WO2022085675A1 - クレーン、クレーンの特性変化判定装置、及びクレーンの特性変化判定システム - Google Patents

クレーン、クレーンの特性変化判定装置、及びクレーンの特性変化判定システム Download PDF

Info

Publication number
WO2022085675A1
WO2022085675A1 PCT/JP2021/038577 JP2021038577W WO2022085675A1 WO 2022085675 A1 WO2022085675 A1 WO 2022085675A1 JP 2021038577 W JP2021038577 W JP 2021038577W WO 2022085675 A1 WO2022085675 A1 WO 2022085675A1
Authority
WO
WIPO (PCT)
Prior art keywords
crane
control unit
unit
characteristic change
weighting coefficient
Prior art date
Application number
PCT/JP2021/038577
Other languages
English (en)
French (fr)
Inventor
佳成 南
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Priority to US18/030,209 priority Critical patent/US20230373761A1/en
Priority to EP21882816.8A priority patent/EP4234472A4/en
Publication of WO2022085675A1 publication Critical patent/WO2022085675A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C15/00Safety gear
    • B66C15/06Arrangements or use of warning devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/42Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes with jibs of adjustable configuration, e.g. foldable

Definitions

  • the boom 204 expands and contracts by moving each boom member in the axial direction by the expansion / contraction hydraulic cylinder 218 under the control of the control unit 29.
  • the expansion / contraction hydraulic cylinder 218 corresponds to an example of a controlled object and an actuator. Further, the expansion / contraction hydraulic cylinder 218 also corresponds to an example of an expansion / contraction actuator.
  • the sub winch 214 has a sub drum (not shown) around which the sub wire rope 215 is wound.
  • the subdrum rotates under the control of the control unit 29 based on the driving force of the hydraulic motor 220 for the subdrum.
  • the hydraulic motor 220 for a subdrum corresponds to an example of a controlled object and an actuator. Further, the hydraulic motor 220 for the sub drum also corresponds to an example of an actuator for raising and lowering the sub hook 210.
  • the sub-drum operation tool 234 is an operation tool for the operator to operate the hydraulic motor 220 for the sub-drum.
  • the sub-drum operating tool 234 is an operating tool for the operator to indicate the direction and / or speed (that is, the moving direction and / or speed of the sub-hook 210) with respect to the rotation of the sub-winch 214.
  • control unit 29 sets the weight coefficient w ⁇ in the feedforward control unit 42b to the communication unit of the characteristic change determination device 7 every time the weight coefficient w ⁇ is adjusted in the feedforward control unit 42b (that is, for each learning).
  • the operation of the communication unit 28 is controlled so as to transmit to 71.
  • the terminal-side turning operation tool 32 is an operating tool for the operator to instruct the direction and / or speed of the crane device 2 with respect to turning.
  • the terminal-side expansion / contraction operation tool 33 is an operation tool for the operator to instruct the direction and / or speed regarding the expansion / contraction of the boom 204.
  • the terminal-side sub-drum operating tool 35 is an operating tool for the operator to instruct the direction and / or speed (that is, the moving direction and / or speed of the sub-hook 210) regarding the rotation of the sub-winch 214.
  • the boom position calculation unit 291 acquires the target trajectory signal Pd ⁇ from the target trajectory calculation unit 290.
  • the boom position calculation unit 291 acquires the turning angle ⁇ z (n) of the turning table 201 from the turning sensor 260.
  • the feedback control unit 42a corrects the target trajectory signal Pd ⁇ by the current position coordinate p (n) of the luggage W (in the case of the present embodiment, the difference between the current position coordinate p (n) and the target trajectory signal Pd ⁇ ). By taking), the target orbital signal Pd1 ⁇ is generated.
  • the target orbital signal Pd1 ⁇ corresponds to an example of the first signal.
  • This target orbit signal Pd1 ⁇ is a learning teacher signal carried out by the feedforward control unit 42b described later.
  • the target orbit signal Pd1 ⁇ generated by the feedback control unit 42a is corrected by the correction signal Pff out to become the target orbit signal Pd2 ⁇ . Since the signal flow in the feedforward control unit 42b is as shown in FIG. 9, detailed description thereof will be omitted.
  • step S130 the control system 42 acquires the target trajectory signal Pd ⁇ of the luggage W. Specifically, the control system 42 integrates the target speed signal Vd of the luggage W acquired by the target trajectory calculation unit 290 to calculate the target trajectory signal Pd ⁇ of the luggage W.
  • step S150 the control system 42 (specifically, the feedforward control unit 42b) uses the target trajectory signal Pd1 ⁇ as a teacher signal, and the weight coefficient w ⁇ of the feedforward control unit 42b (specifically, the weight coefficient w). ⁇ 1 , w ⁇ 2 , w ⁇ 3 , w ⁇ 4 ) are adjusted.
  • the characteristic change determination device 7 includes a communication unit 71, an acquisition unit 72, a storage unit 73, a display unit 74, and a control unit 75.
  • the operator of the characteristic change determination device 7 changed the characteristics of the controlled object of the crane C by checking the weighting coefficient w ⁇ (particularly, the weighting coefficient w ⁇ at the time when learning was completed) displayed on the display unit 74. Whether or not it can be determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)
  • Jib Cranes (AREA)

Abstract

クレーンは、荷物を搬送可能なクレーンであって、クレーン又はクレーンの構成部材である制御対象をフィードバック制御するフィードバック制御部と、重み係数を有し、フィードバック制御部において生成される第一信号を含む教師信号に基づいて重み係数を調整することにより制御対象の特性をリアルタイムで学習する学習モデルと、重み係数を、クレーンに通信接続された外部装置に送信する通信制御部と、を備える。

Description

クレーン、クレーンの特性変化判定装置、及びクレーンの特性変化判定システム
 本発明は、クレーン、クレーンの特性変化判定装置、及びクレーンの特性判定システムに関する。
 従来から、荷物の搬送作業に使用されるクレーンが知られている(特許文献1参照)。このようなクレーンは、車両、ブーム、及びフック等を有する。
 ブームは、車両に対して旋回可能に支持されている。又、ブームは、起伏可能且つ伸縮可能である。フックは、ブームの先端部からワイヤロープを介して吊り下げられている。
 オペレータは、操作部や遠隔操作機を操作することにより、ブームやフックの移動方向及び移動速度を指示できる。
特開2018-62414号公報
 上述のようなクレーンにおいて、ブーム、ワイヤロープ、及びフックは、アクチュエータにより駆動される。オペレータが操作部又は遠隔操作機を操作すると、オペレータの操作量や操作方向に応じた指令信号が、制御部に伝わる。制御部は、受け取った指令信号に従って、制御対象であるアクチュエータを駆動する。
 上述のようなアクチュエータはそれぞれ、所定の特性を有する。この特性は、アクチュエータ固有のものであり、通常は変化しない。ところが、クレーンが長期間使用されると、アクチュエータが経年劣化して、アクチュエータの特性が変化する可能性がある。
 又、アクチュエータやアクチュエータの動作に影響を及ぼす構成(例えば、油圧回路)等が故障した場合も、アクチュエータの特性が変化する可能性がある。このようなアクチュエータの特性の変化に気づかずに、クレーンを使用し続けることは、クレーンの操作性及び安全性の観点から好ましくない。
 本発明の目的は、クレーンの特性の変化を認識できるクレーン、クレーンの特性変化判定装置、及びクレーンの特性変化判定システムを提供することである。
 本発明に係るクレーンの一態様は、
 荷物を搬送可能なクレーンであって、
 クレーン又はクレーンの構成部材である制御対象をフィードバック制御するフィードバック制御部と、
 重み係数を有し、フィードバック制御部において生成される第一信号を含む教師信号に基づいて重み係数を調整することにより制御対象の特性をリアルタイムで学習する学習モデルと、
 重み係数を、クレーンに通信接続された外部装置に送信する通信制御部と、を備える。
 本発明に係るクレーンの特性変化判定装置の一態様は、
 クレーン又はクレーンの構成部材である制御対象をフィードバック制御するフィードバック制御部と、重み係数を有し、フィードバック制御部において生成される第一信号を含む教師信号に基づいて重み係数を調整することにより制御対象の特性をリアルタイムで学習する学習モデルと、を備えるクレーンに通信接続されるクレーンの特性変化判定装置であって、
 クレーンから重み係数を取得する取得部と、
 取得部から取得した重み係数を用いた演算を行う制御部と、を備える。
 本発明に係るクレーンの特性変化判定システムの一態様は、
 クレーンと、
 クレーンに通信接続された特性変化判定装置と、を備え、
 クレーンは、
 クレーン又はクレーンの構成部材である制御対象をフィードバック制御するフィードバック制御部と、
 重み係数を有し、フィードバック制御部において生成される第一信号を含む教師信号に基づいて重み係数を調整することにより制御対象の特性をリアルタイムで学習する学習モデルと、を備え
 クレーンは、学習モデルの重み係数を特性変化判定装置に送信し、
 特性変化判定装置は、クレーンから取得した重み係数に基づいて、制御対象の特性の変化を判定し、判定結果を出力する。
 本発明によれば、クレーンの特性の変化を認識できるクレーン、クレーンの特性変化判定装置、及びクレーンの特性変化判定システムを実現できる。
図1は、実施形態に係るクレーンの特性変化判定システムの構成を示す図である。 図2は、クレーンの側面図である。 図3は、クレーンの特性変化判定システムのブロック図である。 図4は、操作端末の平面図である。 図5は、操作端末の構成を説明するためのブロック図である。 図6は、吊り荷移動操作具が操作された場合の荷物の搬送方向(方位)を説明するための操作端末の平面図である。 図7は、クレーンの制御部の機能を説明するためのブロック図である。 図8は、クレーンの逆動力学モデルを説明するための図である。 図9は、クレーンの制御部の構成を示すブロック図である。 図10は、クレーンの制御工程を説明するためのフローチャートである。 図11は、クレーンの制御工程を説明するためのフローチャートである。 図12は、クレーンの制御工程を説明するためのフローチャートである。 図13は、クレーンの制御工程を説明するためのフローチャートである。
 以下、本発明に係る実施形態について図面に基づいて詳細に説明する。尚、後述の実施形態に係るクレーンC、クレーンの特性変化判定装置7、及びクレーンの特性変化判定システムSは、本発明に係るクレーン、クレーンの特性変化判定装置、及びクレーンの特性変化判定システムの一例であり、本発明は後述の実施形態により限定されない。
 [実施形態]
 図1~図13を参照して、本発明の実施形態に係るクレーンC、クレーンの特性変化判定装置7、及びクレーンの特性変化判定システムSについて説明する。以下、特性変化判定システムSの概要について説明した後、特性変化判定システムSが備えるクレーンC及び特性変化判定装置7の構造について説明する。尚、本発明に係る特性変化判定システムSは、後述する全ての構成を備えてもよいし、一部の構成を備えなくてもよい。
 (特性変化判定システム)
 先ず、特性変化判定システムSの概要について説明する。例えば建築現場において、荷物W(例えば、建築資材)の搬送を実施するためにクレーンCが使用される。クレーンCのオペレータは、搬送作業の際、操作具又は操作端末を操作してクレーンCを動作させる。操作端末3は、クレーンCのキャビン216に設けられていてもよいし、クレーンCに無線接続される遠隔操作端末であってもよい。
 クレーンCは、オペレータからの指示に基づいて、ブーム204の姿勢及び/又はワイヤロープ(メインワイヤロープ213又はサブワイヤロープ215)の繰り出し量を変えることにより、荷物Wを搬送する。尚、クレーンCは、オペレータからの指示ではなく、例えば予め設定されたプログラムに基づいて動作することもある。
 クレーンCは、例えば、ブーム204の姿勢を変えるためのアクチュエータやワイヤロープの繰り出し量を変えるためのアクチュエータを有する。これら各アクチュエータは、制御部29(制御システム42)の制御下で駆動する。よって、これら各アクチュエータは、制御部29(制御システム42)の制御対象である。尚、クレーンC全体を、制御部29(制御システム42)の制御対象と捉えることもできる。
 本実施形態の場合、制御部29(制御システム42)は、制御対象をフィードバック制御するフィードバック制御部42aと、フィードバック制御部42aと協働して制御対象をフィードフォワード制御するフィードフォワード制御部42bと、を有する。
 フィードフォワード制御部42bは、調整可能な重み係数ωnを含む数理モデルである。フィードフォワード制御部42bは、フィードバック制御部42aにおいて生成される信号(第一信号)を含む教師信号に基づいて重み係数ωnを調整することにより、制御対象の特性をリアルタイムで学習する機能を有する。換言すれば、フィードフォワード制御部42bは、制御対象をリアルタイムで同定する機能を有する。
 フィードフォワード制御部42bにおける学習(以下、単に「学習」と称する。)が完了すると、重み係数ωnは、制御対象の特性に対応する所定の値に収束する。つまり、制御対象の特性が変化しなければ、学習が完了した状態において、学習毎の重み係数ωnは、一定又はほぼ一定の値となる。
 逆に言えば、制御対象の特性が変わった場合、学習が完了した状態における重み係数ωnは、制御対象の特性が変わる前の重み係数と異なる。つまり、学習が完了した状態における重み係数の変化を見ることにより、制御対象の特性の変化の有無を確認できる。
 そこで、実施形態の場合、クレーンCは、フィードフォワード制御部42bの重み係数ωnを、所定のタイミングで、クレーンCに通信接続された特性変化判定装置7に送信する機能を有する。
 そして、特性変化判定装置7は、クレーンCから取得した重み係数ωnの変化の有無に基づいて、制御対象の特性の変化の有無を判定する機能、又は、を有する。以下、本実施形態に係る特性変化判定システムSの具体的な構成について説明する。
 特性変化判定システムSは、図1に示すように、複数のクレーンC1、C2、C3と、特性変化判定装置7と、を備える。特性変化判定システムSは、複数のクレーンC1、C2、C3が、特性変化判定装置7に、ネットワークNを介して接続された構成を有する。尚、特性変化判定システムSにおける複数のクレーンC1、C2、C3の数は、図示の場合に限定されない。特性変化判定システムSにおけるクレーンの数は、1機であってもよいし、2機以上であってもよい。以下、便宜的に、クレーンC1、C2、C3を、クレーンCと称する。
 (クレーン)
 図1に示すように、クレーンCは、不特定の場所に移動可能な移動式クレーンである。クレーンCは、車両1、クレーン装置2、及び操作端末3(図3参照)を有する。
 (車両)
 車両1は、クレーン装置2を搬送する走行体である。車両1は、複数の車輪11を有し、エンジン12を動力源として走行する。車両1は、四隅にアウトリガ13を有する。
 (クレーン装置)
 クレーン装置2は、荷物Wを吊り上げる作業装置である。クレーン装置2は、旋回台201、旋回台カメラ202、旋回用油圧モータ203、ブーム204、ブームカメラ206、ジブ205、メインフックブロック207、及びサブフックブロック209を有する。
 又、クレーン装置2、起伏用油圧シリンダ211、メインウインチ212、メインワイヤロープ213、サブウインチ214、サブワイヤロープ215、キャビン216、及び操作部217を有する。又、クレーン装置2は、記憶部27、通信部28、及び制御部29を有する。
 (旋回台)
 旋回台201は、クレーン装置2を旋回可能な状態で、車両1に対して支持している。
 (旋回用油圧モータ)
 旋回用油圧モータ203は、油圧式のモータであって、旋回台201に設けられている。旋回用油圧モータ203は、制御対象及びアクチュエータの一例に該当する。又、旋回用油圧モータ203は、旋回用アクチュエータの一例にも該当する。旋回用油圧モータ203は、制御部29の制御下で、旋回台201を第一回転方向又は第2回転方向に回転させる。
 旋回用油圧モータ203は、制御部29の制御下で、電磁比例切換弁である旋回用バルブ250(図3参照)によって操作される。旋回用バルブ250は、制御部29の制御下で、旋回用油圧モータ203に供給する作動油の流量を制御する。
 つまり、旋回台201は、制御部29の制御下で、旋回用バルブ250によって操作される旋回用油圧モータ203により任意の旋回速度に制御される。尚、旋回台201には、旋回台201の旋回角度θz及び/又は旋回速度を検出する旋回用センサ260(図3参照)が設けられている。
 (旋回台カメラ)
 旋回台カメラ202は、旋回台201の周辺を撮像する。旋回台カメラ202は、旋回台201における前方且つ左右両側に設けられた一対の前側旋回台カメラ202fと、旋回台201における後方且つ左右両側に設けられた一対の後側旋回台カメラ202rと、を有する。
 又、一対の前側旋回台カメラ202fは、ステレオカメラとして機能する。一対の前側旋回台カメラ202fは、クレーンCにより吊られている荷物Wの位置に関する情報(以下、単に「荷物Wの位置情報」と称する。)を検出する荷物位置検出手段の一例に該当する。
 尚、荷物位置検出手段は、後述するブームカメラ206であってもよい。又、荷物位置検出手段は、ミリ波レーダー、加速度センサ、又はGNSS等であってもよい。
 (ブーム)
 ブーム204は、ワイヤロープを支持する可動支柱である。ブーム204は、複数のブーム部材が、テレスコピック状に組み合わされた構成を有する。ブーム204の基端部は、揺動可能な状態で、旋回台201に支持されている。
 ブーム204は、制御部29の制御下で、伸縮用油圧シリンダ218により各ブーム部材を軸方向に移動させることにより伸縮する。伸縮用油圧シリンダ218は、制御対象且つアクチュエータの一例に該当する。又、伸縮用油圧シリンダ218は、伸縮用アクチュエータの一例にも該当する。
 伸縮用油圧シリンダ218は、制御部29の制御下で、電磁比例切換弁である伸縮用バルブ251(図3参照)によって操作される。伸縮用バルブ251は、制御部29の制御下で、伸縮用油圧シリンダ218に供給する作動油の流量を制御する。
 尚、ブーム204には、ブーム204の長さに関する情報を検出する伸縮用センサ261、及び、ブーム204の先端を中心とする方位に関する情報を検出する方位センサ262が設けられている。
 (ジブ)
 ジブ205は、ブーム204の先端部に支持されている。
 (ブームカメラ)
 ブームカメラ206(図3参照)は、ブーム204の先端部から、荷物W及び荷物Wの周辺を含む所定領域を撮像可能に構成されている。ブームカメラ206は、ブーム204の先端部に設けられている。
 (メインフックブロック及びサブフックブロック)
 メインフックブロック207及びサブフックブロック209はそれぞれ、荷物Wを吊るための吊り具である。メインフックブロック207は、メインワイヤロープ213が巻き掛けられる複数のフックシーブと、荷物Wを吊るメインフック208と、を有する。サブフックブロック209は、荷物Wを吊るサブフック210を有する。
 (起伏用油圧シリンダ)
 起伏用油圧シリンダ211は、制御部29の制御下で、ブーム204を起立又は倒伏させる。起伏用油圧シリンダ211は、制御対象且つアクチュエータの一例に該当する。又、起伏用油圧シリンダ211は、起伏用アクチュエータの一例にも該当する。
 起伏用油圧シリンダ211は、制御部29の制御下で、電磁比例切換弁である起伏用バルブ252(図3参照)によって操作される。起伏用バルブ252は、制御部29の制御下で、起伏用油圧シリンダ211に供給する作動油の流量を制御する。尚、ブーム204には、起伏角度θxを検出する起伏用センサ263(図3参照)が設けられている。
 (メインウインチ及びサブウインチ)
 メインウインチ212及びサブウインチ214はそれぞれ、メインワイヤロープ213及びサブワイヤロープ215の繰り入れ(巻き上げ)又は繰り出し(巻き下げ)を行う。
 メインウインチ212は、メインワイヤロープ213が巻きつけられたメインドラム(不図示)を有する。このメインドラムは、制御部29の制御下で、メインドラム用油圧モータ219の駆動力に基づいて回転する。メインドラム用油圧モータ219は、制御対象且つアクチュエータの一例に該当する。又、メインドラム用油圧モータ219は、メインフック208を昇降するための昇降用アクチュエータの一例にも該当する。
 メインドラム用油圧モータ219は、制御部29の制御下で、電磁比例切換弁であるメインドラム用バルブ253(図3参照)によって操作される。メインドラム用バルブ253は、制御部29の制御下で、メインドラム用油圧モータ219に供給する作動油の流量を制御する。
 サブウインチ214は、サブワイヤロープ215が巻きつけられるサブドラム(不図示)を有する。このサブドラムは、制御部29の制御下で、サブドラム用油圧モータ220の駆動力に基づいて、回転する。サブドラム用油圧モータ220は、制御対象且つアクチュエータの一例に該当する。又、サブドラム用油圧モータ220は、サブフック210を昇降するための昇降用アクチュエータの一例にも該当する。
 サブウインチ214は、制御部29の制御下で、電磁比例切換弁であるサブドラム用バルブ254(図3参照)によって操作される。サブドラム用バルブ254は、制御部29の制御下で、サブドラム用油圧モータ220に供給する作動油の流量を制御する。
 尚、メインウインチ212及びサブウインチ214にはそれぞれ、メインワイヤロープ213及びサブワイヤロープ215の繰り出し量を検出する巻回用センサ43(図3参照)が設けられている。
 (キャビン)
 キャビン216は、旋回台201に搭載されている。キャビン216には、操縦席(不図示)が設けられている。
 (操作部)
 操作部217は、操作入力部の一例に該当し、キャビン216内に設けられている。操作部217は、車両1を走行操作するための操作具、及び、クレーン装置2を操作するための操作部を含む。
 具体的には、操作部217は、旋回操作具230、起伏操作具231、伸縮操作具232、メインドラム操作具233、及びサブドラム操作具234等を有する(図3参照)。
 旋回操作具230は、オペレータが旋回用油圧モータ203を操作するための操作具である。換言すれば、旋回操作具230は、オペレータがクレーン装置2の旋回に関する方向及び/又は速さを指示するための操作具である。
 起伏操作具231は、オペレータが起伏用油圧シリンダ211を操作するための操作具である。換言すれば、起伏操作具231は、オペレータがブーム204の起伏に関する方向及び/又は速さを指示するための操作具である。
 伸縮操作具232は、オペレータが伸縮用油圧シリンダ218を操作するための操作具である。換言すれば、伸縮操作具232は、オペレータがブーム204の伸縮に関する方向及び/又は速さを指示するための操作具である。
 メインドラム操作具233は、オペレータがメインドラム用油圧モータ219を操作するための操作具である。メインドラム操作具233は、オペレータがメインウインチ212の回転に関する方向及び/又は速さ(つまり、メインフック208の移動方向及び/又は速さ)を指示するための操作具である。
 サブドラム操作具234は、オペレータがサブドラム用油圧モータ220を操作するための操作具である。サブドラム操作具234は、オペレータがサブウインチ214の回転に関する方向及び/又は速さ(つまり、サブフック210の移動方向及び/又は速さ)を指示するための操作具である。
 以上のような操作部217は、各操作具230~234の操作(傾倒方向及び/又は傾倒量)に応じた操作信号を生成する。そして、操作部217は、生成した操作信号をクレーンC(クレーン装置2)の制御部29に送信する。この場合、制御部29の目標速度信号生成部(不図示)は、操作信号に基づいて荷物Wの目標速度信号Vdを生成する。つまり、制御部29は、目標速度信号生成部としての機能を有する。尚、操作部217は、生成した操作信号に基づいて荷物Wの目標速度信号Vdを生成し、生成した目標速度信号VdをクレーンC(クレーン装置2)の制御部29に送信してもよい。この場合、操作部217は、目標速度信号生成部としての機能も有する。
 (記憶部)
 記憶部27は、第一記憶部の一例に該当し、制御部29の制御下で、情報を記憶する。本実施形態の場合、記憶部27は、後述のフィードフォワード制御部42bの重み係数wα1、wα2、wα3、wα4(以下、単に「重み係数wα」と称することもある。)を記憶する。
 記憶部27は、フィードフォワード制御部42bにおいて重み係数wαが調整される毎に、重み係数wαを順次記憶してもよい。
 (通信部)
 通信部28は、例えば、運転室に設けられている。通信部は、後述の特性変化判定装置7の通信部71に、例えばインターネットやローカルネットワーク等のネットワークを介して通信接続される。通信部28は、制御部29の制御下で、特性変化判定装置7の通信部71と通信を確立して、情報を送る又は受け取る。通信部28は、制御部29の制御下で、特性変化判定装置7の通信部71から取得した情報を、制御部29に送る。
 (制御部)
 制御部29は、制御対象であるクレーン装置2のアクチュエータを制御する。制御部29は、キャビン216内に設けられている。
 制御部29は、実体的には、CPU、ROM、RAM、及びHDD等がバスで接続される構成、又は、ワンチップのLSI等からなる構成であってよい。制御部29は、各アクチュエータ、切換えバルブ、及びセンサ等の制御対象の動作を制御するための種々のプログラムやデータを格納している。
 制御部29は、旋回台カメラ202、ブームカメラ206、旋回操作具230、起伏操作具231、伸縮操作具232、メインドラム操作具233、及びサブドラム操作具234に接続されている。
 制御部29は、旋回台カメラ202及びブームカメラ206から画像情報を取得する。又、制御部29は、旋回操作具230、起伏操作具231、伸縮操作具232、メインドラム操作具233、及びサブドラム操作具234それぞれの操作量を取得する。
 制御部29は、操作端末3の端末側制御部38に接続されている。制御部29は、操作端末3から、制御信号を取得する。
 制御部29は、旋回用バルブ250、伸縮用バルブ251、起伏用バルブ252、メインドラム用バルブ253、及びサブドラム用バルブ254に接続されている。制御部29は、旋回用バルブ250、伸縮用バルブ251、起伏用バルブ252、メインドラム用バルブ253、及びサブドラム用バルブ254に作動信号Mdを送る。
 制御部29は、旋回用センサ260、伸縮用センサ261、方位センサ262、起伏用センサ263、及び巻回用センサ43に接続されている。制御部29は、旋回用センサ260から、旋回台201の旋回角度θzを取得する。
 制御部29は、伸縮用センサ261からブーム204の長さLbを取得する。制御部29は、起伏用センサ263から起伏角度θxを取得する。制御部29は、巻回用センサ43から、メインワイヤロープ213及び/又はサブワイヤロープ215(以下、単に「ワイヤロープ」と称することもある。)の繰り出し量l(n)及び方位を取得する。尚、制御部29が、各センサから取得する情報はそれぞれ、クレーンの姿勢に関する情報の一例に該当する。
 制御部29は、旋回操作具230、起伏操作具231、伸縮操作具232、メインドラム操作具233、及びサブドラム操作具234の操作量に基づいて、各操作具に対応するアクチュエータを作動するための作動信号Mdを生成する。
 制御部29は、記憶部27の動作を制御する。制御部29は、後述のフィードフォワード制御部42bの重み係数wαを記憶するように、記憶部27の動作を制御する。例えば、制御部29は、フィードフォワード制御部42bにおいて、重み係数wαが調整される毎に、重み係数wαを記憶するように記憶部27の動作を制御する。
 制御部29は、通信部28の動作を制御する。よって、制御部29の一部の機能は、通信制御部の一例に該当する。制御部29は、フィードフォワード制御部42bにおける重み係数wαを、所定のタイミングで、特性変化判定装置7の通信部71に送信するように、通信部28の動作を制御する。
 例えば、制御部29は、フィードフォワード制御部42bにおける重み係数wαの調整が完了した場合(つまり、学習が完了した場合)に、フィードフォワード制御部42bにおける重み係数wαを、所定のタイミングで、特性変化判定装置7の通信部71に送信するように、通信部28の動作を制御する。
 或いは、制御部29は、フィードフォワード制御部42bにおいて重み係数wαが調整される毎(つまり、学習毎)に、フィードフォワード制御部42bにおける重み係数wαを、特性変化判定装置7の通信部71に送信するように、通信部28の動作を制御する。
 以上のような構成を有するクレーンCは、車両1を走行させることで任意の位置に移動できる。又、クレーンCは、起伏操作具231の操作に応じて、ブーム204の起伏角度θxを変えることができる。又、クレーンCは、伸縮操作具232の操作に応じて、ブーム204の長さを変えることができる。
 クレーンCは、ブーム204の起伏角度θx及び/又はブーム204の長さを変えることにより、クレーン装置2の揚程や作業半径を拡大又は縮小できる。
 又、クレーンCは、メインドラム操作具233又はサブドラム操作具234の操作に応じて、メインフック208又はサブフック210の高さを変えることができる。又、クレーンCは、旋回操作具230の操作に応じて、旋回台201を旋回させることができる。
 (操作端末)
 操作端末3は、操作入力部の一例に該当し、図4及び図5に示すように、オペレータが、荷物Wの移動方向及び/又は移動速度に関する支持を入力するための装置である。
 操作端末3は、筐体30、吊り荷移動操作具31、端末側旋回操作具32、端末側伸縮操作具33、端末側メインドラム操作具34、端末側サブドラム操作具35、及び端末側起伏操作具36等の操作具を有する。
 又、操作端末3は、端末側表示部37及び端末側制御部38を有する。操作端末3は、吊り荷移動操作具31又は各操作具の操作(操作信号)に基づいて荷物Wの目標速度信号Vdを生成し、生成した目標速度信号VdをクレーンC(クレーン装置2)の制御部29に送信する。尚、荷物Wが、一つの操作具(例えば、端末側旋回操作具32)の操作により移動する場合(つまり、旋回移動する場合)、この一つの操作具(例えば、端末側旋回操作具32)の傾倒方向及び/又は傾倒量に応じた操作信号が生成される。一方、荷物Wが複数の操作具(例えば、端末側旋回操作具32、端末側起伏操作具36、及び端末側メインドラム操作具34)の操作により移動する場合(例えば、直線移動する場合)、これら複数の各操作具の傾倒方向及び/又は傾倒量に応じた操作信号が生成される。このように操作信号は、単数又は複数の操作具に関する操作信号を含むことができる。
 吊り荷移動操作具31は、オペレータが、水平面における荷物Wの移動方向及び/又は速さを指示する際に操作される操作具である。吊り荷移動操作具31は、筐体30の操作面から略垂直に起立した操作スティックと、操作スティックの傾倒方向及び傾倒量を検出するセンサ(不図示)と、を有する。
 吊り荷移動操作具31は、第一方向(図4における上方向)をブーム204の延伸方向として、センサで検出した操作スティックの傾倒方向及び傾倒量に応じた操作信号を、端末側制御部38に伝達する。第一方向は、例えば、オペレータが操作端末3を両手で保持した使用状態において、操作端末3の操作面に沿う方向且つオペレータの前方に向かう方向である。
 端末側旋回操作具32は、オペレータがクレーン装置2の旋回に関する方向及び/又は速さを指示するための操作具である。
 端末側伸縮操作具33は、オペレータがブーム204の伸縮に関する方向及び/又は速さを指示するための操作具である。
 端末側メインドラム操作具34は、オペレータがメインウインチ212の回転に関する方向及び/又は速さ(つまり、メインフック208の移動方向及び/又は速さ)を指示するための操作具である。
 端末側サブドラム操作具35は、オペレータがサブウインチ214の回転に関する方向及び/又は速さ(つまり、サブフック210の移動方向及び/又は速さ)を指示するための操作具である。
 端末側起伏操作具36は、オペレータがブーム204の起伏に関する方向及び/又は速さを指示するための操作具である。
 上記各操作具は、筐体30の操作面から略垂直に起立した操作スティックと、操作スティックの傾倒方向及び/又は傾倒量を検出するセンサ(不図示)と、から構成されている。
 端末側表示部37は、クレーンCの姿勢情報及び/又は荷物Wの情報等の様々な情報を表示する。端末側表示部37は、筐体30の操作面に設けられている。端末側表示部37には、ブーム204の延伸方向を端末側表示部37に向かって上方向とし、その方位が表示されている。
 端末側制御部38は、図5に示すように、操作端末3を制御する。端末側制御部38は、筐体30内に設けられている。端末側制御部38は、実体的には、CPU、ROM、RAM、及びHDD等がバスで接続される構成、又は、ワンチップのLSI等からなる構成であってよい。
 端末側制御部38は、吊り荷移動操作具31、端末側旋回操作具32、端末側伸縮操作具33、端末側メインドラム操作具34、端末側サブドラム操作具35、端末側起伏操作具36、及び端末側表示部37等の動作を制御するために種々のプログラムやデータを格納している。
 端末側制御部38は、吊り荷移動操作具31、端末側旋回操作具32、端末側伸縮操作具33、端末側メインドラム操作具34、端末側サブドラム操作具35、及び端末側起伏操作具36に接続され、各操作具の傾倒方向及び/又は傾倒量に応じた操作信号を取得する。
 端末側制御部38は、取得した操作信号から、荷物Wの目標速度信号Vdを生成する。又、端末側制御部38は、クレーン装置2の制御部29に有線又は無線で接続され、生成した荷物Wの目標速度信号Vdをクレーン装置2の制御部29に送信する。
 (操作端末及びクレーンの動作例)
 次に、図6を参照して、操作端末3の動作例について説明する。
 先ず、ブーム204の先端は、図6に示すように、北を向いていると仮定する。この状態において、オペレータは、吊り荷移動操作具31を、上方向に対して左方向に傾倒角度θ2=45°の方向に任意の傾倒量だけ傾倒操作する。
 すると、端末側制御部38は、吊り荷移動操作具31の傾倒方向及び傾倒量に対応する操作信号を、吊り荷移動操作具31に設けられたセンサ(不図示)から取得する。
 更に、端末側制御部38は、取得した操作信号に基づいて、吊り荷移動操作具31の傾倒量に応じた速さで荷物Wを移動させるための目標速度信号Vdを、単位時間t毎に算出する。そして、操作端末3は、算出した目標速度信号Vdを単位時間t毎にクレーン装置2の制御部29に送信する。
 クレーン装置2の制御部29は、操作端末3から目標速度信号Vdを単位時間t毎に受信すると、方位センサ262が取得したブーム204の先端の方位に基づいて、荷物Wの目標軌道信号Pdを算出する。
 更に、クレーン装置2の制御部29は、算出した目標軌道信号Pdに基づいて、荷物Wの目標位置である荷物Wの目標位置座標p(n+1)を算出する。
 そして、制御部29は、旋回用バルブ250、伸縮用バルブ251、起伏用バルブ252、メインドラム用バルブ253、及びサブドラム用バルブ254のうち、目標位置座標p(n+1)に荷物Wを移動させるために動作させることが必要なバルブに関する作動信号Mdを生成する。
 クレーンCは、作動信号Mdに基づいて、吊り荷移動操作具31の傾倒方向に向けて、吊り荷移動操作具31の傾倒量に応じた速さで荷物Wを搬送する。この際、クレーンCは、荷物Wを搬送するために動作させる必要があるアクチュエータ(例えば、旋回用油圧モータ203、伸縮用油圧シリンダ218、及び起伏用油圧シリンダ211等)を作動信号Mdによって制御する。
 尚、本実施形態において、操作端末3は、キャビン216内に設けられている。但し、操作端末は、クレーンCに無線接続される遠隔操作端末であってもよい。
 (クレーンの制御例について)
 次に、図7~図13を参照して、クレーン装置2の制御部29において荷物Wの目標軌道信号Pd、及び、ブーム204の先端の目標位置座標q(n+1)を算出する工程について説明する。尚、図7は、操作信号及び荷物Wの目標速度信号Vdが操作端末3(操作入力部)において生成される構成を示している。但し、変形例として、操作信号は、操作部217において生成されてもよい。このような変形例の場合、目標速度信号Vdは、操作信号に基づいて、操作部217又はクレーンC(クレーン装置2)の制御部29において生成されてよい。クレーンCにおいて目標速度信号Vdを生成する機能部を目標速度信号生成部(不図示)と称する。変形例については、後述の説明を適宜読み替えればよい。
 制御部29は、既述の各エレメント以外に、目標軌道算出部290、ブーム位置算出部291、及び作動信号生成部292を有する。又、制御部29は、荷物位置検出手段である一対の前側旋回台カメラ202fから、荷物Wの現在位置情報を取得する。
 目標軌道算出部290は、図7に示すように、荷物Wの移動方向及び/又は速さに対応する荷物Wの目標速度信号Vdを操作端末3から単位時間t毎に取得する。そして、目標軌道算出部290は、取得した荷物Wの目標速度信号Vdに基づいて、荷物Wの目標軌道信号Pdαを算出する。尚、既述の変形例の場合、目標軌道算出部290は、荷物Wの移動方向及び/又は速さに対応する荷物Wの目標速度信号VdをクレーンCの目標速度信号生成部(不図示)から単位時間t毎に取得する。
 具体的には、目標軌道算出部290は、取得した目標速度信号Vdを積分して単位時間t毎の荷物Wのx軸方向、y軸方向、及びz軸方向それぞれの目標軌道信号Pdαを算出する。ここで、添え字αは、x軸方向、y軸方向、及びz軸方向のいずれかを表す。
 ブーム位置算出部291は、目標軌道算出部290から目標軌道信号Pdαを取得する。ブーム位置算出部291は、旋回用センサ260から旋回台201の旋回角度θz(n)を取得する。
 又、ブーム位置算出部291は、伸縮用センサ261から伸縮長さlb(n)を取得する。又、ブーム位置算出部291は、起伏用センサ263から起伏角度θx(n)を取得する。
 ブーム位置算出部291は、巻回用センサ43から使用しているワイヤロープ(メインワイヤロープ213又はサブワイヤロープ215)の繰り出し量l(n)を取得する。
 ブーム位置算出部291は、荷物Wの現在位置情報を取得する。ブーム位置算出部291は、一対の前側旋回台カメラ202fから荷物Wの現在位置情報を取得してよい。或いは、ブーム位置算出部291は、一対の前側旋回台カメラ202fから取得した荷物Wの画像情報に基づいて、荷物Wの現在位置情報を取得してもよい。
 ブーム位置算出部291が取得した旋回角度θz(n)、伸縮長さlb(n)、及び起伏角度θx(n)はそれぞれ、ブーム204の姿勢情報の一例に該当する。
 ブーム位置算出部291は、取得したブーム204の姿勢情報に基づいて、ブーム204の先端の現在位置座標q(n)を取得する。
 ブーム位置算出部291は、取得した荷物Wの現在位置情報に基づいて荷物Wの現在位置座標p(n)を算出する。又、ブーム位置算出部291は、荷物Wの現在位置座標p(n)とブーム204の現在位置座標q(n)とに基づいてワイヤロープの繰り出し量l(n)を算出する。
 又、ブーム位置算出部291は、目標軌道信号Pdαから単位時間t経過後の荷物Wの位置である荷物Wの目標位置座標p(n+1)を算出する。更に、ブーム位置算出部291は、荷物Wの現在位置座標p(n)と荷物Wの目標位置座標p(n+1)とに基づいて、荷物Wを吊っているワイヤロープ(メインワイヤロープ213/又はサブワイヤロープ215)の方向ベクトルe(n+1)を算出する。
 ブーム位置算出部291は、逆動力学により、荷物Wの目標位置座標p(n+1)及びワイヤロープの方向ベクトルe(n+1)に基づいて、単位時間t経過後のブーム204の先端の位置であるブーム204の目標位置座標q(n+1)を算出する。そして、ブーム位置算出部291は、算出したブーム204の目標位置座標q(n+1)を、作動信号生成部292に送る。
 作動信号生成部292は、ブーム位置算出部291からブーム204の目標位置座標q(n+1)を取得する。そして、作動信号生成部292は、取得したブーム204の目標位置座標q(n+1)に基づいて、各アクチュエータの作動信号Mdを生成する。
 作動信号生成部292は、旋回用バルブ250、伸縮用バルブ251、起伏用バルブ252、メインドラム用バルブ253、及びサブドラム用バルブ254のうちの少なくとも一つのバルブの作動信号Mdを生成する。
 ここで、図8を参照しつつ、ブーム位置算出部291が、ブーム204の先端の目標位置座標q(n+1)を算出する方法について説明する。先ず、制御部29(具体的には、ブーム位置算出部291)は、クレーンCの逆動力学モデルを定める。逆動力学モデルは、XYZ座標系に定義され、原点OをクレーンCの旋回中心とする。
 又、制御部29は、逆動力学モデルにおいて、q、p、lb、θx、θz、l、f、及びeをそれぞれ定義する。qは、例えばブーム204の先端の現在位置座標q(n)を示す。pは、例えば荷物Wの現在位置座標p(n)を示す。
 lbは、例えばブーム204の伸縮長さlb(n)示す。θxは、例えば起伏角度θx(n)を示す。θzは、例えば旋回角度θz(n)を示す。lは、例えばワイヤロープの繰り出し量l(n)を示す。fはワイヤロープの張力fを示す。eは、例えばワイヤロープの方向ベクトルe(n)を示す。
 このように定まる逆動力学モデルにおいて、ブーム204の先端の目標位置qと荷物Wの目標位置pとの関係が、荷物Wの目標位置p、荷物Wの質量m、及びワイヤロープのばね定数kfに基づいて式(1)によって表される。そして、ブーム204の先端の目標位置qは、荷物Wの時間の関数である式(2)によって算出される。
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
 f:ワイヤロープの張力
 kf:ばね定数
 m:荷物Wの質量
 q:ブーム204の先端の現在位置又は目標位置
 p:荷物Wの現在位置又は目標位置
 l:ワイヤロープの繰出し量
 e:方向ベクトル
 g:重力加速度
 又、ワイヤロープの繰り出し量l(n)は、以下の式(3)から算出される。ワイヤロープの繰り出し量l(n)は、ブーム204の先端位置であるブーム204の現在位置座標q(n)と荷物Wの位置である荷物Wの現在位置座標p(n)の距離で定義される。
Figure JPOXMLDOC01-appb-M000003
 
 又、ワイヤロープの方向ベクトルe(n)は、以下の式(4)から算出される。ワイヤロープの方向ベクトルe(n)は、ワイヤロープの張力fの単位長さのベクトルである。ワイヤロープの張力fは、荷物Wの現在位置座標p(n)と単位時間t経過後の荷物Wの目標位置座標p(n+1)とに基づいて算出される荷物Wの加速度から重力加速度を減算して算出される。
Figure JPOXMLDOC01-appb-M000004
 
 そして、単位時間t経過後のブーム204の先端の目標位置であるブーム204の目標位置座標q(n+1)は、上記式(2)をnの関数で表した式(5)から算出される。ここで、αは、ブーム204の旋回角度θz(n)を示している。このように、ブーム204の目標位置座標q(n+1)は、逆動力学により、ワイヤロープの繰り出し量l(n)、荷物Wの目標位置座標p(n+1)、及び方向ベクトルe(n+1)に基づいて算出される。
Figure JPOXMLDOC01-appb-M000005
 
 (制御システム)
 次に、クレーンCの制御システム42について説明する。尚、制御システム42は、クレーンCにおける制御部29を構成するエレメントにより構成されたシステムと捉えてよい。よって、制御システム42の構成要素は、制御部29の構成要素でもある。
 制御システム42は、フィードバック制御部42aと、フィードフォワード制御部42bと、を有する。
 (フィードバック制御部)
 フィードバック制御部42aは、目標軌道算出部290、ブーム位置算出部291、作動信号生成部292、及び荷物位置検出手段である前側旋回台カメラ202fを含む。このようなフィードバック制御部42aは、クレーンC又はクレーンCの構成部材(具体的には、アクチュエータ)である制御対象をフィードバック制御する。制御対象に関しては、既述の通りである。
 具体的には、フィードバック制御部42aは、荷物Wの目標速度信号Vdを取得すると、目標軌道算出部290において、荷物Wのx軸方向、y軸方向、及びz軸方向の目標軌道信号Pdαを算出する。
 次に、フィードバック制御部42aは、荷物位置検出手段(本実施形態の場合、前側旋回台カメラ202f)から取得した荷物Wの現在位置情報に基づいて荷物Wの現在位置座標p(n)を算出する。
 そして、フィードバック制御部42aは、荷物Wの現在位置座標p(n)を、目標軌道信号Pdαにフィードバック(ネガティブフィードバック)する。
 フィードバック制御部42aは、荷物Wの現在位置座標p(n)により目標軌道信号Pdαを補正することにより(本実施形態の場合、現在位置座標p(n)と目標軌道信号Pdαとの差分をとることにより)、目標軌道信号Pd1αを生成する。目標軌道信号Pd1αは、第一信号の一例に該当する。この目標軌道信号Pd1αは、後述のフィードフォワード制御部42bが実施する学習の教師信号である。
 次に、フィードバック制御部42aは、ブーム位置算出部291において、目標軌道信号Pd2αと、各センサから取得したクレーンCの姿勢情報(旋回角度θz(n)、伸縮長さlb(n)、起伏角度θx(n)、及び繰り出し量l(n))と、旋回台カメラ202から取得した荷物Wの現在位置情報と、に基づいて単位時間t経過後のブーム204の目標位置座標q(n+1)を算出する。尚、目標軌道信号Pd2αは、目標軌道信号Pd1αが、後述のフィードフォワード制御部42bの出力により補正された信号である。
 次に、フィードバック制御部42aは、作動信号生成部292において、目標位置座標q(n+1)に基づいて制御対象(各アクチュエータ)の作動信号Mdを生成する。フィードバック制御部42aは、作動信号MdによってクレーンCの制御対象(各アクチュエータ)を作動させることにより荷物Wを搬送する。
 (フィードフォワード制御部)
 フィードフォワード制御部42bは、重み係数wα(具体的には、wα1、wα2、wα3、wα4)を有する数理モデルにより構成されている。
 このようなフィードフォワード制御部42bは、フィードバック制御部42aにおいて生成される第一信号(具体的には、目標軌道信号Pd1α)を含む教師信号に基づいて重み係数wαを調整することにより、制御対象の特性をリアルタイムで学習する機能を有する。フィードフォワード制御部42bは、学習モデルの一例に該当する。
 本実施形態の場合、フィードフォワード制御部42bは、制御対象の特性をリアルタイムで学習することにより、制御対象の所謂逆モデルを実現する。
 フィードフォワード制御部42bの重み係数wαの初期値は、クレーンCの動作毎に設定される。
 フィードフォワード制御部42bの重み係数wαの初期値は、予め決められた任意の値であってよい。又、重み係数wαの初期値は、記憶部27に予め記憶された重み係数wαであってもよい。又、重み係数wαの初期値は、クレーンCの初期状態(換言すれば、未使用状態又は正常時)における制御対象に対応する重み係数wαであると好ましい。
 重み係数wαの初期値は、後述の特性変化判定装置7の記憶部73に記憶された基準モデルの重み係数wαsであってもよい。この場合、制御システム42(具体的には、フィードフォワード制御部42b)は、特性変化判定装置7から、基準モデルの重み係数wαsを取得し、取得した重み係数wαsをフィードフォワード制御部42bの重み係数として設定する。
 又、フィードフォワード制御部42bは、フィードバック制御部42aと協働して制御対象をフィードフォワード制御する機能を有する。
 フィードフォワード制御部42bは、下記式(6)に示すような伝達関数G(s)で表現されるローパスフィルタLpと捉えることができる。ローパスフィルタLpは、所定の周波数以上の周波数を減衰させる。
 フィードフォワード制御部42bの伝達関数G(s)は、A、B、及びCを係数とし、wα1、wα2、wα3、及びwα4を重み係数とし、sを微分要素として部分分数分解した形式で表現される。ここで、添え字αは、x軸、y軸、及びz軸のいずれかを表す符号である。
 つまり、式(6)により示される伝達関数G(s)は、x軸、y軸、及びz軸毎に設定されている。換言すれば、伝達関数G(s)を有する数理モデルは、x軸、y軸、及びz軸毎に設定されている。このように、伝達関数G(s)は、1次遅れの伝達関数を重ね合わせたものとして表現される。
Figure JPOXMLDOC01-appb-M000006
 
 図9及び上記式(6)に示すように、フィードフォワード制御部42bは、四次の伝達関数G(s)を部分分数分解した1次遅れの伝達関数である第1モデルG1(s)、第2モデルG2(s)、第3モデルG3(s)、及び第4モデルG4(s)が重ね合わせられている。
 又、フィードフォワード制御部42bは、伝達関数G(s)のゲインを重み係数として、第1モデルG1(s)に重み係数wα1、第2モデルG2(s)に重み係数wα2、第3モデルG3(s)に重み係数wα3、及び第4モデルG4(s)に重み係数wα4が割り当てられている。
 既述のようにフィードフォワード制御部42bは、フィードバック制御部42aで補正された荷物Wの目標軌道信号Pd1αに基づいて、各モデルの重み係数wα1、wα2、wα3、及びwα4をリアルタイムで調整することにより、制御対象の特性を学習する。
 このようなフィードフォワード制御部42bに荷物Wの目標速度信号Vdが入力されると、フィードフォワード制御部42bは、補正信号Pffoutを出力する。
 本実施形態の場合、フィードバック制御部42aにおいて生成される目標軌道信号Pd1αが、補正信号Pffoutにより補正されて、目標軌道信号Pd2αとなる。フィードフォワード制御部42bにおける信号の流れは、図9に示す通りであるので、詳しい説明は省略する。
 尚、フィードフォワード制御部42bは、目標軌道信号Pdαと荷物Wの現在位置座標p(n)との差分である目標軌道信号Pd1αが、小さくなるように、重み係数wαを調整する。
 従って、フィードフォワード制御部42bの学習が進むほど、目標軌道信号Pd1αは小さくなる。換言すれば、フィードフォワード制御部42bの学習が進むほど、目標軌道信号Pd2αに含まれるフィードフォワード制御部42bの出力(つまり、補正信号Pffout)の割合が大きくなる。
 フィードフォワード制御部42bの学習が完了した状態では、制御システム42は、フィードフォワード制御部42bの出力(つまり、補正信号Pffout)に基づいて、制御対象(各アクチュエータ)を制御する状態となる。
 尚、フィードフォワード制御部42b(つまり、学習モデル)は、制御対象(つまり、各アクチュエータ)のそれぞれに対応して設けられてよい。又、フィードフォワード制御部42bは、制御対象の特性を学習する機能を備えていれば、制御対象を制御する機能を備えていなくてもよい。
 (制御システムの制御について)
 次に図10~図13を参照して、クレーンCの制御システム42において作動信号Mdを生成するための荷物Wの目標軌道信号Pdの算出方法及びブーム204の先端の目標位置座標q(n+1)の算出方法について詳細に記載する。尚、以下の説明における「制御システム42」なる文言は、「制御部29」なる文言に適宜読み替えてよい。
 制御システム42は、図10のステップS100において、目標軌道算出工程Aを開始する。制御システム42は、目標軌道算出工程Aが終了すると、ステップS200において、ブーム位置算出工程Bを開始する。そして、制御システム42は、ブーム位置算出工程Bが終了すると、ステップS300において、作動信号生成工程Cを開始する。制御システム42は、ステップS100~S300を適宜繰り返す。
 目標軌道算出工程Aにおいて、制御システム42は、図11に示す制御処理を実施する。
 ステップS110において、制御システム42は、制御部29の目標軌道算出部290によって荷物Wの目標速度信号Vdを取得したか否か判定する。荷物Wの目標速度信号Vdを取得した場合(ステップS110において“YES”)、制御システム42は、制御処理をステップS120に移行させる。
 一方、荷物Wの目標速度信号Vdを取得していない場合(ステップS110において“NO”)、制御システム42は、制御処理をステップS110に移行させる。
 ステップS120において、制御システム42は、荷物Wの現在位置座標p(n)を取得する。具体的には、制御システム42は、一対の前側旋回台カメラ202fによって荷物Wを撮影する。そして、制御システム42は、一対の前側旋回台カメラ202fから取得した撮像情報に基づいて、任意に定めた基準位置O(例えば、ブーム204の旋回中心)を原点として荷物Wの現在位置座標p(n)を算出する。尚、荷物Wの現在位置座標p(n)は、一対の前側旋回台カメラ202fにより算出されてもよい。
 ステップS130において、制御システム42は、荷物Wの目標軌道信号Pdαを取得する。具体的には、制御システム42は、目標軌道算出部290によって取得した荷物Wの目標速度信号Vdを積分して荷物Wの目標軌道信号Pdαを算出する。
 ステップS140において、制御システム42は、目標軌道信号Pd1αを取得する。具体的には、制御システム42は、フィードバック制御部42aにより、荷物Wの現在位置座標p(n)と目標軌道信号Pdαとの差分である目標軌道信号Pd1αを算出する。
 ステップS150において、制御システム42(具体的には、フィードフォワード制御部42b)は、目標軌道信号Pd1αを教師信号として、フィードフォワード制御部42bの重み係数wα(具体的には、重み係数wα1、wα2、wα3、wα4)を調整する。
 ステップS160において、制御システム42は、目標軌道信号Pd2αを取得する。具体的には、制御システム42は、目標軌道信号Pd1αをフィードフォワード制御部42bの出力である補正信号Pffoutにより補正することにより、目標軌道信号Pd2αを算出する。そして、目標軌道算出工程Aを終了する。
 ブーム位置算出工程Bにおいて、制御システム42は、図12に示す制御処理を実施する。
 ステップS210において、制御システム42(具体的には、ブーム位置算出部291)は、ブーム204の先端の現在位置座標q(n)を取得する。具体的には、制御システム42(具体的には、ブーム位置算出部291)は、取得した旋回台201の旋回角度θz(n)、伸縮長さlb(n)、及びブーム204の起伏角度θx(n)に基づいてブーム204の先端の現在位置座標q(n)を算出する。
 ステップS220において、制御システム42(具体的には、ブーム位置算出部291)は、荷物を吊っているワイヤロープ(メインワイヤロープ213又はサブワイヤロープ215)の繰り出し量l(n)を取得する。具体的には、制御システム42(具体的には、ブーム位置算出部291)は、荷物Wの現在位置座標p(n)とブーム204の現在位置座標q(n)とに基づいて、上記式(3)を用いてワイヤロープの繰り出し量l(n)を算出する。
 ステップS230において、制御システム42(具体的には、ブーム位置算出部291)は、荷物Wの目標位置座標p(n+1)を取得する。具体的には、制御システム42(具体的には、ブーム位置算出部291)は、荷物Wの現在位置座標p(n)を基準として、目標軌道信号Pd2αに基づいて単位時間t経過後の荷物Wの目標位置である荷物Wの目標位置座標p(n+1)を算出する。
 ステップS240において、制御システム42(具体的には、ブーム位置算出部291)は、ワイヤロープの方向ベクトルe(n+1)を取得する。具体的には、制御システム42(具体的には、ブーム位置算出部291)は、荷物Wの現在位置座標p(n)と荷物Wの目標位置座標p(n+1)とに基づいて荷物Wの加速度を算出する。
 そして、制御システム42(具体的には、ブーム位置算出部291)は、荷物Wの加速度と重力加速度とを用いて上記式(4)からワイヤロープの方向ベクトルe(n+1)を算出する。
 ステップS250において、制御システム42(具体的には、ブーム位置算出部291)は、ブーム204の目標位置座標q(n+1)を取得する。具体的には、制御システム42(具体的には、ブーム位置算出部291)は、取得したワイヤロープの繰り出し量l(n)とワイヤロープの方向ベクトルe(n+1)とに基づいて、上記式(5)からブーム204の目標位置座標q(n+1)を算出する。そして、制御システム42(具体的には、ブーム位置算出部291)は、ブーム位置算出工程Bを終了する。
 作動信号生成工程Cにおいて、制御システム42は、図13に示す制御処理を実施する。
 ステップS310において、制御システム42(具体的には、作動信号生成部292)は、ブーム204の目標位置座標q(n+1)に基づいて、単位時間t経過後の旋回台201の旋回角度θz(n+1)、伸縮長さLb(n+1)、起伏角度θx(n+1)、及びワイヤロープの繰り出し量l(n+1)を取得する(算出する)。
 ステップS320において、制御システム42(具体的には、作動信号生成部292)は、バルブの作動信号Mdを生成する。
 具体的には、制御システム42(具体的には、作動信号生成部292)は、取得した旋回角度θz(n+1)、伸縮長さLb(n+1)、起伏角度θx(n+1)、及びワイヤロープの繰り出し量l(n+1)に基づいて、制御対象を制御するための作動信号Mdを生成する。
 作動信号Mdは、荷物Wを目標位置座標p(n+1)に搬送するために動作させる必要がある制御対象(各アクチュエータ)に対応するバルブを動作させるための作動信号である。
 つまり、作動信号Mdは、旋回用バルブ250、伸縮用バルブ251、起伏用バルブ252、メインドラム用バルブ253、及び/又はサブドラム用バルブ254のうち、荷物Wを目標位置座標p(n+1)に搬送するために動作させる必要がある少なくとも一つのバルブの作動信号Mdと捉えてよい。
 そして、制御システム42(具体的には、作動信号生成部292)は、作動信号生成工程Cを終了する。
 クレーンCの制御システム42は、目標軌道算出工程A、ブーム位置算出工程B、及び作動信号生成工程Cを繰り返すことにより、ブーム204の目標位置座標q(n+1)に基づいて生成した作動信号Mdにより、各アクチュエータを制御する。
 (重み係数の送信)
 又、本実施形態の場合、制御システム42(制御部29)は、適宜のタイミングで、フィードフォワード制御部42bの重み係数wα(具体的には、wα1、wα2、wα3、wα4)を、特性変化判定装置7に送信する。
 制御システム42(制御部29)は、例えば、後述の特性変化判定装置7からリクエストを受信した場合に、重み係数wαを特性変化判定装置7に送信する。この際、制御システム42(制御部29)は、例えば、記憶部27から重み係数wαを取得し、取得した重み係数wαを特性変化判定装置7に送信する。
 制御システム42(制御部29)は、例えば、上述のステップS150(図11参照)において、フィードフォワード制御部42bの重み係数wαが調整される毎に、重み係数wαを、特性変化判定装置7に送信する。
 又、制御システム42(制御部29)は、例えば、フィードフォワード制御部42bにおける学習の進度が所定条件に該当した場合に、重み係数wαを、特性変化判定装置7に送信する。
 制御システム42(制御部29)は、学習の進度が所定条件に該当した場合に、例えば、記憶部27から重み係数wαを取得し、取得した重み係数wαを特性変化判定装置7に送信する。
 上記所定条件とは、例えば、重み係数wαの変動率が所定値以下となった場合である。又、上記所定条件とは、例えば、重み係数wαの変動幅が所定値以下となった場合である。
 (特性変化判定装置)
 以下、特性変化判定装置7の構成について説明する。特性変化判定装置7は、例えば、サーバである。特性変化判定装置7は、図1に示すように、ネットワークNを介して、クレーンCに接続されている。特性変化判定装置7は、外部装置の一例に該当する。
 尚、特性変化判定装置7は、有線又は無線によりクレーンCに接続されていればよい。特性変化判定装置7は、クレーンCの作業現場から離れた遠隔地に設けられていてもよい。又、特性変化判定装置7は、クレーンCの作業現場の一画に設けられていてもよい。又、特性変化判定装置7は、クレーンCに通信接続可能な状態で、クレーンCに組み込まれていてもよい。
 このような特性変化判定装置7は、クレーンCから、既述の重み係数wαを取得する。そして、特性変化判定装置7は、取得した重み係数wαを用いた演算を実施する機能を有する。重み係数wαを用いた演算は、例えば、後述の表示部74への表示、及び、重み係数wαを用いたクレーンCの特性変化の判定等の種々の演算を含む。
 具体的には、特性変化判定装置7は、図3に示すように、通信部71と、取得部72と、記憶部73と、表示部74と、制御部75と、を有する。
 (通信部)
 通信部71は、クレーンCの通信部28に、例えば、インターネット等のネットワークNを介して通信接続される。尚、通信部71とクレーンCの通信部28との通信方式は、特に限定されない。
 通信部71は、制御部75の制御下で、クレーンCの通信部28と通信を確立して、情報を送る又は受け取る。通信部71は、制御部29の制御下で、クレーンCの通信部28から取得した情報を、取得部72に送る。
 具体的には、通信部71は、所定のタイミングで、クレーンCから重み係数wαを取得する。
 (取得部)
 取得部72は、制御部75の制御下で、通信部71から重み係数wαを取得する。
 (記憶部)
 記憶部73は、第二記憶部の一例に該当し、制御部75の制御下で、情報を記憶する。本実施形態の場合、記憶部73は、クレーンCにおける制御対象(例えば、各アクチュエータ)の特性を、フィードフォワード制御部42bと同じ数理モデルにより表現した(換言すれば、同定した。)基準モデルを記憶している。
 基準モデルは、クレーンCの初期状態(換言すれば、未使用状態又は正常時)における制御対象を同定したモデルと捉えてよい。基準モデルは、例えば、図9に示すフィードフォワード制御部42bと同じ構成を有する。よって、基準モデルの伝達関数G(s)は、上記式6と同じである。
 基準モデルは、クレーンCの初期状態における制御対象の特性に対応した重み係数wαsを有する。本実施形態の場合、基準モデルの重み係数wαsは、クレーンCのフィードフォワード制御部42bにおける重み係数wα1、wα2、wα3、wα4に対応する。
 (表示部)
 表示部74は、制御部75の制御下で、情報を表示する。表示部74は、例えば、ディスプレイ又はモニタである。
 (制御部)
 制御部75は、特性変化判定装置7を構成する各エレメント71~74の動作を制御する。
 制御部75は、例えば、特性変化判定装置7のオペレータからの操作入力に応じて、重み係数wαの送信をクレーンCに指示するための情報を含むリクエストをクレーンCに送信するように、通信部71を制御する。特性変化判定装置7のオペレータは、特性変化判定装置7に設けられた入力部76(例えば、キーボード又はタッチパネル)を介して操作入力を入力する。
 制御部75は、クレーンCから取得した重み係数wαを表示部74に表示する。具体的には、制御部75は、クレーンCから取得した重み係数wαを、時系列に沿って表示部74に表示する。よって、表示部74には、特性変化判定装置7のオペレータが、クレーンCのフィードフォワード制御部42bで実施された学習における重み係数wαの変化を確認できる態様で、重み係数wαが表示される。
 特性変化判定装置7のオペレータは、表示部74に表示された重み係数wα(特に、学習が完了した時点の重み係数wα)を確認することにより、クレーンCの制御対象の特性が変化したか否かを判定できる。
 つまり、既述のように、クレーンCにおける制御対象の特性が変化しなければ、フィードフォワード制御部42bの学習が完了した状態において、学習毎の重み係数は、一定又はほぼ一定の値となる。
 一方、クレーンCの制御対象の特性が変わった場合、学習が完了した状態における重み係数は、制御対象の特性が変わる前の重み係数と異なる。つまり、学習が完了した状態における重み係数の変化を見ることにより、特性変化判定装置7のオペレータは、制御対象の特性の変化の有無を確認できる。
 又、制御部75は、クレーンCから取得した重み係数wαとともに、記憶部73に記憶された基準モデルの重み係数wαsを表示部74に表示してもよい。特性変化判定装置7のオペレータは、表示部74に表示された、クレーンCの重み係数wαと、基準モデルの重み係数wαsとを比較することにより、クレーンCの制御対象の特性が変化したか否かを判定できる。
 又、制御部75は、クレーンCから取得した重み係数wα(具体的には、クレーンCのフィードフォワード制御部42bにおいて学習が完了した状態の重み係数wα)と、記憶部73に記憶された基準モデルの重み係数wαsとを比較することにより、クレーンCの制御対象の特性が変化したか否かを判定する機能を有してもよい。
 例えば、制御部75は、クレーンCから取得した重み係数wαと基準モデルの重み係数wαsとの差が、所定値よりも小さい場合に、クレーンCの制御対象の特性が変化していないと判定する。
 一方、制御部75は、クレーンCから取得した重み係数wαと基準モデルの重み係数wαsとの差が、所定値以上の場合に、クレーンCの制御対象の特性が変化していると判定する。そして、制御部75は、上述の判定の結果(比較結果)を、出力してもよい(例えば、表示部74に表示してもよい)。又、制御部75は、上述の判定の結果を、クレーンCに送信してもよい。
 このような構成によれば、特性変化判定装置7のオペレータ及び/又はクレーンCのオペレータは、容易にクレーンCの制御対象の特性が変化したか否かを認識できる。
 (本実施形態の作業・効果)
 以上のように、本実施形態によれば、クレーンの特性の変化を認識することができる。
 2020年10月21日出願の特願2020-176963の日本出願に含まれる明細書、図面、及び要約書の開示内容は、すべて本願に援用される。
 本発明は、移動式クレーンに限らず、種々のクレーンに適用できる。
 S 特性変化判定システム
 C、C1、C2、C3 クレーン
 W 荷物
 1 車両
 11 車輪
 12 エンジン
 13 アウトリガ
 2 クレーン装置
 201 旋回台
 202 旋回台カメラ
 202f 前側旋回台カメラ
 202r 後側旋回台カメラ
 203 旋回用油圧モータ
 204 ブーム
 205 ジブ
 206 ブームカメラ
 207 メインフックブロック
 208 メインフック
 209 サブフックブロック
 210 サブフック
 211 起伏用油圧シリンダ
 212 メインウインチ
 213 メインワイヤロープ
 214 サブウインチ
 215 サブワイヤロープ
 216 キャビン
 217 操作部
 218 伸縮用油圧シリンダ
 219 メインドラム用油圧モータ
 220 サブドラム用油圧モータ
 230 旋回操作具
 231 起伏操作具
 232 伸縮操作具
 233 メインドラム操作具
 234 サブドラム操作具
 250 旋回用バルブ
 251 伸縮用バルブ
 252 起伏用バルブ
 253 メインドラム用バルブ
 254 サブドラム用バルブ
 260 旋回用センサ
 261 伸縮用センサ
 262 方位センサ
 263 起伏用センサ
 27 記憶部
 28 通信部
 29 制御部
 290 目標軌道算出部
 291 ブーム位置算出部
 292 作動信号生成部
 3 操作端末
 30 筐体
 31 吊り荷移動操作具
 32 端末側旋回操作具
 33 端末側伸縮操作具
 34 端末側メインドラム操作具
 35 端末側サブドラム操作具
 36 端末側起伏操作具
 37 端末側表示部
 38 端末側制御部
 39 端末側方位センサ
 42 制御システム
 42a フィードバック制御部
 42b フィードフォワード制御部
 43 巻回用センサ
 7 特性変化判定装置
 71 通信部
 72 取得部
 73 記憶部
 74 表示部
 75 制御部
 76 入力部

Claims (12)

  1.  荷物を搬送可能なクレーンであって、
     前記クレーン又は前記クレーンの構成部材である制御対象をフィードバック制御するフィードバック制御部と、
     重み係数を有し、前記フィードバック制御部において生成される第一信号を含む教師信号に基づいて前記重み係数を調整することにより前記制御対象の特性をリアルタイムで学習する学習モデルと、
     前記重み係数を、前記クレーンに通信接続された外部装置に送信する通信制御部と、を備える、
     クレーン。
  2.  前記学習モデルは、前記フィードバック制御部と協働して前記制御対象をフィードフォワード制御するフィードフォワード制御部を構成している、請求項1に記載のクレーン。
  3.  前記制御対象は、前記クレーンのブームを旋回させるための旋回用アクチュエータ、前記ブームを起伏させるための起伏用アクチュエータ、前記ブームを伸縮させるための伸縮用アクチュエータ、及び前記クレーンのフックを昇降させるための昇降用アクチュエータのうちの少なくとも一つのアクチュエータである、請求項1又は2に記載のクレーン。
  4.  複数の前記制御対象と、
     前記制御対象のそれぞれに対応する複数の前記学習モデルと、を有する、請求項1~3の何れか一項に記載のクレーン。
  5.  前記学習モデルは、前記フィードバック制御部内において前記第一信号が生成される毎に、前記教師信号に基づいて前記重み係数を調整する、請求項1~4の何れか一項に記載のクレーン。
  6.  前記通信制御部は、前記学習モデルにおいて、前記重み係数の調整が行われる毎に、前記重み係数を前記外部装置に送信する、請求項5に記載のクレーン。
  7.  前記重み係数を記憶するための第一記憶部を、更に備え、
     前記第一記憶部は、前記重み係数が調整される毎に前記重み係数を記憶し、
     前記通信制御部は、所定のタイミングで、前記第一記憶部に記憶された前記重み係数を取得し、前記外部装置に送信する、請求項5に記載のクレーン。
  8.  クレーン又は前記クレーンの構成部材である制御対象をフィードバック制御するフィードバック制御部と、重み係数を有し、前記フィードバック制御部において生成される第一信号を含む教師信号に基づいて前記重み係数を調整することにより前記制御対象の特性をリアルタイムで学習する学習モデルと、を備えるクレーンに通信接続されるクレーンの特性変化判定装置であって、
     前記クレーンから前記重み係数を取得する取得部と、
     前記取得部から取得した重み係数を用いた演算を行う制御部と、を備える
     クレーンの特性変化判定装置。
  9.  前記制御対象の正常時の特性を学習した数理モデルである基準モデルを記憶する第二記憶部を、更に備え、
     前記制御部は、前記取得部から取得した重み係数と、前記第二記憶部から取得した前記基準モデルにおける重み係数と、を用いた演算を行う、請求項8に記載のクレーンの特性変化判定装置。
  10.  前記制御部は、前記取得部から取得した重み係数と、前記基準モデルにおける重み係数とを比較し、比較結果を出力する、請求項9に記載のクレーンの特性変化判定装置。
  11.  情報を表示可能に構成された表示部を、更に備え、
     前記制御部は、前記比較結果を前記表示部に表示させる、請求項10に記載のクレーンの特性変化判定装置。
  12.  クレーンと、
     前記クレーンに通信接続された特性変化判定装置と、を備え、
     前記クレーンは、
     前記クレーン又は前記クレーンの構成部材である制御対象をフィードバック制御するフィードバック制御部と、
     重み係数を有し、前記フィードバック制御部において生成される第一信号を含む教師信号に基づいて前記重み係数を調整することにより前記制御対象の特性をリアルタイムで学習する学習モデルと、を備え
     前記クレーンは、前記学習モデルの重み係数を前記特性変化判定装置に送信し、
     前記特性変化判定装置は、前記クレーンから取得した前記重み係数に基づいて、前記制御対象の特性の変化を判定し、判定結果を出力する、
     クレーンの特性変化判定システム。
PCT/JP2021/038577 2020-10-21 2021-10-19 クレーン、クレーンの特性変化判定装置、及びクレーンの特性変化判定システム WO2022085675A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/030,209 US20230373761A1 (en) 2020-10-21 2021-10-19 Crane, crane characteristic change determination device, and crane characteristic change determination system
EP21882816.8A EP4234472A4 (en) 2020-10-21 2021-10-19 CRANE, DEVICE FOR DETERMINING THE CHANGE IN CRANE CHARACTERISTICS AND SYSTEM FOR DETERMINING THE CHANGE IN CRANE CHARACTERISTICS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020176963A JP7517071B2 (ja) 2020-10-21 2020-10-21 クレーン、クレーンの特性変化判定装置、及びクレーンの特性変化判定システム
JP2020-176963 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022085675A1 true WO2022085675A1 (ja) 2022-04-28

Family

ID=81290596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038577 WO2022085675A1 (ja) 2020-10-21 2021-10-19 クレーン、クレーンの特性変化判定装置、及びクレーンの特性変化判定システム

Country Status (4)

Country Link
US (1) US20230373761A1 (ja)
EP (1) EP4234472A4 (ja)
JP (1) JP7517071B2 (ja)
WO (1) WO2022085675A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189396A (ja) * 2002-12-10 2004-07-08 Furukawa Co Ltd クレーンの制御装置
JP2018062414A (ja) 2016-10-13 2018-04-19 古河ユニック株式会社 移動式クレーン用フック装置及びこれを備えた移動式クレーン
CN108190751A (zh) * 2017-12-30 2018-06-22 王大方 一种基于神经网络pid的桥式起重机防摇控制方法
JP2018172208A (ja) * 2017-03-31 2018-11-08 日立造船株式会社 情報処理装置、情報処理方法、および情報処理プログラム
JP2020015589A (ja) * 2018-07-25 2020-01-30 株式会社タダノ クレーンおよびクレーンの制御システム
JP2020152532A (ja) * 2019-03-20 2020-09-24 株式会社タダノ クレーン
JP2020176963A (ja) 2019-04-22 2020-10-29 株式会社村田製作所 圧力計測装置および差圧制御システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189396A (ja) * 2002-12-10 2004-07-08 Furukawa Co Ltd クレーンの制御装置
JP2018062414A (ja) 2016-10-13 2018-04-19 古河ユニック株式会社 移動式クレーン用フック装置及びこれを備えた移動式クレーン
JP2018172208A (ja) * 2017-03-31 2018-11-08 日立造船株式会社 情報処理装置、情報処理方法、および情報処理プログラム
CN108190751A (zh) * 2017-12-30 2018-06-22 王大方 一种基于神经网络pid的桥式起重机防摇控制方法
JP2020015589A (ja) * 2018-07-25 2020-01-30 株式会社タダノ クレーンおよびクレーンの制御システム
JP2020152532A (ja) * 2019-03-20 2020-09-24 株式会社タダノ クレーン
JP2020176963A (ja) 2019-04-22 2020-10-29 株式会社村田製作所 圧力計測装置および差圧制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4234472A4

Also Published As

Publication number Publication date
JP2022068037A (ja) 2022-05-09
JP7517071B2 (ja) 2024-07-17
US20230373761A1 (en) 2023-11-23
EP4234472A4 (en) 2024-10-02
EP4234472A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
JP7069888B2 (ja) クレーンおよびクレーンの制御方法
JP7172243B2 (ja) クレーンおよびクレーンの制御システム
CN112368229B (zh) 起重机
WO2020235681A1 (ja) 遠隔操作端末および遠隔操作端末を備える移動式クレーン
JP7192527B2 (ja) クレーン
CN112469658B (zh) 起重机
WO2022085675A1 (ja) クレーン、クレーンの特性変化判定装置、及びクレーンの特性変化判定システム
CN112912332B (zh) 起重机装置
CN112399959B (zh) 起重机及起重机的控制方法
JP7176645B2 (ja) 制御システムおよびクレーン
JPWO2020017594A1 (ja) クレーン
JP7201105B2 (ja) 作業機の制御システムおよびクレーン
JP2023081639A (ja) クレーン、サーバ、及び出力復元システム
JP7501777B2 (ja) 故障予兆検出システムおよび作業車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021882816

Country of ref document: EP

Effective date: 20230522