WO2018133066A1 - 二维天线系统、用于定位目标的方法和设备 - Google Patents

二维天线系统、用于定位目标的方法和设备 Download PDF

Info

Publication number
WO2018133066A1
WO2018133066A1 PCT/CN2017/072052 CN2017072052W WO2018133066A1 WO 2018133066 A1 WO2018133066 A1 WO 2018133066A1 CN 2017072052 W CN2017072052 W CN 2017072052W WO 2018133066 A1 WO2018133066 A1 WO 2018133066A1
Authority
WO
WIPO (PCT)
Prior art keywords
circularly polarized
antenna
target
wave
rotation
Prior art date
Application number
PCT/CN2017/072052
Other languages
English (en)
French (fr)
Inventor
邹夏英
彭学明
古强
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/072052 priority Critical patent/WO2018133066A1/zh
Priority to CN201780000099.7A priority patent/CN107004961B/zh
Publication of WO2018133066A1 publication Critical patent/WO2018133066A1/zh
Priority to US16/517,248 priority patent/US11380995B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the embodiments of the present invention relate to the field of microwave technologies, and in particular, to a two-dimensional antenna system, a method and a device for positioning a target.
  • UAV Unmanned Aerial Vehicle
  • UAV plant protection UAV aerial photography
  • UAV forest fire alarm monitoring UAV forest fire alarm monitoring
  • civilization is also the future development trend of UAV.
  • the present application provides a two-dimensional antenna system, a method and apparatus for locating a target, which can be applied to an aircraft, has a simple structure and low cost, and can realize two-dimensional detection of an azimuth and a pitch angle of a target.
  • a first aspect provides a two-dimensional antenna system comprising a transmit antenna array and a receive antenna array, the transmit antenna array comprising at least one first-rotation circularly-polarized transmit antenna; the receive antenna array comprising at least two a first circularly-oriented first circularly polarized receiving antenna arranged in a first direction and at least two second-rotating second circularly polarized receiving antennas arranged in a second direction, wherein the first direction Vertical to the second direction, the first direction of rotation is opposite to the second direction of rotation.
  • a second aspect provides a method for locating a target, comprising: transmitting a probe wave through at least one first-rotating circularly-polarized transmit antenna; and passing through at least two second-rotating first-orders arranged in a first direction a circularly polarized receiving antenna receiving at least two first echoes of the detected wave; receiving the detected wave by at least two second circularly polarized receiving antennas arranged in a second direction At least two second echoes, wherein the first direction is perpendicular to the second direction, the first direction of rotation is opposite to the second direction of rotation; according to the phase of the at least two first echoes a difference between the difference and the at least two first circularly polarized receiving antennas, determining a pitch angle of the target; a phase difference according to the at least two second echoes and the at least two second circular poles The spacing between the receiving antennas is determined to determine the azimuth of the target.
  • a third aspect provides an apparatus for locating a target, comprising a transmit antenna array, a receive antenna array, and at least one processor, the transmit antenna array comprising: at least one first direction-turned circle for transmitting a probe wave a polarized transmitting antenna;
  • the receiving antenna array includes: at least two first circularly polarized receiving antennas, and the at least two first circularly polarized receiving antennas are at least two firsts for receiving the detected waves a second directional antenna arranged in a first direction; at least two second circularly polarized receiving antennas, the at least two second circularly polarized receiving antennas being at least two beams for receiving the detected waves a second-rotating antenna of the second echo, arranged in a second direction, wherein the first direction is perpendicular to the second direction, the first direction of rotation is opposite to the second direction of rotation;
  • At least one processor configured to: determine a pitch angle of the target according to a phase difference between the at least two first echoes and a spacing between the at least two first circularly
  • the detection wave is transmitted through the circularly polarized transmitting antenna array, and the echo is received by the circularly polarized receiving antenna array arranged perpendicularly to each other, so that the two-dimensional detection of the azimuth and the elevation angle of the target can be realized.
  • the obstacle avoidance of the aircraft provides reference information.
  • a fourth aspect provides a method for locating a target, comprising: first detecting a first circularly polarized transmitting antenna and a second circularly polarized transmitting antenna in a first direction by a first direction And a second detecting wave having a first phase difference between the first detecting wave and the second detecting wave; a first circularly polarized receiving antenna and a second rotating body arranged in a second direction
  • the two circularly polarized receiving antennas respectively receive the first echo and the second echo of the first detecting wave, wherein the first direction is perpendicular to the second direction, the first direction of rotation and the first a second rotation opposite; receiving, by the first circularly polarized receiving antenna, a third echo of the second detection wave, the first echo and the third echo having a second phase difference; a phase difference between the first echo and the second echo and a spacing between the first circularly polarized receiving antenna and the second circularly polarized receiving antenna to determine an azimuth of the target; A first phase difference, the second phase difference, and
  • a fifth aspect provides an apparatus for locating a target, comprising: a transmit antenna array, a receive antenna array, and at least one processor, the transmit antenna array comprising: a first circularly polarized transmit antenna, the first circular polarization
  • the transmitting antenna is a first rotating antenna for transmitting a first detecting wave, a second circularly polarized transmitting antenna, and the second circularly polarized transmitting antenna is a first rotating antenna for transmitting a second detecting wave
  • the first circularly polarized transmitting antenna and the second circularly polarized transmitting antenna are arranged in a first direction, and the first detecting wave and the second detecting wave have a first phase difference;
  • the receiving antenna array includes: a first circularly polarized receiving antenna, the first circularly polarized receiving antenna is configured to receive a first echo of the first detecting wave and is a second rotating antenna, the first The circularly polarized receiving antenna is further configured to receive a third echo of the second detecting wave, wherein the first echo and the third echo
  • the probe wave is transmitted by the plurality of circularly polarized transmitting antennas, and the circularly polarized receiving antenna perpendicular to the arrangement of the plurality of circularly polarized transmitting antennas receives the echo, so that the orientation of the target can be achieved.
  • Two-dimensional detection of angular and elevation angles provides reference information for aircraft obstacle avoidance.
  • FIG. 1 is a schematic architectural diagram of an unmanned flight system in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a two-dimensional antenna system in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a method for locating a target in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of determining a pitch angle by a two-channel angle measurement method according to an embodiment of the present invention.
  • Figure 5 is a schematic illustration of the determination of azimuth by a two-channel angle measurement method in accordance with one embodiment of the present invention.
  • Figure 6 is a schematic block diagram of an apparatus for locating a target in accordance with one embodiment of the present invention.
  • Figure 7 is a schematic illustration of a two dimensional antenna system in accordance with another embodiment of the present invention.
  • Figure 8 is a schematic illustration of a method for locating a target in accordance with another embodiment of the present invention.
  • Figure 9 is a schematic illustration of determining a pitch angle in accordance with another embodiment of the present invention.
  • Figure 10 is a schematic block diagram of an apparatus for locating a target in accordance with another embodiment of the present invention.
  • FIG. 1 is a schematic architectural diagram of an unmanned aerial flight system 100 in accordance with one embodiment of the present invention. This embodiment is described by taking a rotorcraft as an example.
  • the unmanned flight system 100 can include a UAV 110, a pan/tilt head 120, a display device 130, and a control device 140.
  • the UAV 110 can include a power assembly 150, a flight controller 160, and a sensing system 170.
  • the UAV 110 can communicate wirelessly with the control device 140 and the display device 130.
  • the UAV 110 includes a frame that can include a fuselage and a stand (also known as a landing gear).
  • the fuselage may include a center frame and one or more arms coupled to the center frame, the one or more arms extending radially from the center frame.
  • the stand is attached to the fuselage for supporting the landing of the UAV 110.
  • the power assembly 150 can include an electronic governor (referred to as ESC) 151, one or more rotors 153, and one or more motors 152 corresponding to one or more rotors 153, wherein the motor 152 is coupled to the ESC 151 and Between the rotors 153, the motor 152 and the rotor 153 are disposed on the corresponding arm; the ESC 151 is configured to receive the driving signal generated by the flight controller 160, and provide a driving current to the motor 152 according to the driving signal to control the rotation speed of the motor 152. .
  • Motor 152 is used to drive the rotation of the rotor to power the flight of UAV 110, which enables UAV 110 to achieve one or more degrees of freedom of motion.
  • the UAV 110 can be rotated about one or more axes of rotation.
  • the above-described rotating shaft may include a roll axis, a pan axis, and a pitch axis.
  • the motor 152 can be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brush motor.
  • the sensing system 170 is used to measure the attitude information of the UAV, that is, the position information and state information of the UAV 110 in space, for example, three-dimensional position, three-dimensional angle, three-dimensional speed, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system 170 may include, for example, at least one of a gyroscope, an electronic compass, an Inertial Measurement Unit (IMU), a vision sensor, a Global Positioning System (GPS), and a barometer.
  • IMU Inertial Measurement Unit
  • GPS Global Positioning System
  • the flight controller 160 is used to control the flight of the UAV 110, for example, the flight of the UAV 110 can be controlled based on the attitude information measured by the sensing system 170. It should be understood that flight controller 160 may control UAV 110 in accordance with pre-programmed program instructions, or may control UAV 110 in response to one or more control commands from control device 140.
  • the pan/tilt 120 can include an ESC 121 and a motor 122.
  • the pan/tilt 120 can be used to carry the load 123.
  • the load 123 may include a camera module (eg, a camera module, a camera module, etc.), embodiments of the invention are not limited thereto, for example, the pan/tilt may also be used to carry a weapon or other load carrying device.
  • the flight controller 160 can control the motion of the platform 120 through the ESC 121 and the motor 122.
  • the platform 120 may further include a control module for controlling the movement of the platform 120 by controlling the ESC 121 and the motor 122.
  • pan/tilt 120 may be independent of the UAV 110 or may be part of the UAV 110. It should be understood that the motor 122 can be a DC motor or an AC motor. In addition, the motor 122 may be a brushless motor or a brush motor. It should also be understood that the pan/tilt can be located at the top of the aircraft or at the bottom of the aircraft.
  • Display device 130 is located at the ground end of unmanned flight system 100 and can communicate with UAV 110 wirelessly and can be used to display gesture information for UAV 110.
  • the load 123 is a photographing device
  • an image photographed by the photographing device can also be displayed on the display device 130.
  • display device 130 may be a standalone device or may be disposed in control device 140.
  • the control device 140 is located at the ground end of the unmanned flight system 100 and can communicate with the UAV 110 wirelessly for remote control of the UAV 110.
  • the control device may be, for example, a remote controller or a terminal device installed with an application (APP) that controls the UAV, such as a smartphone, a tablet, or the like.
  • APP application
  • receiving the input of the user by the control device may refer to the user interface (UI) on the input device of the puller, the button, the button, the joystick, or the like on the remote controller. control.
  • Embodiments of the present invention provide a two-dimensional antenna system, which can be applied to fly
  • the traversing device particularly an unmanned aerial vehicle, is located at the top of the aircraft (eg, at the top of the UAV 110) or elsewhere for positioning the aircraft.
  • 2 is a schematic diagram of a two-dimensional antenna system 200 in accordance with one embodiment of the present invention.
  • the two-dimensional antenna system 200 can include a transmit antenna array 210 and a receive antenna array 220.
  • the transmit antenna array 210 includes at least one first-rotation circularly-polarized transmit antenna;
  • the receive antenna array 220 includes at least two first-rotated first circularly-polarized receive antennas arranged in a first direction and at least two buttons a second, second, circularly polarized receiving antenna arranged in a second direction, wherein the first direction is perpendicular to the second direction, and the first direction of rotation is opposite to the second direction of rotation.
  • the two-dimensional antenna system of the embodiment of the invention can be applied to an aircraft, and has a simple structure and low cost.
  • circularly polarized receiving antennas arranged vertically with each other two-dimensional detection of the azimuth and elevation angles of the target can be realized.
  • the obstacle avoidance of the aircraft provides reference information.
  • the transmitting antenna array 210 is configured to transmit a detecting wave, and the detecting wave forms an echo after being reflected by the target. Since the electromagnetic wave emitted by the circularly polarized transmitting antenna has a direction of rotation, the direction of the electromagnetic wave after the single reflection of the target is reversed, and it is required to rotate to the opposite circularly polarized receiving antenna for reception. Therefore, the embodiment of the present invention utilizes the above characteristics of the circularly polarized antenna, and the transmitting antenna and the receiving antenna adopt oppositely rotated antennas, which can increase the isolation between the antennas, and can effectively improve the signal-to-noise ratio of the received echo signals.
  • the first direction of rotation is left-handed and the second direction of rotation is right-handed; or, as another embodiment, the first direction of rotation is right-handed and the second direction of rotation is left-handed.
  • the transmitting antenna array 210 may include at least two circularly polarized transmitting antennas, and the at least two circularly polarized transmitting antennas are in accordance with the Arranging in one direction for adjusting the orientation of the probe wave emitted by the circularly polarized transmitting antenna in the first direction.
  • the beam direction of the probe wave can be controlled by adjusting the excitation phase of each antenna (or antenna unit) to suit the attitude of the aircraft.
  • the first direction may be a vertical direction and the second direction may be a horizontal direction.
  • At least two circularly polarized transmitting antennas are arranged in a vertical direction for adjusting the direction of the detection wave emitted by the circularly polarized transmitting antenna in the vertical direction.
  • the so-called vertical direction should be an approximate direction of gravity, especially when the aircraft is flying horizontally, the arrangement direction of at least two first circularly-polarized receiving antennas is an approximate direction of gravity.
  • the transmit antenna array 210 includes two circularly polarized transmit antennas, a circularly polarized transmit antenna 212 and a circularly polarized transmit antenna 214 arranged in a vertical direction.
  • Receiving day The line array 220 includes two first circularly polarized receiving antennas arranged in a vertical direction, a first circularly polarized receiving antenna 222 and a first circularly polarized receiving antenna 224, and two second circular poles arranged in a horizontal direction.
  • the receiving antenna, the second circularly polarized receiving antenna 226 and the second circularly polarized receiving antenna 228 are examples of the receive antennas.
  • the number of the circularly polarized transmitting antenna, the first circularly polarized receiving antenna, and the second circularly polarized receiving antenna in FIG. 2 is only illustrative, and the circularly polarized transmitting antenna may be one or more than two.
  • the first circularly polarized receiving antenna and the second circularly polarized receiving antenna may each have more than two, which are not limited in this embodiment of the present invention.
  • each antenna may be determined according to the scanning range and power.
  • the specific structures of the antenna are not limited in the embodiments of the present invention.
  • FIG. 3 is a schematic flow diagram of a method 300 for locating a target in accordance with an embodiment of the present invention.
  • the method 300 can be a two-dimensional antenna system 200 based on an embodiment of the invention, which can include the following steps.
  • the second circularly polarized receiving antenna receives at least two second echoes of the detected wave. That is, the echoes of the probe waves are respectively received by the first circularly polarized receive antenna and the second circularly polarized receive antenna of the receive antenna array 220.
  • the first direction is perpendicular to the second direction, and the first direction of rotation is opposite to the second direction of rotation.
  • S340 Determine an azimuth of the target according to a phase difference between the at least two second echoes and a spacing between the at least two second circularly polarized receiving antennas.
  • a probe wave is transmitted through a circularly polarized transmitting antenna, and an echo is received by a circularly polarized receiving antenna arranged perpendicularly to each other, so that two-dimensional detection of azimuth and elevation angle of the target can be realized.
  • a circularly polarized transmitting antenna arranged perpendicularly to each other, so that two-dimensional detection of azimuth and elevation angle of the target can be realized.
  • the first direction of rotation is left-handed and the second direction of rotation is right-handed; or, alternatively, as another embodiment, the first direction of rotation is right-handed and the second direction of rotation is left-handed.
  • S310 transmits by at least one circular polarization of the first direction
  • the transmitting the probe wave by the antenna may include: transmitting the probe wave through at least two circularly polarized transmit antennas arranged in the first direction.
  • more than one circularly polarized transmitting antenna is deployed in order to make the beam of the detected detecting wave have a certain width, and it is easier to implement scanning.
  • the first direction may be a vertical direction
  • at least two circular poles arranged in the first direction Transmitting the detection wave by the transmitting antenna may include: adjusting the pointing of the detecting wave in the pitch direction by at least two circularly polarized transmitting antennas arranged in a vertical direction.
  • the beam direction of the probe wave can be controlled by adjusting the excitation phase of each antenna (or antenna unit) to suit the attitude of the aircraft.
  • S330 determines a pitch angle of the target according to a phase difference between the at least two first echoes and a spacing between the at least two first circularly polarized receiving antennas, and may include: according to at least two beams a phase difference between the first echo and a spacing between the at least two first circularly polarized receiving antennas, determining a pitch angle of the target by a two-channel angle measurement method; S340 according to a phase difference of at least two second echoes and at least two The spacing between the second circularly polarized receiving antennas and determining the azimuth of the target may include: passing the phase difference between the at least two second echoes and the spacing between the at least two second circularly polarized receiving antennas The two-channel angle measurement method determines the azimuth of the target.
  • a specific method of determining the pitch angle and azimuth of the target by the two-channel angle measurement method will be exemplified below.
  • the pitch angle and/or the azimuth angle of the target may be determined by a method such as a digital beam forming (DBF) method, which is not limited in the embodiment of the present invention.
  • DBF digital beam forming
  • the transmit antenna array 210 includes a circularly polarized transmit antenna 212 and a circularly polarized transmit antenna 214 arranged in a vertical direction for transmitting probe waves.
  • the receiving antenna array 220 includes two first circularly polarized receiving antennas 222 and a first circularly polarized receiving antenna 224 arranged in a vertical direction, and two first beams of the detecting waves are received by the two first circularly polarized receiving antennas.
  • the receiving antenna array 220 further includes two second circularly polarized receiving antennas 226 and a second circularly polarized receiving antenna 228 arranged in a horizontal direction, and two of the detecting waves are received by the two second circularly polarized receiving antennas. The second echo of the bundle.
  • FIG. 4 is a schematic diagram of determining a pitch angle by a two-channel angle measurement method according to an embodiment of the present invention.
  • the first circularly polarized receiving antenna 222 and the spacing between the first circularly polarized receiving antenna 224 is d 1
  • the first circular polarization and a first receiving antenna 222 receives circularly polarized received antennas 224
  • the phase difference between the two first echoes is
  • the pitch angle of the target is ⁇ 1 .
  • the pitch angle ⁇ 1 of the target can be determined according to the following formula:
  • is the wavelength of the probe wave.
  • FIG. 5 is a schematic illustration of the determination of azimuth by a two-channel angle measurement method in accordance with one embodiment of the present invention.
  • the spacing between the second circularly polarized receiving antenna 226 and the second circularly polarized receiving antenna 228 is d 2
  • the second circularly polarized receiving antenna 226 and the second circularly polarized receiving antenna 228 receive
  • the phase difference between the two second echoes is
  • the azimuth of the target is ⁇ 2 .
  • the azimuth angle ⁇ 2 of the target can be determined according to the following formula:
  • is the wavelength of the probe wave.
  • the receiving antenna array 220 includes more first circularly polarized receiving antennas, multiple pitch angles may be obtained according to the first echo received by each of the two first circularly polarized receiving antennas, and the pitch angles are calculated. Average or weighted average.
  • the receiving antenna array 220 includes more second circularly polarized receiving antennas, a plurality of azimuth angles can be obtained according to the second echo received by each of the two second circularly polarized receiving antennas, and the azimuth angles are calculated. Average or weighted average.
  • the echo received by the first circularly polarized receiving antenna is referred to as a first echo
  • the echo received by the second circularly polarized receiving antenna is referred to as a second echo, instead of being implemented in the present invention.
  • the method 300 may further include: determining a distance of the target according to the detection wave, and at least one of the at least two first echoes and the at least two second echoes; according to the elevation angle , azimuth and distance, get the location information of the target.
  • determining the distance of the target may be calculated by a Frequency Modulated Continuous Wave (FMCW) ranging principle.
  • the principle is a detection wave that changes the frequency of the target (which can be changed continuously or stepwise, linearly or nonlinearly), for example, it can be a high-frequency continuous wave whose frequency changes with time according to the law of the triangular wave; the frequency and detection of the received echo
  • the wave has the same frequency variation law and is a triangular wave law. There is only a delay, and the distance between the targets can be calculated by using this small time difference.
  • linear FMCW radar ranging a simple method is to mix the echo and the probe wave to obtain an intermediate frequency (IF) signal. Each IF frequency corresponds to a time difference, and the distance of the target can be calculated by the time difference.
  • IF intermediate frequency
  • the spherical coordinates of the pitch angle, the azimuth angle and the distance can determine the position information of the target.
  • the spherical coordinates formed by the pitch angle, the azimuth angle, and the distance are converted into rectangular coordinates to obtain position information of the target.
  • the method 300 may be performed periodically to obtain a plurality of location information for the targets within the plurality of cycles so that the target can be tracked.
  • FIG. 6 is a schematic block diagram of an apparatus 600 for locating a target in accordance with one embodiment of the present invention.
  • Apparatus 600 can include a transmit antenna array 610, a receive antenna array 620, and at least one processor 630.
  • the transmit antenna array 610 can include a circularly polarized transmit antenna for transmitting at least one first direction of the probe wave.
  • the receiving antenna array 620 may include at least two first circularly polarized receiving antennas, and at least two first circularly polarized receiving antennas are second in a first direction for receiving at least two first echoes of the detecting wave.
  • the at least one processor 630 is configured to: determine a pitch angle of the target according to a phase difference between the at least two first echoes and a spacing between the at least two first circularly polarized receiving antennas; according to at least two second echoes The phase difference and the spacing between at least two second circularly polarized receiving antennas determine the azimuth of the target.
  • the device for locating a target transmits a probe wave through a circularly polarized transmit antenna array, and receives an echo through a circularly polarized receive antenna arranged perpendicularly to each other, thereby realizing a two-dimensional azimuth and elevation angle of the target. Detection, providing reference information for the obstacle avoidance of the aircraft.
  • the transmit antenna array 610 can correspond to the transmit antenna array 210 of the two-dimensional antenna system 200
  • the receive antenna array 620 can correspond to the receive antenna array 220 of the two-dimensional antenna system 200.
  • At least one processor 630 can work together or separately.
  • the at least one processor 630 can include a radio frequency module and a computing module.
  • a calculation module is used to calculate the azimuth and elevation angles; the radio frequency module may in turn include a transmitter for generating a probe wave; and a receiver for demodulating the echo.
  • the device 600 of the embodiment of the present invention may be carried on an unmanned aerial vehicle; the radio frequency module of the transmit antenna array 610, the receive antenna array 620, and the at least one processor 630 may be carried on the unmanned aerial vehicle, and the at least one processor
  • the calculation module of the 630 is disposed at the ground end, which is not limited by the embodiment of the present invention.
  • Each of the transmit antennas of the transmit antenna array 610 can be individually associated with one transmit
  • the launcher can also have multiple transmit antennas corresponding to the same transmitter.
  • each receiving antenna of the receiving antenna array 620 may correspond to one receiver separately, or multiple receiving antennas may jointly correspond to the same receiver.
  • the number of the transmitter and the receiver and the deployment manner are not limited in the embodiment of the present invention.
  • the transmit antenna array may include at least two circularly polarized transmit antennas arranged in a first direction.
  • the first direction may be a vertical direction
  • the transmitting antenna array may be specifically used to: pass at least two A circularly polarized transmitting antenna arranged in a vertical direction adjusts the direction of the probe wave in the pitch direction.
  • the beam direction of the probe wave can be controlled by adjusting the excitation phase of each antenna (or antenna unit) to suit the attitude of the aircraft.
  • the first direction of rotation may be left-handed and the second direction of rotation may be right-handed; or, alternatively, as another embodiment, the first direction of rotation may be right-handed, and the second direction of rotation may be It is left-handed.
  • the at least one processor may be configured to: perform a two-channel angle measurement method according to a phase difference between the at least two first echoes and a spacing between the at least two first circularly polarized receiving antennas. Determining the pitch angle of the target; determining the azimuth of the target by the two-channel angle measurement method according to the phase difference between the at least two second echoes and the spacing between the at least two second circularly polarized receiving antennas.
  • the at least one processor may be further configured to: determine a distance of the target according to the detection wave, and the at least one of the at least two first echoes and the at least two second echoes; The position information of the target is obtained based on the pitch angle, the azimuth angle, and the distance.
  • the at least one processor may be further configured to periodically obtain a plurality of location information of the target.
  • Another embodiment of the present invention provides another two-dimensional antenna system.
  • the two-dimensional antenna system can be applied to an aircraft, especially an unmanned aerial vehicle, at the top of the aircraft (for example, at the top of the UAV 110) or other parts. Used to position the aircraft.
  • 7 is a schematic diagram of a two-dimensional antenna system 700 in accordance with another embodiment of the present invention.
  • the two-dimensional antenna system 700 can include a transmit antenna array 710 and a receive antenna array 720.
  • the transmit antenna array 710 includes a first rotated first circularly polarized transmit antenna 712 and a second circularly polarized transmit antenna 714 arranged in a first direction;
  • the receive antenna array 720 includes a second rotationally oriented second direction A first circularly polarized receive antenna and a second circularly polarized receive antenna.
  • Receiving day More circularly polarized receive antennas may also be included in line array 720, such as circularly polarized receive antenna 722, circularly polarized receive antenna 724, circularly polarized receive antenna 726, and circularly polarized receive antenna 728, shown in FIG.
  • the circularly polarized receiving antenna 722 is considered to be a first circularly polarized receiving antenna, and the circularly polarized receiving antenna 724 is a second circularly polarized receiving antenna, wherein the first direction is perpendicular to the second direction, the first direction and the first The second rotation is opposite.
  • the transmitting antenna array 710 is configured to transmit a detecting wave, and the detecting wave forms an echo after being reflected by the target. Since the electromagnetic wave emitted by the circularly polarized transmitting antenna has a direction of rotation, the direction of the electromagnetic wave after the single reflection of the target is reversed, and it is required to rotate to the opposite circularly polarized receiving antenna for reception. Therefore, the embodiment of the present invention utilizes the above characteristics of the circularly polarized antenna, and the transmitting antenna and the receiving antenna adopt oppositely rotated antennas, which can increase the isolation between the antennas, and can effectively improve the signal-to-noise ratio of the received echo signals.
  • the first direction of rotation is left-handed and the second direction of rotation is right-handed; or, as another embodiment, the first direction of rotation is right-handed and the second direction of rotation is left-handed.
  • the first direction may be a vertical direction
  • the second direction may be a horizontal direction
  • the transmit antenna array 710 includes at least two circularly polarized transmit antennas arranged in a first direction for adjusting the orientation of the probe wave transmitted by the circularly polarized transmit antenna in the first direction.
  • the beam direction of the probe wave can be controlled by adjusting the excitation phase of each antenna (or antenna unit) to suit the attitude of the aircraft.
  • the so-called vertical direction should mean a direction perpendicular to the horizontal direction.
  • the arrangement direction of at least two first circularly polarized receiving antennas is an approximate direction of gravity.
  • the transmit antenna array 710 includes two circularly polarized transmit antennas arranged in a vertical direction, a first circularly polarized transmit antenna 712 and a second circularly polarized transmit antenna 714.
  • the receiving antenna array 720 includes four circularly polarized receiving antennas arranged in a horizontal direction, a circularly polarized receiving antenna 722, a circularly polarized receiving antenna 724, a circularly polarized receiving antenna 726, and a circularly polarized receiving antenna 728.
  • the number of the circularly polarized transmitting antenna, the first circularly polarized receiving antenna and the second circularly polarized receiving antenna in FIG. 7 is only illustrative, and the circularly polarized transmitting antenna may be more than two, circularly polarized.
  • the receiving antenna may be more than four or two or three, which is not limited in the embodiment of the present invention.
  • each antenna may be determined according to the scanning range and power.
  • the specific structures of the antenna are not limited in the embodiments of the present invention.
  • FIG. 8 is a schematic flow diagram of a method 800 for locating a target in accordance with an embodiment of the present invention.
  • the method 800 can be a two-dimensional antenna system 700 based on an embodiment of the invention, which can include the following steps.
  • the first detecting wave and the second detecting wave are respectively time-divisionally transmitted by the first circularly polarized transmitting antenna and the second circularly polarized transmitting antenna arranged in the first direction, the first detecting wave and the second detecting wave There is a first phase difference between the waves. That is, the first probe wave and the second probe wave are time-divisionally transmitted through at least two circularly polarized transmit antennas in the transmit antenna array 710.
  • the first circular wave and the second echo of the first detecting wave are respectively received by the first circularly polarized receiving antenna and the second circularly polarized receiving antenna arranged in the second direction.
  • the first direction is perpendicular to the second direction, and the first direction of rotation is opposite to the second direction of rotation. That is, the receiving antenna array 720 includes at least a first circularly polarized receiving antenna and a second circularly polarized receiving antenna, and the receiving antenna array 720 receives at least two echoes of the first detected wave.
  • the azimuth of the target is determined according to the phase of at least two echoes of the first probe wave received by the receiving antenna array 720 and the pitch of the antenna in the receiving antenna array.
  • the method for locating a target may be implemented by transmitting a detection wave by a plurality of circularly polarized transmitting antennas, and receiving an echo by a circularly polarized receiving antenna perpendicular to a plurality of circularly polarized transmitting antennas.
  • Two-dimensional detection of the azimuth and elevation angle of the target provides reference information for the obstacle avoidance of the aircraft.
  • the first direction of rotation is left-handed and the second direction of rotation is right-handed; or, alternatively, as another embodiment, the first direction of rotation is right-handed and the second direction of rotation is left-handed.
  • the first direction may be a vertical direction, and the first direction of the first direction by S810 is aligned by S810.
  • the circularly polarized transmitting antenna and the second circularly polarized transmitting antenna transmit the first detecting wave and the second detecting wave in a time division manner, and may include: a first circularly polarized transmitting antenna arranged in a vertical direction and The second circularly polarized transmit antenna controls the direction of the transmit beam to time-spread the first probe wave and the second probe wave.
  • the S810 transmits the first probe wave and the second probe wave in a time division manner by the first circularly polarized first circularly polarized transmitting antenna and the second circularly polarized transmitting antenna arranged in the first direction
  • the method may include: transmitting, at a first moment, a first probe wave by a first circularly polarized transmit antenna, and transmitting a second probe wave by a first circularly polarized transmit antenna at a second moment;
  • the S840 determines the azimuth of the target according to the phase difference between the first echo and the second echo and the spacing between the first circularly polarized receiving antenna and the second circularly polarized receiving antenna, and may include: according to the first echo sum
  • the phase difference of the second echo and the spacing between the first circularly polarized receiving antenna and the second circularly polarized receiving antenna determine the azimuth of the target by a two-channel angle measurement method.
  • the azimuth of the target is determined according to the phase of at least two echoes of the first probe wave received by the receiving antenna array 720 and the spacing of the antennas in the receiving antenna array.
  • the two-channel angle measurement method is adopted. Determine the azimuth of the target.
  • the S850 determines the pitch angle of the target according to the first phase difference, the second phase difference, and the spacing between the first circularly polarized transmitting antenna and the second circularly polarized transmitting antenna, and may include: determining a pitch angle ⁇ 1 according to the following formula:
  • the first phase difference is ⁇ 1
  • the second phase difference is ⁇ 2
  • the distance between the first circularly polarized transmitting antenna and the second circularly polarized transmitting antenna is D 1
  • the pitch angle is ⁇ 1
  • is the first The wavelength of a probe wave and a second probe wave.
  • the azimuth angle of the target may be determined by a method such as the DBF method, which is not limited in the embodiment of the present invention.
  • the transmit antenna array 710 includes a first circularly polarized transmit antenna 712 arranged in a vertical direction to transmit a first probe wave, and a second circularly polarized transmit antenna 714 to transmit a second probe wave, a first probe wave and a second probe wave. There is a first phase difference between them.
  • the receiving antenna array 720 includes a first circularly polarized receiving antenna 722 and a second circularly polarized receiving antenna 724, respectively receiving a first echo and a second echo of the first detecting wave; the first circularly polarized receiving antenna 722 receives the first A first echo of the probe wave and a third echo of the second probe wave, the first echo and the third echo having a second phase difference.
  • Determining the azimuth of the target may also be similar to FIG. 4 and FIG. 5, according to the phase difference of the first echo and the second echo of the first probe wave, and the first circularly polarized receiving antenna 722 and the second circularly polarized receiving The spacing between the antennas 724 is determined. Of course, it can also be determined by methods such as the DBF method, and will not be described here.
  • Figure 9 is a schematic illustration of determining a pitch angle in accordance with one embodiment of the present invention.
  • the first circularly polarized transmit antenna 712 transmits a first probe wave; at a second time, the second circularly polarized transmit antenna 714 transmits a second probe wave. Since the first circularly polarized transmitting antenna 712 and the second circularly polarized transmitting antenna 714 do not work at the same time, the two can share one RF circuit, thereby simplifying the related structure of the aircraft.
  • the time difference between the first time and the second time is such that the first phase difference and the second detected wave have a first phase difference ⁇ 1 .
  • any one of the receiving antenna arrays 720 receives a first echo of the first detected wave and a third echo of the second detected wave, respectively.
  • the first echo and the third echo have a second phase difference ⁇ 2 , the second phase difference ⁇ 2 being partly due to the first phase difference ⁇ 1 and the other due to the first circularly polarized transmitting antenna 712 and the
  • the spacing D 1 between the two circularly polarized transmit antennas 714 is caused.
  • the phase difference due to the spacing D 1 between the first circularly polarized transmitting antenna 712 and the second circularly polarized transmitting antenna 714 is ⁇ 1 - ⁇ 2 .
  • the pitch angle of the target is ⁇ 1 , as can be seen from the triangle shown in Figure 9,
  • is the wavelength of the first detection wave and the second detection wave.
  • the elevation angle ⁇ 1 can be obtained.
  • a plurality of pitch angles may be calculated from echoes of two probe waves having phase differences received by each of the circularly polarized receive antennas in the receive antenna array 720, and an average or weighted average of the pitch angles may be calculated.
  • the echo received by the first circularly polarized receiving antenna corresponding to the first detecting wave is referred to as a first echo
  • the echo received by the second circularly polarized receiving antenna is referred to as a second. Echo, not a limitation of the embodiments of the present invention.
  • the method 800 may further include: according to the first detection wave and the first At least one of the two probe waves, and at least one of the first echo, the second echo, and the third echo determine a distance of the target; and obtain a target according to the pitch angle, the azimuth, and the distance location information.
  • the distance of the target can be calculated by using the FMCW ranging principle, and details are not described herein again.
  • the spherical coordinates of the pitch angle, the azimuth angle and the distance can determine the position information of the target.
  • the spherical coordinates formed by the pitch angle, the azimuth angle, and the distance are converted into rectangular coordinates to obtain position information of the target.
  • the method 800 is performed periodically to obtain a plurality of location information for the targets within the plurality of cycles so that the target can be tracked.
  • FIG. 10 is a schematic block diagram of an apparatus 1000 for locating a target in accordance with one embodiment of the present invention.
  • Apparatus 1000 can include a transmit antenna array 1010, a receive antenna array 1020, and at least one processor 1030.
  • the transmit antenna array 1010 may include a first circularly polarized transmit antenna, the first circularly polarized transmit antenna being a first rotated antenna for transmitting a first probe wave, a second circularly polarized transmit antenna, and a second circular polarization
  • the transmitting antenna is a first rotating antenna for transmitting a second detecting wave, wherein the first circularly polarized transmitting antenna and the second circularly polarized transmitting antenna are arranged in a first direction, the first detecting wave and the second detecting wave Having a first phase difference therebetween;
  • the receiving antenna array 1020 includes: a first circularly polarized receiving antenna, the first circularly polarized receiving antenna is configured to receive a first echo of the first detecting wave and is a second rotating antenna, The first circularly polarized receiving antenna is further configured to receive a third echo of the second detecting wave, wherein the first echo and the third echo have a second phase difference, the second circularly polarized receiving antenna, and the second circular pole
  • the receiving antenna is configured to
  • the device for locating a target can transmit a probe wave through a plurality of circularly polarized transmit antennas, and receive a echo from a circularly polarized receive antenna that is perpendicular to a plurality of circularly polarized transmit antennas.
  • Two-dimensional detection of the azimuth and elevation angle of the target for the obstacle avoidance of the aircraft For reference information.
  • the transmit antenna array 1010 can correspond to the transmit antenna array 710 of the two-dimensional antenna system 700
  • the receive antenna array 1020 can correspond to the receive antenna array 720 of the two-dimensional antenna system 700.
  • At least one processor 1030 can work together or separately.
  • At least one processor 1030 can include a radio frequency module and a computing module.
  • a calculation module is used to calculate the azimuth and elevation angles; the radio frequency module may in turn include a transmitter for generating a probe wave; and a receiver for demodulating the echo.
  • the device 1000 of the embodiment of the present invention may be carried on an unmanned aerial vehicle; the radio frequency module of the transmit antenna array 1010, the receive antenna array 1020, and the at least one processor 1030 may be carried on the unmanned aerial vehicle, and at least one processor
  • the calculation module of the 1030 is disposed at the ground end, which is not limited by the embodiment of the present invention.
  • Each of the transmitting antennas of the transmitting antenna array 1010 may correspond to one transmitter separately, or multiple transmitting antennas may jointly correspond to the same transmitter.
  • each receiving antenna of the receiving antenna array 1020 may correspond to one receiver separately, or multiple receiving antennas may jointly correspond to the same receiver.
  • the number of the transmitter and the receiver and the deployment manner are not limited in the embodiment of the present invention.
  • the first direction may be a vertical direction
  • the transmit antenna array 1010 may be specifically configured to: control by the first circularly polarized transmit antenna and the second circularly polarized transmit antenna arranged in a vertical direction.
  • the direction of the transmit beam is used to time-spread the first probe wave and the second probe wave.
  • the first direction of rotation may be left-handed and the second direction of rotation may be right-handed; or, alternatively, as another embodiment, the first direction of rotation may be right-handed, and the second direction of rotation may be It is left-handed.
  • the transmit antenna array 1010 may be specifically configured to: at a first moment, transmit a first probe wave through a first circularly polarized transmit antenna, and transmit at a second time through a first circularly polarized transmit antenna a second detecting wave; wherein the first phase difference is ⁇ 1 and the second phase difference is ⁇ 2 , the distance between the first circularly polarized transmitting antenna and the second circularly polarized transmitting antenna is D 1 , and the pitch angle is ⁇ 1 .
  • the at least one processor 1030 is configured to: perform a two-channel angle measurement method according to a phase difference between the first echo and the second echo and a spacing between the first circularly polarized receiving antenna and the second circularly polarized receiving antenna. Determine the azimuth of the target; determine the elevation angle ⁇ 1 according to the following formula: Where ⁇ is the wavelength of the first detection wave and the second detection wave.
  • the at least one processor 1030 is further configured to: At least one of the probe wave and the second probe wave, and at least one of the first echo, the second echo, and the third echo determine a distance of the target; according to the elevation angle, the azimuth angle, and Distance, get the location information of the target.
  • the at least one processor 1030 is further configured to periodically obtain a plurality of location information of the target.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function partition, which may be implemented in actual implementation. Additional ways of dividing, such as multiple units or components, may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Abstract

一种二维天线系统、用于定位目标的方法和设备,该二维天线系统包括发射天线阵列和接收天线阵列,发射天线阵列包括至少一根第一旋向的圆极化发射天线;接收天线阵列包括至少两根按第一方向排列的第二旋向的第一圆极化接收天线和至少两根按第二方向排列的第二旋向的第二圆极化接收天线,其中,第一方向与第二方向垂直,第一旋向与第二旋向相反。本申请提出的二维天线系统,可以应用于飞行器上,结构简单成本较低,通过设计互相垂直排列的圆极化接收天线,能够实现对目标的方位角和俯仰角的二维探测,为飞行器的避障提供参考信息。

Description

二维天线系统、用于定位目标的方法和设备
版权申明
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
技术领域
本发明实施例涉及微波技术领域,尤其涉及一种二维天线系统、用于定位目标的方法和设备。
背景技术
一方面,随着飞行技术的发展,飞行器,例如,UAV(Unmanned Aerial Vehicle,无人驾驶飞机),也称为无人机、无人飞行器,已经从军用发展到越来越广泛的民用,例如,UAV植物保护、UAV航空拍摄、UAV森林火警监控等等,而民用化也是UAV未来发展的趋势。
另一方面,当前的雷达系统多应用于大型设备。大型设备利用雷达系统实现二维扫描的方案主要有以下几种。一种是在方位上安装能转动的平台,通过平台带动天线进行机械扫描;在俯仰上利用相控阵天线进行扫描。另一种是在方位上和俯仰上都安装能转动的平台,通过平台带动天线进行机械扫描,还有一种是设计多根天线、发射模块和接收模块,利用相控阵天线扫描。前两种方案利用机械方式进行二维扫描,转动的平台需要电机驱动,结构复杂,不适用于无人飞行器这种小型设备,而且成本较高。第三种方案需要多个发射模块和接收模块,同样会增加硬件成本和复杂度。
目前尚没有结构简单低成本的应用于无人飞行器的避障的天线设计,尤其是二维避障的天线设计。
发明内容
本申请提供了一种二维天线系统、用于定位目标的方法和设备,可以应用于飞行器上,结构简单成本较低,能够实现对目标的方位角和俯仰角的二维探测。
第一方面提供了一种二维天线系统,包括发射天线阵列和接收天线阵列,所述发射天线阵列包括至少一根第一旋向的圆极化发射天线;所述接收天线阵列包括至少两根按第一方向排列的第二旋向的第一圆极化接收天线和至少两根按第二方向排列的所述第二旋向的第二圆极化接收天线,其中,所述第一方向与所述第二方向垂直,所述第一旋向与所述第二旋向相反。
第二方面提供了一种用于定位目标的方法,包括:通过至少一根第一旋向的圆极化发射天线发射探测波;通过至少两根按第一方向排列的第二旋向的第一圆极化接收天线接收所述探测波的至少两束第一回波;通过至少两根按第二方向排列的所述第二旋向的第二圆极化接收天线接收所述探测波的至少两束第二回波,其中,所述第一方向与所述第二方向垂直,所述第一旋向与所述第二旋向相反;根据所述至少两束第一回波的相位差和所述至少两根第一圆极化接收天线之间的间距,确定所述目标的俯仰角;根据所述至少两束第二回波的相位差和所述至少两根第二圆极化接收天线之间的间距,确定所述目标的方位角。
第三方面提供了一种用于定位目标的设备,包括发射天线阵列、接收天线阵列和至少一个处理器,所述发射天线阵列包括:用于发射探测波的至少一根第一旋向的圆极化发射天线;所述接收天线阵列包括:至少两根第一圆极化接收天线,所述至少两根第一圆极化接收天线为用于接收所述探测波的至少两束第一回波的按第一方向排列的第二旋向的天线;至少两根第二圆极化接收天线,所述至少两根第二圆极化接收天线为用于接收所述探测波的至少两束第二回波的按第二方向排列的第二旋向的天线,其中,所述第一方向与所述第二方向垂直,所述第一旋向与所述第二旋向相反;所述至少一个处理器用于:根据所述至少两束第一回波的相位差和所述至少两根第一圆极化接收天线之间的间距,确定所述目标的俯仰角;根据所述至少两束第二回波的相位差和所述至少两根第二圆极化接收天线之间的间距,确定所述目标的方位角。
第一方面至第三方面,通过圆极化发射天线阵列发射探测波,通过互相垂直排列的圆极化接收天线阵列接收回波,可以实现对目标的方位角和俯仰角的二维探测,为飞行器的避障提供参考信息。
第四方面提供了一种用于定位目标的方法,包括:通过按第一方向排列的第一旋向的第一圆极化发射天线和第二圆极化发射天线分时发射第一探 测波和第二探测波,所述第一探测波和所述第二探测波之间具有第一相位差;通过按第二方向排列的第二旋向的第一圆极化接收天线和第二圆极化接收天线分别接收所述第一探测波的第一回波和第二回波,其中,所述第一方向与所述第二方向垂直,所述第一旋向与所述第二旋向相反;通过所述第一圆极化接收天线接收所述第二探测波的第三回波,所述第一回波和所述第三回波具有第二相位差;根据所述第一回波和所述第二回波的相位差以及所述第一圆极化接收天线和所述第二圆极化接收天线之间的间距,确定所述目标的方位角;根据所述第一相位差、所述第二相位差以及所述第一圆极化发射天线和所述第二圆极化发射天线之间的间距,确定所述目标的俯仰角。
第五方面提供了一种用于定位目标的设备,包括发射天线阵列、接收天线阵列和至少一个处理器,所述发射天线阵列包括:第一圆极化发射天线,所述第一圆极化发射天线为第一旋向的天线,用于发射第一探测波,第二圆极化发射天线,所述第二圆极化发射天线为第一旋向的天线,用于发射第二探测波,其中,所述第一圆极化发射天线和所述第二圆极化发射天线按第一方向排列,所述第一探测波和所述第二探测波之间具有第一相位差;所述接收天线阵列包括:第一圆极化接收天线,所述第一圆极化接收天线用于接收所述第一探测波的第一回波且为第二旋向的天线,所述第一圆极化接收天线还用于接收所述第二探测波的第三回波,其中,所述第一回波和所述第三回波具有第二相位差,第二圆极化接收天线,所述第二圆极化接收天线用于接收所述第一探测波的第二回波且为第二旋向的天线,其中,所述第一圆极化接收天线和所述第二圆极化接收天线按第二方向排列,所述第一方向与所述第二方向垂直,所述第一旋向与所述第二旋向相反;所述至少一个处理器用于:根据所述第一回波和所述第二回波的相位差以及所述第一圆极化接收天线和所述第二圆极化接收天线之间的间距,确定所述目标的方位角,根据所述第一相位差、所述第二相位差以及所述第一圆极化发射天线和所述第二圆极化发射天线之间的间距,确定所述目标的俯仰角。
第四方面和第五方面,通过多个圆极化发射天线发射探测波,以及与多个圆极化发射天线的排列方式互相垂直的圆极化接收天线接收回波,可以实现对目标的方位角和俯仰角的二维探测,为飞行器的避障提供参考信息。
附图说明
图1是本发明一个实施例的无人飞行系统的示意性架构图。
图2是本发明一个实施例的二维天线系统的示意图。
图3是本发明一个实施例的用于定位目标的方法的示意图。
图4是本发明一个实施例的用双通道测角法确定俯仰角的示意图。
图5是本发明一个实施例的用双通道测角法确定方位角的示意图。
图6是本发明一个实施例的用于定位目标的设备的示意性框图。
图7是本发明另一个实施例的二维天线系统的示意图。
图8是本发明另一个实施例的用于定位目标的方法的示意图。
图9是本发明另一个实施例的确定俯仰角的示意图。
图10是本发明另一个实施例的用于定位目标的设备的示意性框图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。
首先对无人飞行系统进行简单的介绍。图1是本发明一个实施例的无人飞行系统100的示意性架构图。本实施例以旋翼飞行器为例进行说明。
无人飞行系统100可以包括UAV 110、云台120、显示设备130和控制设备140。其中,UAV 110可以包括动力组件150、飞行控制器160和传感系统170。UAV 110可以与控制设备140和显示设备130进行无线通信。
UAV 110包括机架,机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在UAV 110着陆时起支撑作用。
动力组件150可以包括电子调速器(简称为电调)151、一个或多个旋翼153以及与一个或多个旋翼153相对应的一个或多个电机152,其中电机152连接在电调151与旋翼153之间,电机152和旋翼153设置在对应的机臂上;电调151用于接收飞行控制器160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。电机152用于驱动旋翼旋转,从而为UAV 110的飞行提供动力,该动力使得UAV 110能够实现一个或多个自由度的运动。在某些实施例中,UAV 110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、平移轴和俯仰轴。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以有刷电机。
传感系统170用于测量UAV的姿态信息,即UAV 110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统170例如可以包括陀螺仪、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球定位系统(Global Positioning System,GPS)和气压计等传感器中的至少一种。
飞行控制器160用于控制UAV 110的飞行,例如,可以根据传感系统170测量的姿态信息控制UAV 110的飞行。应理解,飞行控制器160可以按照预先编好的程序指令对UAV 110进行控制,也可以通过响应来自控制设备140的一个或多个控制指令对UAV 110进行控制。
云台120可以包括电调121和电机122。云台120可以用来承载负载123。例如,负载123可以包括相机模块(例如,照相机模块、摄像机模块等),本发明的实施例并不限于此,例如,云台也可以用于承载武器或其它负载的承载设备。飞行控制器160可以通过电调121和电机122控制云台120的运动。可选地,作为一个另一实施例,云台120还可以包括控制模块,用于通过控制电调121和电机122来控制云台120的运动。应理解,云台120可以独立于UAV 110,也可以为UAV 110的一部分。应理解,电机122可以是直流电机,也可以交流电机。另外,电机122可以是无刷电机,也可以有刷电机。还应理解,云台可以位于飞行器的顶部,也可以位于飞行器的底部。
显示设备130位于无人飞行系统100的地面端,可以通过无线方式与UAV 110进行通信,并且可以用于显示UAV 110的姿态信息。另外,当负载123为拍摄设备时,还可以在显示设备130上显示拍摄设备拍摄的图像。应理解,显示设备130可以是独立的设备,也可以设置在控制设备140中。
控制设备140位于无人飞行系统100的地面端,可以通过无线方式与UAV 110进行通信,用于对UAV 110进行远程控制。控制设备例如可以是遥控器或者安装有控制UAV的应用程序(Application,APP)的终端设备,例如,智能手机、平板电脑等。本发明的实施例中,通过控制设备接收用户的输入,可以指通过遥控器上的拔轮、按钮、按键、摇杆等输入装置或者终端设备上的用户界面(User Interface,UI)对UAV进行控制。
应理解,上述对于无人飞行系统各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。
本发明实施例提供了一种二维天线系统,该二维天线系统可以应用于飞 行器,尤其是无人飞行器上,位于飞行器的顶部(例如,UAV 110的顶部)或其他部位,用于定位飞行器。图2是本发明一个实施例的二维天线系统200的示意图。
如图2所示,该二维天线系统200可以包括发射天线阵列210和接收天线阵列220。发射天线阵列210包括至少一根第一旋向的圆极化发射天线;接收天线阵列220包括至少两根按第一方向排列的第二旋向的第一圆极化接收天线和至少两根按第二方向排列的第二旋向的第二圆极化接收天线,其中,第一方向与第二方向垂直,第一旋向与第二旋向相反。
本发明实施例的二维天线系统,可以应用于飞行器上,结构简单成本较低,通过设计互相垂直排列的圆极化接收天线,能够实现对目标的方位角和俯仰角的二维探测,为飞行器的避障提供参考信息。
本发明实施例的二维天线系统中,发射天线阵列210用于发射探测波,探测波经目标反射之后形成回波。由于圆极化发射天线发射的电磁波具有旋向,经目标单次反射之后电磁波的旋向会反向,需要旋向相反的圆极化接收天线来接收。因此,本发明实施例利用圆极化天线的上述特性,发射天线与接收天线采用相反旋向的天线,可以增加天线之间的隔离,能够有效地提高所接收的回波信号的信噪比。
具体地,作为一个实施例,第一旋向为左旋,第二旋向为右旋;或,作为另一个实施例,第一旋向为右旋,第二旋向为左旋。
飞行器在飞行时,速度较快且姿态变化频繁,为了适应飞行器姿态的变化,可选地,发射天线阵列210可以包括至少两根圆极化发射天线,该至少两根圆极化发射天线按第一方向排列,以用于调节圆极化发射天线发射的探测波在第一方向上的指向。此外,还可以通过调整每根天线(或称为天线单元)的激励相位,控制探测波的波束指向,以适应飞行器的姿态。
可选地,该第一方向可以是竖直方向,第二方向可以是水平方向。至少两根圆极化发射天线按竖直方向排列,以用于调节圆极化发射天线发射的探测波在竖直方向上的指向。应理解,所谓竖直方向应是近似的重力方向,尤其是飞行器水平飞行时,至少两根第一圆极化接收天线的排列方向为近似的重力方向。
在图2所示的具体的例子中,发射天线阵列210包括两根按竖直方向排列的圆极化发射天线,圆极化发射天线212和圆极化发射天线214。接收天 线阵列220包括两根按竖直方向排列的第一圆极化接收天线,第一圆极化接收天线222和第一圆极化接收天线224,以及两根按水平方向排列的第二圆极化接收天线,第二圆极化接收天线226和第二圆极化接收天线228。
应理解,图2中圆极化发射天线、第一圆极化接收天线和第二圆极化接收天线的数量仅是示意性的,圆极化发射天线可以是一根或者多于两根,第一圆极化接收天线和第二圆极化接收天线可以分别多于两根,本发明实施例对此不作限定。
还应理解,每根天线的具体结构可以根据扫描范围和功率来确定,本发明各实施例对天线的具体结构不作限定。
如何使用二维天线系统200对目标进行定位将在下文的用于定位目标的方法300中详细描述。
图3是本发明一个实施例的用于定位目标的方法300的示意性流程图。该方法300可以是基于本发明实施例的二维天线系统200,该方法300可以包括以下步骤。
S310,通过至少一根第一旋向的圆极化发射天线发射探测波。即,通过发射天线阵列210发射探测波。
S320,通过至少两根按第一方向排列的第二旋向的第一圆极化接收天线接收探测波的至少两束第一回波;通过至少两根按第二方向排列的第二旋向的第二圆极化接收天线接收探测波的至少两束第二回波。即,通过接收天线阵列220的第一圆极化接收天线和第二圆极化接收天线分别接收探测波的回波。其中,第一方向与第二方向垂直,第一旋向与第二旋向相反。
S330,根据至少两束第一回波的相位差和至少两根第一圆极化接收天线之间的间距,确定目标的俯仰角。
S340,根据至少两束第二回波的相位差和至少两根第二圆极化接收天线之间的间距,确定目标的方位角。
本发明实施例的用于定位目标的方法,通过圆极化发射天线发射探测波,通过互相垂直排列的圆极化接收天线接收回波,可以实现对目标的方位角和俯仰角的二维探测,为飞行器的避障提供参考信息。
可选地,作为一个实施例,第一旋向为左旋,第二旋向为右旋;或,可选地,作为另一个实施例,第一旋向为右旋,第二旋向为左旋。
可选地,作为一个实施例,S310通过至少一根第一旋向的圆极化发射 天线发射探测波,可以包括:通过至少两根按第一方向排列的圆极化发射天线发射探测波。在本实施例中,部署多于一根圆极化发射天线是为了使得发射出的探测波的波束具有一定的宽度,更易于实现扫描。
为了适应飞行器姿态的变化,并调节圆极化发射天线发射的探测波在第一方向上的指向,第一方向可以为竖直方向,并且其中,通过至少两根按第一方向排列的圆极化发射天线发射探测波,可以包括:通过至少两根按竖直方向排列的圆极化发射天线来调节探测波在俯仰方向上的指向。此外,还可以通过调整每根天线(或称为天线单元)的激励相位,控制探测波的波束指向,以适应飞行器的姿态。
可选地,作为一个实施例,S330根据至少两束第一回波的相位差和至少两根第一圆极化接收天线之间的间距,确定目标的俯仰角,可以包括:根据至少两束第一回波的相位差和至少两根第一圆极化接收天线之间的间距,通过双通道测角法确定目标的俯仰角;S340根据至少两束第二回波的相位差和至少两根第二圆极化接收天线之间的间距,确定目标的方位角,可以包括:根据至少两束第二回波的相位差和至少两根第二圆极化接收天线之间的间距,通过双通道测角法确定目标的方位角。双通道测角法确定目标的俯仰角和方位角的具体方法将在下文中举例说明。
应理解,除双通道测角法以外,还可以通过数字波束成形(Digital Beam Forming,DBF)法等方法确定目标的俯仰角和/或方位角,本发明实施例对此不作限定。
在一个具体的例子中,本发明实施例的用于定位目标的方法是基于图2示出的二维天线系统的。发射天线阵列210包括按竖直方向排列的圆极化发射天线212和圆极化发射天线214,用于发射探测波。接收天线阵列220包括两根按竖直方向排列的第一圆极化接收天线222和第一圆极化接收天线224,通过这两根第一圆极化接收天线接收探测波的两束第一回波;接收天线阵列220还包括两根按水平方向排列的第二圆极化接收天线226和第二圆极化接收天线228,通过这两根第二圆极化接收天线接收探测波的两束第二回波。
图4是本发明一个实施例的用双通道测角法确定俯仰角的示意图。如图4所示,第一圆极化接收天线222和第一圆极化接收天线224之间的间距为d1,第一圆极化接收天线222和第一圆极化接收天线224所接收的两束第一 回波的相位差为
Figure PCTCN2017072052-appb-000001
目标的俯仰角为θ1。可以根据以下公式确定目标的俯仰角θ1
Figure PCTCN2017072052-appb-000002
其中,λ为探测波的波长。
图5是本发明一个实施例的用双通道测角法确定方位角的示意图。如图5所示,第二圆极化接收天线226和第二圆极化接收天线228之间的间距为d2,第二圆极化接收天线226和第二圆极化接收天线228所接收的两束第二回波的相位差为
Figure PCTCN2017072052-appb-000003
目标的方位角为θ2。可以根据以下公式确定目标的方位角θ2
Figure PCTCN2017072052-appb-000004
其中,λ为探测波的波长。
应理解,当接收天线阵列220包括更多的第一圆极化接收天线时,可以根据每两根第一圆极化接收天线接收的第一回波,得到多个俯仰角,计算这些俯仰角的平均值或加权平均值。类似地,当接收天线阵列220包括更多的第二圆极化接收天线时,可以根据每两根第二圆极化接收天线接收的第二回波,得到多个方位角,计算这些方位角的平均值或加权平均值。
还应理解,对于探测波而言,其经目标反射之后形成回波,每束回波本质并没有区别。本文为了便于描述和区分,将第一圆极化接收天线接收的回波称为第一回波,将第二圆极化接收天线接收的回波称为第二回波,而非对本发明实施例的限定。
可选地,作为一个实施例,方法300还可以包括:根据探测波,以及至少两束第一回波和至少两束第二回波中的至少一束回波确定目标的距离;根据俯仰角、方位角和距离,获得目标的位置信息。
具体地,确定目标的距离可以通过调频连续波(Frequency Modulated Continuous Wave,FMCW)测距原理计算。其原理为向目标发射频率变化(可以连续或步进、线性或非线性变化)的探测波,例如可以为高频连续波,其频率随时间按照三角波规律变化;接收的回波的频率与探测波的频率变化规律相同,都是三角波规律,只是有一个时间差(delay),利用这个微小的时间差可计算出目标的距离。在线性FMCW雷达测距中,一个简单的方法是将回波与探测波混频后得到一个中频(Intermediate Frequency,IF)信号, 每一个IF频率对应一个时间差,通过时间差可以计算出目标的距离。
俯仰角、方位角和距离构成的球坐标,可以确定目标的位置信息。或者,将俯仰角、方位角和距离构成的球坐标转换为直角坐标,获得目标的位置信息。
可选地,周期性地执行方法300,可以获得多个周期内目标的多个位置信息,从而能够对目标进行追踪。
基于本发明实施例的二维天线系统200和用于定位目标的方法300,本发明实施例还提供了一种用于定位目标的设备。图6是本发明一个实施例的用于定位目标的设备600的示意性框图。设备600可以包括发射天线阵列610、接收天线阵列620和至少一个处理器630。发射天线阵列610可以包括用于发射探测波的至少一根第一旋向的圆极化发射天线。接收天线阵列620可以包括至少两根第一圆极化接收天线,至少两根第一圆极化接收天线为用于接收探测波的至少两束第一回波的按第一方向排列的第二旋向的天线;至少两根第二圆极化接收天线,至少两根第二圆极化接收天线为用于接收探测波的至少两束第二回波的按第二方向排列的第二旋向的天线,其中,第一方向与第二方向垂直,第一旋向与第二旋向相反。至少一个处理器630可以用于:根据至少两束第一回波的相位差和至少两根第一圆极化接收天线之间的间距,确定目标的俯仰角;根据至少两束第二回波的相位差和至少两根第二圆极化接收天线之间的间距,确定目标的方位角。
本发明实施例的用于定位目标的设备,通过圆极化发射天线阵列发射探测波,通过互相垂直排列的圆极化接收天线接收回波,可以实现对目标的方位角和俯仰角的二维探测,为飞行器的避障提供参考信息。
其中,发射天线阵列610可以对应二维天线系统200的发射天线阵列210,接收天线阵列620可以对应二维天线系统200的接收天线阵列220。至少一个处理器630可以共同工作或单独工作。至少一个处理器630可以包括射频模块和计算模块。计算模块用于计算方位角和俯仰角;射频模块又可以包括发射机,用于生成探测波;以及接收机,用于解调回波。
本发明实施例的设备600可以机载于无人飞行器上;也可以将发射天线阵列610、接收天线阵列620和至少一个处理器630的射频模块机载于无人飞行器上,将至少一个处理器630的计算模块设置于地面端,本发明实施例对此不作限定。发射天线阵列610的每根发射天线可以分别单独对应一个发 射机,也可以多根发射天线共同对应同一个发射机。类似地,接收天线阵列620的每根接收天线可以分别单独对应一个接收机,也可以多根接收天线共同对应同一个接收机。本发明实施例对发射机和接收机的数量以及部署方式不作限定。
可选地,与二维天线系统200和用于定位目标的方法300对应地,发射天线阵列可以包括至少两根圆极化发射天线,圆极化发射天线按第一方向排列。
飞行器在飞行时,速度较快且姿态变化频繁,为了适应飞行器姿态的变化,可选地,作为一个实施例,第一方向可以为竖直方向,发射天线阵列具体可以用于:通过至少两根按竖直方向排列的圆极化发射天线来调节探测波在俯仰方向上的指向。此外,还可以通过调整每根天线(或称为天线单元)的激励相位,控制探测波的波束指向,以适应飞行器的姿态。
可选地,作为一个实施例,第一旋向可以为左旋,第二旋向为右旋;或,可选地,作为另一个实施例,第一旋向可以为右旋,第二旋向为左旋。
可选地,作为一个实施例,至少一个处理器可以用于:根据至少两束第一回波的相位差和至少两根第一圆极化接收天线之间的间距,通过双通道测角法确定目标的俯仰角;根据至少两束第二回波的相位差和至少两根第二圆极化接收天线之间的间距,通过双通道测角法确定目标的方位角。
可选地,作为一个实施例,至少一个处理器还可以用于:根据探测波,以及至少两束第一回波和至少两束第二回波中的至少一束回波确定目标的距离;根据俯仰角、方位角和距离,获得目标的位置信息。
可选地,作为一个实施例,至少一个处理器还可以用于周期性地获得目标的多个位置信息。
本发明实施例提供了另一种二维天线系统,同样地,该二维天线系统可以应用于飞行器,尤其是无人飞行器上,位于飞行器的顶部(例如,UAV 110的顶部)或其他部位,用于定位飞行器。图7是本发明另一个实施例的二维天线系统700的示意图。
如图7所示,该二维天线系统700可以包括发射天线阵列710和接收天线阵列720。发射天线阵列710包括按第一方向排列的第一旋向的第一圆极化发射天线712和第二圆极化发射天线714;接收天线阵列720包括按第二方向排列的第二旋向的第一圆极化接收天线和第二圆极化接收天线。接收天 线阵列720中还可以包括更多的圆极化接收天线,例如图7中示出了圆极化接收天线722、圆极化接收天线724、圆极化接收天线726和圆极化接收天线728,可以认为圆极化接收天线722为第一圆极化接收天线,圆极化接收天线724为第二圆极化接收天线,其中,第一方向与第二方向垂直,第一旋向与第二旋向相反。
本发明实施例的二维天线系统中,发射天线阵列710用于发射探测波,探测波经目标反射之后形成回波。由于圆极化发射天线发射的电磁波具有旋向,经目标单次反射之后电磁波的旋向会反向,需要旋向相反的圆极化接收天线来接收。因此,本发明实施例利用圆极化天线的上述特性,发射天线与接收天线采用相反旋向的天线,可以增加天线之间的隔离,能够有效地提高所接收的回波信号的信噪比。
具体地,作为一个实施例,第一旋向为左旋,第二旋向为右旋;或,作为另一个实施例,第一旋向为右旋,第二旋向为左旋。
飞行器在飞行时,速度较快且姿态变化频繁,为了适应飞行器姿态的变化,可选地,该第一方向可以是竖直方向,第二方向可以是水平方向。发射天线阵列710包括至少两根圆极化发射天线,该至少两根圆极化发射天线按第一方向排列,以用于调节圆极化发射天线发射的探测波在第一方向上的指向。此外,还可以通过调整每根天线(或称为天线单元)的激励相位,控制探测波的波束指向,以适应飞行器的姿态。
应理解,所谓竖直方向应是指与水平方向垂直的方向。当飞行器水平飞行时,至少两根第一圆极化接收天线的排列方向为近似的重力方向。
在图7所示的具体的例子中,发射天线阵列710包括两根按竖直方向排列的圆极化发射天线,第一圆极化发射天线712和第二圆极化发射天线714。接收天线阵列720包括四根按水平方向排列的圆极化接收天线,圆极化接收天线722、圆极化接收天线724、圆极化接收天线726和圆极化接收天线728。
应理解,图7中圆极化发射天线、第一圆极化接收天线和第二圆极化接收天线的数量仅是示意性的,圆极化发射天线可以是多于两根,圆极化接收天线可以多于四根也可以为两根或三根,本发明实施例对此不作限定。
还应理解,每根天线的具体结构可以根据扫描范围和功率来确定,本发明各实施例对天线的具体结构不作限定。
如何使用二维天线系统800对目标进行定位将在下文的用于定位目标的 方法800中详细描述。
图8是本发明一个实施例的用于定位目标的方法800的示意性流程图。该方法800可以是基于本发明实施例的二维天线系统700,该方法800可以包括以下步骤。
S810,通过按第一方向排列的第一旋向的第一圆极化发射天线和第二圆极化发射天线分时发射第一探测波和第二探测波,第一探测波和第二探测波之间具有第一相位差。即,通过发射天线阵列710中的至少两根圆极化发射天线分时发射第一探测波和第二探测波。
S820,通过按第二方向排列的第二旋向的第一圆极化接收天线和第二圆极化接收天线分别接收第一探测波的第一回波和第二回波。其中,第一方向与第二方向垂直,第一旋向与第二旋向相反。即,接收天线阵列720至少包括第一圆极化接收天线和第二圆极化接收天线,通过接收天线阵列720接收第一探测波的至少两束回波。
S830,通过第一圆极化接收天线接收第二探测波的第三回波,第一回波和第三回波具有第二相位差。
S840,根据第一回波和第二回波的相位差以及第一圆极化接收天线和第二圆极化接收天线之间的间距,确定目标的方位角。即,根据接收天线阵列720接收的第一探测波的至少两束回波的相位和接收天线阵列中天线的间距,确定目标的方位角。
S850,根据第一相位差、第二相位差以及第一圆极化发射天线和第二圆极化发射天线之间的间距,确定目标的俯仰角。
本发明实施例的用于定位目标的方法,通过多个圆极化发射天线发射探测波,以及与多个圆极化发射天线的排列方式互相垂直的圆极化接收天线接收回波,可以实现对目标的方位角和俯仰角的二维探测,为飞行器的避障提供参考信息。
可选地,作为一个实施例,第一旋向为左旋,第二旋向为右旋;或,可选地,作为另一个实施例,第一旋向为右旋,第二旋向为左旋。
为了适应飞行器姿态的变化,并调节圆极化发射天线发射的探测波在第一方向上的指向,第一方向可以为竖直方向,S810通过按第一方向排列的第一旋向的第一圆极化发射天线和第二圆极化发射天线分时发射第一探测波和第二探测波,可以包括:通过按竖直方向排列的第一圆极化发射天线和 第二圆极化发射天线控制发射波束的指向来分时发射探第一探测波和第二探测波。
可选地,作为一个实施例,S810通过按第一方向排列的第一旋向的第一圆极化发射天线和第二圆极化发射天线分时发射第一探测波和第二探测波,可以包括:在第一时刻,通过第一圆极化发射天线发射第一探测波,在第二时刻通过第一圆极化发射天线发射第二探测波;
S840根据第一回波和第二回波的相位差以及第一圆极化接收天线和第二圆极化接收天线之间的间距,确定目标的方位角,可以包括:根据第一回波和第二回波的相位差以及第一圆极化接收天线和第二圆极化接收天线之间的间距,通过双通道测角法确定目标的方位角。换而言之,根据接收天线阵列720接收的第一探测波的至少两束回波的相位和接收天线阵列中天线的间距,确定目标的方位角。具体而言,根据第一探测波的至少两束回波中任意两束回波的相位差以及接收任意两束回波的两根圆极化接收天线之间的间距,通过双通道测角法确定目标的方位角。
S850根据第一相位差、第二相位差以及第一圆极化发射天线和第二圆极化发射天线之间的间距,确定目标的俯仰角,可以包括:根据以下公式确定俯仰角Θ1
Figure PCTCN2017072052-appb-000005
其中,第一相位差为Γ1,第二相位差为Γ2,第一圆极化发射天线和第二圆极化发射天线之间的间距为D1,俯仰角为Θ1,λ为第一探测波和第二探测波的波长。
应理解,除双通道测角法以外,还可以通过DBF法等方法确定目标的方位角,本发明实施例对此不作限定。
在一个具体的例子中,本发明实施例的用于定位目标的方法是基于图7示出的二维天线系统的。发射天线阵列710包括按竖直方向排列的第一圆极化发射天线712发射第一探测波,还包括第二圆极化发射天线714发射第二探测波,第一探测波和第二探测波之间具有第一相位差。接收天线阵列720包括第一圆极化接收天线722和第二圆极化接收天线724,分别接收第一探测波的第一回波和第二回波;第一圆极化接收天线722接收第一探测波的第一回波和第二探测波的第三回波,第一回波和第三回波具有第二相位差。
确定目标的方位角还可以如图4和图5类似的,根据第一探测波的第一回波和第二回波的相位差以及第一圆极化接收天线722和第二圆极化接收天线724之间的间距来确定。当然也可以通过DBF法等方法来确定,此处不再进行赘述。
图9是本发明一个实施例的确定俯仰角的示意图。在第一时刻,第一圆极化发射天线712发射第一探测波;在第二时刻,第二圆极化发射天线714发射第二探测波。由于第一圆极化发射天线712和第二圆极化发射天线714不同时工作,二者可以共用一个射频电路,由此能简化飞行器的相关结构。第一时刻和第二时刻之间的时间差使得第一探测波和第二探测波之间具有第一相位差Γ1
接收天线阵列720中的任意一根圆极化接收天线(例如,第一圆极化接收天线722)分别接收第一探测波的第一回波和第二探测波的第三回波。第一回波和第三回波具有第二相位差Γ2,该第二相位差Γ2一部分是由于第一相位差Γ1导致的,另一部分是由于第一圆极化发射天线712和第二圆极化发射天线714之间的间距D1导致的。那么,由于第一圆极化发射天线712和第二圆极化发射天线714之间的间距D1导致的相位差则为Γ12。假设目标的俯仰角为Θ1,由图9示出的三角形可知,
Figure PCTCN2017072052-appb-000006
其中,λ为第一探测波和第二探测波的波长。
根据上述公式可以得到俯仰角Θ1
应理解,可以根据接收天线阵列720中的每根圆极化接收天线接收的具有相位差的两个探测波的回波计算得到多个俯仰角,计算这些俯仰角的平均值或加权平均值。
还应理解,对于一束探测波而言,其经目标单次反射之后形成回波,每束回波本质并没有区别。本文为了便于描述和区分,将对应于第一探测波的,第一圆极化接收天线接收的回波称为第一回波,将第二圆极化接收天线接收的回波称为第二回波,而非对本发明实施例的限定。
可选地,作为一个实施例,方法800还可以包括:根据第一探测波和第 二探测波中的至少一束探测波,以及第一回波、第二回波和第三回波中的至少一束回波确定目标的距离;根据俯仰角、方位角和距离,获得目标的位置信息。
具体地,确定目标的距离可以通过FMCW测距原理计算,此处不再赘述。
俯仰角、方位角和距离构成的球坐标,可以确定目标的位置信息。或者,将俯仰角、方位角和距离构成的球坐标转换为直角坐标,获得目标的位置信息。
可选地,周期性地执行方法800,可以获得多个周期内目标的多个位置信息,从而能够对目标进行追踪。
基于本发明实施例的二维天线系统700和用于定位目标的方法800,本发明实施例还提供了一种用于定位目标的设备。图10是本发明一个实施例的用于定位目标的设备1000的示意性框图。设备1000可以包括发射天线阵列1010、接收天线阵列1020和至少一个处理器1030。发射天线阵列1010可以包括第一圆极化发射天线,第一圆极化发射天线为第一旋向的天线,用于发射第一探测波,第二圆极化发射天线,第二圆极化发射天线为第一旋向的天线,用于发射第二探测波,其中,第一圆极化发射天线和第二圆极化发射天线按第一方向排列,第一探测波和第二探测波之间具有第一相位差;接收天线阵列1020包括:第一圆极化接收天线,第一圆极化接收天线用于接收第一探测波的第一回波且为第二旋向的天线,第一圆极化接收天线还用于接收第二探测波的第三回波,其中,第一回波和第三回波具有第二相位差,第二圆极化接收天线,第二圆极化接收天线用于接收第一探测波的第二回波且为第二旋向的天线,其中,第一圆极化接收天线和第二圆极化接收天线按第二方向排列,第一方向与第二方向垂直,第一旋向与第二旋向相反;至少一个处理器1030用于:根据第一回波和第二回波的相位差以及第一圆极化接收天线和第二圆极化接收天线之间的间距,确定目标的方位角,根据第一相位差、第二相位差以及第一圆极化发射天线和第二圆极化发射天线之间的间距,确定目标的俯仰角。
本发明实施例的用于定位目标的设备,通过多个圆极化发射天线发射探测波,以及与多个圆极化发射天线的排列方式互相垂直的圆极化接收天线接收回波,可以实现对目标的方位角和俯仰角的二维探测,为飞行器的避障提 供参考信息。
其中,发射天线阵列1010可以对应二维天线系统700的发射天线阵列710,接收天线阵列1020可以对应二维天线系统700的接收天线阵列720。至少一个处理器1030可以共同工作或单独工作。至少一个处理器1030可以包括射频模块和计算模块。计算模块用于计算方位角和俯仰角;射频模块又可以包括发射机,用于生成探测波;以及接收机,用于解调回波。
本发明实施例的设备1000可以机载于无人飞行器上;也可以将发射天线阵列1010、接收天线阵列1020和至少一个处理器1030的射频模块机载于无人飞行器上,将至少一个处理器1030的计算模块设置于地面端,本发明实施例对此不作限定。发射天线阵列1010的每根发射天线可以分别单独对应一个发射机,也可以多根发射天线共同对应同一个发射机。类似地,接收天线阵列1020的每根接收天线可以分别单独对应一个接收机,也可以多根接收天线共同对应同一个接收机。本发明实施例对发射机和接收机的数量以及部署方式不作限定。
可选地,作为一个实施例,第一方向可以为竖直方向,发射天线阵列1010具体可以用于:通过按竖直方向排列的第一圆极化发射天线和第二圆极化发射天线控制发射波束的指向来分时发射探第一探测波和第二探测波。
可选地,作为一个实施例,第一旋向可以为左旋,第二旋向为右旋;或,可选地,作为另一个实施例,第一旋向可以为右旋,第二旋向为左旋。
可选地,作为一个实施例,发射天线阵列1010具体可以用于:在第一时刻,通过第一圆极化发射天线发射第一探测波,在第二时刻通过第一圆极化发射天线发射第二探测波;其中,第一相位差为Γ1,第二相位差为Γ2,第一圆极化发射天线和第二圆极化发射天线之间的间距为D1,俯仰角为Θ1,至少一个处理器1030用于:根据第一回波和第二回波的相位差以及第一圆极化接收天线和第二圆极化接收天线之间的间距,通过双通道测角法确定目标的方位角;根据以下公式确定俯仰角Θ1
Figure PCTCN2017072052-appb-000007
其中,λ为第一探测波和第二探测波的波长。
可选地,作为一个实施例,至少一个处理器1030还可以用于:根据第 一探测波和第二探测波中的至少一束探测波,以及第一回波、第二回波和第三回波中的至少一束回波确定目标的距离;根据俯仰角、方位角和距离,获得目标的位置信息。
可选地,作为一个实施例,至少一个处理器1030还可以用于周期性地获得目标的多个位置信息。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有 另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (33)

  1. 一种二维天线系统,其特征在于,包括发射天线阵列和接收天线阵列,
    所述发射天线阵列包括至少一根第一旋向的圆极化发射天线;
    所述接收天线阵列包括至少两根按第一方向排列的第二旋向的第一圆极化接收天线和至少两根按第二方向排列的所述第二旋向的第二圆极化接收天线,其中,所述第一方向与所述第二方向垂直,所述第一旋向与所述第二旋向相反。
  2. 根据权利要求1所述的二维天线系统,其特征在于,所述发射天线阵列包括至少两根所述圆极化发射天线,所述圆极化发射天线按所述第一方向排列。
  3. 根据权利要求1或2所述的二维天线系统,其特征在于,所述第一旋向为左旋,所述第二旋向为右旋;或,
    所述第一旋向为右旋,所述第二旋向为左旋。
  4. 根据权利要求1至3中任一项所述的二维天线系统,其特征在于,所述第一方向为竖直方向。
  5. 根据权利要求1至4中任一项所述的二维天线系统,其特征在于,所述发射天线阵列包括两根按竖直方向排列的所述圆极化发射天线,所述接收天线阵列包括两根按竖直方向排列的所述第一圆极化接收天线和两根按水平方向排列的所述第二圆极化接收天线。
  6. 一种用于定位目标的方法,其特征在于,包括:
    通过至少一根第一旋向的圆极化发射天线发射探测波;
    通过至少两根按第一方向排列的第二旋向的第一圆极化接收天线接收所述探测波的至少两束第一回波;
    通过至少两根按第二方向排列的所述第二旋向的第二圆极化接收天线接收所述探测波的至少两束第二回波,其中,所述第一方向与所述第二方向垂直,所述第一旋向与所述第二旋向相反;
    根据所述至少两束第一回波的相位差和所述至少两根第一圆极化接收天线之间的间距,确定所述目标的俯仰角;
    根据所述至少两束第二回波的相位差和所述至少两根第二圆极化接收天线之间的间距,确定所述目标的方位角。
  7. 根据权利要求6所述的方法,其特征在于,所述通过至少一根第一旋 向的圆极化发射天线发射探测波,包括:
    通过至少两根按所述第一方向排列的所述圆极化发射天线发射所述探测波。
  8. 根据权利要求7所述的方法,其特征在于,所述第一方向为竖直方向,并且其中,所述通过至少两根按所述第一方向排列的所述圆极化发射天线发射所述探测波,包括:
    通过至少两根按竖直方向排列的所述圆极化发射天线来调节所述探测波在俯仰方向上的指向。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述第一旋向为左旋,所述第二旋向为右旋;或,
    所述第一旋向为右旋,所述第二旋向为左旋。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,
    所述根据所述至少两束第一回波的相位差和所述至少两根第一圆极化接收天线之间的间距,确定所述目标的俯仰角,包括:
    根据所述至少两束第一回波的相位差和所述至少两根第一圆极化接收天线之间的间距,通过双通道测角法确定所述目标的俯仰角;
    所述根据所述至少两束第二回波的相位差和所述至少两根第二圆极化接收天线之间的间距,确定所述目标的方位角,包括:
    根据所述至少两束第二回波的相位差和所述至少两根第二圆极化接收天线之间的间距,通过双通道测角法确定所述目标的方位角。
  11. 根据权利要求6至10中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述探测波,以及所述至少两束第一回波和所述至少两束第二回波中的至少一束回波确定所述目标的距离;
    根据所述俯仰角、所述方位角和所述距离,获得所述目标的位置信息。
  12. 根据权利要求11所述的方法,其特征在于,周期性地执行所述方法,获得多个周期内所述目标的多个位置信息。
  13. 一种用于定位目标的设备,其特征在于,包括发射天线阵列、接收天线阵列和至少一个处理器,
    所述发射天线阵列包括:用于发射探测波的至少一根第一旋向的圆极化 发射天线;
    所述接收天线阵列包括:至少两根第一圆极化接收天线,所述至少两根第一圆极化接收天线为用于接收所述探测波的至少两束第一回波的按第一方向排列的第二旋向的天线;至少两根第二圆极化接收天线,所述至少两根第二圆极化接收天线为用于接收所述探测波的至少两束第二回波的按第二方向排列的第二旋向的天线,其中,所述第一方向与所述第二方向垂直,所述第一旋向与所述第二旋向相反;
    所述至少一个处理器用于:根据所述至少两束第一回波的相位差和所述至少两根第一圆极化接收天线之间的间距,确定所述目标的俯仰角;根据所述至少两束第二回波的相位差和所述至少两根第二圆极化接收天线之间的间距,确定所述目标的方位角。
  14. 根据权利要求13所述的设备,其特征在于,所述发射天线阵列包括至少两根所述圆极化发射天线,所述圆极化发射天线按所述第一方向排列。
  15. 根据权利要求14所述的设备,其特征在于,所述第一方向为竖直方向,所述发射天线阵列具体用于:
    通过至少两根按竖直方向排列的所述圆极化发射天线来调节所述探测波在俯仰方向上的指向。
  16. 根据权利要求13至15中任一项所述的设备,其特征在于,所述第一旋向为左旋,所述第二旋向为右旋;或,
    所述第一旋向为右旋,所述第二旋向为左旋。
  17. 根据权利要求13至16中任一项所述的设备,其特征在于,所述至少一个处理器用于:
    根据所述至少两束第一回波的相位差和所述至少两根第一圆极化接收天线之间的间距,通过双通道测角法确定所述目标的俯仰角;
    根据所述至少两束第二回波的相位差和所述至少两根第二圆极化接收天线之间的间距,通过双通道测角法确定所述目标的方位角。
  18. 根据权利要求13至17中任一项所述的设备,其特征在于,所述至少一个处理器还用于:
    根据所述探测波,以及所述至少两束第一回波和所述至少两束第二回波中的至少一束回波确定所述目标的距离;
    根据所述俯仰角、所述方位角和所述距离,获得所述目标的位置信息。
  19. 根据权利要求18所述的设备,其特征在于,所述至少一个处理器还用于周期性地获得所述目标的多个位置信息。
  20. 根据权利要求13至19中任一项所述的设备,其特征在于,所述设备机载于无人飞行器上。
  21. 一种用于定位目标的方法,其特征在于,包括:
    通过按第一方向排列的第一旋向的第一圆极化发射天线和第二圆极化发射天线分时发射第一探测波和第二探测波,所述第一探测波和所述第二探测波之间具有第一相位差;
    通过按第二方向排列的第二旋向的第一圆极化接收天线和第二圆极化接收天线分别接收所述第一探测波的第一回波和第二回波,其中,所述第一方向与所述第二方向垂直,所述第一旋向与所述第二旋向相反;
    通过所述第一圆极化接收天线接收所述第二探测波的第三回波,所述第一回波和所述第三回波具有第二相位差;
    根据所述第一回波和所述第二回波的相位差以及所述第一圆极化接收天线和所述第二圆极化接收天线之间的间距,确定所述目标的方位角;
    根据所述第一相位差、所述第二相位差以及所述第一圆极化发射天线和所述第二圆极化发射天线之间的间距,确定所述目标的俯仰角。
  22. 根据权利要求21所述的方法,其特征在于,所述第一方向为竖直方向,所述通过按第一方向排列的第一旋向的第一圆极化发射天线和第二圆极化发射天线分时发射第一探测波和第二探测波,包括:
    通过按竖直方向排列的所述第一圆极化发射天线和所述第二圆极化发射天线控制发射波束的指向来分时发射所述探第一探测波和所述第二探测波。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第一旋向为左旋,所述第二旋向为右旋;或,
    所述第一旋向为右旋,所述第二旋向为左旋。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述通过按第一方向排列的第一旋向的第一圆极化发射天线和第二圆极化发射天线分时发射第一探测波和第二探测波,包括:
    在第一时刻通过所述第一圆极化发射天线发射所述第一探测波,在第二时刻通过所述第一圆极化发射天线发射所述第二探测波;
    所述根据所述第一回波和所述第二回波的相位差以及所述第一圆极化接收天线和所述第二圆极化接收天线之间的间距,确定所述目标的方位角,包括:
    根据所述第一回波和所述第二回波的相位差以及所述第一圆极化接收天线和所述第二圆极化接收天线之间的间距,通过双通道测角法确定所述目标的方位角;
    其中,所述第一相位差为Γ1,所述第二相位差为Γ2,所述第一圆极化发射天线和所述第二圆极化发射天线之间的间距为D1,所述俯仰角为Θ1
    所述根据所述第一相位差、所述第二相位差以及所述第一圆极化发射天线和所述第二圆极化发射天线之间的间距,确定所述目标的俯仰角,包括:
    根据以下公式确定所述俯仰角Θ1
    Figure PCTCN2017072052-appb-100001
    其中,λ为所述第一探测波和所述第二探测波的波长。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述第一探测波和所述第二探测波中的至少一束探测波,以及所述第一回波、所述第二回波和所述第三回波中的至少一束回波确定所述目标的距离;
    根据所述俯仰角、所述方位角和所述距离,获得所述目标的位置信息。
  26. 根据权利要求25所述的方法,其特征在于,周期性地执行所述方法,获得多个周期内所述目标的多个位置信息。
  27. 一种用于定位目标的设备,其特征在于,包括发射天线阵列、接收天线阵列和至少一个处理器,
    所述发射天线阵列包括:第一圆极化发射天线,所述第一圆极化发射天线为第一旋向的天线,用于发射第一探测波,第二圆极化发射天线,所述第二圆极化发射天线为第一旋向的天线,用于发射第二探测波,其中,所述第一圆极化发射天线和所述第二圆极化发射天线按第一方向排列,所述第一探测波和所述第二探测波之间具有第一相位差;
    所述接收天线阵列包括:第一圆极化接收天线,所述第一圆极化接收天 线用于接收所述第一探测波的第一回波且为第二旋向的天线,所述第一圆极化接收天线还用于接收所述第二探测波的第三回波,其中,所述第一回波和所述第三回波具有第二相位差,第二圆极化接收天线,所述第二圆极化接收天线用于接收所述第一探测波的第二回波且为第二旋向的天线,其中,所述第一圆极化接收天线和所述第二圆极化接收天线按第二方向排列,所述第一方向与所述第二方向垂直,所述第一旋向与所述第二旋向相反;
    所述至少一个处理器用于:根据所述第一回波和所述第二回波的相位差以及所述第一圆极化接收天线和所述第二圆极化接收天线之间的间距,确定所述目标的方位角,根据所述第一相位差、所述第二相位差以及所述第一圆极化发射天线和所述第二圆极化发射天线之间的间距,确定所述目标的俯仰角。
  28. 根据权利要求27所述的设备,其特征在于,所述第一方向为竖直方向,所述发射天线阵列具体用于:
    通过按竖直方向排列的所述第一圆极化发射天线和所述第二圆极化发射天线控制发射波束的指向来分时发射所述探第一探测波和所述第二探测波。
  29. 根据权利要求27或28所述的设备,其特征在于,所述第一旋向为左旋,所述第二旋向为右旋;或,
    所述第一旋向为右旋,所述第二旋向为左旋。
  30. 根据权利要求27至29中任一项所述的设备,其特征在于,所述发射天线阵列具体用于:
    在第一时刻,通过所述第一圆极化发射天线发射所述第一探测波,在第二时刻通过所述第一圆极化发射天线发射所述第二探测波;
    其中,所述第一相位差为Γ1,所述第二相位差为Γ2,所述第一圆极化发射天线和所述第二圆极化发射天线之间的间距为D1,所述俯仰角为Θ1
    所述至少一个处理器用于:
    根据所述第一回波和所述第二回波的相位差以及所述第一圆极化接收天线和所述第二圆极化接收天线之间的间距,通过双通道测角法确定所述目标的方位角;
    根据以下公式确定所述俯仰角Θ1
    Figure PCTCN2017072052-appb-100002
    其中,λ为所述第一探测波和所述第二探测波的波长。
  31. 根据权利要求27至30中任一项所述的设备,其特征在于,所述至少一个处理器还用于:
    根据所述第一探测波和所述第二探测波中的至少一束探测波,以及所述第一回波、所述第二回波和所述第三回波中的至少一束回波确定所述目标的距离;
    根据所述俯仰角、所述方位角和所述距离,获得所述目标的位置信息。
  32. 根据权利要求31所述的设备,其特征在于,所述至少一个处理器还用于周期性地获得所述目标的多个位置信息。
  33. 根据权利要求27至32中任一项所述的设备,其特征在于,所述设备机载于无人飞行器上。
PCT/CN2017/072052 2017-01-22 2017-01-22 二维天线系统、用于定位目标的方法和设备 WO2018133066A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/072052 WO2018133066A1 (zh) 2017-01-22 2017-01-22 二维天线系统、用于定位目标的方法和设备
CN201780000099.7A CN107004961B (zh) 2017-01-22 2017-01-22 二维天线系统、用于定位目标的方法和设备
US16/517,248 US11380995B2 (en) 2017-01-22 2019-07-19 Two-dimensional antenna system and method and device for positioning a target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/072052 WO2018133066A1 (zh) 2017-01-22 2017-01-22 二维天线系统、用于定位目标的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/517,248 Continuation US11380995B2 (en) 2017-01-22 2019-07-19 Two-dimensional antenna system and method and device for positioning a target

Publications (1)

Publication Number Publication Date
WO2018133066A1 true WO2018133066A1 (zh) 2018-07-26

Family

ID=59436002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072052 WO2018133066A1 (zh) 2017-01-22 2017-01-22 二维天线系统、用于定位目标的方法和设备

Country Status (3)

Country Link
US (1) US11380995B2 (zh)
CN (1) CN107004961B (zh)
WO (1) WO2018133066A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396443B2 (en) * 2015-12-18 2019-08-27 Gopro, Inc. Integrated antenna in an aerial vehicle
CN108680941B (zh) * 2018-04-27 2020-06-30 东南大学 一种基于单站点的飞行器定位系统及方法
CN109084647B (zh) * 2018-07-26 2020-07-03 湖北三江航天红林探控有限公司 远距离探测近炸起爆控制装置及方法
CN109283518B (zh) * 2018-10-29 2020-12-04 湖南迈克森伟电子科技有限公司 一种测距系统
CN110048222A (zh) * 2019-03-22 2019-07-23 中国电子科技集团公司第三十八研究所 一种一发二收圆极化集成天线
CN111198358B (zh) * 2020-01-11 2022-06-03 桂林电子科技大学 一种基于相关检测的多旋翼无人机回波积累方法
WO2021165284A1 (en) * 2020-02-21 2021-08-26 Ipcom Gmbh & Co. Kg Beam steering using passive radar
CN111740223B (zh) 2020-07-06 2021-05-28 中国科学院成都生物研究所 一种合成高轨道角动量模式数的涡旋电磁场的方法
CN115561745A (zh) * 2020-07-17 2023-01-03 深圳市安卫普科技有限公司 一种非线性结点探测方法及探测器
CN112615159B (zh) * 2020-12-09 2021-09-07 清华大学 一种机载垂直极化及双极化相控阵
CN113809539B (zh) * 2021-09-24 2023-03-31 电子科技大学长三角研究院(衢州) 一种电机控制圆极化天线旋转的阵列波束偏转系统
KR20230052065A (ko) * 2021-10-12 2023-04-19 주식회사 에이티코디 입체 감지용 광각 레이다 모듈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1808177A (zh) * 2005-01-20 2006-07-26 株式会社日立制作所 车载雷达
CN101145251A (zh) * 2006-09-14 2008-03-19 欧姆龙株式会社 门禁装置
CN103247858A (zh) * 2013-04-26 2013-08-14 清华大学 具有双向同旋、双圆极化波辐射特性的金属波导天线
US20160282450A1 (en) * 2015-03-25 2016-09-29 Panasonic Corporation Radar device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598228B1 (fr) * 1986-04-30 1988-12-09 Thomson Csf Radar protege contre les echos de pluie et procede de protection d'un radar contre les echos de pluie
CN104280719A (zh) * 2014-10-30 2015-01-14 厦门大学 混合极化双通道探地雷达系统
US9715010B2 (en) * 2014-11-28 2017-07-25 Htc Corporation Apparatus and method for detection
US10852418B2 (en) * 2016-08-24 2020-12-01 Magna Electronics Inc. Vehicle sensor with integrated radar and image sensors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1808177A (zh) * 2005-01-20 2006-07-26 株式会社日立制作所 车载雷达
CN101145251A (zh) * 2006-09-14 2008-03-19 欧姆龙株式会社 门禁装置
CN103247858A (zh) * 2013-04-26 2013-08-14 清华大学 具有双向同旋、双圆极化波辐射特性的金属波导天线
US20160282450A1 (en) * 2015-03-25 2016-09-29 Panasonic Corporation Radar device

Also Published As

Publication number Publication date
US11380995B2 (en) 2022-07-05
US20190341694A1 (en) 2019-11-07
CN107004961A (zh) 2017-08-01
CN107004961B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2018133066A1 (zh) 二维天线系统、用于定位目标的方法和设备
US10435176B2 (en) Perimeter structure for unmanned aerial vehicle
CN109596118B (zh) 一种用于获取目标对象的空间位置信息的方法与设备
US10534068B2 (en) Localization system, vehicle control system, and methods thereof
CN110192122B (zh) 用于无人可移动平台上的雷达控制的系统和方法
JP2013533467A (ja) 複数の電磁信号からの物体の空間的配向情報の判定
US11513514B2 (en) Location processing device, flight vehicle, location processing system, flight system, location processing method, flight control method, program and recording medium
US11774547B2 (en) Self-positioning method, self-positioning system and tracking beacon unit
CA2975671A1 (en) Orientation control method for drone
US20200117197A1 (en) Obstacle detection assembly for a drone, drone equipped with such an obstacle detection assembly and obstacle detection method
JP2011052999A (ja) 飛翔体探知方法及びシステムならびにプログラム
WO2021087701A1 (zh) 起伏地面的地形预测方法、装置、雷达、无人机和作业控制方法
CN110352358B (zh) 表征天线方向图
US20220014675A1 (en) Unmanned aerial vehicle with virtual un-zoomed imaging
WO2021087702A1 (zh) 坡地的地形预测方法、装置、雷达、无人机和作业控制方法
WO2018021300A1 (ja) 探索システムおよび当該探索システムに用いられる発信器
US10747217B1 (en) Distributed directional antenna
CN102313546A (zh) 基于极化电磁波信息链的运动平台姿态感知方法
WO2020062356A1 (zh) 控制方法、控制装置、无人飞行器的控制终端
WO2022094962A1 (zh) 飞行器的悬停方法、飞行器及存储介质
CN212931187U (zh) 一种低小慢型目标自动探测防御装置
WO2022126559A1 (zh) 目标检测方法、装置、平台及计算机可读存储介质
EP4296718A1 (en) Integrated surveillance radar system
TWI746234B (zh) 無人直升機對海面目標測距定位的方法
CN110892353A (zh) 控制方法、控制装置、无人飞行器的控制终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893032

Country of ref document: EP

Kind code of ref document: A1