WO2022085948A1 - Iot 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템 - Google Patents

Iot 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템 Download PDF

Info

Publication number
WO2022085948A1
WO2022085948A1 PCT/KR2021/012485 KR2021012485W WO2022085948A1 WO 2022085948 A1 WO2022085948 A1 WO 2022085948A1 KR 2021012485 W KR2021012485 W KR 2021012485W WO 2022085948 A1 WO2022085948 A1 WO 2022085948A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage tank
measured
monitoring
iot
drainage area
Prior art date
Application number
PCT/KR2021/012485
Other languages
English (en)
French (fr)
Inventor
김진태
신재권
양승연
배진호
이규대
Original Assignee
(주)파이브텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파이브텍 filed Critical (주)파이브텍
Publication of WO2022085948A1 publication Critical patent/WO2022085948A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/35Utilities, e.g. electricity, gas or water
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/10Information sensed or collected by the things relating to the environment, e.g. temperature; relating to location
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/30Information sensed or collected by the things relating to resources, e.g. consumed power
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/10Detection; Monitoring
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/20Analytics; Diagnosis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/30Control

Definitions

  • the present invention applies IoT technology to devices performing each monitoring and utilizes big data such as weather information to enable integrated management of large-scale industrial complexes in real time It is about the integrated drainage area management system.
  • FIG. It is a block diagram.
  • a remote data transmission control device that transmits data in real time, a computer analysis program that analyzes the discharge company by comparing the pre-established DB data of the heavy metal-containing wastewater discharge facility with the analysis result of the sample collected when the alarm is issued, and the time of the alarm It comprises a sampler for automatically collecting and storing a sample of
  • the present invention has been devised to overcome the problems of the prior art, and a drainage area management system using a storage tank capable of efficient drainage management and energy management in an environment where drainage of a wide variety of conditions such as a large-scale industrial complex is made, and using the same
  • the purpose of this is to provide a method for managing drainage areas.
  • the present invention for solving the above problems includes at least one monitoring device installed in a drainage area and applied with IoT for remote communication; Through a drainage area management algorithm using the local monitoring and control unit that collects measurement information from the monitoring device and operating devices, the measurement information from the local monitoring and control unit arranged for each drainage area, and big data collected from the remote server Real-time integrated drainage area of a large-scale industrial complex using IoT and big data including an integrated management server that predicts runoff load and builds an integrated drainage area management system model for each drainage area based on distributed computing techniques to manage the total amount of watershed units It provides a management system.
  • the local monitoring and control unit may operate by controlling the high-pressure pump at the front end of the reservoir under the condition that the rainfall in the deposition zone is terminated and a set time has elapsed based on the measurement information and rainfall information on the deposition zone at the front end of the reservoir.
  • the monitoring device includes an inflow side monitoring unit for sensing any one or more of TP, TN, EC, BOD, SS, flow rate, and water level at the inlet side of the water treatment device, and the flow rate, BOD, SS, TN, TP, EC, and may consist of an outflow side monitoring unit that senses any one or more of power consumption.
  • the drainage area management algorithm inputs rainfall amount, rainfall intensity, preceding dry season, flow rate, water level, arrival time, inflow BOD, SS, EC, TN, TP as input layers, and storage time and waste sludge amount as multi-layers , pump operation, reservoir water level, and outflow flow rate, power consumption, outflow BOD, SS, EC, TN, and TP as out layers to compose a deep learning algorithm.
  • the local monitoring and control unit when the EC value measured by the inflow side monitoring unit is higher than the reference EC value, it is preferable to determine that the ionic harmful substances tend to increase and to isolate the outflow water into the storage tank.
  • the drainage area management algorithm can predict the amount of sludge generated through the SS outflow load.
  • the local monitoring and control unit may operate a high-pressure pump installed in the sedimentation area in front of the reservoir to wash the drainage area conduit when it is determined that the rain has ended and a set time has elapsed.
  • the storage tank consists of a first storage tank and a second storage tank
  • the local monitoring and control unit is connected to the storage tank and controls the inflow and overflow into the storage tank through determination of electrical conductivity measured by the monitoring unit.
  • the overflow management unit, the pH/Oil determination unit to determine the classification into the first and second storage tanks by comparing the acidity and oil concentration of the effluent flowing into the storage tank, and the turbidity determination unit for the first storage tank It is desirable to have a first storage tank fisherman who determines and controls the settling time and discharge time based on
  • the overflow management unit overflows when the electrical conductivity measured in the effluent is less than the standard electrical conductivity, and the pH/Oil determination unit measures the measured pH is less than the upper limit pH and exceeds the lower limit pH for the effluent having the measured electrical conductivity or more than the reference electrical conductivity If the oil concentration is less than the reference oil concentration, it flows to the first storage tank, and if the measured pH is below the lower limit pH, or the measured pH is above the upper limit pH, or the measured oil concentration is above the reference oil concentration, it flows to the second storage tank, and the first storage control part For the flow to the first storage tank, if the measured turbidity is less than the standard turbidity, it stores for the first set time, discharges the supernatant, and processes the sediment through the linkage processing unit.
  • the second set time If the measured turbidity is higher than the standard turbidity, the second set time If the measured turbidity is higher than the standard turbidity after storage for a while, the whole is treated in conjunction, but if the measured pH value is less than the standard lower limit pH and higher than the lower limit pH, or if the standard upper limit pH and lower than the upper limit pH It is desirable to allow storage after relaxation.
  • FIG. 1 is a block diagram of a prior art wastewater monitoring system.
  • FIG. 2 is a block diagram of a real-time integrated management system of a large-scale industrial complex using IoT and big data according to the concept of the present invention.
  • FIG. 3 is a configuration diagram for explaining a connection relationship to a real-time integrated management system of a large-scale industrial complex utilizing IoT and big data of the present invention.
  • FIG. 4 is a flowchart for explaining the establishment of an integrated management model by using big data and collection of measurement values for IoT devices according to the concept of the present invention.
  • 5 is a diagram for explaining the concept of configuring an optimal algorithm based on data collected through a distributed computing technique.
  • 6 to 10 are graphs showing data predicted by a distributed computing technique according to the first to fifth embodiments of the present invention.
  • 11 is a block diagram showing an embodiment of the local monitoring and control unit of the real-time integrated drainage area management system of the present invention.
  • FIG. 12 is a flowchart for explaining the operation of a real-time integrated drainage area management system according to the concept of the present invention.
  • 13 is a flowchart for explaining an embodiment of the control of the first storage tank.
  • each component or feature may be considered optional unless explicitly stated otherwise.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • some elements and/or features may be combined to constitute an embodiment of the present invention.
  • the order of operations described in the embodiments of the present invention may be changed. Some features or features of one embodiment may be included in another embodiment, or may be replaced with corresponding features or features of another embodiment.
  • the present invention is basically composed of a monitoring device installed in a drainage area of a large-scale industrial complex or industrial complex, a storage tank or a water treatment device, and an operating device of a control system thereof, and the monitoring device and the operating device have an Internet of Things (IoT) function.
  • IoT Internet of Things
  • the measurement values are first collected in the local monitoring and control unit, which will be described later, and then an effective drainage area management model can be built based on the distributed computing technique together with big data such as meteorological data in the integrated management server.
  • the properties of the runoff or the arrangement relationship of the water treatment device do not limit the concept of the present invention, and large-scale industrial complexes or industrial complexes, as well as various fields that can generate sewage or wastewater and have a complex runoff relationship. Of course, it can be applied.
  • FIG. 2 is a block diagram of a real-time integrated drainage area management system of a large-scale industrial complex using IoT and big data according to the concept of the present invention.
  • the arrangement of the conduit and equipment of the drainage area may be configured in various forms as a whole, and these forms will not limit the concept of the present invention.
  • the storage tanks 100 , 100a , 100b , and 100c may be disposed in the pit of each inflow passage 201 , and in some cases, a plurality of inflow passages 201 may be connected to a single storage tank 100 . It can also be considered to be configured by connecting. Sewage, wastewater or rainwater transmitted from the inflow passage 201 is defined as outflow water.
  • the storage tank 100 may be composed of a plurality of storage tank modules of a branching type according to a predetermined characteristic, and an embodiment related thereto will be described later.
  • the local monitoring and control unit which will be described later, can determine whether the inflow and overflow into the storage tank 100 and control it, and the determination of the inflow and overflow can be based on EC (conductivity) measurement as a preferred embodiment. In this regard, a detailed description will be provided later.
  • EC conductivity
  • the discharge side of the storage tank 100 may be classified into a discharge passage 202 and an associated treatment passage 203 , and the discharge passage 202 means draining to water, etc., and the associated treatment passage 203 is It is to be discharged to the wastewater treatment facility 300 and post-treatment. Accordingly, in the description of the present invention, linked treatment is understood to mean that the effluent from the storage tank 100 is post-treated by the sewage and wastewater treatment facility 300 .
  • An inflow side monitoring unit 501 capable of measuring water quality and an outflow side monitoring unit 502 may be provided on the inflow path 201 and the outflow path side, respectively, and may be set to measure various properties of water quality There will be.
  • the monitoring units may be composed of any one or more of actual measurement of pH, EC, DO, turbidity, water temperature, DOC, Nitrate, Nitrite, Phosphate, Ammonia, Oil, and software sensors of TN, TP, and BOD. .
  • These sensors may be multi-item integrated measurement complex LOC-based sensors in the form of modules.
  • the inflow side performs sensing of TP, TN, EC, BOD, SS, flow rate, water level, etc.
  • the outflow side can measure flow rate, BOD, SS, TN, TP, EC, power consumption, etc.
  • a predetermined communication module may be provided to enable wired or wireless communication.
  • the local monitoring and control unit covering one area collects measurement values along with location information for each monitoring unit. And it will be possible to focus on the SCADA integrated management server through the network server.
  • each monitoring unit and water treatment device may be provided with an Internet communication module to enable wireless communication, thereby reducing the burden of additional facilities.
  • the measurement value of the monitoring unit is transmitted remotely to build an inflow DB for each soil and storage tank 100 , and it is possible to derive a predetermined predicted value and perform integrated operation.
  • the storage tank 100 may be controlled by a predetermined local control unit. A detailed description related thereto will be provided later.
  • the storage tank functions as a predetermined buffer storage tank, and may be treated by separating the water body into a general storage tank and an emergency storage tank according to the inflow characteristics.
  • the overflow and the inflow of the storage tank 100 can be determined by setting the EC (electrical conductivity).
  • the local monitoring and control unit determines that the rain has ended and operates the high-pressure pump when the set time has elapsed to wash the drainage area conduit.
  • the set time is preferably 24 hours.
  • FIG. 3 is a configuration diagram for explaining a connection relationship to a real-time integrated management system of a large-scale industrial complex utilizing IoT and big data of the present invention.
  • the local monitoring and control unit that is connected through the integrated management server 2000 and the network server 3000 to input and output control signals by wire or wirelessly (1000) is provided.
  • the local monitoring and control unit 1000 is provided with a module transceiver for performing wireless communication, and such a module transceiver unit is one or more inflow side monitoring unit 501 and outflow side monitoring unit 502 and a water treatment facility such as a storage tank 100.
  • a sensing signal or an on/off signal and an operation control signal are input/output by the provided IoT communication module.
  • a wired connection method such as RS485 as well as connection by IoT to each monitoring or operating device is not excluded.
  • the network server 3000 may be configured as a gateway for wireless connection with a plurality of local monitoring and control units 1000 .
  • the gateway it may be desirable to configure a memory map to have multiple IPs.
  • the network server 3000 may include a public or large-scale server and a base station constituting a network network.
  • the integrated management server 2000 may function as a SCADA to collect measurement values from monitoring units and big data from external servers.
  • the connection between the integrated management server 2000 and the network server 3000 may be made using a conventional wired/wireless Internet protocol, and various known connection methods may be applied.
  • Such a network server 3000 may mean that it is operated by a communication company having a large-scale communication network.
  • the integrated management server 2000 may be a server, PC or microprocessor that is basically connected to one or more local monitoring and control units 1000 to input and transmit control commands, and receive and manage inspection signals, etc., in a control room, etc. This includes the case of being connected to a master server that performs integrated processing by performing management in a specific building or area.
  • Wireless communication applied to the wireless network described in the present invention is a communication method provided by a mobile communication network including CDMA, WCDMA, HSDPA, GSM, Wibro, 3G, 4G, LTE, LTE CatM1, and the like, and Wi-Fi (Wireless Fidelity), Bluetooth, Infrared Data Association (IrDA), wireless LANN (IEEE 802.11), SWAP (Shared Wireless Access Protocol), WPAN (Wireless Personal Area network), Zigbee, LoRa, a low-power short-range communication Various methods such as a (Long Range) network may be applied.
  • a mobile communication network including CDMA, WCDMA, HSDPA, GSM, Wibro, 3G, 4G, LTE, LTE CatM1, and the like, and Wi-Fi (Wireless Fidelity), Bluetooth, Infrared Data Association (IrDA), wireless LANN (IEEE 802.11), SWAP (Shared Wireless Access Protocol), WPAN (Wireless Personal Area network), Zigbee
  • each local monitoring and control unit 1000 is omitted and each monitoring and control device directly transmits information to the integrated management server 2000 through a network may be considered, and a plurality of local monitoring may be considered. and a method in which the control unit 1000 concentrates information on the medium-scale management server and a plurality of medium-scale management servers concentrate information on the integrated management server 2000 may also be considered.
  • the integrated management server 2000 may collect real-time data and big data on rainfall amount, rainfall intensity, preceding dry season, etc. from the weather server 4100 .
  • the monitoring device of the present invention may be a weather measurement device for measuring a weather condition.
  • the geographic information is understood to include information on the topography, data on the arrangement of pipe networks, and information about the environment, such as information on manholes and conduits.
  • a distributed computing technique for managing a plurality of drainage areas is applied according to various runoff characteristics of different land uses.
  • real-time meteorological information on rainfall amount, rainfall intensity, preceding dry season, etc. and measurement values such as flow rate, BOD, SS, TN, TP, EC collected through real-time environmental convergence sensor device can be utilized as big data.
  • FIG. 4 is a flowchart for explaining the establishment of an integrated management model by using big data and collection of measurement values for IoT devices according to the concept of the present invention.
  • the present invention in the real-time integrated drainage area management system of a large-scale industrial complex using IoT and big data, measurement information collected from IoT devices and real-time status and big data collected from predetermined remote server(s) are used in the present invention. Derive a model that performs the prediction of the load.
  • Data can be periodically collected from a remote weather server or terrain information server by the integrated management server 2000, which is a SCADA system.
  • the cycle may be 1 minute to 5 minutes.
  • the information collected here is about rainfall amount, rainfall intensity, preceding dry season, and radar prediction, and may be a series of information in the present or in the past.
  • the cycle may be 1 minute to 5 minutes.
  • the accumulated data of the SCADA DB built in the integrated management server 2000 is used to predict the amount of load occurring in the drainage area. Such prediction may be performed by a prediction algorithm based on data such as radar prediction and past graphics. In addition, it is possible to perform an algorithm based on an IoT-based monitoring device and a statistical model based on historical hydraulic data.
  • Variables applied in the prediction step as an input layer may be rainfall amount, rainfall intensity, preceding dry season, flow rate, water level, arrival time, inflow BOD, SS, EC, TN, and TP.
  • a multi-layer it may be a storage time, an amount of waste sludge, a pump operation, and a reservoir water level.
  • 5 is a visualization of the drainage area management algorithm.
  • an optimal algorithm is derived for each unit drainage area through a system function, and this can be performed by a distributed computing technique as described above.
  • learning is carried out in each drainage area through the distributed computing technique, and the drainage area management model is interactively learned with each drainage area through the final learning.
  • a model for integrated total quantity management is built by the optimal algorithm derived for each drainage area.
  • 6 to 10 are graphs showing results predicted by the model of the integrated drainage area management system.
  • FIG. 6 is a view showing the prediction result of the amount of runoff compared to the amount of rainfall generated in the small drainage area as a first embodiment.
  • the horizontal axis represents time and the vertical axis represents rainfall and runoff. Prediction was performed from approximately 900min to 1100min, and it shows a shape similar to the actual measurement curve.
  • the horizontal axis is the cumulative rainfall and the vertical axis is the cumulative runoff. Note that the simulation curve shows values that are approximately close to the actual measurements.
  • the lower horizontal axis and the left axis are for time and flow
  • the upper horizontal axis and the right axis are for time and rainfall.
  • the tendencies are matched to some extent, but due to a practical problem, there is a partial difference in the forecast amount.
  • FIG. 9 is a fourth embodiment, a total amount management prediction for the amount of generation of a unit drainage area according to the amount of rainfall.
  • FIG. 10 is a forecast of total amount management for the amount of pollutants reduction in the unit drainage area according to rainfall as a fifth embodiment.
  • an inflow monitoring unit 501 capable of measuring water quality and an outflow monitoring unit 502 may be provided on the inflow passage 201 and outflow passage 202 sides, respectively.
  • the storage tank will be described as a buffer storage tank.
  • the monitoring units are, for example, acidity (pH), electrical conductivity (EC), DO, turbidity, water temperature, DOC, Nitrate, Nitrite, Phosphate, Ammonia, any of the software sensors of TN, TP, BOD It may consist of one or more. These sensors may be multi-item integrated measurement complex LOC-based sensors in the form of modules.
  • the measurement value of the monitoring unit is transmitted remotely to establish an inflow DB for each soil and storage tank 100, and IoT is applied for deriving a predetermined predicted value and integrated operation to perform remote communication.
  • 11 is a block diagram showing an embodiment of the local monitoring and control unit of the real-time integrated drainage area management system of the present invention.
  • the basic measurement target measured by the monitoring unit disposed on the inflow passage 201 side is set to EC (electrical conductivity) so that it can be determined whether the storage tank 100 flows in or overflows.
  • the local monitoring and control unit 1000 includes an EC determination unit 1010 that determines and prepares for conductivity based on the measured value from the monitoring unit, and an overflow management unit that controls the flow by judging whether it flows into or overflows into the storage tank 100 . (1020).
  • the pH/Oil determination unit 1030 may be configured to determine branching to the first or second storage tank after the inflow of the storage tank 100, and this pH/Oil determination unit 1030 is salinity or acidity and/or Or, branching is judged through the measured value of oil concentration.
  • the first storage tank for general use may be used for processing after storage.
  • the flow selects the storage tank according to the result determined by the pH/Oil determination unit 1030, and the first storage control unit 1100 and the second storage control control unit 1200 are controlled to select the storage and outflow directions, respectively. Examples related thereto will be described later.
  • the turbidity determination unit 1110 may be further included, and it is determined whether the storage time, the discharge, and the associated treatment are performed according to the reference value of the turbidity. Determination of such turbidity may include measurement of SS (suspended matter).
  • the discharge unit 1130 which determines the discharge according to the operation of the first storage control unit 1100 and the second storage control unit 1200, and the sewage and wastewater treatment facility 300 are linked to a processing unit ( 1300) may be included, and specific embodiments thereof will be described below.
  • FIG. 12 is a flowchart for explaining the operation of a real-time integrated drainage area management system according to the concept of the present invention.
  • the EC determination unit 1010 performs a basic classification through conductivity.
  • the overflow management unit 1020 functions by comparing the measured EC value and the reference EC value to determine whether the overflow or the flow into the storage tank 100 is performed. If the measured EC value is less than the reference EC value, it overflows as it is, for example, it can be naturally discharged, and the overflow (S120) step will proceed immediately.
  • the first and second storage tanks are classified according to the concept of the present invention, which is basically It can be classified by the acidity and oil concentration determination step (S200).
  • the flow to the first storage tank which is a general storage tank, is classified (S300).
  • the measured pH (PH measurement) is below the lower limit pH (PHl)
  • the measured pH (PH measurement) is above the upper limit pH (PHh)
  • the measured oil concentration is the reference oil concentration
  • the second storage tank which is an emergency storage tank (S400).
  • the reference pH range and the reference oil concentration may be preferably based on the city of Cheongcheon, but is not necessarily limited thereto.
  • the predetermined conductivity is high and the oil has a relatively low concentration of oil or a pH value in a predetermined range while being introduced into the storage tank 100, the water quality can be improved through storage and precipitation, and as a result, the discharge (S350) and Linked treatment to the sewage and wastewater treatment facility 300 may be performed.
  • An embodiment of the operation in such a general storage tank will be described later.
  • the initial rainwater is introduced at a predetermined flow rate (S500) to increase the concentration It will be possible to go through a further mitigation process and a storage process. For example, it is determined whether the measured pH value is above the standard lower limit pH and below the standard upper limit, and whether to flow directly to the first storage tank. In the step of flowing into the furnace, the initial rainwater may be introduced to relieve the concentration and then flow into the first storage tank.
  • 13 is a flowchart for explaining an embodiment of the control of the first storage tank.
  • the turbidity determination unit 1110 functions to compare the turbidity with the reference turbidity (S311). Such determination of turbidity is a factor in determining the discharge time or the connection time with the sewage and wastewater treatment facility 300 .
  • the determination of the turbidity may include determination of the concentration of SS (suspended matter).
  • the first storage control unit 1100 may function.
  • the measurement and determination of such turbidity may be preferably performed periodically at predetermined time intervals.
  • the storage (S220) is performed for the first set time, the supernatant water is discharged (S350), and the sediment is treated in conjunction with the sewage and wastewater treatment facility (300) (S361) can be performed.
  • the first set time may be 12 hours, but may be changed according to various conditions.
  • the reference turbidity in the secondary turbidity determination may be the same as the reference turbidity in the basic turbidity determination.
  • equal water is discharged (S350) as in the above example, and a linked treatment (S361) can be performed on the sediment to the sewage and wastewater treatment facility 300 .
  • the operation of the monitoring unit and local monitoring and control unit 1000 described above includes properties such as pH value, conductivity, and oil concentration for the outflow water from the drainage area, and rainfall amount, rainfall intensity, inflow flow rate, arrival time, etc. collected from a weather server, etc. It can be considered that the elements of is accumulated as a DB and applied an artificial intelligence algorithm to perform active and adaptive control.
  • prediction result data will be more precisely matched with the actual measurement result according to the repeated execution of the learning by the repeated monitoring devices and the additionally databased big data.
  • real-time integrated drainage area management is possible through an optimal algorithm in the central integrated management server, which enables interactive learning.
  • the reliability of the management model is improved because it can be performed through

Abstract

본 발명은, 대규모의 산업단지나 공장단지 등의 다수 배수구역 관리에 있어서 각 감시를 수행하는 디바이스들에 IoT 기술을 접목하고 기상정보와 같은 빅데이터들을 활용하여 통합적인 관리가 가능한 대규모 산업단지의 실시간 통합 배수구역 관리시스템에 관한 것으로서, 배수구역 설치되는 감시 디바이스와 저류조 내지 수처리장치 및 이의 제어계통으로 구성되되 상기 감시 디바이스들은 IoT(Internet of Things) 기능이 접목되어 후술될 로컬감시 및 제어부에 측정값들이 1차적으로 수집된 다음 통합관리서버에서 기상데이터와 같은 빅데이터와 함께 분산컴퓨팅 기법을 기반으로 배수구역관리 모델을 제공한다.

Description

IOT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템
본 발명은 대규모의 산업단지나 공장단지 등의 다수 배수구역 관리에 있어서 각 감시를 수행하는 디바이스들에 IoT 기술을 접목하고 기상정보와 같은 빅데이터들을 활용하여 통합적인 관리가 가능한 대규모 산업단지의 실시간 통합 배수구역 관리시스템에 관한 것이다.
공업화와 산업화로 인하여 인류문명은 비약적인 발전을 하였고 그로 인하여 다양한 문명의 이기가 사람들의 생활을 윤택하게 한 반면, 이에 대한 반작용으로 환경오염과 수질오염이 날로 심각하게 진행되고 있는 실정이다. 따라서, 근래에는 산업시설이나 공장 등에서 배출되는 폐수는 반드시 일정 기준에 부합하도록 정화하여 강이나 하천으로 배출하여야 하며, 공업단지의 경우에는 입주기업에서 배출되는 폐수를 공동폐수처리장에서 정화하여 배출하도록 하고 있다. 즉, 환경오염물질을 가지는 폐수는 물리 화학적 처리 방식을 통해 수질환경보전법 규정에 의한 배출 허용기준 이하로 처리하여 방류하거나 위탁처리해야 하고, 대부분의 산업단지에는 폐수정화시설을 갖추는 것이 의무화되고 있다.
특히, 공업단지에 입주해 있는 기업들의 경우에 각 공장에서 사용하는 화학약품의 종류와 농도 또는 사용량이 모두 다르기 때문에 배출되는 폐수의 농도도 다양하다. 이에 따라 공업단지나 산업단지에서 배출되는 다양한 폐수를 일괄적으로 집수하여 정화하는 것은 상당한 어려움이 있으며, 특히 저농도의 폐수와 고농도의 폐수를 아무런 구분 없이 일괄적으로 집수하여 처리하는 경우에 폐수처리에 소요되는 전체 비용이 증가할 뿐만 아니라 저농도의 폐수를 배출하는 업체와 고농도의 폐수를 배출하는 업체 간에 폐수처리비용분담을 둘러싸고 분쟁이 발생할 수도 있다.
따라서, 산업단지에 입주에 있는 기업들이 공동의 폐수처리장으로 배출하는 폐수의 오염도를 일정수준 이하가 되도록 규제하고 있으며, 이로 인하여 고농도의 폐수를 배출하는 기업은 공동폐수처리장으로 배출하기 전에 자체적으로 고농도의 폐수를 공동폐수처리장으로 보낼 수 있는 수준의 저농도의 폐수로 정화하거나 외부처리시설에 위탁을 하여야 한다. 그런데 외부처리시설에 고농도의 폐수를 위탁처리를 하고자 하는 경우에도 각 공단마다 오염물질의 외부반출량을 제한하고 있는 경우가 많기 때문에 모든 폐수를 외부시설기관에 위탁처리할 수는 없다. 따라서 고농도의 폐수를 배출하는 기업의 경우에 배출되는 폐수를 저농도로 정화하고, 외부로 반출하여 위탁처리할 수 있는 고동노의 폐수 또는 오염물질의 양을 최소화할 수 있는 정화시설이 필수적으로 요구되고 있는 것이다.
종래에는 대규모 산업단지나 공업단지에서 발생하는 폐수를 감시하고 추적하는 데 중점을 두었으며, 한국공개특허 제10-2007-0037481호는 종래기술의 중금속 폐수 감시 시스템을 개시하고 있으며 도 1은 이를 나타내는 블록도이다.
구체적으로 살펴보면, 수계의 중금속 성분을 감시할 목적으로 설치하는 계측기인 PH meter와 전기전도도 측정기, 온도계, 시안측정기, 미리 설정된 PH와 전기전도도, 온도, 시안농도의 기준을 초과하는 경우 경보를 발령하고 실시간으로 데이터를 전송하는 원격 데이터 전송제어장치, 사전에 구축된 중금속함유폐수 배출업소의 DB자료와 경보발령시 채취한 시료의 분석결과를 비교하여 방류추정업체를 분석하는 컴퓨터 분석프로그램, 그리고 경보 시점의 시료를 자동으로 채취하여 보관하기 위한 시료 채취기를 포함하여 구성되어 있다.
이렇게 사후적인 검증 및 추적만으로는 환경오염에 대한 대처가 어렵기 때문에 대규모 산업단지의 배수구역 전체를 능동적으로 감시하고 효율적인 정화를 하고자 하는 시도들이 있다.
다만, 대규모 산업단지나 공장단지의 경우는 수백만평에 이르는 배수구역을 관리해야할 뿐만 아니라 각 유닛별 배출되는 물질의 성상이나 농도가 상이함은 물론 시간이나 기상에 따라서도 다양하게 변화하기 때문에 능동적인 대처가 어려운 실정이다.
본 발명은 상기한 종래기술의 문제점을 극복하기 위해 안출된 것으로, 대규모 산업단지 등과 같은 넓고 다양한 조건의 배수가 이루어지는 환경에서 효율적인 배수관리 및 에너지의 관리가 가능한 저류조를 이용한 배수구역 관리시스템 및 이를 이용한 배수구역 관리 방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위한 본 발명은, 배수구역 설치되고 IoT가 적용되어 원격통신이 가능한 하나 이상의 감시 디바이스와, 배수구역의 수처리장치에 구비되고 IoT가 적용되어 원격통신이 가능한 하나 이상의 작동 디바이스와, 상기 감시 디바이스 및 작동 디바이스들로부터 측정정보를 수집하는 로컬감시 및 제어부와, 각 배수구역별 배치된 로컬감시 및 제어부로부터의 측정정보와, 원격서버로부터 수집된 빅데이터를 이용하여 배수구역 관리 알고리즘을 통하여 유출부하를 예측하고 분산컴퓨팅 기법을 기반으로 배수구역별 통합 배수구역 관리 시스템 모델을 구축하여 유역단위 총량관리를 수행하는 통합관리서버를 포함하는 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템을 제공한다.
상기 로컬감시 및 제어부는, 저류지 전단의 퇴적지역에 대한 측정정보와 강우정보를 기초로 퇴적지역에 강우가 종료되고 설정된 시간이 경과된 조건에서 저류지 전단의 고압펌프를 제어하여 동작시킬 수 있다.
일실시예로서, 상기 감시 디바이스는, 수처리장치 유입측에서 TP, TN, EC, BOD, SS, 유속, 수위 중 어느 하나 이상을 센싱하는 유입측감시부와, 유출측에서 유량, BOD, SS, TN, TP, EC, 소모전력량 중의 어느 하나 이상을 센싱하는 유출측감시부로 이루어질 수 있다.
또한, 상기 배수구역 관리 알고리즘은, 인풋 레이어로서 강우량, 강우강도, 선행건기, 유속, 수위, 도달시간, 유입 BOD, SS, EC, TN, TP를 입력하고, 멀티 레이어로서 저류시간, 폐기슬러지량, 펌프가동, 저류지 수위를 입력하고, 아웃레이어로서 유출유량, 전력소모, 유출 BOD, SS, EC, TN, TP를 입력하여 딥러닝 알고리즘을 구성한다.
한편, 상기 로컬감시 및 제어부는, 유입측감시부에서 측정된 EC값이 기준 EC값보다 높은 경우 이온성 유해물질이 증가하는 경향이 있는 것으로 판단하여 유출수를 저류조로 격리시키도록 하는 것이 바람직하다.
또한, 상기 배수구역 관리 알고리즘은, SS 유출 부하량을 통하여 발생슬러지양을 예측할 수 있다.
상기 로컬감시 및 제어부는, 강우가 종료된 것으로 판단되고 설정된 시간이 경과되면 저류지 전단의 퇴적지역에 설치된 고압펌프를 작동하여 배수구역 관거를 세척하도록 할 수 있다.
또한, 상기 저류조는 제1저류조와 제2저류조로 이루어지며, 상기 로컬감시 및 제어부는, 상기 저류조에 연결되며 감시부에 의하여 측정된 전기전도도의 판단을 통하여 저류조로의 유입 및 월류 여부를 제어하는 월류관리부와, 저류조로 유입되는 유출수에 대하여 산도 및 오일의 농도 대비를 통하여 제1저류조 및 제2저류조로의 분류를 결정하도록 하는 pH/Oil 판단부와, 제1저류조에 대해 탁도판단부의 판단결과를 기반으로 침전시간과 방류시기를 결정하여 제어하는 제1저류조제어부와, 제2저류조의 유출수에 대해 하·폐수처리시설로 연계처리하도록 하는 연계처리부를 구비하는 것이 바람직하다.
상기 월류관리부는 유출수에서 측정된 전기전도도가 기준 전기전도도 미만인 경우 월류시키고, 상기 pH/Oil 판단부는 측정된 전기전도도가 기준 전기전도도 이상인 유출수에 대해, 측정pH가 상한pH 미만 및 하한pH 초과이고 측정 Oil농도가 기준 Oil농도 미만이면 제1저류조로 유동시키고, 측정pH가 하한pH 이하이거나 측정pH가 상한pH 이상이거나 측정 Oil농도가 기준 Oil농도 이상인 경우 제2저류조로 유동시키며, 상기 제1저류조제어부는 제1저류조로의 유동에 대해 측정탁도가 기준탁도 미만인 경우 제1설정시간 동안 저류하여 상등수를 방류하고 침전물에 대해서는 연계처리부를 통하여 연계처리하도록 하고, 측정탁도가 기준탁도 이상인 경우 제2설정시간동안 저류한 이후 측정탁도가 기준탁도 이상인 경우 전체를 연계처리하도록 하되, 상기 측정pH 값이 기준하한pH 미만 및 하한pH 초과인 경우 또는 기준상한pH 초과 및 상한pH 미만인 경우 초기 우수를 유입하여 농도를 완화한 다음 저류할 수 있도록 하는 것이 바람직하다.
본 발명에 따라, 중앙 통합관리서버에서 최적 알고리즘을 통하여 실시간 통합 배수구역 관리가 가능하고 이는 쌍방향 학습을 통하여 수행될 수 있기 때문에 관리 모델의 신뢰성이 향상되는 효과가 있다.
또한, 유역단위의 총량관리가 가능하면서도 다양한 유출특성에 따라 분산컴퓨팅이 적용되기 때문에 현장 적응성이 높고, 산업단지내 유해성 물질에 의한 사고를 미연에 방지할 수 있음은 물론 비상 상황에 대해 능동적인 대처가 가능한 이점을 가진다.
도 1은 종래기술의 폐수 감시 시스템의 블록도이다.
도 2는 본 발명의 개념에 따른 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 관리시스템의 구성도이다.
도 3은 본 발명의 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 관리시스템에 대한 연결관계를 설명하기 위한 구성도이다.
도 4는 본 발명의 개념에 따라 IoT 디바이스에 대한 측정값의 수집 및 빅데이터를 활용하여 통합관리모델을 구축하는 것을 설명하기 위한 흐름도이다.
도 5는 분산컴퓨팅 기법을 통하여 수집된 데이터들을 기반으로 최적알고리즘을 구성하는 개념을 설명하기 위한 도면이다.
도 6 내지 10은 본 발명의 제1실시예 내지 제5실시예에 따라 분산컴퓨팅 기법에 의하여 예측된 데이터들을 나타내는 그래프들이다.
도 11은 본 발명의 실시간 통합 배수구역 관리시스템의 로컬감시 및 제어부에 대한 실시예를 나타내는 블록도이다.
도 12는 본 발명의 개념에 따라 실시간 통합 배수구역 관리시스템의 작동을 설명하기 위한 흐름도이다.
도 13은 제1저류조의 제어에 대한 실시예를 설명하기 위한 흐름도이다.
이하, 첨부도면을 참조하여 본 발명에 따른 바람직한 실시예의 IoT 및 빅데이터를 활용한 대규모 산업단지의 통합 배수구역 관리시스템을 상세히 설명한다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 부분, 장치 및/또는 구성 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 부분, 장치 및/또는 구성 또한 기술하지 아니하였다. 또한, 도면에서 동일한 도면 부호를 사용하여 지칭하는 부분은 장치 구성 또는 방법에서 동일한 구성 요소 또는 단계를 의미한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "···부" 또는 "···기" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미한다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 발명은 기본적으로 대규모의 산업단지나 공업단지의 배수구역 설치되는 감시 디바이스와 저류조 내지 수처리장치 및 이의 제어계통의 작동 디바이스로 구성되며, 상기 감시 디바이스 및 작동 디바이스들은 IoT(Internet of Things) 기능이 접목되어 후술될 로컬감시 및 제어부에 측정값들이 1차적으로 수집된 다음 통합관리서버에서 기상데이터와 같은 빅데이터와 함께 분산컴퓨팅 기법을 기반으로 효과적인 배수구역관리모델을 구축할 수 있도록 한다.
본 발명의 설명에서 유출수의 성상이나 수처리장치의 배치관계는 본 발명의 개념을 제한하지는 않으며, 대규모 산업단지나 공업단지는 물론 하수 또는 폐수를 발생할 수 있고 복합적인 관거의 유출 관계를 가지는 다양한 분야에 적용될 수 있음은 물론이다.
도 2는 본 발명의 개념에 따른 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템의 구성도이다.
배수구역의 관거 및 장비의 배치들은 총체적으로 다양한 형태로 구성될 수 있으며 이러한 형태는 본 발명의 개념을 제한하지 않을 것이다. 수처리장치의 일실시예로서 저류조(100, 100a, 100b, 100c)는 각 유입유로(201)의 토구에 배치될 수 있으며, 경우에 따라 복수의 유입유로(201)를 하나의 저류조(100)가 연결하여 구성되는 것도 고려될 수 있다. 상기 유입유로(201)로부터 전송되는 오수, 폐수 또는 우수는 유출수로 정의하도록 한다. 상기 저류조(100)는 소정의 성상에 따라 분기되는 형태의 복수의 저류조모듈로 구성될 수도 있을 것이며, 이와 관련된 실시예는 후술한다.
후술될 로컬감시 및 제어부는 저류조(100)로의 유입 및 월류 여부를 판단하여 제어할 수 있으며, 상기 유입 및 월류에 대한 판단은 바람직한 실시예로서 EC(전도도)측정에 기반할 수 있다. 이와 관련되어 구체적인 설명은 후술하도록 한다.
상기 저류조(100)의 배출측은 방류유로(202)와 연계처리유로(203)로 분류될 수 있으며, 방류유로(202)는 수계 등으로 배수하는 것을 의미하고, 연계처리유로(203)는 하·폐수처리시설(300)로의 유출 및 후처리를 하도록 한다. 이에, 본 발명의 설명에서 연계처리란 저류조(100)로부터의 유출수가 하·폐수처리시설(300)에 의하여 후처리된다는 것을 의미하는 것으로 이해한다.
상기 유입유로(201) 및 유출유로 측에는 각각 수질을 측정할 수 있는 유입측감시부(501)와, 유출측감시부(502)가 구비될 수 있으며, 수질에 대한 다양한 성상을 측정하도록 설정될 수 있을 것이다. 예를 들어, 상기 감시부들은 pH, EC, DO, 탁도, 수온, DOC, Nitrate, Nitrite, Phosphate, Ammonia, Oil 등의 실측 및 TN, TP, BOD의 소프트웨어 센서 중의 어느 하나 이상으로 구성될 수 있다. 이러한 센서들은 모듈 형태로서 다항목 통합측정 복합 LOC기반 센서일 수 있다.
더욱 바람직하게는 유입측에서는 TP, TN, EC, BOD, SS, 유속, 수위 등에 대한 센싱을 수행하고, 유출측에서는 유량, BOD, SS, TN, TP, EC, 소모전력량 등이 측정될 수 있을 것이다.
각각의 감시부에 대해서는 유선 또는 무선 통신이 가능하도록 소정의 통신모듈이 구비될 수 있으며, 경우에 따라 하나의 구역을 커버하는 로컬감시 및 제어부에서 각 감시부들에 대한 위치정보와 함께 측정값들을 수집하고 네트워크서버를 통하여 SCADA 통합관리서버로 집중하도록 할 수 있을 것이다. 바람직한 실시예로서, 각각의 감시부 및 수처리장치는 무선통신이 가능하도록 인터넷 통신모듈을 구비하여 추가적인 설비의 부담을 저감할 수 있을 것이다.
이렇게 IoT 가 적용되는 경우 감시부의 측정값이 원격으로 전송되어 토구별 및 저류조(100)의 유입 DB를 구축하고 소정의 예측값 도출과 통합 운영이 가능하다.
상기 저류조(100)는 소정의 로컬 제어부에 의하여 제어될 수 있다. 이와 관련된 구체적인 설명은 후술하도록 한다.
상기 저류조는 소정의 완충 저류조로서 기능하여, 유입 성상에 따라 일반용 저류조와 비상용 저류조로 수체를 분리하여 처리할 수 있을 것이다.
기본적으로 월류 및 저류조(100) 유입에 대한 판단은 EC(전기전도도)로 설정하여 판단할 수 있다.
또한, 일반용 완충 저류조와 비상용 완충 저류조의 수류 분리를 위하여 산도 및 오일농도의 측정 및 판단이 이루어지는 것이 바람직할 것이다. 예를 들어, 상기 전도도가 기준값보다 높은 경우에도 pH값이 설정 범위 밖에 있어거 Oil의 농도가 기준농도에 이르지 못한 경우는 일반용 저류조에서 처리하여 상등수는 방류하고 침전물에 대해서는 하·폐수처리시설(300)에서 처리하도록 할 수 있다.
또한, 탁도 내지 SS 측정을 통하여 일반용 완충 저류조에서의 저류시간과 추가측정 여부 및 빈도 등에 대한 판단을 수행할 수도 있다.
추가적으로, 저류지 전단의 퇴적지역에 설치된 고압펌프를 설비하여 로컬감시 및 제어부가 강우가 종료된 것으로 판단되고 설정된 시간이 경과되면 고압펌프를 작동함으로써 배수구역 관거를 세척하도록 할 수 있다. 상기 설정된 시간은 24시간인 것이 바람직하다.
도 3은 본 발명의 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 관리시스템에 대한 연결관계를 설명하기 위한 구성도이다.
상기한 바와 같이 각각의 구역 내지는 저류조(100)의 단위 등을 기반으로 하여, 통합관리서버(2000)와 네트워크서버(3000)를 통하여 연결되어 유선 또는 무선으로 제어신호를 입출력하도록 하는 로컬감시 및 제어부(1000)가 제공된다.
상기 로컬감시 및 제어부(1000)는 무선통신을 수행하는 모듈송수신부를 구비하고 이러한 모듈송수신부는 하나 이상의 유입측감시부(501) 및 유출측감시부(502)와 저류조(100)와 같은 수처리시설에 구비되는 IoT통신모듈에 의하여 센싱신호 또는 온오프 신호 및 작동제어신호 등을 입출력하게 된다.
여기서 각각의 감시 내지 작동 디바이스와 IoT에 의한 연결은 물론 RS485와 같은 유선연결방식이 배제되는 것은 아니다.
상기 네트워크서버(3000)는 복수의 로컬감시 및 제어부(1000)와의 무선 연결을 위한 게이트웨이로 구성될 수 있을 것이다. 상기 게이트웨이의 경우 메모리맵을 구성하여 다중 IP를 가지는 것이 바람직할 수 있다. 한편, 네트워크서버(3000)는 네트워크망을 구성하는 공용 또는 대규모 서버 및 기지국을 포함할 수 있다.
상기 통합관리서버(2000)는 SCADA로서 기능하여 감시부들로부터의 측정값 및 외부 서버로부터의 빅데이터를 수집할 수 있다. 이때, 통합관리서버(2000)와 네트워크서버(3000)의 연결은 종래의 유무선 인터넷 프로토콜을 이용하여 이루어질 수도 있을 것이며 다양한 공지의 연결방식이 적용될 수 있을 것이다. 이러한 네트워크서버(3000)는 대규모 통신망을 구비하는 통신사에서 운영되는 것을 의미할 수 있을 것이다.
통합관리서버(2000)는 기본적으로 하나 이상의 로컬감시 및 제어부(1000)에 연결되어 제어명령을 입력하여 송신하고, 점검신호 등을 수신하여 통합관리하는 서버, PC 또는 마이크로프로세서일 수 있으며, 관제실 등에서 특정 건물이나 영역에서 관리를 수행하여 통합처리하는 마스터서버에 연결되는 경우를 포함한다.
본 발명에서 설명되는 무선 네트워크에 적용되는 무선통신은 CDMA, WCDMA, HSDPA, GSM, Wibro, 3G, 4G, LTE, LTE CatM1 등을 포함하는 이동 통신 네트워크에서 제공하는 통신방식과, Wi-Fi(Wireless Fidelity), 블루투스(Bluetooth), 적외선(IrDA: Infrared Data Association), 무선 LANN(IEEE 802.11), SWAP(Shared Wireless Access Protocol), WPAN(Wireless Personal Area network), 지그비(Zigbee), 저전력근거리통신인 LoRa(Long Range) 네트워크 등의 다양한 방식이 적용될 수 있을 것이다.
경우에 따라서는 각 로컬감시 및 제어부(1000)가 생략되고 각각의 감시 및 제어 디바이스들이 직접적으로 네트워크망을 통해 통합관리서버(2000)로 정보를 송신하는 경우가 고려될 수 있으며, 복수의 로컬감시 및 제어부(1000)들이 중규모 관리서버로 정보를 집중하고 다시 복수의 중규모 관리서버가 통합관리서버(2000)로 정보를 집중하는 방식도 고려될 수 있을 것이다.
또한, 상기 통합관리서버(2000)는 기상서버(4100)로부터 강우량, 강우강도, 선행건기 등에 대한 실시간 데이터 및 빅데이터를 수집할 수 있다. 경우에 따라, 본 발명의 감시 디바이스는 기상 상태를 측정하는 기상측정 디바이스일 수도 있음은 물론이다.
경우에 따라, 지형정보나 관거의 연결관계 등에 대한 지리정보에 대한 빅데이터의 수집도 가능하며, 이는 지리정보DB(4200)로부터 수집될 수 있다. 여기서, 지리적 정보란, 지형에 대한 정보, 관망의 배치에 대한 데이터, 맨홀 및 관거의 정보 등의 환경에 대한 제반 정보를 포함하는 것으로 이해한다.
본 발명에서는 각각 다른 토이지용도의 다양한 유출특성에 따라 다수의 배수구역 관리를 위한 분산컴퓨팅 기법이 적용된다. 이를 위하여, 강우량, 강우강도, 선행건기 등에 대한 실시간 기상정보와, 실시간 환경융합 센서장치를 통하여 수집된 차집관거 내 유량, BOD, SS, TN, TP, EC 등의 측정값들이 빅데이터로서 활용될 수 있다.
이러한 인공지능 시스템을 이용하여 유역단위의 총량 관리 예측 모델링의 구축이 가능하고 산업단지내 유해성 물질에 의한 사고의 예방 및 유출부하량에 대한 신뢰성 제고가 가능하다.
도 4는 본 발명의 개념에 따라 IoT 디바이스에 대한 측정값의 수집 및 빅데이터를 활용하여 통합관리모델을 구축하는 것을 설명하기 위한 흐름도이다.
기본적으로 본 발명에서는 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템에서는 IoT 디바이스들에서 수집된 측정정보와, 소정의 원격 서버(들)로부터 수집된 실시간 현황 및 빅데이터들통하여 부하량의 예측을 수행하는 모델을 도출한다.
a) 빅데이터 수집단계(S110)
SCADA 시스템인 통합관리서버(2000)에 의하여 원격의 기상서버 내지 지형정보서버 등에서 데이터를 주기적으로 수집할 수 있다. 상기 주기는 1분 내지 5분일 수 있다. 여기서 수집되는 정보는 강우량, 강우강도, 선행건기, 레이더 예측에 대한 것이며 현재 또는 과거의 일련의 정보일 수 있다.
b) IoT 기반 측정값 수집단계(S120)
각 IoT가 적용된 감시 디바이스들인 감시부, 더욱 구체적으로는 유입측감시부(501) 및 유출측감시부(502)에서 유출량, 수위, 유속, BOD, SS, TN, TP, EC, 탁도, Oil 농도 등을 실시간으로 주기적 방식을 통하여 수집할 수 있다. 상기 주기는 1분 내지 5분일 수 있다.
c) 유출부하 예측단계(S200)
배수구역 관리 알고리즘에서는 통합관리서버(2000)에 구축된 SCADA DB의 축적된 데이터들을 활용하여 배수구역내에 발생하는 부하량의 예측을 수행한다. 이러한 예측은 레이더 예측 및 과거의 그래픽 등의 데이터에 의한 예측 알고리즘으로 수행이 가능할 것이다. 또한, IoT 기반 감시 디바이스 및 과거의 수리학적 데이터에 의한 통계학적 모델에 의한 알고리즘으로 수행이 가능하다.
상기 예측단계에서 적용되는 변수는 인풋 레이어(Input Layer)로서 강우량, 강우강도, 선행건기, 유속, 수위, 도달시간, 유입 BOD, SS, EC, TN, TP일 수 있다.
또한, 멀티 레이어(Multi Layer)로서 저류시간, 폐기슬러지량, 펌프가동, 저류지 수위일 수 있다.
또한, 아웃레이어(Out Layer)로서 유출유량, 전력소모, 유출 BOD, SS, EC, TN, TP를 입력하여 딥러닝 알고리즘을 구성할 수 있는 것이다.
도 5는 상기 배수구역 관리 알고리즘을 시각화하여 나타낸 것이다.
완충저류시설로서 기능하는 저류조(100)에서 저감되는 부하량을 IoT 기반 인공지능 실시간 환경융합센서장비인 감시부들에 의하여 측정하여 유출부하량 예측 수행이 가능하다. 이는 완충저류시설을 이요한 수질오염 총량의 관리가 가능함을 의미한다.
d) 배수구역 최적알고리즘 도출(S300)
상기 배수구역 관리 알고리즘에서 시스템 함수를 통하여 각 단위 배수구역별로 최적 알고리즘을 도출하며 이는 분산컴퓨팅 기법에 의하여 수행될 수 있음은 상기와 같다. 넓은 영역과 다수의 배수구역을 가지는 경우에 대해 분산컴퓨팅 기법을 통하여 각각의 배수구역에서 학습이 이루어지며 배수구역 관리 모델이 최종 학습을 통하여 각각의 배수구역과의 쌍방향 학습이 이루어지는 것이다.
e) 실시간 통합 배수구역 관리시스템 모델 구축(S400)
상기 배수구역별로 도출된 최적 알고리즘에 의하여 통합적인 총량 관리를 위함 모델의 구축이 이루어지게 된다.
도 6 내지 도 10은 통합 배수구역 관리시스템의 모델에 의하여 예측된 결과물들을 나타내는 그래프들이다.
도 6은 제1실시예로서, 소 배수구역 내 발생되는 강우량 대비 유출량의 예측 결과를 나타낸 것이다. 가로축은 시간 세로축은 강우 및 유출유량을 나타내고 있다. 대략 900min 에서 1100min 구간의 예측이 수행되었으며 실제 측정 커브와 유사한 형태를 나타낸다.
도 7은 제2실시예로서, 누적 강우량에 따른 누적 유출유량 예측결과이다. 가로축은 누적강우량이며 세로축은 누적 유출량이다. 시뮬레이션 커브가 대략 실제 측정치와 근접된 값을 나타내고 있음에 유의한다.
도 8은 제3실시예로서, 강우량에 따른 저류지 처리효율을 예측한 것이다. 이렇게 빅데이터에 기반하여 수행한 결과로서, 하단 가로축과 좌측 축은 시간 및 유량이며, 상단 가로축 및 우측 축은 시간 및 강우에 대한 것이다. 강우 예측의 경우는 경향성은 어느 정도 매칭이 되었으나 현실적인 문제로 인하여 예측량의 일부 차이를 가진다.
도 9는 제4실시예로서, 강우량에 따른 단위배수구역 발생량에 대한 총량관리 예측이다. 또한, 도 10은 제5실시예로서 강우량에 따른 단위배수구역 오염물질 저감량에 대한 총량관리 예측이다.
한편, 본 발명의 추가적인 개념에 따라 대규모 산단의 각 토구에 배치되어 부하에 따라 완충할 수 있는 구성을 설명하도록 한다.
상기 유입유로(201) 및 유출유로(202) 측에는 각각 수질을 측정할 수 있는 유입감시부(501)와, 유출감시부(502)가 구비될 수 있음은 상기와 같다. 상기 저류조는 완충 저류조로서 설명하도록 한다. 상기 감시부들은 예를 들어, 산도(pH), 전기전도도(EC), DO, 탁도, 수온, DOC, Nitrate, Nitrite, Phosphate, Ammonia, Oil 등의 실측 및 TN, TP, BOD의 소프트웨어 센서 중의 어느 하나 이상으로 구성될 수 있다. 이러한 센서들은 모듈 형태로서 다항목 통합측정 복합 LOC기반 센서일 수 있다. 본 발명의 경우 상기 감시부의 측정값이 원격으로 전송되어 토구별 및 저류조(100)의 유입 DB를 구축하고 소정의 예측값 도출과 통합 운영을 위하여 IoT가 적용되어 원격 통신을 수행할 수 있을 것이다.
도 11은 본 발명의 실시간 통합 배수구역 관리시스템의 로컬감시 및 제어부에 대한 실시예를 나타내는 블록도이다.
유입유로(201)측에 배치된 감시부에 의하여 측정되는 기본적인 측정대상은 EC(전기전도도)로 설정하여 저류조(100)의 유입여부 내지 월류여부를 판단할 수 있도록 한다. 이에, 로컬감시 및 제어부(1000)는 감시부로부터의 측정값에 의하여 전도도를 판별하고 대비하는 EC판단부(1010)와, 저류조(100)로의 유입 및 월류 여부를 판단하여 유동을 제어하는 월류관리부(1020)를 포함할 수 있다.
또한, 저류조(100) 유입 이후 제1 또는 제2저류조로의 분기를 판단하기 위하여 pH/Oil 판단부(1030)가 구성될 수 있으며, 이러한 pH/Oil 판단부(1030)는 염도 내지는 산도 및/또는 Oil의 농도의 측정값을 통하여 분기를 판단하게 된다.
예를 들어, 상기 전도도가 기준값보다 높은 경우에도 pH값이 설정된 범위 안에 있거나 Oil의 농도가 기준농도에 이르지 못한 경우는 제1저류조인 일반용 저류조에서 저류 이후 처리가 가능할 것이다.
또한, pH/Oil 판단부(1030)에서 판단된 결과에 따라 유동은 저류조를 선택하며, 제1저류조제어부(1100)와 제2저류조제어부(1200)가 각각 저류 및 유출방향을 선택하도록 제어한다. 이와 관련된 실시예는 후술하도록 한다.
또한, 탁도판단부(1110)를 더 포함할 수 있으며, 탁도의 기준값에 따라 저류 시간, 방류 및 연계처리 여부 등을 판단하게 된다. 이러한 탁도의 판단은 SS(부유물질)의 측정을 포함할 수 있다.
상기 제1저류조제어부(1100) 및 제2저류조제어부(1200)의 작동에 따라 방류를 결정하는 방류부(1130)와, 하·폐수처리시설(300)과의 연계처리를 수행하도록 하는 연계처리부(1300)가 포함될 수 있으며 이에 대한 구체적인 실시예는 아래에서 설명하도록 한다.
도 12는 본 발명의 개념에 따라 실시간 통합 배수구역 관리시스템의 작동을 설명하기 위한 흐름도이다.
토구별 유출수가 유동하면서(S100) EC판단부(1010)에서 전도도를 통하여 기본적인 분류를 수행하게 된다.
전도도 판단 단계(S110)에서는 측정된 EC값과 기준EC값을 대비하여 월류 또는 저류조(100)로의 유입 여부를 결정하여 월류관리부(1020)가 기능하게 된다. 측정EC값이 기준EC값 미만인 경우 그대로 월류시켜, 예를 들어 자연방류할 수 있으며 이에 월류(S120) 단계로 바로 진행될 것이다.
측정EC값이 기준EC값 이상으로 판단되고 저류조(100)로 유입이 월류관리부(1020)에 의하여 결정되면, 본 발명의 개념에 따라 제1저류조와 제2저류조로의 분류가 이루어지며 이는 기본적으로 산도 및 오일농도 판단단계(S200)에 의하여 분류될 수 있다.
상기 산도 및 오일농도 판단단계(S200)에서는 측정pH가 설정된 범위 내에 있고, 측정 Oil농도가 기준 Oil농도 미만인 경우 일반 저류조인 제1저류조로 유동하는 단계(S300)로 분류된다.
제2저류조로 유동(S400)하기 위한 조건으로서, 측정pH(PH측정)이 하한pH(PHℓ) 이하이거나, 측정pH(PH측정)이 상한pH(PHh) 이상이거나, 측정 Oil농도가 기준 Oil농도 이상인 경우 비상 저류조인 제2저류조로 유동하는 단계(S400)로 진입한다. 이때, 기준pH의 범위 및 기준Oil농도는 청천시를 기준으로 하는 것이 바람직할 것이나 반드시 이에 한정되는 것은 아니다.
소정의 전도도가 높아 저류조(100)로 유입된 상태에서 비교적 낮은 농도의 Oil농도 또는 소정 범위의 pH값을 가지는 경우 저류 및 침전을 통하여 수질을 개선할 수 있을 것이며, 이 결과물로서 방류(S350) 및 하·폐수처리시설(300)로의 연계처리가 수행될 수 있다. 이러한 일반 저류조에서의 작동의 실시예는 후술하도록 한다.
제2저류조로 진입(S400)한 상태에서는 저류 처리로는 수질의 개선이 어렵기 때문에 전체를 하·폐수처리시설(300)로 연계처리(S410)하도록 할 수 있으며 이에 대해서는 후술한다.
추가적으로 산도 및 오일농도 판단단계(S200)에서 청천시와 유사한 결과를 가지는 경우에는 즉, 제2저류조로 유입시키지는 않았으나 어느 정도 한계값에 인접된 경우에는 초기 우수를 소정 유량 유입(S500)하여 농도를 완화하는 과정을 더 거치고 저류 과정을 거칠 수 있을 것이다. 예를 들어, 측정pH 값이 기준하한pH 이상 및 기준상한pH 이하인 것을 판단하여 바로 제1저류조로 유동시킬지 여부를 판단하고, 기준하한 pH 이하 또는 기준상한 pH 이상인 경우에는 제1저류조 또는 제1저류조로 유입하는 단계에서 초기 우수를 유입하여 농도를 완화한 다음 제1저류조로 유동시킬 수 있다.
도 13은 제1저류조의 제어에 대한 실시예를 설명하기 위한 흐름도이다.
상기 산도 및 오일농도 판단단계(S200)를 거친 이후에 제1저류조로 유입(S300)된 상태에서는 탁도판단부(1110)가 기능하여 탁도를 기준탁도와 대비(S311)한다. 이러한 탁도의 판단은 방류 시기 내지 하·폐수처리시설(300)과의 연계시기를 결정하는 요소가 된다. 여기서 상기 탁도의 판단은 SS(부유물질)에 대한 농도 판단을 포함할 수 있다. 여기서 상기 제1저류조제어부(1100)가 기능할 수 있다.
이러한 탁도의 측정 및 판단은 소정의 시간 간격으로 주기적으로 수행되는 것이 바람직할 것이다.
탁도 판단(S311)에서 측정탁도가 기준탁도 미만인 경우 제1설정시간 동안 저류(S220)를 수행하고, 상등수는 방류(S350)하며 침전물에 대해서는 하·폐수처리시설(300)로 연계처리(S361)를 수행할 수 있다. 상기 제1설정시간은 12시간일 수 있으나 다양한 조건에 따라 변경 가능하다.
또한, 측정탁도가 기준탁도 이상인 경우 제2설정시간 동안 저류(S210)를 수행하고, 2차 탁도 판단(S312)가 수행된다. 여기서 2차 탁도 판단에서 기준탁도는 상기 기본 탁도 판단의 기준탁도와 동일할 수 있다.
상기 탁도가 어느 정도 저감된 것을 확인한 이후 상기의 예와 마찬가지로 등수는 방류(S350)하며 침전물에 대해서는 하·폐수처리시설(300)로 연계처리(S361)을 수행할 수 있다.
또한, 2차 탁도의 측정 결과 개선이 불충분한 경우는 제2저류조의 처리 경우와 마찬가지로 전량 하·폐수처리시설(300)로 전송하여 연계처리(S341)하는 것이 바람직하다.
한편, 상기된 감시부와 로컬감시 및 제어부(1000)의 작동은 배수구역의 유출수에 대한 pH값, 전도도 및 Oil 농도와 같은 성상과 기상서버 등에서 수집된 강우량, 강우강도, 유입유량, 도달시간 등의 요소가 DB로서 축적되어 인공지능 알고리즘을 적용하여 능동적이며 적응성의 제어를 수행하도록 하는 것이 고려될 수 있다.
상기 예측결과 데이터들은 반복적인 감시 디바이스들에 의한 수집 정보와 추가적으로 데이터베이스화된 빅데이터들에 의한 학습의 반복수행에 따라 더욱 정밀하게 실측 결과와 매칭될 것으로 기대된다.
상기와 같이 본 발명의 개념에 따른 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템에 의하여, 중앙 통합관리서버에서 최적 알고리즘을 통하여 실시간 통합 배수구역 관리가 가능하고 이는 쌍방향 학습을 통하여 수행될 수 있기 때문에 관리 모델의 신뢰성이 향상된다.
또한, 유역단위의 총량관리가 가능하면서도 다양한 유출특성에 따라 분산컴퓨팅이 적용되기 때문에 현장 적응성이 높고, 산업단지내 유해성 물질에 의한 사고를 미연에 방지할 수 있음은 물론 비상 상황에 대해 능동적인 대처가 가능하다.
이상에서, 본 발명은 실시예 및 첨부도면에 기초하여 상세히 설명되었다. 그러나, 이상의 실시예들 및 도면에 의해 본 발명의 범위가 제한되지는 않으며, 본 발명의 범위는 후술한 특허청구범위에 기재된 내용에 의해서만 제한될 것이다.

Claims (1)

  1. 배수구역 설치되고 IoT가 적용되어 원격통신이 가능한 하나 이상의 감시 디바이스;
    저류조를 포함하는 수처리장치에 구비되고 IoT가 적용되어 원격통신이 가능한 하나 이상의 작동 디바이스;
    상기 감시 디바이스 및 작동 디바이스들로부터 측정정보를 수집하는 로컬감시 및 제어부;
    각 배수구역별 배치된 로컬감시 및 제어부로부터의 측정정보와, 원격서버로부터 수집된 빅데이터를 이용하여 배수구역 관리 알고리즘을 통하여 유출부하를 예측하고 분산컴퓨팅 기법을 기반으로 배수구역별 통합 배수구역 관리 시스템 모델을 구축하여 유역단위 총량관리를 수행하는 통합관리서버;를 포함하며,
    상기 감시 디바이스는, 수처리장치의 유입측에 배치되는 유입측감시부와 유출측에 배치되는 유출측감시부로 이루어지고,
    상기 저류조는, 제1저류조와 제2저류저로 이루어지고,
    상기 로컬감시 및 제어부는,
    상기 저류조에 연결되며 감시부에 의하여 측정된 전기전도도의 판단을 통하여 저류조로의 유입 및 월류 여부를 제어하는 월류관리부와, 저류조로 유입되는 유출수에 대하여 산도 및 오일의 농도 대비를 통하여 제1저류조 및 제2저류조로의 분류를 결정하도록 하는 pH/Oil 판단부와, 제1저류조에 대해 탁도판단부의 판단결과를 기반으로 침전시간과 방류시기를 결정하여 제어하는 제1저류조제어부와, 제2저류조의 유출수에 대해 하·폐수처리시설로 연계처리하도록 하는 연계처리부를 구비하되,
    상기 월류관리부가 유출수에서 측정된 전기전도도가 기준 전기전도도 미만인 경우 월류시키며, 상기 pH/Oil 판단부가 측정된 전기전도도가 기준 전기전도도 이상인 유출수에 대해 측정pH가 상한pH 미만 및 하한pH 초과이고 측정 Oil농도가 기준 Oil농도 미만이면 제1저류조로 유동시키고 측정pH가 하한pH 이하이거나 측정pH가 상한pH 이상이거나 측정 Oil농도가 기준 Oil농도 이상인 경우 제2저류조로 유동시키며, 상기 제1저류조제어부가 제1저류조로의 유동에 대해 측정탁도가 기준탁도 미만인 경우 제1설정시간 동안 저류하여 상등수를 방류하고 침전물에 대해서는 연계처리부를 통하여 연계처리하도록 하고 측정탁도가 기준탁도 이상인 경우 제2설정시간동안 저류한 이후 측정탁도가 기준탁도 이상인 경우 전체를 연계처리하도록 하고 상기 측정pH 값이 기준하한pH 미만 및 하한pH 초과인 경우 또는 기준상한pH 초과 및 상한pH 미만인 경우 초기 우수를 유입하여 농도를 완화한 다음 저류할 수 있도록 하여,
    저류지 전단의 퇴적지역에 대한 측정정보와 강우정보를 기초로 퇴적지역에 강우가 종료되고 설정된 시간이 경과된 조건에서 저류지 전단의 고압펌프를 제어하여 동작시키는 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템.
PCT/KR2021/012485 2020-10-22 2021-09-14 Iot 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템 WO2022085948A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0137280 2020-10-22
KR1020200137280A KR102211284B1 (ko) 2020-10-22 2020-10-22 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템

Publications (1)

Publication Number Publication Date
WO2022085948A1 true WO2022085948A1 (ko) 2022-04-28

Family

ID=74558591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012485 WO2022085948A1 (ko) 2020-10-22 2021-09-14 Iot 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템

Country Status (2)

Country Link
KR (1) KR102211284B1 (ko)
WO (1) WO2022085948A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116225084A (zh) * 2023-05-06 2023-06-06 济宁明德环保科技有限公司 一种水环境数据监控系统及方法
CN116606032A (zh) * 2023-06-27 2023-08-18 贵州交投高新科技有限公司 用于高速服务区污水处理的智能控制方法
CN117217503A (zh) * 2023-11-09 2023-12-12 山东华宝隆轻工机械有限公司 一种基于大数据的智慧泵站泵群远程智能调度管理系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102211284B1 (ko) * 2020-10-22 2021-02-04 (주)파이브텍 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템
KR102541611B1 (ko) * 2022-12-15 2023-06-13 주식회사 아이티엠건축사사무소 배수관 수위센서 제어 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140029155A (ko) * 2012-08-30 2014-03-10 (주)로커스솔루션 실시간 제어 기반의 지능형 우수관리 시스템 및 방법
KR101703981B1 (ko) * 2016-03-31 2017-02-08 광주과학기술원 강우예측을 이용한 하수처리시설의 제어방법
KR101786494B1 (ko) * 2017-01-25 2017-10-18 장현실 대규모 빗물 저류조의 유지 관리 시스템
KR101897441B1 (ko) * 2018-06-25 2018-09-10 임영현 빅데이터 수집 기반 오·폐수 수질 차등화 처리 시스템 및 방법, 그리고 빅데이터를 이용한 오·폐수 수질 차등화 프로그램을 기록한 컴퓨터로 판독가능한 기록매체
KR20190115488A (ko) * 2018-03-12 2019-10-14 한국토지주택공사 IoT 센서를 이용한 우수관 모니터링 시스템 및 이를 이용한 우수관 모니터링 방법
KR102211284B1 (ko) * 2020-10-22 2021-02-04 (주)파이브텍 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140029155A (ko) * 2012-08-30 2014-03-10 (주)로커스솔루션 실시간 제어 기반의 지능형 우수관리 시스템 및 방법
KR101703981B1 (ko) * 2016-03-31 2017-02-08 광주과학기술원 강우예측을 이용한 하수처리시설의 제어방법
KR101786494B1 (ko) * 2017-01-25 2017-10-18 장현실 대규모 빗물 저류조의 유지 관리 시스템
KR20190115488A (ko) * 2018-03-12 2019-10-14 한국토지주택공사 IoT 센서를 이용한 우수관 모니터링 시스템 및 이를 이용한 우수관 모니터링 방법
KR101897441B1 (ko) * 2018-06-25 2018-09-10 임영현 빅데이터 수집 기반 오·폐수 수질 차등화 처리 시스템 및 방법, 그리고 빅데이터를 이용한 오·폐수 수질 차등화 프로그램을 기록한 컴퓨터로 판독가능한 기록매체
KR102211284B1 (ko) * 2020-10-22 2021-02-04 (주)파이브텍 IoT 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116225084A (zh) * 2023-05-06 2023-06-06 济宁明德环保科技有限公司 一种水环境数据监控系统及方法
CN116606032A (zh) * 2023-06-27 2023-08-18 贵州交投高新科技有限公司 用于高速服务区污水处理的智能控制方法
CN116606032B (zh) * 2023-06-27 2023-11-21 贵州交投高新科技有限公司 用于高速服务区污水处理的智能控制方法
CN117217503A (zh) * 2023-11-09 2023-12-12 山东华宝隆轻工机械有限公司 一种基于大数据的智慧泵站泵群远程智能调度管理系统
CN117217503B (zh) * 2023-11-09 2024-02-06 山东华宝隆轻工机械有限公司 一种基于大数据的智慧泵站泵群远程智能调度管理系统

Also Published As

Publication number Publication date
KR102211284B1 (ko) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2022085948A1 (ko) Iot 및 빅데이터를 활용한 대규모 산업단지의 실시간 통합 배수구역 관리시스템
Zhang et al. A simulation-based real-time control system for reducing urban runoff pollution through a stormwater storage tank
CN111815128B (zh) 深层污水排水隧道的调度运行方法、装置和计算机设备
CN110086851A (zh) 一种基于物联网的智慧污水运行监管综合管理方法
CN113902172A (zh) 一种污水处理方法、系统、装置及介质
CN110825011A (zh) 污染源在线水平衡监测系统
KR102311657B1 (ko) 하폐수 처리 스마트 관리 시스템
CN111811580A (zh) 一种水量/水质监测布点方法及预警响应系统
WO2012002713A2 (ko) 하폐수 처리장의 공정진단 시스템 및 방법
CN103093092A (zh) 河流突发性cod污染的事故源定位方法
Elhatip et al. Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks
CN104341011A (zh) 一种化工园区企业废水的收集与监测系统
CN112830533A (zh) 一种城市污水排放控制系统及方法
KR102211283B1 (ko) 완충저류조를 이용한 배수구역 관리시스템 및 이를 이용한 배수구역 관리 방법
CN109613197A (zh) 一种基于河道水网的水质监测预警反馈响应方法
Pouresmaeil et al. A decision support system for coagulation and flocculation processes using the adaptive neuro-fuzzy inference system
CN115358463A (zh) 生态敏感区输变电建设工程水环境监测与影响评估方法
Cicceri et al. A novel architecture for the smart management of wastewater treatment plants
CN109613191A (zh) 一种全生命周期城市污水处理监测方法
JP2003245653A (ja) 処理装置の運転支援方法、水処理装置の運転支援方法及びその装置
CN211293724U (zh) 污染源在线水平衡监测系统
KR102514560B1 (ko) 하수관거 악취발생 예측 및 통합관리시스템
DE19645246A1 (de) Adaptiv, wassergüteabhängig gesteuertes Abwasserbauwerk
Olsson et al. Plant-wide control: dream, necessity or reality?
CN204675879U (zh) 精确控制处理后的污水排放的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21883020

Country of ref document: EP

Kind code of ref document: A1