿态变化的过程中,配重件211和转动件212配合带动天线结构30绕转轴2121转动,无需设置额外的控制天线结构30转动的控制电路,即可根据可移动设备1000的姿态变化而快速地调节天线结构30的姿态。此外,可移动设备1000姿态变化的过程中,配重件211和转动件212配合调节天线结构30的姿态,使得天线结构30的姿态跟随可移动设备100的姿态变化而变化,有利于避免天线结构30的相位中心发生剧烈变化,从而提高天线结构30的搜星性能以及定位精度。
示例性地,该转轴2121只能在一个维度上进行转动,因而,当天线组件100固定在可移动设备1000上后,只能沿一个方向上来回调节天线结构30的姿态。
示例性地,转轴2121、第一连接部2122通过一体成型加工制得,配合部2123套设于转轴2121的端部。
在一些实施例中,环形间隙214的圆心与配合部2123的圆心重合。
在一些实施例中,固定部22间隔套设于配合部2123的外部,固定部22与配合部2123同心设置。
示例性地,配合部2123为轴承结构。固定部22也为轴承结构。配合部2123的轴线和固定部22的轴线重合或者大致重合。固定部22套设于配合部2123外部,且固定部22与配合部2123间隔设置形成环形间隙214。
示例性地,第一连接部2122固定连接于转轴2121靠近配合部2123的位置处。
第一连接部2122的数量可以根据实际需求设置,比如一个、两个、三个或者更多。比如,第一连接部2122的数量为两个。两个第一连接部2122沿转轴2121的轴向间隔设置,如此既能够保证转轴2121与天线结构30可靠连接,又能够尽可能地降低成本、减轻天线组件100的重量。
请参阅图10,在一些实施例中,天线结构30上设有第二连接部31。第一连接部2122通过锁固件(图未示)与第二连接部31连接,从而锁固天线结构 30和转动组件21。示例性地,锁固件穿设第一连接部2122和第二连接部31,从而将第一连接部2122与第二连接部31锁紧固定。锁固件可以是螺丝等。
请参阅图7至图9,在一些实施例中,活动件213包括多个钢珠。在其他实施例中,活动件213可以包括多个球体,该球体可以采用其他任意合适的刚性材料制成。
在一些实施例中,多个钢珠沿环形间隙214或者配合部2123的周向间隔设置,以使得转动件212能够顺畅地相对固定部22转动。
请参阅图8和图9,在一些实施例中,配重件211包括配重连接部2111和配重部2112。配重连接部2111与转动件212连接。配重部2112连接于配重连接部2111远离转动件212的一端。可移动设备1000姿态变化的过程中,配重部2112能够在重力作用下带动配重连接部2111和转动件212相对固定部22转动,从而带动与转动件212连接的天线结构30转动。
示例性地,配重连接部2111与配重部2112通过一体成型加工制得。配重连接部2111的两端分别固定连接于转动件212和配重部2112。
在一些实施例中,配重部2112的外周尺寸大于配重连接部2111的周向尺寸。示例性地,配重部2112的重量大于配重连接部2111的重量。
请参阅图5和图6,在一些实施例中,天线结构30包括壳体32和天线主体33。壳体32与调节结构20连接。至少部分天线主体33设于壳体32内,壳体32用于保护天线主体33,防止外部液体和/或粉尘影响天线主体33的正常工作。
示例性地,第二连接部31设于壳体32上。壳体32可以通过第一连接部2122和第二连接部31配合固定连接于调节结构20的转动件212。
请参阅图5和图6,在一些实施例中,壳体32包括第一壳部321和第二壳部322。第一壳部321与调节结构20连接。第二壳部322与第一壳部321配合形成收容至少部分天线主体33的收容空间323。示例性地,第一壳部321与第二壳部322可拆卸连接。
请参阅图10,示例性地,第二连接部31设于第一壳部321上。第二壳部322、第一壳部321和调节结构20依次设置。第二壳部322罩设在天线主体33的外部。
示例性地,天线主体33为能够接收GPS、Glonass、北斗、Galileo中至少一种导航系统信号的天线。
请参阅图5和图6,在一些实施例中,天线主体33包括电路板331、辐射部332和馈线333。电路板331设于壳体32内。辐射部332设于壳体32内并与电路板331电连接。馈线333与电路板331电连接。部分馈线333设于壳体32外。
具体地,电路板331和辐射部332均设于收容空间323内。部分馈线333伸入收容空间323内,以与电路板331电连接。另一部分馈线333位于收容空间323外,用于与可移动设备1000的其他模块连接。
请参阅图3,本申请实施例还提供一种可移动设备1000包括机身200和上述任一实施例的天线组件100。天线组件100设于机身200上。可移动设备1000包括以下至少一种:无人飞行器、无人驾驶车、无人驾驶船或机器人等。
示例性地,可移动设备1000为无人飞行器。
请参阅图3,在一些实施例中,机身200包括中心架201和机臂202。机臂202与中心架201连接,天线组件100设于机臂202上。示例性地,机臂202的一端与中心架201固定连接,天线组件100的底座10与机臂202的另一端固定连接。具体地,底座10的座体11与机臂202的另一端可以固定不可拆卸连接,也可以为可拆卸连接。
在一些实施例中,天线组件100设于机臂202远离中心架201的一端。当可移动设备1000以一定的速度失控后,调节结构20的设置有利于减小天线结构30可能受到的撞击,从而保护天线结构30。
示例性地,天线组件100设于机臂202远离中心架201的一端的上方。可移动设备1000在静止状态下,天线结构30的最大辐射方向朝向天顶方向,以实现天线结构30的净空。
请参阅图11,在一些实施例中,天线组件100包括第一天线组件101和第二天线组件102。机臂202包括第一机臂2021和第二机臂2022。第一天线组件101和第二天线组件102分别设于第一机臂2021和第二机臂2022上。第一天线组件101和第二天线组件102均包括上述任一实施例的底座10、调节结构20和天线结构30。
示例性地,第一机臂2021和第二机臂2022均固定连接在中心架201上。第一天线组件101设于第一机臂2021远离中心架201的一端,第二天线组件102设于第二机臂2022远离中心架201的一端。
请参阅图11,在一些实施例中,第一机臂2021和第二机臂2022相邻设置。机臂202的数量可以根据实际需求进行设置,比如为四个、六个、八个等。示例性地,机臂202的数量为四个,包括第一机臂2021和第二机臂2022,第一机臂2021和第二机臂2022相邻且间隔设置。示例性地,第一机臂2021和第二机臂2022靠近机身200的机头方向设置。
需要说明的是,本申请实施例的垂直包括夹角为90度和大致为90度的情形。
在一些实施例中,在实际定位过程中,通过第一天线组件101和第二天线组件102的其中一者即可完成。在另一些实施例中,在实际定位过程中,也可以通过第一天线组件101和第二天线组件102共同完成。
请参阅图11,在一些实施例中,第一天线组件101的转轴2121和第二天线组件102的转轴2121相互垂直。第一天线组件101和第二天线组件102可以构成基线向量,从而测量航向和俯仰角。
请参阅图11,在一些实施例中,第一天线组件101的转轴2121与可移动设备1000的机头方向垂直。第二天线组件102的转轴2121与可移动设备1000的机头方向平行。
在一些实施例中,在可移动设备1000的姿态沿第一方向变化时,第一天线组件101的调节结构20能够调节第一天线组件101的天线结构30的姿态或者稳定第一天线组件101的天线结构30,以使得第一天线组件101的天线结构30的最大辐射方向朝向预设方向。在可移动设备1000的姿态沿第二方向变化时,第二天线组件102的调节结构20能够调节第二天线组件102的天线结构30的姿态或者稳定第二天线组件102的天线结构30,以使得第二天线组件102的天线结构30的最大辐射方向朝向预设方向。其中,本申请实施例的预设方向可以参照上述任一实施例中的预设方向。
示例性地,第一方向与第二方向垂直。
示例性地,第一方向为俯仰方向,第二方向为横滚方向。
示例性地,请参阅图11,将第一天线组件101放置于第一机臂2021的末端(即位置1处),第一天线组件101的转轴2121与可移动设备1000的机头方向垂直,则当可移动设备1000以一定速度匀速向可移动设备1000的机头前方飞行(即+Y方向)或者向可移动设备1000的机尾前方飞行(即-Y方向)时,可移动设备1000的机身200本身会呈现一定的倾斜角度(前倾/后倾)。此时在第一天线组件的配重件211的重力作用下,第一天线组件101的天线结构30的最大辐射方向能够始终朝向预设方向。
同样地,请参阅图11,将第二天线组件102放置于第二机臂2022的末端(即位置2),第二天线组件102的转轴2121与可移动设备1000的机头方向平行,则当可移动设备1000以一定速度匀速向右侧飞行(即+X方向)或者向左侧飞行(即-X方向)时,可移动设备1000的机身200本身会呈现一定的倾斜角度(右倾/左倾)。此时在第二天线组件102的配重件的重力作用下,第二天线组件102的天线结构30的最大辐射方向能够始终朝向预设方向。即无论可移动设备1000向哪个方向飞行时,第一天线组件101和第二天线组件102中的至少一个能够动态调节对应的天线结构30的姿态,从而保证在可移动设备1000姿态变化过程中可移动设备1000能够始终获得更好的搜星性能和定位精度。
为了在可移动设备1000运动过程中始终获得更好的定位精度,需要动态地在第一天线组件101和第二天线组件102中确定目标天线组件,根据目标天线组件获取到卫星导航信号计算可移动设备1000的位置信息。具体地,在可移动设备1000的定位过程中,可移动设备1000可以获取可移动设备1000的运动状态信息。基于所获取的运动状态信息,在第一天线组件101和第二天线组件102中确定目标天线组件,并根据目标天线组件获取到卫星导航信号计算可移动设备1000的位置信息。
其中,运动状态信息包括姿态信息或速度信息。姿态信息包括俯仰角度或横滚角度。速度信息包括速度方向和速度值。
示例性地,可以通过终端设备向可移动设备1000控制指令。可移动设备1000接收该控制指令,并根据该控制指令获取可移动设备1000的运动信息。终端设备可以包括手机、平板电脑、笔记本电脑、台式电脑、个人数字助理、穿戴式设备、遥控器等中的至少一项。
示例性地,可以获取可移动设备1000自动生成的控制指令,并根据控制指令,获取可移动设备1000的运动状态信息。
示例性地,若可移动设备1000的俯仰角度大于或等于第一预设角度,确定第一天线组件101为目标天线组件。若可移动设备1000的横滚角度大于或等于第二预设角度,确定第二天线组件102为目标天线组件。第一预设角度和第二预设角度均可以根据实际需求进行设置。比如,第一预设角度为10度等。
示例性地,若可移动设备1000在可移动设备1000的机头方向的速度值大于或等于第一预设速度阈值,确定第一天线组件101为目标天线组件。若可移动设备1000在垂直于可移动设备1000的机头方向的速度值大于或等于第二预设速度阈值,确定第二天线组件102为目标天线组件。第一预设速度阈值和第二速度阈值均可以根据实际需求进行设置,在此不作限制。
在一些实施方式中,可以获取第一天线组件101和第二天线组件102对应的搜星信息。根据可移动设备1000的运动状态信息和所获取的搜星信息,在第一天线组件101和第二天线组件102中确定目标天线组件。
在另一些实施方式中,可以获取第一天线组件101和第二天线组件102对应的导通状态信息。根据可移动设备1000的运动状态信息和所获取的导通状态信息,在第一天线组件101和第二天线组件102中确定目标天线组件。比如,当第一天线组件101的天线主体33内部的电路导通、第二天线组件102的天线主体33内部的电路未导通时,将第一天线组件101确定为目标天线组件。又如,当第一天线组件101的天线主体33内部的电路未导通、第二天线组件102的天线主体33内部的电路导通时,将第二天线组件102确定为目标天线组件。如此,当第一天线组件101和第二天线组件102的其中一者电路不导通时,第一天线组件101和第二天线组件102的另一者能够实现可移动设备1000在运动或者全向飞行时的卫星跟踪,提高可移动设备1000的飞行安全性。即当第一天线组件101和第二天线组件102的一个失效后,第一天线组件101和第二天线组件102的另一个可以实现定位功能。
请结合前述实施例参阅图12,图12是本申请实施例提供的一种可移动设备的控制方法的流程示意图。所述控制方法可应用在可移动设备中,用于在可移动设备的姿态发生变化时在第一天线组件和第二天线组件中确定目标天线组件等过程。
示例性地,可移动设备可以包括无人飞行器、云台、无人驾驶车、无人驾驶船等中的至少一种。进一步而言,飞行器可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。可以理解地,天线组件可以与可移动设备一体设置,也可以是可拆卸连接。
示例性地,所述可移动设备包括第一天线组件和第二天线组件,所述第一天线组件和所述第二天线组件均包括调节结构和天线结构,所述第一天线组件的调节结构能够在所述可移动设备的姿态沿第一方向变化时稳定所述第一天线组件的天线结构,以使得所述第一天线组件的天线结构的最大辐射方向朝向预设方向,所述第二天线组件的调节结构能够在所述可移动设备的姿态沿第二方向变化时稳定所述第二天线组件的天线结构,以使得所述第二天线组件的天线结构的最大辐射方向朝向预设方向。
如图12所示,本申请实施例的可移动设备的控制方法包括步骤S101至步骤S103。
S101、获取所述可移动设备的运动状态信息;
S102、根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件;
S103、根据所述目标天线组件获取到的卫星导航信号计算所述可移动设备的位置信息。
可以理解地,所述控制方法的步骤可以由处理器实现,也可以由多个电子器件搭建的控制电路实现。
在一些实施例中,所述运动状态信息包括姿态信息或速度信息。
在一些实施例中,所述获取所述可移动设备的运动状态信息,包括:获取终端设备发送的可移动设备的控制指令;根据所述控制指令,获取所述可移动设备的运动状态信息。
在一些实施例中,所述获取所述可移动设备的运动状态信息,包括:获取所述可移动设备自动生成的控制指令;根据所述控制指令,获取所述可移动设备的运动状态信息。
在一些实施例中,所述第一方向为俯仰方向,所述第二方向为横滚方向。
在一些实施例中,所述姿态信息包括俯仰角度或横滚角度,所述速度信息包括速度方向和速度值。
在一些实施例中,所述根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件,包括:若所述可移动设备的俯仰角度大于或等于第一预设角度,确定所述第一天线组件为目标天线组件;若所述可移动设备的横滚角度大于或等于第二预设角度,确定所述第二天线组件为目标天线组件。
在一些实施例中,所述根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件,包括:若所述可移动设备在可移动设备的机头方向的速度值大于或等于第一预设速度阈值,确定所述第一天线组件为目标天线组件;若所述可移动设备在垂直于可移动设备的机头方向的速度值大于或等于第二预设速度阈值,确定所述第二天线组件为目标天线组件。
在一些实施例中,所述根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件,包括:获取所述第一天线组件和第二天线组件对应的搜星信息;根据所述可移动设备的运动状态信息和所述搜星信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件。
在一些实施例中,所述根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件,包括:获取所述第一天线组件和第二天线组件对应的导通状态信息;根据所述可移动设备的运动状态信息和所述导通状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件。
本申请实施例提供的控制方法的具体原理和实现方式均与前述实施例的可移动设备类似,此处不再赘述。
请结合上述实施例参阅图13,图13是本申请实施例提供的可移动设备3000的示意性框图。
如前所述,该可移动设备3000包括第一天线组件、第二天线组件、存储器3001和处理器3002,所述第一天线组件和所述第二天线组件均包括调节结构和天线结构,所述第一天线组件的调节结构能够在所述可移动设备的姿态沿第一方向变化时稳定所述第一天线组件的天线结构,以使得所述第一天线组件的天线结构的最大辐射方向朝向预设方向,所述第二天线组件的调节结构能够在所述可移动设备的姿态沿第二方向变化时稳定所述第二天线组件的天线结构,以 使得所述第二天线组件的天线结构的最大辐射方向朝向预设方向。
具体地,如图13所示,存储器3001用于存储程序代码。所述处理器3002调用所述程序代码,当程序代码被执行时,用于执行以前述可移动设备的控制方法的步骤。
示例性地,存储器3001和处理器3002通过总线3003连接,该总线3003比如为I2C(Inter-integrated Circuit)总线。
具体地,存储器3001可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
具体地,处理器3002可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
其中,所述处理器3002用于运行存储在存储器3001中的计算机程序,并在执行所述计算机程序时实现前述的可移动设备的控制方法。
示例性地,所述处理器3002用于运行存储在存储器3001中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取所述可移动设备的运动状态信息;
根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件;
根据所述目标天线组件获取到的卫星导航信号计算所述可移动设备的位置信息。
本申请实施例提供的可移动设备的具体原理和实现方式均与前述实施例的可移动设备类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的可移动设备的控制方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的可移动设备的内部存储单元,例如所述可移动设备的硬盘或内存。所述计算机可读存储介质也可以是所述可移动设备的外部存储设备,例如所述可移动设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
应当理解,在此本申请中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (44)

  1. 一种天线组件,应用于可移动设备,其特征在于,所述天线组件包括底座、调节结构和天线结构;
    所述调节结构包括转动组件,所述转动组件与所述底座转动连接,并与所述天线结构固定连接,所述转动组件包括配重件,所述可移动设备姿态变化的过程中,所述配重件能够在重力作用下带动所述天线结构转动,以使得所述天线结构的最大辐射方向朝向预设方向。
  2. 根据权利要求1所述的天线组件,其特征在于,所述预设方向与天顶方向的夹角小于预设夹角阈值。
  3. 根据权利要求1所述的天线组件,其特征在于,所述预设方向根据所述可移动设备的位置、定位卫星的分布情况中的至少一者进行确定。
  4. 根据权利要求1所述的天线组件,其特征在于,所述调节结构还包括:
    固定部,所述固定部与所述底座连接,并与所述转动组件转动连接。
  5. 根据权利要求4所述的天线组件,其特征在于,所述底座包括:
    座体;
    安装部,设于所述座体上,所述安装部与所述固定部连接。
  6. 根据权利要求5所述的天线组件,其特征在于,所述安装部朝向所述天线结构的一端设有凹陷槽,所述凹陷槽与所述固定部卡合配合。
  7. 根据权利要求5所述的天线组件,其特征在于,所述转动组件包括转轴,所述天线结构能够绕所述转轴旋转;所述安装部的数量和所述固定部的数量均为两个,两个所述安装部沿所述转轴的轴向间隔设置。
  8. 根据权利要求4所述的天线组件,其特征在于,所述转动组件还包括:
    转动件,所述天线结构和所述配重件均与所述转动件连接,所述转动件与所述固定部形成环形间隙;
    活动件,所述活动件活动设于所述环形间隙内;所述可移动设备姿态变化的过程中,所述配重件能够在重力作用下带动所述转动件相对所述固定部转动。
  9. 根据权利要求8所述的天线组件,其特征在于,所述天线结构和所述配重件分别设于所述转动件的相对两侧。
  10. 根据权利要求8所述的天线组件,其特征在于,所述转动件包括:
    转轴,所述转轴的中部与所述配重件固定连接;
    第一连接部,设于所述转轴上,并与所述天线结构连接;
    配合部,设于所述转轴的端部,所述配合部通过所述活动件与所述固定部转动连接。
  11. 根据权利要求10所述的天线组件,其特征在于,所述第一连接部的数量为两个,两个所述第一连接部沿所述转轴的轴向间隔设置。
  12. 根据权利要求10所述的天线组件,其特征在于,所述天线结构上设有第二连接部,所述第一连接部通过锁固件与所述第二连接部连接,从而锁固所述天线结构和所述转动组件。
  13. 根据权利要求10所述的天线组件,其特征在于,所述环形间隙的圆心与所述配合部的圆心重合。
  14. 根据权利要求10所述的天线组件,其特征在于,所述固定部间隔套设于所述配合部的外部,所述固定部与所述配合部同心设置。
  15. 根据权利要求10所述的天线组件,其特征在于,所述活动件包括多个钢珠。
  16. 根据权利要求15所述的天线组件,其特征在于,多个所述钢珠沿所述配合部的周向间隔设置。
  17. 根据权利要求8所述的天线组件,其特征在于,所述配重件包括:
    配重连接部,与所述转动件连接;
    配重部,连接于所述配重连接部远离所述转动件的一端。
  18. 根据权利要求17所述的天线组件,其特征在于,所述配重部的外周尺寸大于所述配重连接部的周向尺寸。
  19. 根据权利要求17所述的天线组件,其特征在于,所述配重件和所述转动件为一体结构。
  20. 根据权利要求1-19任一项所述的天线组件,其特征在于,所述天线结构包括:
    壳体,与所述调节结构连接;
    天线主体,至少部分所述天线主体设于所述壳体内。
  21. 根据权利要求20所述的天线组件,其特征在于,所述壳体包括:
    第一壳部,与所述调节结构连接;
    第二壳部,与所述第一壳部配合形成收容至少部分所述天线主体的收容空间。
  22. 根据权利要求21所述的天线组件,其特征在于,所述天线主体包括:
    电路板,设于所述壳体内;
    辐射部,设于所述壳体内并与所述电路板电连接;
    馈线,与所述电路板电连接,部分所述馈线设于所述壳体外。
  23. 一种可移动设备,其特征在于,包括:
    机身;
    权利要求1-22任一项所述的天线组件,设于所述机身上。
  24. 根据权利要求23所述的可移动设备,其特征在于,所述可移动设备包括以下至少一种:无人飞行器、无人驾驶车、无人驾驶船或机器人。
  25. 根据权利要求23所述的可移动设备,其特征在于,所述机身包括:
    中心架;
    机臂,与所述中心架连接,所述天线组件设于所述机臂上。
  26. 根据权利要求25所述的可移动设备,其特征在于,所述天线组件设于所述机臂远离所述中心架的一端。
  27. 根据权利要求25所述的可移动设备,其特征在于,所述天线组件包括第一天线组件和第二天线组件,所述机臂包括第一机臂和第二机臂,所述第一天线组件和第二天线组件分别设于所述第一机臂和第二机臂上。
  28. 根据权利要求27所述的可移动设备,其特征在于,所述第一机臂和第二机臂相邻设置。
  29. 根据权利要求27所述的可移动设备,其特征在于,所述第一天线组件的转轴和第二天线组件的转轴相互垂直。
  30. 根据权利要求29所述的可移动设备,其特征在于,所述第一天线组件的转轴与所述可移动设备的机头方向垂直,所述第二天线组件的转轴与所述可移动设备的机头方向平行。
  31. 根据权利要求27所述的可移动设备,其特征在于,所述第一天线组件的调节结构能够在所述可移动设备的姿态沿第一方向变化时稳定所述第一天线组件的天线结构,以使得所述第一天线组件的天线结构的最大辐射方向朝向预 设方向,所述第二天线组件的调节结构能够在所述可移动设备的姿态沿第二方向变化时稳定所述第二天线组件的天线结构,以使得所述第二天线组件的天线结构的最大辐射方向朝向预设方向。
  32. 根据权利要求31所述的可移动设备,其特征在于,所述第一方向为俯仰方向,所述第二方向为横滚方向。
  33. 一种可移动设备的控制方法,其特征在于,所述可移动设备包括第一天线组件和第二天线组件,所述第一天线组件和所述第二天线组件均包括调节结构和天线结构,所述第一天线组件的调节结构能够在所述可移动设备的姿态沿第一方向变化时稳定所述第一天线组件的天线结构,以使得所述第一天线组件的天线结构的最大辐射方向朝向预设方向,所述第二天线组件的调节结构能够在所述可移动设备的姿态沿第二方向变化时稳定所述第二天线组件的天线结构,以使得所述第二天线组件的天线结构的最大辐射方向朝向预设方向,所述方法包括:
    获取所述可移动设备的运动状态信息;
    根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件;
    根据所述目标天线组件获取到的卫星导航信号计算所述可移动设备的位置信息。
  34. 根据权利要求33所述的控制方法,其特征在于,所述运动状态信息包括姿态信息或速度信息。
  35. 根据权利要求34所述的控制方法,其特征在于,所述获取所述可移动设备的运动状态信息,包括:
    获取终端设备发送的可移动设备的控制指令;
    根据所述控制指令,获取所述可移动设备的运动状态信息。
  36. 根据权利要求34所述的控制方法,其特征在于,所述获取所述可移动设备的运动状态信息,包括:
    获取所述可移动设备自动生成的控制指令;
    根据所述控制指令,获取所述可移动设备的运动状态信息。
  37. 根据权利要求34所述的控制方法,其特征在于,所述第一方向为俯仰方向,所述第二方向为横滚方向。
  38. 根据权利要求37所述的控制方法,其特征在于,所述姿态信息包括俯仰角度或横滚角度,所述速度信息包括速度方向和速度值。
  39. 根据权利要求38所述的控制方法,其特征在于,所述根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件,包括:
    若所述可移动设备的俯仰角度大于或等于第一预设角度,确定所述第一天线组件为目标天线组件;
    若所述可移动设备的横滚角度大于或等于第二预设角度,确定所述第二天线组件为目标天线组件。
  40. 根据权利要求38所述的控制方法,其特征在于,所述根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件,包括:
    若所述可移动设备在可移动设备的机头方向的速度值大于或等于第一预设速度阈值,确定所述第一天线组件为目标天线组件;
    若所述可移动设备在垂直于可移动设备的机头方向的速度值大于或等于第二预设速度阈值,确定所述第二天线组件为目标天线组件。
  41. 根据权利要求33-40任一项所述的控制方法,其特征在于,所述根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件,包括:
    获取所述第一天线组件和第二天线组件对应的搜星信息;
    根据所述可移动设备的运动状态信息和所述搜星信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件。
  42. 根据权利要求33-40任一项所述的控制方法,其特征在于,所述根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件,包括:
    获取所述第一天线组件和第二天线组件对应的导通状态信息;
    根据所述可移动设备的运动状态信息和所述导通状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件。
  43. 一种可移动设备,其特征在于,所述可移动设备包括第一天线组件、第二天线组件、存储器和处理器,所述第一天线组件和所述第二天线组件均包 括调节结构和天线结构,所述第一天线组件的调节结构能够在所述可移动设备的姿态沿第一方向变化时稳定所述第一天线组件的天线结构,以使得所述第一天线组件的天线结构的最大辐射方向朝向预设方向,所述第二天线组件的调节结构能够在所述可移动设备的姿态沿第二方向变化时稳定所述第二天线组件的天线结构,以使得所述第二天线组件的天线结构的最大辐射方向朝向预设方向;
    所述存储器用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下步骤:
    获取所述可移动设备的运动状态信息;
    根据所述可移动设备的运动状态信息,在所述第一天线组件和所述第二天线组件中确定目标天线组件;
    根据所述目标天线组件获取到的卫星导航信号计算所述可移动设备的位置信息。
  44. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求33-42中任一项所述的控制方法。
PCT/CN2020/124956 2020-10-29 2020-10-29 天线组件、可移动设备、可移动设备的控制方法和存储介质 WO2022087992A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/124956 WO2022087992A1 (zh) 2020-10-29 2020-10-29 天线组件、可移动设备、可移动设备的控制方法和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/124956 WO2022087992A1 (zh) 2020-10-29 2020-10-29 天线组件、可移动设备、可移动设备的控制方法和存储介质

Publications (1)

Publication Number Publication Date
WO2022087992A1 true WO2022087992A1 (zh) 2022-05-05

Family

ID=81381741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124956 WO2022087992A1 (zh) 2020-10-29 2020-10-29 天线组件、可移动设备、可移动设备的控制方法和存储介质

Country Status (1)

Country Link
WO (1) WO2022087992A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244611A (ja) * 2004-02-26 2005-09-08 Mitsubishi Electric Corp アンテナマウント
TWM353491U (en) * 2008-05-16 2009-03-21 Hsin-Chi Su Antenna stabilizer
CN203232950U (zh) * 2013-01-10 2013-10-09 江苏省电力公司电力科学研究院 天线座伺服配重装置
EP2650962A1 (en) * 2012-04-12 2013-10-16 Satcube AB Antenna support system
CN103579736A (zh) * 2013-10-14 2014-02-12 嘉兴职业技术学院 一种船载天线的随动跟踪装置
CN207834556U (zh) * 2018-03-07 2018-09-07 彼乐实业(广州)有限公司 一种船岸一体双向通讯装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244611A (ja) * 2004-02-26 2005-09-08 Mitsubishi Electric Corp アンテナマウント
TWM353491U (en) * 2008-05-16 2009-03-21 Hsin-Chi Su Antenna stabilizer
EP2650962A1 (en) * 2012-04-12 2013-10-16 Satcube AB Antenna support system
CN203232950U (zh) * 2013-01-10 2013-10-09 江苏省电力公司电力科学研究院 天线座伺服配重装置
CN103579736A (zh) * 2013-10-14 2014-02-12 嘉兴职业技术学院 一种船载天线的随动跟踪装置
CN207834556U (zh) * 2018-03-07 2018-09-07 彼乐实业(广州)有限公司 一种船岸一体双向通讯装置

Similar Documents

Publication Publication Date Title
US20200295455A1 (en) Mechanically steered and horizontally polarized antenna for aerial vehicles, and associated systems and methods
US10989807B2 (en) Autonomous airborne vehicle controlled by millimeter wave radar
CN109478068B (zh) 动态地控制运载工具的方法、装置和存储介质
US7095376B1 (en) System and method for pointing and control of an antenna
US20220348316A1 (en) System and method for landing a mobile platform via a magnetic field
US6016120A (en) Method and apparatus for automatically aiming an antenna to a distant location
US20190196474A1 (en) Control method, control apparatus, control device, and movable platform
US20210044005A1 (en) Antenna system for unmanned aerial vehicle
CN108475076A (zh) 天线对准方法和地面控制端
KR20070100242A (ko) 이중 동작 모드를 구비한 안테나 위치설정기 시스템
WO2018133066A1 (zh) 二维天线系统、用于定位目标的方法和设备
WO2021087701A1 (zh) 起伏地面的地形预测方法、装置、雷达、无人机和作业控制方法
US11754657B2 (en) Unmanned aerial vehicle as well as direction finding system
US10162410B1 (en) Head tracker for dismounted users
WO2018125285A1 (en) Characterizing antenna patterns
WO2022087992A1 (zh) 天线组件、可移动设备、可移动设备的控制方法和存储介质
US9105961B2 (en) Low profile, wideband GNSS dual frequency antenna structure
CN213800154U (zh) 天线组件及无人飞行器
WO2021230102A1 (ja) 情報処理装置および情報処理方法
US20200381820A1 (en) Antenna device, antenna control method, and program
KR102196398B1 (ko) Gps 안테나가 장착된 덮개를 가진 드론
WO2021106287A1 (ja) システム、通信制御装置、プログラム、及び制御方法
CN106797070B (zh) 可移动装置
JP2022135374A (ja) 移動体
JPS60163504A (ja) 移動体用衛星通信アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959155

Country of ref document: EP

Kind code of ref document: A1