WO2022085202A1 - 端末、及び基地局 - Google Patents

端末、及び基地局 Download PDF

Info

Publication number
WO2022085202A1
WO2022085202A1 PCT/JP2020/040012 JP2020040012W WO2022085202A1 WO 2022085202 A1 WO2022085202 A1 WO 2022085202A1 JP 2020040012 W JP2020040012 W JP 2020040012W WO 2022085202 A1 WO2022085202 A1 WO 2022085202A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
pucch resource
harq
ack
Prior art date
Application number
PCT/JP2020/040012
Other languages
English (en)
French (fr)
Inventor
慎也 熊谷
聡 永田
ラン チン
ジン ワン
チーピン ピ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/040012 priority Critical patent/WO2022085202A1/ja
Publication of WO2022085202A1 publication Critical patent/WO2022085202A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to terminals and base stations in wireless communication systems.
  • 5G or NR New Radio
  • the NR defines a downlink SPS (Semi-Patent Scheduling) in which PDSCH resources are set in advance in the terminal and activation / release is performed by DCI, which enables low-delay data reception.
  • SPS Semi-Patent Scheduling
  • DCI Downlink Control Information
  • the activation DCI indicates the time position (slot) for transmitting the HARQ-ACK feedback in the PUCCH resource.
  • the symbol position in which the PUCCH resource is set depends on the DL / UL setting of the TDD in the slot at the specified time position. Collides with the DL symbol or the flexible symbol, and it is possible that the HARQ-ACK feedback cannot be transmitted.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a technique that enables a terminal that has received data to appropriately transmit feedback information for data reception to a base station.
  • a control unit that postpones the transmission of the feedback information until a time position where an effective uplink resource for transmitting the feedback information for the data received from the base station exists.
  • a terminal is provided that comprises a transmitter that transmits the feedback information with the valid uplink resource and further transmits the feedback information with another valid uplink resource.
  • a technique that enables a terminal that has received data to appropriately transmit feedback information for data reception to a base station.
  • FIG. 6 It is a figure for demonstrating Example 6. It is a figure for demonstrating Example 7.
  • FIG. It is a figure for demonstrating Example 8.
  • FIG. It is a figure for demonstrating Example 8.
  • FIG. It is a figure for demonstrating Example 8.
  • FIG. It is a figure which shows an example of the functional structure of the base station 10 in embodiment of this invention.
  • the existing technique may be appropriately used in the operation of the wireless communication system according to the embodiment of the present invention.
  • the existing technique is, for example, an existing NR or LTE, but is not limited to the existing NR or LTE.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20 as shown in FIG.
  • FIG. 1 shows one base station 10 and one terminal 20, this is an example, and each of them may be plural.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM symbols, and the frequency domain may be defined by the number of subcarriers or the number of resource blocks. Further, the TTI (Transmission Time Interval) in the time domain may be a slot, or the TTI may be a subframe.
  • TTI Transmission Time Interval
  • the base station 10 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the terminal 20.
  • carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
  • the base station 10 transmits a synchronization signal, system information, and the like to the terminal 20.
  • Synchronous signals are, for example, NR-PSS and NR-SSS.
  • the system information is transmitted by, for example, NR-PBCH or PDSCH, and is also referred to as broadcast information.
  • the base station 10 transmits a control signal or data to the terminal 20 by DL (Downlink), and receives the control signal or data from the terminal 20 by UL (Uplink).
  • DL Downlink
  • UL Uplink
  • a control channel such as PUCCH or PDCCH
  • data such as a name is an example. Is.
  • the terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 by DL, and transmits the control signal or data to the base station 10 by UL, so that various types provided by the wireless communication system are provided. Use communication services.
  • the terminal 20 may be referred to as a UE, and the base station 10 may be referred to as a gNB.
  • the terminal 20 can perform carrier aggregation that bundles a plurality of cells (a plurality of CCs (component carriers)) and communicates with the base station 10.
  • carrier aggregation one PCell (primary cell) and one or more SCells (secondary cells) are used.
  • PUCCH-S Cell having PUCCH may be used.
  • FIG. 2 shows a configuration example of a wireless communication system when DC (Dual connection) is executed.
  • a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided.
  • Base station 10A and base station 10B are each connected to the core network.
  • the terminal 20 can communicate with both the base station 10A and the base station 10B.
  • the cell group provided by the base station 10A, which is an MN, is called an MCG (Master Cell Group), and the cell group provided by the base station 10B, which is an SN, is called an SCG (Secondary Cell Group).
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • the MCG is composed of one PCell and one or more SCells
  • the SCG is composed of one PSCell (Primary SCell) and one or more SCells.
  • the processing operation in the present embodiment may be executed in the system configuration shown in FIG. 1, may be executed in the system configuration shown in FIG. 2, or may be executed in a system configuration other than these.
  • the base station 10 transmits downlink SPS setting information, PUCCH resource setting information, slot format setting information, and the like to the terminal 20 by RRC signaling, and the terminal 20 receives these setting information. Since the present embodiment targets the downlink SPS, "SPS" hereinafter means the downlink SPS.
  • the setting information of the slot format is, for example, tdd-UL-DL-ConnectionCommon or tdd-UL-DL-ConfigurationDedicated, and the TDD configuration in each symbol of each slot in one or more slots is DL, UL, and the setting information. Whether it is flexible or not is set.
  • this setting information will be referred to as semi-static TDD setting information. Further, flexible may be described as F.
  • the terminal 20 basically determines DL / UL / F of each symbol of each slot according to the semi-static TDD setting information.
  • This setting information is, for example, SlotFormatCombinationsPerCell. Since this information consists of slot format (SF) IDs, it will be referred to as SFI setting information hereafter.
  • the terminal 20 receives the DCI that activates the SPS setting from the base station 10, and in S103, receives the data in the PDSCH resource set by the SPS.
  • the terminal 20 transmits SPS HARQ-ACK to the base station 10 with the PUCCH resource (or the PUSCH resource if there is UL scheduling) of the slot at the time position specified by DCI.
  • SPS HARQ-ACK may be called HARQ-ACK.
  • HARQ-ACK may be referred to as HARQ information, feedback information, or the like.
  • the terminal 20 may receive DCI from the base station 10 that dynamically specifies the slot format at or before and after S102.
  • This DCI is control information that specifies an ID that is actually used among a plurality of slot format IDs set in the SFI setting information.
  • the terminal 20 determines DL / UL / F of each symbol of each slot according to the slot format instead of the semi-static TDD setting information.
  • This DCI information is referred to as dynamic SFI designation information (or dynamic SFI, or SFI).
  • the activation DCI specifies a time position (slot) for transmitting HARQ-ACK on the PUCCH resource.
  • the DL / UL setting of TDD in the slot at the specified time position (setting by semi-static TDD setting information or dynamic SFI designation information).
  • the symbol position where the PUCCH resource is set collides with the DL symbol or the F symbol, and HARQ-ACK cannot be transmitted.
  • FIG. 4 shows an example of a collision as described above.
  • the third slot from the slot immediately after the slot that received the PDSCH is designated as the slot for HARQ-ACK transmission, but when the slot corresponds to DL, HARQ- ACK is dropped.
  • the terminal 20 when the terminal 20 determines that a collision between the PUCCH resource and the DL symbol / F symbol occurs, the terminal 20 is postponed to the next available UL resource and HARQ. -Send ACK.
  • Candidates A to G below can be considered as an enhancement method for avoiding the drop of HARQ-ACK of SPS due to the collision of PUCCH with at least one "DL or F symbol”.
  • Terminal 20 postpones HARQ-ACK until the first valid PUCCH resource available.
  • Candidate B The terminal 20 selects the first applicable K1 value from the set K1 value set to enable HARQ-ACK load balancing.
  • Candidate C The base station 10 dynamically notifies the terminal 20 of one or more transmission opportunities of the postponed HARQ-ACK.
  • Candidate D The base station 10 notifies the terminal 20 of the K1 value of each SPS transmission in the time window set by the RRC.
  • Candidate E Supports a one-shot HARQ-ACK request (that is, type 3 HARQ-ACK Codebook) for a group of SPS HARQ processes.
  • Candidate F Supports non-positive values (that is, Non Natural K1) for DL SPS operation in the license spectrum.
  • Candidate G Retransmit HARQ-ACK autonomously, or multiplex the dropped HARQ-ACK information to another HARQ-ACK information.
  • the terminal 20 For at least candidate A and candidate B, the terminal 20 needs to determine whether or not a collision between HARQ-ACK and the "DL symbol or F symbol" occurs by applying the K1 value specified by activation DCI. Since the HARQ-ACK is transmitted with the first available valid PUCCH resource, the terminal 20 also needs to determine the validity of the PUCCH resource.
  • problem 1 the exact meaning of "DL symbol or F symbol” is unclear. That is, it is unclear for the terminal 20 how to determine whether the PUCCH resource is valid. This is referred to as "problem 1".
  • DL, UL, and F set by the semi-static TDD setting information will be described as semi-static DL, semi-static UL, and semi-static F, respectively.
  • DL, UL, and F designated by the dynamic SFI designation information are described as dynamic DL, dynamic UL, and dynamic F, respectively.
  • the UL set by scheduling is described as dynamic UL scheduling or the like.
  • the PUCCH in the symbol is invalid and the PUCCH is dropped. In other cases, the PUCCH resource in the symbol is valid.
  • ⁇ 1-2 When SFI is set> When SFI is set, even if the base station 10 instructs the semi-static F symbol as dynamic UL, the terminal 20 may not receive the dynamic SFI (because there is a possibility of SFI missing). , PUCCH may or may not be transmitted. That is, when the terminal 20 detects SFI, the symbol is valid for PUCCH. If terminal 20 fails to detect SFI, the symbol is invalid for PUCCH and PUCCH is dropped.
  • the PUCCH is dropped. If the base station 10 designates the semi-static F symbol as the dynamic F, the PUCCH is dropped.
  • the base station 10 controls the dynamic DL scheduling or the setting of SSB / CORESET # 0 that disables the use of PUCCH resources for the semi-static F symbol when SFI is not set. Therefore, the base station 10 can grasp whether the PUCCH resource in the semi-static F symbol is valid and whether the HARQ-ACK postponement / K1 reselection is executed. Therefore, there is no ambiguity about the recognition of the PUCCH resource for HARQ-ACK transmission between the terminal 20 and the base station 10.
  • the base station 10 cannot determine whether the reason why the HARQ-ACK could not be received is the SFI reception error by the terminal 20 or the HARQ-ACK reception error at the base station 10. Therefore, the base station 10 cannot know whether HARQ-ACK is transmitted with a delay (or is transmitted by K1 reselection). Therefore, ambiguity arises between the terminal 20 and the base station 10 regarding the recognition of the PUCCH resource for HARQ-ACK transmission.
  • problem 2 when the terminal 20 determines that the PUCCH resource in the semi-static F symbol (without dynamic UL scheduling) for which the dynamic UL is specified by SFI is a valid PUCCH resource, the base station 10 and the terminal 20 are used. There is a problem that the recognition of HARQ-ACK is ambiguous. This is referred to as "problem 2".
  • the first embodiment is an embodiment corresponding to the first problem. That is, in the first embodiment, by clearly defining a "DL symbol or F symbol" (that is, an invalid PUCCH resource) that collides with the PUCCH resource for transmitting HARQ-ACK, the terminal 20 is not valid "DL symbol”. Or the F symbol "(PUCCH resource) can be clearly determined.
  • DL symbol or F symbol that is, an invalid PUCCH resource
  • the semi-static DL symbol is not valid regardless of whether SFI is set in the terminal 20.
  • the semi-static F symbol will be described for each option.
  • the semi-static F symbol is not valid when SFI is not set in the terminal 20.
  • FIG. 5 shows a table summarizing options 1 to 4.
  • x indicates that the symbol shown in the left column is not valid
  • the check mark indicates that the symbol shown in the left column is valid (the PUCCH resource on the symbol can be used).
  • SFI is set, but when the reception of SFI is missed, the corresponding semi-static F symbol is not valid in any case.
  • the terminal 20 determines that the PUCCH resource for HARQ-ACK transmission of the SPS is "DL symbol or F symbol" based on the criteria based on options 1 to 4 (particularly options 2 and 3).
  • the operation of the terminal 20 to defer (defer) HARQ-ACK (the above-mentioned candidate A) or the operation of the terminal 20 to reselect K1 (the above-mentioned candidate B) in the case of determining the collision will be described. ..
  • the operation related to the candidate A will be described in Examples 2 to 5, and the operation related to the candidate B will be described in Examples 6 to 10.
  • Example 2 when the terminal 20 determines that the PUCCH resource for HARQ-ACK transmission collides with the "DL symbol or F symbol", the terminal 20 determines that the time position of the first available valid PUCCH resource is the time position. Postpone (delay) the transmission of HARQ-ACK until (symbol). The terminal 20 then uses its valid PUCCH resource to transmit HARQ-ACK.
  • the TDD configuration of the upper slot in FIG. 6 shows a configuration set by the semi-static TDD setting information for the terminal 20.
  • the TDD configuration of the lower slot is a TDD configuration assuming that when SFI is set for the terminal 20, it is set by dynamic SFI. Further, D is DL, U is UL, and F is flexible.
  • the activation DCI contains a K1 value.
  • the K1 value is a value that specifies how many slots after which the HARQ-ACK is transmitted from the slot in which the data is transmitted by the SPS PDSCH.
  • the terminal 20 determines an invalid PUCCH resource based on the criterion of option 2 described above.
  • the terminal 20 After receiving the SPS PDSCH1, the terminal 20 confirms that the TDD configuration of the symbol at the position of the PUCCH resource 1 in the slot designated by the corresponding K1 is F. Further, when it is confirmed that there is no SSB / CORESET # 0 setting and no dynamic DL scheduling, the terminal 20 transmits HARQ-ACK with the PUCCH resource 1. The same applies to SPS PDSCHs 2 and 3, and the terminal 20 transmits HARQ-ACK with PUCCH resources 1 and 2, respectively.
  • the terminal 20 determines that the PUCCH resource 1 is not valid.
  • the terminal 20 detects the PUCCH resource 2 for which the dynamic UL is set as the first available PUCCH resource after that, and transmits HARQ-ACK with the PUCCH resource 2.
  • the terminal 20 When SFI is set and the terminal 20 does not receive the TDD configuration shown in the lower part of FIG. 6 by SFI (when a mistake is made), the plurality of symbols of PUCCH resource 1 instructed by the corresponding K1 with respect to SPS PDSCH1. Is a semi-static F, so based on the criteria shown in FIG. 5, the terminal 20 determines that the PUCCH resource 1 is not valid, and the PUCCH in which the semi-static UL is set as the first available PUCCH resource after that is set. Detect resource 3 and transmit HARQ-ACK with PUCCH resource 3.
  • Example 2 in determining the effectiveness of the PUCCH resource, additional conditions such as the fact that the PUCCH resource exceeding the maximum value of K1 is not valid may be used.
  • the maximum value of K1 may be set in advance by RRC, or may be notified to the terminal 20 by activation DCI.
  • FIG. 6 shows an image of the maximum value as max K1 limitation.
  • FIG. 7 shows a PUCCH resource for transmitting HARQ-ACK for each SPS PDSCH when the above judgment is made for each option.
  • the terminal 20 can avoid the drop of the HARQ-ACK and transmit the HARQ-ACK with the postponed PUCCH resource.
  • the method of candidate A (deferred transmission of HARQ-ACK) can be applied between the terminal 20 and the base station 10 without any ambiguity in recognition.
  • Example 3 In the third embodiment, an operation example for eliminating the ambiguity when the options 2 and 3 in the second embodiment are used will be described on the premise of the second embodiment.
  • the SPS settings, semi-static TDD configuration, SFI assumptions, etc. in Example 3 are the same as in Example 2, and are as shown in FIG. Further, in the third embodiment, the candidate A is used as the drop avoidance method when the PUCCH resource is not valid, and the option 2 or 3 is used as the method for determining the validity of the PUCCH resource.
  • the terminal 20 has at least one symbol in the first available valid PUCCH resource on the semi-static F when SFI is set to the corresponding symbol and no dynamic UL schedule is set. If the terminal 20 determines that the dynamic UL is the indicated symbol, the terminal 20 sends a HARQ-ACK with the first available valid PUCCH resource, and after that, the first one consisting only of the semi-static UL symbol. Send HARQ-ACK with the PUCCH resource.
  • the condition of the maximum value of K1 described in Example 2 may be further applied.
  • the terminal 20 When SFI is set and the terminal 20 receives the TDD configuration shown in the lower part of FIG. 6 by SFI, the plurality of symbols of PUCCH resource 1 indicated by K1 corresponding to SPS PDSCH1 include a dynamic DL. Therefore, the terminal 20 determines that the PUCCH resource 1 is not valid. The terminal 20 detects the PUCCH resource 2 for which the dynamic UL is set as the first available PUCCH resource after that, and transmits HARQ-ACK with the PUCCH resource 2. Since the PUCCH resource 2 is composed of a symbol to which the dynamic UL is instructed on the semi-static UL, the terminal 20 also transmits HARQ-ACK to the PUCCH resource 3, which is the first PUCCH resource consisting of only the semi-static UL symbol.
  • the terminal 20 When SFI is set and the terminal 20 does not receive the TDD configuration shown in the lower part of FIG. 6 by SFI (when a mistake is made), the plurality of symbols of PUCCH resource 1 instructed by the corresponding K1 with respect to SPS PDSCH1. Is a semi-static F, so based on the criteria shown in FIG. 5, the terminal 20 determines that the PUCCH resource 1 is not valid, and the PUCCH in which the semi-static UL is set as the first available PUCCH resource after that is set. Detect resource 3 and transmit HARQ-ACK with PUCCH resource 3. Since the PUCCH resource 3 does not correspond to the semi-static F, the terminal 20 does not transmit the HARQ-ACK for the second time.
  • FIG. 8 is a diagram showing the above operations collectively.
  • base station 10 is always expected to receive the postponed HARQ-ACK at the first PUCCH resource in the semi-static UL symbol. The ambiguity described in Example 2 is eliminated.
  • Example 3 The main differences between Example 3 and Example 2 are as follows.
  • Example 3 since the available semi-static F symbol is used, if it is available, the delay can be reduced as compared with Example 2 (option 1/4).
  • Example 3 the recognition ambiguity that occurred in Example 2 (option 2/3) can be eliminated.
  • Example 3 a new RRC setting for enabling the above-mentioned two HARQ-ACK transmissions may be made to the terminal 20.
  • Example 4 Also in the fourth embodiment, an operation example for eliminating the ambiguity when the options 2 and 3 in the second embodiment are used will be described on the premise of the second embodiment.
  • the SPS setting, semi-static TDD configuration, SFI assumption, etc. in the fourth embodiment are the same as those in the second embodiment.
  • the candidate A is used as the drop avoidance method when the PUCCH resource is not valid, and the option 2 or 3 is used as the method for determining the validity of the PUCCH resource.
  • the terminal 20 has at least one symbol in the first available valid PUCCH resource on the semi-static F when SFI is set to the corresponding symbol and no dynamic UL schedule is set. If the dynamic UL is determined to be the indicated symbol, the terminal 20 transmits HARQ-ACK with the first available valid PUCCH resource.
  • the base station 10 monitors whether it receives HARQ-ACK from the terminal 20 with the first available valid PUCCH resource. If the terminal 20 receives a DCI from the base station 10 notifying that the base station 10 has received HARQ-ACK and satisfies the timeline, the terminal 20 is the first to consist of only the semi-static UL symbol. No further transmission of HARQ-ACK in the PUCCH resource. If the terminal 20 does not receive a DCI from the base station 10 notifying that the base station 10 has received HARQ-ACK, or does not satisfy the timeline, the terminal 20 is the first consisting of only semi-static UL symbols. Further transmission of HARQ-ACK in the PUCCH resource.
  • Satisfying the timeline means, for example, that there is the first PUCCH resource consisting only of semi-static UL symbols after the specified time after receiving the above DCI.
  • the condition of the maximum value of K1 described in Example 2 may be further applied.
  • the terminal 20 When SFI is set and the terminal 20 receives the TDD configuration shown in the lower part of FIG. 9 by SFI, the plurality of symbols of PUCCH resource 1 indicated by K1 corresponding to SPS PDSCH1 include a dynamic DL. Therefore, the terminal 20 determines that the PUCCH resource 1 is not valid. The terminal 20 detects the PUCCH resource 2 for which the dynamic UL is set as the first available PUCCH resource after that, and transmits HARQ-ACK with the PUCCH resource 2.
  • the terminal 20 receives a DCI from the base station 10 notifying that the base station 10 has received the HARQ-ACK
  • the terminal 20 receives the HARQ-ACK with the PUCCH resource 3 which is the first PUCCH resource consisting only of the semi-static UL symbol. Do not send.
  • the HARQ-ACK is transmitted by the PUCCH resource 3, which is the first PUCCH resource consisting only of the semi-static UL symbol.
  • the terminal 20 When SFI is set and the terminal 20 does not receive the TDD configuration shown in the lower part of FIG. 9 by SFI (when a mistake is made), the plurality of symbols of PUCCH resource 1 instructed by the corresponding K1 with respect to SPS PDSCH1. Is a semi-static F, so based on the criteria shown in FIG. 5, the terminal 20 determines that the PUCCH resource 1 is not valid, and the PUCCH in which the semi-static UL is set as the first available PUCCH resource after that is set. Detect resource 3 and transmit HARQ-ACK with PUCCH resource 3. Since the PUCCH resource 3 does not correspond to the semi-static F, the terminal 20 does not receive the DCI.
  • the DCI notifying that the base station 10 has received the HARQ-ACK may be, for example, an existing UE-specific DCI having a new DCI field for notification purposes, or an existing DCI field for notification purposes (eg, eg). It may be an existing UE-specific DCI with an HPN field).
  • the UE-specific DCI may or may not have scheduling information of DL / UL data.
  • the DCI notifying that the base station 10 has received the HARQ-ACK may be a new DCI format for notification.
  • FIG. 10 is a diagram showing the above operations together with other cases.
  • the fourth embodiment when the options 2 and 3 are applied, the ambiguity described in the second embodiment is eliminated. Further, in the fourth embodiment, when the terminal 20 can receive the DCI, it is not necessary to transmit the second HARQ-ACK, so that the PUCCH resource can be efficiently used.
  • Example 4 a new RRC setting for enabling the above-mentioned two HARQ-ACK transmissions may be made to the terminal 20. Further, a new RRC setting for enabling the above-mentioned DCI monitoring may be made to the terminal 20.
  • Example 5 Also in the fifth embodiment, an operation example for eliminating the ambiguity when the options 2 and 3 in the second embodiment are used will be described on the premise of the second embodiment.
  • the SPS setting, semi-static TDD configuration, SFI assumption, etc. in the fifth embodiment are the same as those in the second embodiment.
  • the candidate A is used as the drop avoidance method when the PUCCH resource is not valid, and the option 2 or 3 is used as the method for determining the validity of the PUCCH resource.
  • the terminal 20 has at least one symbol in the first available valid PUCCH resource on the semi-static F when SFI is set to the corresponding symbol and no dynamic UL schedule is set. If the dynamic UL is determined to be the indicated symbol, the terminal 20 transmits HARQ-ACK with the first available valid PUCCH resource.
  • the base station 10 monitors whether it receives HARQ-ACK from the terminal 20 with the first available valid PUCCH resource. If base station 10 fails to detect HARQ-ACK in the first available valid PUCCH resource, base station 10 sends a DCI to terminal 20 that triggers the retransmission of HARQ-ACK.
  • the terminal 20 Upon receiving the DCI, the terminal 20 retransmits the HARQ-ACK with the HARQ resource (PUCCH resource) specified by the DCI or with the first PUCCH resource consisting only of the semi-static UL symbol. If the terminal 20 does not receive the DCI from the base station 10, the terminal 20 does not retransmit the HARQ-ACK.
  • the HARQ resource PUCCH resource
  • terminal 20 fails to transmit HARQ-ACK with the first available valid PUCCH resource described above due to a missed reception of SFI
  • base station 10 will also receive said first available valid. Since HARQ-ACK cannot be detected by the PUCCH resource, the base station 10 transmits a DCI that triggers the transmission of HARQ-ACK to the terminal 20.
  • the terminal 20 Upon receiving the DCI, the terminal 20 transmits HARQ-ACK with the HARQ resource (PUCCH resource) specified by the DCI or with the first PUCCH resource consisting only of the semi-static UL symbol. If the terminal 20 does not receive DCI from the base station 10, the terminal 20 transmits HARQ-ACK with the first PUCCH resource consisting only of the semi-static UL symbol. If neither SFI nor DCI can be received, the terminal 20 transmits HARQ-ACK with the first PUCCH resource consisting only of the semi-static UL symbol.
  • PUCCH resource PUCCH resource
  • the condition of the maximum value of K1 described in Example 2 may be further applied.
  • the terminal 20 When SFI is set and the terminal 20 receives the TDD configuration shown in the lower part of FIG. 11 by SFI, the plurality of symbols of PUCCH resource 1 indicated by K1 corresponding to SPS PDSCH1 include a dynamic DL. Therefore, the terminal 20 determines that the PUCCH resource 1 is not valid. The terminal 20 detects the PUCCH resource 2 for which the dynamic UL is set as the first available PUCCH resource after that, and transmits HARQ-ACK with the PUCCH resource 2.
  • the base station 10 If the base station 10 fails to detect HARQ-ACK in the first available valid PUCCH resource 2, the base station 10 sends a DCI to the terminal 20 that triggers the retransmission of the HARQ-ACK.
  • the terminal 20 When the terminal 20 receives the DCI, the terminal 20 retransmits the HARQ-ACK with the HARQ resource (PUCCH resource) specified by the DCI or with the first PUCCH resource 3 consisting only of the semi-static UL symbol. As in the case of the fourth embodiment, it is necessary to satisfy the timeline when retransmitting the HARQ-ACK.
  • the HARQ resource PUCCH resource
  • the terminal 20 When SFI is set and the terminal 20 does not receive the TDD configuration shown in the lower part of FIG. 11 by SFI (when a mistake is made), the plurality of symbols of the PUCCH resource 1 instructed by the corresponding K1 with respect to SPS PDSCH1. Is a semi-static F, so based on the criteria shown in FIG. 5, the terminal 20 determines that the PUCCH resource 1 is not valid, and the PUCCH in which the semi-static UL is set as the first available PUCCH resource after that is set. Detect resource 3 and transmit HARQ-ACK with PUCCH resource 3.
  • Base station 10 expects HARQ-ACK reception in PUCCH resource 2, but does not receive it, so it transmits DCI.
  • the terminal 20 may transmit HARQ-ACK with the PUCCH resource indicated by its DCI.
  • the DCI on which the base station 10 triggers the HARQ-ACK transmission may be, for example, an existing UE-specific DCI with a new DCI field for triggering purposes, or an existing DCI field for triggering purposes (eg HPN field). It may be an existing UE-specific DCI with.
  • the UE-specific DCI may or may not have scheduling information of DL / UL data.
  • the DCI in which the base station 10 triggers the HARQ-ACK transmission may be a new DCI format for triggering.
  • FIG. 12 is a diagram showing the above-mentioned operations collectively.
  • Example 5 when options 2 and 3 are applied, the ambiguity described in Example 2 is eliminated. Further, in the fifth embodiment, when the base station 10 can receive the HARQ-ACK, the terminal 20 does not need to transmit the second HARQ-ACK, so that the PUCCH resource can be efficiently used.
  • a new RRC setting for enabling the monitoring of the above-mentioned trigger DCI may be made to the terminal 20.
  • the "first PUCCH resource” (example: PUCCH resource 1 in FIG. 6, the PUCCH resource consisting only of the semi-static UL symbol) is the “first available PUCCH resource” (example: FIG. 6). If it is ahead of the PUCCH resource 2) in time, HARQ-ACK is transmitted by the "first PUCCH resource” (example: PUCCH resource 1 in FIG. 6, PUCCH resource consisting only of a semi-static UL symbol), and 2 It may be possible not to perform the second HARQ-ACK transmission.
  • the terminal 20 is set with a set of K1 values (a set of K1 values of 1 or more) for each SPS.
  • This set of K1 values may be set by RRC from the base station 10 to the terminal 20 when the SPS is set, or may be set from the base station 10 to the terminal 20 by the activation DCI of the SPS.
  • Example 6 candidate B is used. That is, the terminal 20 selects the first applicable K1 value from the set of K1 values so that the PUCCH resource for HARQ-ACK transmission does not collide with the "DL symbol or F symbol". Then, the terminal 20 transmits HARQ-ACK using the PUCCH resource in the slot indicated by the applied K1 value. Any of options 1 to 4 is applied to determine whether the PUCCH resource collides with the "DL symbol or F symbol".
  • the TDD configuration of the upper slot in FIG. 13 shows a configuration set by the semi-static TDD setting information for the terminal 20.
  • the TDD configuration of the lower slot is a TDD configuration assuming that when SFI is set for the terminal 20, it is set by dynamic SFI. Further, D is DL, U is UL, and F is flexible.
  • activation DCI includes a set of K1 values.
  • the set of K1 for SPS PDSCH1 is ⁇ K1,1-1; K1,2-1; K1,3-1 ⁇
  • the set of K1 for SPS PDSCH2 is ⁇ K1,1-2; K1. , 2-2; K1,3-2 ⁇ .
  • the terminal 20 determines an invalid PUCCH resource based on the criterion of option 2 described above.
  • the terminal 20 After receiving the SPS PDSCH1, the terminal 20 confirms that the TDD configuration of the symbol at the position of the PUCCH resource 1 in the slot designated by K1, 1-1 is F. Further, when it is confirmed that there is no SSB / CORESET # 0 setting and no dynamic DL scheduling, the terminal 20 transmits HARQ-ACK with the PUCCH resource 1.
  • the terminal 20 when SFI is set and the terminal 20 receives the TDD configuration shown in the lower part of FIG. 13 by SFI, the plurality of symbols of PUCCH resource 1 instructed by K1 and 1-1 for SPS PDSCH1 may be used. Since there is a dynamic DL, the terminal 20 determines that the PUCCH resource 1 is not valid. The terminal 20 determines that the PUCCH resource 2 in the slot indicated by K1,2-1 is valid because the dynamic UL is set. That is, the terminal 20 first selects K1,2-1 as the applicable K1 value, and transmits HARQ-ACK with the PUCCH resource 2 instructed by it.
  • the terminal 20 When SFI is set and the terminal 20 does not receive the TDD configuration shown in the lower part of FIG. 13 by SFI (when a mistake is made), the PUCCH resource 1 instructed by K1 and 1-1 with respect to SPS PDSCH1. Since the plurality of symbols are semi-static F, the terminal 20 determines that the PUCCH resource 1 is not valid based on the criteria shown in FIG. 5, and in the slot indicated by K1 and 3-1 as the first applicable K1 value. , PUCCH resource 3 for which semi-static UL is set is detected, and HARQ-ACK is transmitted by PUCCH resource 3.
  • FIG. 14 shows the PUCCH resource for transmitting HARQ-ACK for each SPS PDSCH and the applied K1 when the above judgment is made for each option.
  • the terminal 20 can avoid the drop of HARQ-ACK and transmit HARQ-ACK with the PUCCH resource postponed by the selection of K1.
  • the method of candidate B selecting the first applicable K1 value
  • the method of candidate B can be applied without ambiguity in recognition between the terminal 20 and the base station 10.
  • recognition ambiguity remains between the terminal 20 and the base station 10 in options 2 and 3 when the SFI setting in FIG. 14 is present. For example, if the base station 10 does not receive the HARQ-ACK from the terminal 20 in the PUCCH resource 2 when the SFI is set, the base station 10 sends the HARQ-ACK from the terminal 20 in the PUCCH resource 3. I can't tell if it is.
  • Example 7 an operation example for eliminating the ambiguity when the options 2 and 3 in the sixth embodiment are used will be described on the premise of the sixth embodiment.
  • the SPS setting, semi-static TDD configuration, SFI assumption, K1 set, etc. in Example 7 are the same as in Example 6, and are as shown in FIG.
  • the candidate B is used as the drop avoidance method when the PUCCH resource is not valid
  • the option 2 or 3 is used as the method for determining the validity of the PUCCH resource.
  • the terminal 20 when SFI is set for the corresponding symbol and the dynamic UL schedule is not set, at least one symbol in the PUCCH resource corresponding to the first applicable K1 value is semi-static.
  • the terminal 20 transmits HARQ-ACK with the PUCCH resource corresponding to the first applicable K1 value, and then the semi-static UL.
  • the first K1 value corresponding to the PUCCH resource consisting only of symbols is applied, and HARQ-ACK is transmitted by the PUCCH resource.
  • the terminal 20 When SFI is set and the terminal 20 receives the TDD configuration shown in the lower part of FIG. 13 by SFI, the plurality of symbols of PUCCH resource 1 indicated by K1 and 1-1 corresponding to SPS PDSCH1 may be used. Since there is a dynamic DL, the terminal 20 determines that the PUCCH resource 1 is not valid. The terminal 20 detects the PUCCH resource 2 in which the dynamic UL is set as the first applicable PUCCH resource after that, and transmits HARQ-ACK with the PUCCH resource 2.
  • the terminal 20 Since the PUCCH resource 2 is composed of a symbol to which the dynamic UL is instructed on the semi-static UL symbol, the terminal 20 inputs K1 and 3-1 indicating the slot of the PUCCH resource 3 which is the PUCCH resource composed of the semi-static UL symbol. Apply, and PUCCH resource 3 also transmits HARQ-ACK.
  • the terminal 20 When SFI is set and the terminal 20 does not receive the TDD configuration shown in the lower part of FIG. 13 by SFI (when a mistake is made), the PUCCH resource of the slot indicated by K1 and 1-1 with respect to SPS PDSCH1. Since the plurality of symbols of 1 are semi-static F, the terminal 20 determines that the PUCCH resource 1 is not valid based on the criteria shown in FIG. 5, and the PUCCH corresponding to the first applicable K1 and 3-1 thereafter. A PUCCH resource 3 in which a semi-static UL is set is detected as a resource, and HARQ-ACK is transmitted by the PUCCH resource 3. Since the PUCCH resource 3 does not correspond to the semi-static F, the terminal 20 does not transmit the HARQ-ACK for the second time.
  • FIG. 15 is a diagram showing the above operations collectively.
  • the base station 10 is always a PUCCH resource with a semi-static UL symbol to receive a postponed HARQ-ACK based on the selection of the K1 value. As expected, the ambiguity described in Example 6 is eliminated.
  • Example 7 The main differences between Example 7 and Example 6 are as follows.
  • Example 7 since the available semi-static F symbol is used, if it is available, the delay can be reduced as compared with Example 6 (option 1/4).
  • Example 7 the recognition ambiguity that occurred in Example 6 (option 2/3) can be eliminated.
  • Example 7 a new RRC setting for enabling the above-mentioned two HARQ-ACK transmissions may be made to the terminal 20.
  • Example 8 The operation in Example 8 is basically the same as the operation in Example 7, but in Example 8, the first K1 value corresponding to the PUCCH resource consisting only of the semi-static UL symbol and the first applicable K1. Considering the temporal context with the value.
  • Case 8-1 and Case 8-2 will be described.
  • the terminal 20 has a "first applicable K1 value” corresponding to a PUCCH resource having a symbol to which a dynamic UL is specified on the semi-static UL, and a "first K1" corresponding to a PUCCH resource consisting only of a semi-static UL symbol. If the "first K1 value” is smaller than the "first applicable K1 value” when compared to the "value”, the terminal 20 will only from the semi-static UL symbol corresponding to the "first K1 value”. HARQ-ACK is transmitted by the PUCCH resource.
  • FIG. 16 shows an example of Case 8-1.
  • the set of K1 for SPS PDSCH1 is ⁇ k1,1; K1,2; K1,3 ⁇ .
  • the terminal 20 receives SFI and applies options 2 and 3.
  • the terminal 20 determines that the PUCCH resource 1 of the slot represented by K1 and K1 is not valid as the PUCCH resource of HARQ-ACK for the SPS PDSCH1.
  • the terminal 20 corresponds to the "first applicable K1, 32" corresponding to the PUCCH resource 3 having the symbol to which the dynamic UL is specified on the semi-static UL, and the "PUCCH resource 2 consisting of only the semi-static UL symbol". Since it is determined that the "first K1,3" is smaller than the "first applicable K1,3" by comparing with the "first K1,3", the terminal 20 is set to the "first K1,3". HARQ-ACK is transmitted by the corresponding PUCCH resource 2 consisting only of semi-static UL symbols.
  • the terminal 20 has a "first applicable K1 value” corresponding to a PUCCH resource having a symbol to which a dynamic UL is specified on the semi-static UL, and a "first K1" corresponding to a PUCCH resource consisting only of a semi-static UL symbol.
  • first applicable K1 value corresponding to a PUCCH resource having a symbol to which a dynamic UL is specified on the semi-static UL
  • first K1 corresponding to a PUCCH resource consisting only of a semi-static UL symbol.
  • FIG. 17 shows an example of Case 8-2. Also in the example of FIG. 17, the set of K1 for SPS PDSCH1 is ⁇ k1,1; K1,2; K1,3 ⁇ .
  • the terminal 20 receives SFI and applies options 2 and 3.
  • the terminal 20 determines that the PUCCH resource 1 of the slot represented by K1 and K1 is not valid as the PUCCH resource of HARQ-ACK for the SPS PDSCH1.
  • the terminal 20 corresponds to the "first applicable K1 and 2" corresponding to the PUCCH resource 2 having the symbol to which the dynamic UL is specified on the semi-static UL, and the "PUCCH resource 3 consisting of only the semi-static UL symbol”. Compared with “first K1,3”, it is judged that "first K1,3" is larger than "first applicable K1,2”, so it corresponds to "first applicable K1,2". HarQ-ACK is transmitted by the PUCCH resource 2 having the symbol instructed by the dynamic UL on the semi-static F, and the terminal 20 is composed of only the semi-static UL symbol corresponding to the "first K1, 3". HARQ-ACK is transmitted by PUCCH resource 3.
  • FIG. 18 shows a summary of the above operations.
  • Example 8 differs from Example 7 in that there is a case where HARQ-ACK is transmitted only once.
  • Which of the operation of the seventh embodiment and the operation of the eighth embodiment may be executed for the terminal 20 may be set from the base station 10 by RRC signaling.
  • Example 9 The operation in Example 9 is basically the same as the operation in Example 8, with the temporal K1 value corresponding to the PUCCH resource consisting only of semi-static UL symbols and the first applicable K1 value.
  • the context is taken into consideration.
  • the same DCI as the DCI for notification described in the fourth embodiment is adopted.
  • Case 9-1 and Case 9-2 will be described.
  • the terminal 20 has a "first applicable K1 value” corresponding to a PUCCH resource having a symbol to which a dynamic UL is specified on the semi-static UL, and a "first K1" corresponding to a PUCCH resource consisting only of a semi-static UL symbol. If the "first K1 value” is smaller than the "first applicable K1 value” when compared to the "value”, the terminal 20 will only from the semi-static UL symbol corresponding to the "first K1 value”. HARQ-ACK is transmitted by the PUCCH resource.
  • Case 9-1 is the same as case 8-1.
  • the terminal 20 has a "first applicable K1 value” corresponding to a PUCCH resource having a symbol to which a dynamic UL is specified on the semi-static UL, and a "first K1" corresponding to a PUCCH resource consisting only of a semi-static UL symbol.
  • the terminal 20 is on the semi-static F corresponding to the "first applicable K1 value”.
  • the terminal 20 After that, if the terminal 20 receives a DCI from the base station 10 notifying that the base station 10 has received the HARQ-ACK and satisfies the timeline, the terminal 20 has a "first K1 value". HARQ-ACK transmission is not performed by the PUCCH resource consisting only of the semi-static UL symbol corresponding to. If the terminal 20 does not receive a DCI from the base station 10 notifying that the base station 10 has received the HARQ-ACK, or does not satisfy the timeline, the terminal 20 corresponds to the "first K1 value". , Send HARQ-ACK with a PUCCH resource consisting only of semi-static UL symbols.
  • the DCI notifying that the base station 10 has received the HARQ-ACK may be, for example, an existing UE-specific DCI having a new DCI field for notification purposes, or an existing DCI field for notification purposes (eg, eg). It may be an existing UE-specific DCI with an HPN field).
  • the UE-specific DCI may or may not have scheduling information of DL / UL data.
  • the DCI notifying that the base station 10 has received the HARQ-ACK may be a new DCI format for notification.
  • Example 9 a new RRC setting for enabling the above-mentioned two HARQ-ACK transmissions may be made to the terminal 20. Further, a new RRC setting for enabling the above-mentioned DCI monitoring may be made to the terminal 20.
  • Example 10 The operation in the tenth embodiment is basically the same as the operation in the eighth embodiment, in which the first K1 value corresponding to the PUCCH resource consisting only of the semi-static UL symbol and the first applicable K1 value are temporally.
  • the context is taken into consideration.
  • the same DCI as the DCI for the trigger described in the fifth embodiment is adopted.
  • it will be described as Case 10-1 and Case 10-2.
  • the terminal 20 has a "first applicable K1 value” corresponding to a PUCCH resource having a symbol to which a dynamic UL is specified on the semi-static UL, and a "first K1" corresponding to a PUCCH resource consisting only of a semi-static UL symbol. If the "first K1 value” is smaller than the "first applicable K1 value” when compared to the "value”, the terminal 20 will only from the semi-static UL symbol corresponding to the "first K1 value”. HARQ-ACK is transmitted by the PUCCH resource.
  • Case 10-1 is the same as case 8-1.
  • the terminal 20 has a "first applicable K1 value” corresponding to a PUCCH resource having a symbol to which a dynamic UL is specified on the semi-static UL, and a "first K1" corresponding to a PUCCH resource consisting only of a semi-static UL symbol.
  • the terminal 20 is on the semi-static F corresponding to the "first applicable K1 value”.
  • the base station 10 If the base station 10 cannot detect the HARQ-ACK, the base station 10 transmits a DCI that triggers the retransmission of the HARQ-ACK to the terminal 20.
  • the terminal 20 Upon receiving the DCI, the terminal 20 consists of only the semi-static UL symbol corresponding to the HARQ resource (PUCCH resource) of the slot corresponding to the K1 value indicated by the DCI or the "first K1 value". Retransmit HARQ-ACK with the PUCCH resource. If the terminal 20 does not receive the DCI for the trigger from the base station 10, the terminal 20 does not retransmit the HARQ-ACK.
  • PUCCH resource the terminal 20 Upon receiving the DCI, the terminal 20 consists of only the semi-static UL symbol corresponding to the HARQ resource (PUCCH resource) of the slot corresponding to the K1 value indicated by the DCI or the "first K1 value”. Retransmit HARQ-ACK with the PUCCH resource. If the terminal 20 does not receive the DCI for the trigger from the base station 10, the terminal 20 does not retransmit the HARQ-ACK.
  • the base station 10 causes the HARQ. Since -ACK cannot be detected, the base station 10 transmits a DCI that triggers the transmission of HARQ-ACK to the terminal 20.
  • the terminal 20 Upon receiving the DCI, the terminal 20 consists of only the semi-static UL symbol corresponding to the HARQ resource (PUCCH resource) of the slot corresponding to the K1 value indicated by the DCI or the "first K1 value".
  • the PUCCH resource is used to transmit HARQ-ACK. If the terminal 20 does not receive the DCI from the base station 10, the terminal 20 transmits HARQ-ACK with the PUCCH resource consisting only of the semi-static UL symbol corresponding to the "first K1 value".
  • the DCI that triggers the retransmission may be, for example, an existing UE-specific DCI having a new DCI field for triggering purposes, or an existing UE-specific DCI having an existing DCI field for triggering purposes.
  • the UE-specific DCI may or may not have scheduling information of DL / UL data.
  • the DCI notifying that the base station 10 has received the HARQ-ACK may be a new DCI format for triggering.
  • Example 10 a new RRC setting for enabling the above-mentioned two HARQ-ACK transmissions may be made to the terminal 20. Further, a new RRC setting for enabling the above-mentioned DCI monitoring may be made to the terminal 20.
  • Which of the options 1 to 4 described in the first embodiment is applied may be set by the upper layer parameter from the base station 10 to the terminal 20, or from the terminal 20 to the base station 10. It may be reported as UE capability information, or may be determined by the terminal 20 (and the base station 10) based on the capability information of the terminal 20 and the setting of the upper layer parameter. Further, which of the options 1 to 4 described in the first embodiment is applied is specified in the specifications and the like, and the base station 10 and the terminal 20 may hold the options in advance.
  • Examples 2 to 9 which of the operations of Examples 2 to 9 is applied may be set by the upper layer parameter from the base station 10 to the terminal 20, or from the terminal 20 to the base station 10. It may be reported as UE capability information, or may be determined by the terminal 20 (and the base station 10) based on the capability information of the terminal 20 and the setting of the upper layer parameter. Further, the operation of any of the examples 2 to 9 is specified in the specifications and the like, and the base station 10 and the terminal 20 may hold the operation in advance.
  • -UE capability information indicating whether a new field (or new DCI) in DCI is supported to stop the postponement (or retransmission) of HARQ-ACK.
  • -UE capability information indicating whether a new field (or new DCI) in DCI is supported to trigger the retransmission of HARQ-ACK.
  • the terminal that has received the data can appropriately transmit the feedback information for the data reception to the base station.
  • the above-mentioned problem 1 is solved, and the terminal 20 can clearly determine whether the PUCCH resource is effective. Further, the above-mentioned problem 2 is solved, and the ambiguity of recognition between the terminal 20 and the base station 10 is solved.
  • the base station 10 and the terminal 20 include a function for carrying out Examples 1 to 10 described above.
  • the base station 10 and the terminal 20 may each have only the function of any one of the first to tenth embodiments.
  • FIG. 19 is a diagram showing an example of the functional configuration of the base station 10.
  • the base station 10 has a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 19 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
  • the transmitting unit 110 and the receiving unit 120 may be referred to as a communication unit.
  • the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signal, DL data, etc. to the terminal 20. Further, the transmission unit 110 transmits the setting information and the like described in the first to tenth embodiments.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20 in the storage device, and reads them out from the storage device as needed.
  • the control unit 140 for example, allocates resources, controls the entire base station 10, and the like.
  • the function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120. Further, the transmitting unit 110 and the receiving unit 120 may be referred to as a transmitter and a receiver, respectively.
  • FIG. 20 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 has a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 21 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be performed.
  • the transmitting unit 210 and the receiving unit 220 may be referred to as a communication unit.
  • the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the transmitting unit 210 transmits HARQ-ACK, and the receiving unit 220 receives the setting information and the like described in the first to tenth embodiments.
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in the storage device, and reads it out from the storage device as needed.
  • the setting unit 230 also stores preset setting information.
  • the control unit 240 controls the entire terminal 20 and the like.
  • the transmission unit 210 may include the function unit related to signal transmission in the control unit 240
  • the reception unit 220 may include the function unit related to signal reception in the control unit 240.
  • the transmitter 210 and the receiver 220 may be referred to as a transmitter and a receiver, respectively.
  • the terminal 20 and the base station 10 are configured as, for example, the terminals and base stations described in the following items.
  • a control unit that postpones the transmission of the feedback information until the time position where a valid uplink resource for transmitting the feedback information for the data received from the base station exists.
  • a terminal comprising a transmitter that transmits the feedback information with the valid uplink resource and further transmits the feedback information with another valid uplink resource.
  • the transmitting unit After transmitting the feedback information, when the terminal receives the first control information from the base station, the transmitting unit does not transmit the feedback information in the other valid uplink resource. Or, After transmitting the feedback information, when the terminal receives the second control information from the base station, the transmitting unit transmits the feedback information by the other valid uplink resource.
  • a base station including a transmission unit that transmits a second control information for transmitting the feedback information to the terminal when the feedback information is not received by the other valid uplink resource.
  • a control unit that selects an instruction value indicating a time position corresponding to an effective uplink resource for transmitting feedback information for data received from a base station from a set of instruction values, and a control unit.
  • a terminal comprising a transmitter that transmits the feedback information with the valid uplink resource and further transmits the feedback information with another valid uplink resource corresponding to another indicated value.
  • the transmitter After transmitting the feedback information, when the terminal receives the first control information from the base station, the transmitter may use the other valid uplink resource corresponding to the other indicated value. Do not send feedback information or After transmitting the feedback information, if the terminal receives the second control information from the base station, the transmitter may use the feedback in another valid uplink resource corresponding to the other indicated value.
  • the terminal according to Section 4 that transmits information.
  • the instruction value indicating the time position corresponding to the effective uplink resource for transmitting the feedback information for the received data is selected from the set of instruction values, so that the instruction value is transmitted by the valid uplink resource.
  • a control unit that monitors the reception of the feedback information, When the feedback information is received, a first control information for preventing the feedback information from being transmitted by another valid uplink resource corresponding to another instruction value is transmitted to the terminal, or is transmitted to the terminal.
  • a transmission unit that transmits a second control information for transmitting the feedback information by the other valid uplink resource corresponding to the other indicated value when the feedback information is not received is provided. base station.
  • the configuration described in any of the above sections provides a technique that enables a terminal that has received data to appropriately transmit feedback information for data reception to a base station.
  • each functional block (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • a functional block (constituent unit) for functioning transmission is referred to as a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 21 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure.
  • the above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the processor 1001 For each function in the base station 10 and the terminal 20, by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, the processor 1001 performs an calculation and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU Central Processing Unit
  • control unit 140, control unit 240, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 140 of the base station 10 shown in FIG. 19 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 20 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be mounted by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the storage device 1002 is a computer-readable recording medium. It may be configured.
  • the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu).
  • -It may be composed of at least one of a ray (registered trademark) disk), a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like.
  • the auxiliary storage device 1003 may be referred to as an auxiliary storage device.
  • the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the terminal 20 include a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Progrumable Digital Device) hardware, FPGA, etc. It may be configured to include, and a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardware.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components.
  • the processing order may be changed as long as there is no contradiction.
  • the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
  • the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EEPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access) Signaling). It may be carried out by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals or a combination thereof.
  • RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRC Signaling Setup) message, an RRC connection reconfiguration (RRC Signaling Configuration) message, or the like.
  • Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobility communication system), 5G (5G). system), FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), LTE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize and extend based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station 10 in the present specification may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal 20 are performed by a network node other than the base station 10 and the base station 10 (a network node other than the base station 10 and the base station 10).
  • MME, S-GW, etc. are conceivable, but it is clear that it can be done by at least one of these).
  • the case where there is one network node other than the base station 10 is illustrated, but the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
  • the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information and the like may be stored in a specific location (for example, a memory) or may be managed using a management table. Information to be input / output may be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
  • the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparison of numerical values (for example,). , Comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software may use at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.) to create a website.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier CC: Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • base station Base Station
  • radio base station base station
  • base station fixed station
  • NodeB nodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • access point “ transmission point (transmission point) ”,“ reception point ”,“ transmission / reception point (transmission / reception point) ”,“ cell ”,“ sector ”,“ Terms such as “cell group”, “carrier”, and “component carrier”
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells. When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)). Communication services can also be provided by (Remote Radio Head).
  • the term "cell” or “sector” is a part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
  • terminal user terminal
  • terminal User Equipment
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, terminals, depending on the trader. , Wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the terminal.
  • a configuration in which communication between a base station and a terminal is replaced with communication between a plurality of terminals 20 for example, may be referred to as D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • the terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the terminal in the present disclosure may be read as a base station.
  • the base station may have the functions of the terminal described above.
  • determining and “determining” used in the present disclosure may include a wide variety of actions.
  • "Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (diving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include the fact that (for example, accessing the data in the memory) is regarded as “judgment” or “decision”.
  • judgment and “decision” are regarded as “judgment” and “decision” that the things such as solving, selecting, selecting, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may further be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Frequency Domain), number of symbols per TTI, wireless frame configuration, and transmitter / receiver. It may indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiple Access) symbol, SC-FDMA (Single Carrier Frequency Division Access) symbol, etc.) in the time region. Slots may be time units based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • the PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as TTI
  • TTI slot or one minislot
  • You may. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI eg, shortened TTI, etc.
  • TTI having the above TTI length may be read as TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs include a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Elements).
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth portion (which may also be referred to as partial bandwidth or the like) may represent a subset of consecutive common RBs (common resources blocks) for a certain neurology in a carrier.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • the SS block or CSI-RS is an example of a synchronization signal or a reference signal.
  • Base station 110 Transmitter 120 Receiver 130 Setting unit 140 Control unit 20 Terminal 210 Transmitter 220 Receiver 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局から受信したデータに対するフィードバック情報を送信するための有効なアップリンクリソースが存在する時間位置まで前記フィードバック情報の送信を延期する制御部と、前記有効なアップリンクリソースで前記フィードバック情報を送信し、更に、別の有効なアップリンクリソースで前記フィードバック情報を送信する送信部とを備える端末。

Description

端末、及び基地局
 本発明は、無線通信システムにおける端末及び基地局に関連するものである。
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「NR」という。)の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術及びネットワークアーキテクチャの検討が行われている。
 また、NRでは、端末に予めPDSCHのリソースを設定しておき、DCIでactivation/releaseを行うダウンリンクSPS(Semi-Persistent Scheduling)が規定されており、これにより、低遅延のデータ受信が可能となっている(例えば、非特許文献1、2)。
3GPP TS 38.213 V16.3.0 (2020-09) 3GPP TS 38.331 V16.2.0 (2020-09)
 端末は、ダウンリンクSPSのデータ受信の度に、activation DCIにより、PUCCHリソースでHARQ-ACKフィードバックを送信する時間位置(スロット)を指示される。
 しかし、例えば、端末に複数の短周期のダウンリンクSPSが設定されることを想定した場合、指示された時間位置のスロットにおけるTDDのDL/ULの設定によっては、PUCCHリソースが設定されるシンボル位置がDLシンボルあるいはフレキシブルシンボルと衝突してしまい、HARQ-ACKフィードバックを送信できないことが考えられる。
 PUCCHリソースと、DLシンボルあるいはフレキシブルシンボルとが衝突した場合に、HARQ-ACKフィードバックをドロップすることが考えられるが、HARQ-ACKフィードバックのドロップは遅延増加につながり望ましくない。
 本発明は上記の点に鑑みてなされたものであり、データを受信した端末が、データ受信に対するフィードバック情報を適切に基地局に送信することを可能とする技術を提供することを目的とする。
 開示の技術によれば、基地局から受信したデータに対するフィードバック情報を送信するための有効なアップリンクリソースが存在する時間位置まで前記フィードバック情報の送信を延期する制御部と、
 前記有効なアップリンクリソースで前記フィードバック情報を送信し、更に、別の有効なアップリンクリソースで前記フィードバック情報を送信する送信部と
 を備える端末が提供される。
 開示の技術によれば、データを受信した端末が、データ受信に対するフィードバック情報を適切に基地局に送信することを可能とする技術が提供される。
本発明の実施の形態における無線通信システムを説明するための図である。 本発明の実施の形態における無線通信システムを説明するための図である。 本発明の実施の形態における無線通信システムの基本的な動作を説明するための図である。 SPS HARQ-ACKの例を示す図である。 実施例1のまとめを示す図である。 実施例2を説明するための図である。 実施例2を説明するための図である。 実施例3を説明するための図である。 実施例4を説明するための図である。 実施例4を説明するための図である。 実施例5を説明するための図である。 実施例5を説明するための図である。 実施例6を説明するための図である。 実施例6を説明するための図である。 実施例7を説明するための図である。 実施例8を説明するための図である。 実施例8を説明するための図である。 実施例8を説明するための図である。 本発明の実施の形態における基地局10の機能構成の一例を示す図である。 本発明の実施の形態における端末20の機能構成の一例を示す図である。 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用されてよい。当該既存技術は、例えば既存のNRあるいはLTEであるが、既存のNRあるいはLTEに限られない。
 (システム構成)
 図1は、本発明の実施の形態における無線通信システムを説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(プライマリセル)と1以上のSCell(セカンダリセル)が使用される。
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH、PDCCH等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。
 端末20は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのPCell(プライマリセル)と1以上のSCell(セカンダリセル)が使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。
 図2は、DC(Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示すとおり、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワークに接続される。端末20は基地局10Aと基地局10Bの両方と通信を行うことができる。
 MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。また、DCにおいて、MCGは1つのPCellと1以上のSCellから構成され、SCGは1つのPSCell(Primary SCell)と1以上のSCellから構成される。
 本実施の形態における処理動作は、図1に示すシステム構成で実行されてもよいし、図2に示すシステム構成で実行されてもよいし、これら以外のシステム構成で実行されてもよい。
 (基本的な動作例)
 図3を参照して、本発明の実施の形態における通信システムの基本的な動作例を説明する。この動作は、後述する実施例1~実施例10に対して基本的に共通の動作である。
 S101において、RRCシグナリングにより、基地局10は端末20に、ダウンリンクSPSの設定情報、PUCCHリソースの設定情報、スロットフォーマットの設定情報等を送信し、端末20はこれらの設定情報を受信する。なお、本実施の形態は、ダウンリンクSPSを対象としているので、以降、「SPS」はダウンリンクSPSを意味する。
 スロットフォーマットの設定情報は、例えば、tdd-UL-DL-ConfigurationCommonあるいはtdd-UL-DL-ConfigurationDedicatedであり、この設定情報により1以上のスロットにおける各スロットの各シンボルにおけるTDD構成が、DL、UL、フレキシブルのいずれかであるかが設定される。以降、この設定情報をセミスタティックTDD設定情報と呼ぶ。また、フレキシブルのことをFと記載する場合がある。端末20は、基本的に、セミスタティックTDD設定情報に従って、各スロットの各シンボルのDL/UL/Fを判断する。
 また、S101における設定情報として、スロットフォーマットをダイナミックに切り替えることを可能とするための、スロットフォーマットの複数の候補が通知されてもよい。この設定情報は例えばSlotFormatCombinationsPerCellである。この情報は、スロットフォーマット(SF)のIDからなる情報なので、以降、これをSFI設定情報と呼ぶ。
 S102において、端末20は、SPSの設定をactivateするDCIを基地局10から受信し、S103において、SPSの設定によるPDSCHリソースでデータを受信する。S104において、端末20は、DCIにより指定された時間位置のスロットのPUCCHリソース(ULスケジューリングがある場合はPUSCHリソースでもよい)で、SPS HARQ-ACKを基地局10に送信する。なお、SPS HARQ-ACKをHARQ-ACKと呼ぶ場合がある。また、HARQ-ACKをHARQ情報、フィードバック情報等と呼んでもよい。
 端末20は、S102又はその前後において、スロットフォーマットをダイナミックに指定するDCIを基地局10から受信する場合もある。このDCIは、SFI設定情報で設定された複数のスロットフォーマットのIDのうち、実際に使用するIDを指定する制御情報である。端末20は、このDCIでスロットフォーマットを指定された場合には、セミスタティックTDD設定情報に代えて、当該スロットフォーマットに従って、各スロットの各シンボルのDL/UL/Fを判断する。このDCIの情報をダイナミックSFI指定情報(又は、ダイナミックSFI、又はSFI)と呼ぶ。
 (課題について)
 前述したとおり、端末20は、SPSによるデータ受信の度に、activation DCIにより、PUCCHリソースでHARQ-ACKを送信する時間位置(スロット)を指定される。
 しかし、特に、端末20に複数の短周期のSPSが設定される場合には、指定された時間位置のスロットにおけるTDDのDL/ULの設定(セミスタティックTDD設定情報又はダイナミックSFI指定情報による設定)によっては、PUCCHリソースが設定されるシンボル位置が、DLシンボルあるいはFシンボルと衝突してしまい、HARQ-ACKを送信できないことが考えられる。
 PUCCHリソースと、DLシンボルあるいはFシンボルとが衝突した場合に、HARQ-ACKをドロップすることが考えられるが、HARQ-ACKをドロップすることでPDSCHの再送が必要となる。そのため、HARQ-ACKのドロップは遅延が大きくなり望ましくない。
 (実施の形態の概要)
 図4に、上述したような衝突の例を示す。図4の例では、PDSCHを受信したスロットの直後のスロットから3スロット目のスロットが、HARQ-ACK送信のためのスロットとして指定されているが、当該スロットがDLに該当する場合に、HARQ-ACKがドロップされる。
 本実施の形態では、PUCCHリソースとDLシンボル/Fシンボルとの衝突によるHARQ-ACKのドロップを回避可能としている。
 具体的には、例えば、図4に示すように、端末20は、PUCCHリソースとDLシンボル/Fシンボルとの衝突が発生すると判断した場合に、次の利用可能なULのリソースまで延期してHARQ-ACKを送信する。
 (実施の形態に関わる詳細な課題)
 3GPP会合にて、TDDにおいてPUCCHが少なくとも1つの「DL又はFシンボル」と衝突することによるSPSのHARQ-ACKのドロップを回避するために、R.17の強化(enhancement)を行うことが合意されている。
 PUCCHが少なくとも1つの「DL又はFシンボル」と衝突することによるSPSのHARQ-ACKのドロップを回避するためのenhancementの方法として下記の候補A~候補Gが考えられる。
 候補A:端末20は、最初に利用可能な有効なPUCCHリソースまでHARQ-ACKを延期する。
 候補B:端末20は、設定されたK1値のセットから最初の適用可能なK1値を選択して、HARQ-ACKロードバランシングを可能とする。
 候補C:基地局10が、延期されたHARQ-ACKの1つ以上の送信機会をダイナミックに端末20に通知する。
 候補D:基地局10が、RRCによって設定された時間ウィンドウ内の各SPS送信のK1値を端末20に通知する。
 候補E:SPS HARQプロセスのグループに対してワンショットHARQ-ACK要求(つまり、タイプ3 HARQ-ACK Codebook)をサポートする。
 候補F:ライセンススペクトラムでのDL SPS動作に対し、非正数値(つまり、Non Numerical K1)をサポートする。
 候補G:自律的にHARQ-ACKを再送信する、又は、ドロップされたHARQ-ACK情報を別のHARQ-ACK情報に多重化する。
 少なくとも候補Aと候補Bに関して、端末20は、activation DCIで指定されるK1値の適用により、HARQ-ACKと「DLシンボル又はFシンボル」との衝突が発生するかどうかを決定する必要がある。HARQ-ACKは、最初に利用可能な有効なPUCCHリソースで送信されるので、端末20は、PUCCHリソースの有効性(validity)も決定する必要がある。
 しかし、既存技術において、「DLシンボル又はFシンボル」の正確な意味は不明確である。つまり、端末20にとって、どのようにしてPUCCHリソースが有効であるかを決定したらよいのか不明確である。これを「課題1」とする。
 以下では、セミスタティックTDD設定情報により設定されるDL、UL、FをそれぞれセミスタティックDL、セミスタティックUL、セミスタティックFと記載する。また、ダイナミックSFI指定情報により指定されるDL、UL、FをそれぞれダイナミックDL、ダイナミックUL、ダイナミックFと記載する。また、スケジューリングにより設定されるULをダイナミックULスケジューリング等と記載する。
 以下、上述した「DLシンボル又はFシンボル」に関するPUCCHの有効性についての判断例をより具体的に、場合を分けて説明する。
 (1)セミスタティックFシンボル上でダイナミックULスケジューリングがない場合
    <1-1:SFIが設定されていない場合>
 SFIが設定されていない場合(SFI設定情報での設定がない場合)、SSB/CORESET#0の設定又はダイナミックDLスケジューリングの可能性があるため、セミスタティックFシンボルにおいて、PUCCHを送信できる場合と送信できない場合がある。
 つまり、もしも当該シンボルにSSB/CORESET#0受信が設定されている場合、あるいは、当該シンボルにおいてDCIによるDL受信がスケジュールされている場合、当該シンボルにおけるPUCCHは無効であり、PUCCHはドロップされる。これら以外の場合、当該シンボルにおけるPUCCHリソースは有効である。
    <1-2:SFIが設定されている場合>
 SFIが設定されている場合において、基地局10が、セミスタティックFシンボルをダイナミックULとして指示した場合でも、端末20がダイナミックSFIを受信しない可能性があるため(SFI missingの可能性があるため)、PUCCHを送信できる場合と送信できない場合がある。すなわち、端末20が、SFIを検出した場合、当該シンボルはPUCCHに対して有効である。端末20が、SFIを検出できなかった場合、当該シンボルはPUCCHに対して無効であり、PUCCHはドロップされる。
 基地局10が、セミスタティックFシンボルをダイナミックDLとして指示した場合、PUCCHはドロップされる。基地局10が、セミスタティックFシンボルをダイナミックFとして指示した場合、PUCCHはドロップされる。
 (2)セミスタティックFシンボル上でダイナミックULスケジューリングがある場合
 SFI設定の有無に依らずに、当該シンボルはPUCCHに対して常に有効である。なお、SFIが設定されている場合において、当該シンボルにダイナミックDLが設定されることは想定されない。
 <詳細な課題について>
 ダイナミックULスケジューリングなしのセミスタティックFシンボルと、PUCCHリソースとの間で衝突が生じるか否かの判断に関して、前述した判断例のルールを使用することが考えられる。しかし、それを使用して衝突の有無を判断して、HARQ-ACKを送信するか、それとも延期するか(又はK1を再選択するか)を判断する場合、端末20と基地局10との間にHARQ-ACK送信のためのPUCCHリソースの認識についてのあいまいさ(ambiguity)が生じるという課題がある。以下、具体的に場合を分けて説明する。
 (1)SFIが設定されていない場合におけるセミスタティックFシンボルについて
 PUCCHリソースの使用をできなくするダイナミックDLスケジューリングあるいはSSB/CORESET#0の設定は、基地局10が制御する。従って、基地局10は、当該セミスタティックFシンボルにおけるPUCCHリソースが有効であるかどうか、また、HARQ-ACKの延期/K1再選択が実行されるかどうか、について把握できる。従って、端末20と基地局10との間にHARQ-ACK送信のためのPUCCHリソースの認識についてのあいまいさは生じない。
 (2)SFIが設定されている場合における、SFIによりダイナミックULが指示されたセミスタティックFシンボルについて
 このケースでは、端末20がSFIを受信した場合にダイナミックULであることを認識できるので、当該シンボルでHARQ-ACKを送信することができる。
 このケースにおいて、端末20がSFIを受信できなかった場合(SFIをミスした場合)、あるいは、基地局10が、当該セミスタティックFシンボルにおけるPUCCHリソースでHARQ-ACKを受信できなかった場合、基地局10は、HARQ-ACKを受信できなかった理由が、端末20によるSFI受信ミスのためなのか、それとも、基地局10でのHARQ-ACKの受信ミスのためなのかを判断できない。そのため、基地局10は、HARQ-ACKが遅延して送信されてくるのか(あるいはK1再選択で送信されてくるのか)どうかを知ることができない。従って、端末20と基地局10との間にHARQ-ACK送信のためのPUCCHリソースの認識についてのあいまいさが生じる。
 すなわち、端末20が、SFIによってダイナミックULが指示されたセミスタティックFシンボル(ダイナミックULスケジューリングなし)におけるPUCCHリソースを、有効なPUCCHリソースであると判断することとする場合において、基地局10と端末20との間におけるHARQ-ACKに関する認識のあいまいさが生じるという課題がある。これを「課題2」とする。
 以下、上述した課題1及び課題2を解決する動作例として実施例1~10を説明する。
 (実施例1)
 実施例1は、課題1に対応する実施例である。すなわち、実施例1では、HARQ-ACKを送信するためのPUCCHリソースと衝突する「DLシンボル又はFシンボル」(つまり有効でないPUCCHリソース)を明確に定義することで、端末20が有効でない「DLシンボル又はFシンボル」(PUCCHリソース)を明確に決定できるようにしている。
 実施例1では、端末20が、有効でない「DLシンボル又はFシンボル」であると判断する「DLシンボル又はFシンボル」として下記のオプション1~オプション4がある。
 オプション1~オプション4のいずれにおいても、端末20にSFIが設定されているかどうかに関係なく、セミスタティックDLシンボルは有効でない。以下、セミスタティックFシンボルについて、オプション毎に説明する。
 <オプション1>
 端末20にSFIが設定されているかどうかに関係なく、セミスタティックFシンボルは有効でない。
 <オプション2>
 端末20にSFIが設定されている場合において、SFIによりダイナミックDL又はダイナミックFとして指示されるセミスタティックFシンボルは有効でない。
 端末20にSFIが設定されていない場合において、SSB/CORESET#0受信用に設定されているセミスタティックFシンボル、及び、ダイナミックにDL受信がスケジュールされたセミスタティックFシンボルはいずれも有効でない。
 <オプション3>
 端末20にSFIが設定されている場合において、SFIによりダイナミックDL又はダイナミックFとして指示されるセミスタティックFシンボルは有効でない。
 端末20にSFIが設定されていない場合において、セミスタティックFシンボルは有効でない。
 <オプション4>
 端末20にSFIが設定されている場合において、セミスタティックFシンボルは有効でない。
 端末20にSFIが設定されていない場合において、SSB/CORESET#0受信用に設定されているセミスタティックFシンボル、及び、ダイナミックにDL受信がスケジュールされたセミスタティックFシンボルはいずれも有効でない。
 なお、上記のオプション1~4について、セミスタティックFシンボルには、ダイナミンクULスケジューリングはされない場合を想定している。
 図5に、オプション1~4をまとめた表を示す。図5において、×は、左欄に示すシンボルが有効ではないことを示し、チェックマークは、左欄に示すシンボルが有効であること(当該シンボル上のPUCCHリソースを利用できること)を示す。なお、図5に示す例に示すように、SFIが設定されたが、SFIの受信をミスしたときには、いずれの場合も該当するセミスタティックFシンボルは有効ではない。
 以降の実施例では、端末20が、オプション1~オプション4(特にオプション2、3)に基づく判断基準に基づいて、SPSのHARQ‐ACK送信のためのPUCCHリソースが「DLシンボル又はFシンボル」と衝突すると判断する場合において、端末20が、HARQ-ACKを延期する(defer)する動作(前述した候補A)、あるいは、端末20が、K1を再選択する動作(前述した候補B)について説明する。候補Aに係る動作を実施例2~5で説明し、候補Bに係る動作を実施例6~10で説明する。
 (実施例2)
 実施例2では、端末20が、HARQ‐ACK送信のためのPUCCHリソースが「DLシンボル又はFシンボル」と衝突すると判断する場合に、端末20は、最初に利用可能な有効なPUCCHリソースの時間位置(シンボル)まで、HARQ-ACKの送信を延期する(遅らせる)。そして、端末20は、その有効なPUCCHリソースを使用してHARQ-ACKを送信する。
 図6に例を示す。図6における上段のスロットのTDD構成は、端末20に対してセミスタティックTDD設定情報により設定された構成を示す。下段のスロットのTDD構成は、端末20に対してSFIが設定される場合に、ダイナミックSFIにより設定されることを想定したTDD構成である。また、DはDLであり、UはULであり、Fはフレキシブルである。
 図6の例の動作の前提として、端末20には、3つのSPSがRRCで設定されており、それぞれ、activation DCIを受信することで、SPS PDSCH1~3の送信を行う。また、activation DCIには、K1値が含まれている。K1値は、SPS PDSCHでデータを送信したスロットから何スロット後のスロットでHARQ-ACKを送信するかを指定する値である。
 ここで、端末20が、前述したオプション2の判断基準で、有効でないPUCCHリソースを判断するものとする。
 まず、SFIが設定されていない場合を説明する。この場合、図6の例において、端末20は、SPS PDSCH1を受信した後、対応するK1により指定されるスロットにおけるPUCCHリソース1の位置のシンボルのTDD構成がFであることを確認する。また、SSB/CORESET#0の設定、ダイナミックDLスケジューリングもないことを確認すると、端末20は、PUCCHリソース1でHARQ-ACKを送信する。SPS PDSCH2、3についても同様であり、端末20は、それぞれPUCCHリソース1、2でHARQ-ACKを送信する。
 一方、SFIが設定されていて、端末20が、図6下段に示すTDD構成をSFIで受信した場合には、SPS PDSCH1に対応するK1で指示されるPUCCHリソース1の複数シンボルには、ダイナミックDLがあるため、端末20は、PUCCHリソース1を有効ではないと判断する。端末20は、それ以降の最初に利用可能なPUCCHリソースとして、ダイナミックULが設定されているPUCCHリソース2を検出し、そのPUCCHリソース2でHARQ-ACKを送信する。
 SFIが設定されていて、端末20が、図6下段に示すTDD構成をSFIで受信しなかった場合(ミスした場合)において、SPS PDSCH1に関して、対応するK1で指示されるPUCCHリソース1の複数シンボルはセミスタティックFなので、図5に示した基準より、端末20は、PUCCHリソース1は有効ではないと判断し、それ以降の最初に利用可能なPUCCHリソースとして、セミスタティックULが設定されているPUCCHリソース3を検出し、PUCCHリソース3でHARQ-ACKを送信する。
 なお、実施例2において、PUCCHリソースの有効性の判断にあたって、K1の最大値を超えたPUCCHリソースは有効でないとする等の追加の条件が用いられてもよい。K1の最大値は予めRRCで設定されてもよいし、activation DCIで端末20に通知してもよい。図6には、max K1 limitationとして、当該最大値のイメージが示されている。
 上記のような判断をオプション毎に行った場合における、SPS PDSCH毎のHARQ-ACKを送信するPUCCHリソースを図7に示す。
 上記のように、実施例2により、端末20は、HARQ-ACKのドロップを回避して、延期したPUCCHリソースでHARQ-ACKを送信することができる。図7に示すように、特にオプション1とオプション4に関しては、端末20と基地局10との間に認識のあいまいさなく、候補Aの手法(HARQ-ACKを延期して送信)を適用できる。
 ただし、前述した課題2として説明したように、図7のSFI設定有りの場合における、オプション2、3において、端末20と基地局10との間に認識のあいまいさが残る。例えば、SFI設定有りの場合において、基地局10がPUCCHリソース2で端末20からHARQ-ACKを受信しなかった場合、基地局10は、PUCCHリソース3で端末20からHARQ-ACKが送られてくるのかどうかを判断できない。
 (実施例3)
 実施例3では、実施例2を前提としつつ、実施例2におけるオプション2、3を用いた場合におけるあいまいさを解消する動作例を説明する。実施例3でのSPS設定、セミスタティックTDD構成、SFIの想定等は実施例2と同じであり、図6に示したとおりである。また、実施例3では、PUCCHリソースが有効でない場合におけるドロップ回避方法として候補Aを用い、PUCCHリソースの有効性の判断方法としてオプション2又は3を使用する。
 実施例3において、端末20は、該当シンボルにSFIが設定されていて、ダイナミックULスケジュールがされていない場合において、最初の利用可能な有効なPUCCHリソースにおける少なくとも1つのシンボルが、セミスタティックF上でダイナミックULが指示されたシンボルであると判断すると、端末20は、当該最初の利用可能な有効なPUCCHリソースでHARQ-ACKを送信し、更に、その後にある、セミスタティックULシンボルのみからなる最初のPUCCHリソースでHARQ-ACKを送信する。なお、実施例2で説明したK1の最大値の条件が更に適用されてもよい。
 図6を参照して例を説明する。
 SFIが設定されていて、端末20が、図6下段に示すTDD構成をSFIで受信した場合には、SPS PDSCH1に対応するK1で指示されるPUCCHリソース1の複数シンボルには、ダイナミックDLがあるため、端末20は、PUCCHリソース1を有効ではないと判断する。端末20は、それ以降の最初に利用可能なPUCCHリソースとして、ダイナミックULが設定されているPUCCHリソース2を検出し、そのPUCCHリソース2でHARQ-ACKを送信する。PUCCHリソース2は、セミスタティックF上にダイナミックULが指示されたシンボルからなるものなので、端末20は、セミスタティックULシンボルのみからなる最初のPUCCHリソースであるPUCCHリソース3でもHARQ-ACKを送信する。
 SFIが設定されていて、端末20が、図6下段に示すTDD構成をSFIで受信しなかった場合(ミスした場合)において、SPS PDSCH1に関して、対応するK1で指示されるPUCCHリソース1の複数シンボルはセミスタティックFなので、図5に示した基準より、端末20は、PUCCHリソース1は有効ではないと判断し、それ以降の最初に利用可能なPUCCHリソースとして、セミスタティックULが設定されているPUCCHリソース3を検出し、PUCCHリソース3でHARQ-ACKを送信する。PUCCHリソース3は、セミスタティックFに該当しないので、端末20は2回目のHARQ-ACKの送信を行わない。
 図8は、上記の動作をまとめて示した図である。実施例3において、オプション2、3が適用される場合において、基地局10は、常にセミスタティックULシンボルでの最初のPUCCHリソースで、延期されたHARQ-ACKを受信することを期待するので、実施例2で説明したあいまいさが解消される。
 実施例3と実施例2との主な違いは下記のとおりである。
 ・実施例3では、利用可能なセミスタティックFシンボルを利用しようとするので、利用可能であれば、実施例2(オプション1/4)よりも遅延を減少できる。
 ・実施例3では、実施例2(オプション2/3)で生じていた認識のあいまいさを解消できる。
 ・実施例3では、HARQ-ACKを2回送信するので、信頼性を向上させることができる。
 なお、実施例3において、上述した2回のHARQ‐ACK送信を可能にするための新たなRRC設定が端末20になされることとしてもよい。
 (実施例4)
 実施例4においても、実施例2を前提としつつ、実施例2におけるオプション2、3を用いた場合におけるあいまいさを解消する動作例を説明する。実施例4でのSPS設定、セミスタティックTDD構成、SFIの想定等は実施例2と同じである。また、実施例4でも、PUCCHリソースが有効でない場合におけるドロップ回避方法として候補Aを用い、PUCCHリソースの有効性の判断方法としてオプション2又は3を使用する。
 実施例4において、端末20は、該当シンボルにSFIが設定されていて、ダイナミックULスケジュールがされていない場合において、最初の利用可能な有効なPUCCHリソースにおける少なくとも1つのシンボルが、セミスタティックF上でダイナミックULが指示されたシンボルであると判断すると、端末20は、当該最初の利用可能な有効なPUCCHリソースでHARQ-ACKを送信する。
 実施例4では、基地局10は、端末20から最初の利用可能な有効なPUCCHリソースでHARQ-ACKを受信するかどうかを監視している。端末20が、基地局10から、基地局10がHARQ-ACKを受信したことを通知するDCIを受信し、かつ、タイムラインを満足すれば、端末20は、セミスタティックULシンボルのみからなる最初のPUCCHリソースにおける更なるHARQ-ACKの送信を行わない。端末20が、基地局10から、基地局10がHARQ-ACKを受信したことを通知するDCIを受信しない、又は、タイムラインを満足しない場合、端末20は、セミスタティックULシンボルのみからなる最初のPUCCHリソースにおける更なるHARQ-ACKの送信を行う。
 タイムラインを満足するとは、例えば、上記DCIを受信してから、規定時間よりも後にセミスタティックULシンボルのみからなる最初のPUCCHリソースがあることである。なお、実施例2で説明したK1の最大値の条件が更に適用されてもよい。
 図9を参照して例を説明する。
 SFIが設定されていて、端末20が、図9下段に示すTDD構成をSFIで受信した場合には、SPS PDSCH1に対応するK1で指示されるPUCCHリソース1の複数シンボルには、ダイナミックDLがあるため、端末20は、PUCCHリソース1を有効ではないと判断する。端末20は、それ以降の最初に利用可能なPUCCHリソースとして、ダイナミックULが設定されているPUCCHリソース2を検出し、そのPUCCHリソース2でHARQ-ACKを送信する。
 その後、端末20が、基地局10から、基地局10がHARQ-ACKを受信したことを通知するDCIを受信すると、セミスタティックULシンボルのみからなる最初のPUCCHリソースであるPUCCHリソース3でHARQ-ACKを送信しない。一方、もしも端末20が、当該DCIを受信しない場合、セミスタティックULシンボルのみからなる最初のPUCCHリソースであるPUCCHリソース3でHARQ-ACKを送信する。
 SFIが設定されていて、端末20が、図9下段に示すTDD構成をSFIで受信しなかった場合(ミスした場合)において、SPS PDSCH1に関して、対応するK1で指示されるPUCCHリソース1の複数シンボルはセミスタティックFなので、図5に示した基準より、端末20は、PUCCHリソース1は有効ではないと判断し、それ以降の最初に利用可能なPUCCHリソースとして、セミスタティックULが設定されているPUCCHリソース3を検出し、PUCCHリソース3でHARQ-ACKを送信する。PUCCHリソース3は、セミスタティックFに該当しないので、端末20は上記DCIを受信しない。
 基地局10がHARQ-ACKを受信したことを通知するDCIは、例えば、通知目的の新たなDCIフィールドを持つ既存のUE固有DCIであってもよいし、通知目的の既存のDCIフィールド(例:HPNフィールド)を持つ既存のUE固有DCIであってもよい。当該UE固有DCIは、DL/ULデータのスケジューリング情報を有してもよいし、有していなくてもよい。基地局10がHARQ-ACKを受信したことを通知するDCIは、通知用の新たなDCIフォーマットでもよい。
 図10は、上記のような動作を他のケースも含めてまとめて示した図である。実施例4において、オプション2、3が適用される場合において、実施例2で説明したあいまいさが解消される。また、実施例4では、端末20がDCIを受信できた場合には、2回目のHARQ-ACKを送信する必要がないので、PUCCHリソースを効率的に利用できる。
 なお、実施例4において、上述した2回のHARQ‐ACK送信を可能にするための新たなRRC設定が端末20になされることとしてもよい。また、上述したDCIのモニタを可能にするための新たなRRC設定が端末20になされることとしてもよい。
 (実施例5)
 実施例5においても、実施例2を前提としつつ、実施例2におけるオプション2、3を用いた場合におけるあいまいさを解消する動作例を説明する。実施例5でのSPS設定、セミスタティックTDD構成、SFIの想定等は実施例2と同じである。また、実施例5でも、PUCCHリソースが有効でない場合におけるドロップ回避方法として候補Aを用い、PUCCHリソースの有効性の判断方法としてオプション2又は3を使用する。
 実施例5において、端末20は、該当シンボルにSFIが設定されていて、ダイナミックULスケジュールがされていない場合において、最初の利用可能な有効なPUCCHリソースにおける少なくとも1つのシンボルが、セミスタティックF上でダイナミックULが指示されたシンボルであると判断すると、端末20は、当該最初の利用可能な有効なPUCCHリソースでHARQ-ACKを送信する。
 実施例5では、基地局10は、端末20から最初の利用可能な有効なPUCCHリソースでHARQ-ACKを受信するかどうかを監視している。もしも基地局10が、当該最初の利用可能な有効なPUCCHリソースでHARQ-ACKを検出できなかった場合、基地局10は、HARQ-ACKの再送をトリガするDCIを端末20に送信する。
 端末20は、上記DCIを受信すると、当該DCIで指示されるHARQリソース(PUCCHリソース)で、又は、セミスタティックULシンボルのみからなる最初のPUCCHリソースで、HARQ-ACKの再送を行う。端末20が、基地局10からDCIを受信しなければ、端末20は、HARQ-ACKの再送を行わない。
 また、もしも、端末20が、SFIの受信をミスしたために、上記の最初の利用可能な有効なPUCCHリソースでHARQ-ACKを送信しなかった場合、基地局10は、当該最初の利用可能な有効なPUCCHリソースでHARQ-ACKを検出できないので、基地局10は、HARQ-ACKの送信をトリガするDCIを端末20に送信する。
 端末20は、上記DCIを受信すると、当該DCIで指示されるHARQリソース(PUCCHリソース)で、又は、セミスタティックULシンボルのみからなる最初のPUCCHリソースで、HARQ-ACKの送信を行う。端末20が、基地局10からDCIを受信しなければ、端末20は、セミスタティックULシンボルのみからなる最初のPUCCHリソースで、HARQ-ACKの送信を行う。SFIとDCIの両方とも受信できなかった場合、端末20は、セミスタティックULシンボルのみからなる最初のPUCCHリソースで、HARQ-ACKの送信を行う。
 なお、HARQ-ACKの再送にあたって、実施例2で説明したK1の最大値の条件が更に適用されてもよい。
 図11を参照して例を説明する。
 SFIが設定されていて、端末20が、図11下段に示すTDD構成をSFIで受信した場合には、SPS PDSCH1に対応するK1で指示されるPUCCHリソース1の複数シンボルには、ダイナミックDLがあるため、端末20は、PUCCHリソース1を有効ではないと判断する。端末20は、それ以降の最初に利用可能なPUCCHリソースとして、ダイナミックULが設定されているPUCCHリソース2を検出し、そのPUCCHリソース2でHARQ-ACKを送信する。
 もしも基地局10が、当該最初の利用可能な有効なPUCCHリソース2でHARQ-ACKを検出できなかった場合、基地局10は、HARQ-ACKの再送をトリガするDCIを端末20に送信する。
 端末20は、上記DCIを受信すると、当該DCIで指示されるHARQリソース(PUCCHリソース)で、又は、セミスタティックULシンボルのみからなる最初のPUCCHリソース3で、HARQ-ACKの再送を行う。なお、実施例4の場合と同様に、HARQ-ACKの再送の際にはタイムラインを満たす必要がある。
 SFIが設定されていて、端末20が、図11下段に示すTDD構成をSFIで受信しなかった場合(ミスした場合)において、SPS PDSCH1に関して、対応するK1で指示されるPUCCHリソース1の複数シンボルはセミスタティックFなので、図5に示した基準より、端末20は、PUCCHリソース1は有効ではないと判断し、それ以降の最初に利用可能なPUCCHリソースとして、セミスタティックULが設定されているPUCCHリソース3を検出し、PUCCHリソース3でHARQ-ACKを送信する。
 基地局10は、PUCCHリソース2でのHARQ-ACK受信を期待するが、それを受信しないので、DCIを送信する。端末20は、そのDCIで示されるPUCCHリソースでHARQ-ACKを送信してもよい。
 基地局10がHARQ-ACK送信をトリガするDCIは、例えば、トリガ目的の新たなDCIフィールドを持つ既存のUE固有DCIであってもよいし、トリガ目的の既存のDCIフィールド(例:HPNフィールド)を持つ既存のUE固有DCIであってもよい。当該UE固有DCIは、DL/ULデータのスケジューリング情報を有してもよいし、有していなくてもよい。基地局10がHARQ-ACK送信をトリガするDCIは、トリガ用の新たなDCIフォーマットでもよい。
 図12は、上記のような動作をまとめて示した図である。実施例5において、オプション2、3が適用される場合において、実施例2で説明したあいまいさが解消される。また、実施例5では、基地局10がHARQ-ACKを受信できた場合には、端末20は2回目のHARQ-ACKを送信する必要がないので、PUCCHリソースを効率的に利用できる。
 なお、実施例5において、上述したトリガ用DCIのモニタを可能にするための新たなRRC設定が端末20になされることとしてもよい。
 実施例2~5において、「最初のPUCCHリソース」(例:図6のPUCCHリソース1、セミスタティックULシンボルのみからなるPUCCHリソース)のほうが、「最初の利用可能なPUCCHリソース」(例:図6のPUCCHリソース2)よりも時間的に前にある場合、「最初のPUCCHリソース」(例:図6のPUCCHリソース1、セミスタティックULシンボルのみからなるPUCCHリソース)でHARQ-ACKを送信し、2回目のHARQ-ACK送信を行わないこととしてもよい。
 (実施例6)
 実施例6において、端末20には、SPS毎にK1値のセット(1以上のK1値の集合)が設定されるとする。このK1値のセットは、SPSの設定時に端末20に対して基地局10からRRCで設定されてもよいし、SPSのactivation DCIにより端末20に対して基地局10から設定されてもよい。
 実施例6では、候補Bを利用する。すなわち、端末20は、HARQ‐ACK送信のためのPUCCHリソースが「DLシンボル又はFシンボル」と衝突しないように、最初に適用可能なK1値をK1値のセットから選択する。そして、端末20は、適用したK1値で指示されるスロットにおけるPUCCHリソースを使用してHARQ-ACKを送信する。PUCCHリソースが「DLシンボル又はFシンボル」と衝突するかどうかの判断については、オプション1~4のいずれかが適用される。
 図13に例を示す。図13における上段のスロットのTDD構成は、端末20に対してセミスタティックTDD設定情報により設定された構成を示す。下段のスロットのTDD構成は、端末20に対してSFIが設定される場合に、ダイナミックSFIにより設定されることを想定したTDD構成である。また、DはDLであり、UはULであり、Fはフレキシブルである。
 図13の例の動作の前提として、端末20には、2つのSPSがRRCで設定されており、それぞれ、activation DCIを受信することで、SPS PDSCH1~2の送信を行う。また、例えばactivation DCIには、K1値のセットが含まれている。図13の例では、SPS PDSCH1に対するK1のセットは{K1,1-1;K1,2-1;K1,3-1}であり、SPS PDSCH2に対するK1のセットは{K1,1-2;K1,2-2;K1,3-2}である。
 ここで、端末20が、前述したオプション2の判断基準で、有効でないPUCCHリソースを判断するものとする。
 まず、SFIが設定されていない場合を説明する。この場合、図13の例において、端末20は、SPS PDSCH1を受信した後、K1,1-1により指定されるスロットにおけるPUCCHリソース1の位置のシンボルのTDD構成がFであることを確認する。また、SSB/CORESET#0の設定、ダイナミックDLスケジューリングもないことを確認すると、端末20は、PUCCHリソース1でHARQ-ACKを送信する。
 一方、SFIが設定されていて、端末20が、図13下段に示すTDD構成をSFIで受信した場合には、SPS PDSCH1に対するK1,1-1で指示されるPUCCHリソース1の複数シンボルには、ダイナミックDLがあるため、端末20は、PUCCHリソース1を有効ではないと判断する。端末20は、K1,2-1で指示されるスロットのPUCCHリソース2はダイナミックULが設定されているため有効であると判断する。つまり、端末20は、最初に適用可能なK1値としてK1,2-1を選択し、それにより指示されるPUCCHリソース2でHARQ-ACKを送信する。
 SFIが設定されていて、端末20が、図13下段に示すTDD構成をSFIで受信しなかった場合(ミスした場合)において、SPS PDSCH1に関して、K1,1-1で指示されるPUCCHリソース1の複数シンボルはセミスタティックFなので、図5に示した基準より、端末20は、PUCCHリソース1は有効ではないと判断し、最初に適用可能なK1値としてK1,3-1で指示されるスロットにおける、セミスタティックULが設定されているPUCCHリソース3を検出し、PUCCHリソース3でHARQ-ACKを送信する。
 上記のような判断をオプション毎に行った場合における、SPS PDSCH毎のHARQ-ACKを送信するPUCCHリソース及び適用したK1を図14に示す。
 上記のように、実施例6により、端末20は、HARQ-ACKのドロップを回避して、K1の選択により延期したPUCCHリソースでHARQ-ACKを送信することができる。図14に示すように、特にオプション1とオプション4に関しては、端末20と基地局10との間に認識のあいまいさなく、候補Bの手法(最初の適用可能K1値を選択)を適用できる。
 ただし、前述した課題2として説明したように、図14のSFI設定有りの場合における、オプション2、3において、端末20と基地局10との間に認識のあいまいさが残る。例えば、SFI設定有りの場合において、基地局10がPUCCHリソース2で端末20からHARQ-ACKを受信しなかった場合、基地局10は、PUCCHリソース3で端末20からHARQ-ACKが送られてくるのかどうかを判断できない。
 (実施例7)
 実施例7では、実施例6を前提としつつ、実施例6におけるオプション2、3を用いた場合におけるあいまいさを解消する動作例を説明する。実施例7でのSPS設定、セミスタティックTDD構成、SFIの想定、K1のセット等は実施例6と同じであり、図13に示したとおりである。また、実施例7でも、PUCCHリソースが有効でない場合におけるドロップ回避方法として候補Bを用い、PUCCHリソースの有効性の判断方法としてオプション2又は3を使用する。
 実施例7において、端末20は、該当シンボルにSFIが設定されていて、ダイナミックULスケジュールがされていない場合において、最初の適用可能なK1値に対応するPUCCHリソースにおける少なくとも1つのシンボルが、セミスタティックF上でダイナミックULが指示されたシンボルであると判断すると、端末20は、当該最初の適用可能なK1値に対応するPUCCHリソースでHARQ-ACKを送信し、更に、その後にある、セミスタティックULシンボルのみからなるPUCCHリソースに対応する最初のK1値を適用して、当該PUCCHリソースでHARQ-ACKを送信する。
 図13を参照して例を説明する。
 SFIが設定されていて、端末20が、図13下段に示すTDD構成をSFIで受信した場合には、SPS PDSCH1に対応するK1,1-1で指示されるPUCCHリソース1の複数シンボルには、ダイナミックDLがあるため、端末20は、PUCCHリソース1を有効ではないと判断する。端末20は、それ以降の最初に適用可能なK1,2-1に対応するPUCCHリソースとして、ダイナミックULが設定されているPUCCHリソース2を検出し、そのPUCCHリソース2でHARQ-ACKを送信する。PUCCHリソース2は、セミスタティックF上にダイナミックULが指示されたシンボルからなるものなので、端末20は、セミスタティックULシンボルからなるPUCCHリソースであるPUCCHリソース3のスロットを指示するK1,3-1を適用して、PUCCHリソース3でもHARQ-ACKを送信する。
 SFIが設定されていて、端末20が、図13下段に示すTDD構成をSFIで受信しなかった場合(ミスした場合)において、SPS PDSCH1に関して、K1,1-1で指示されるスロットのPUCCHリソース1の複数シンボルはセミスタティックFなので、図5に示した基準より、端末20は、PUCCHリソース1は有効ではないと判断し、それ以降の最初に適用可能なK1,3-1に対応するPUCCHリソースとして、セミスタティックULが設定されているPUCCHリソース3を検出し、PUCCHリソース3でHARQ-ACKを送信する。PUCCHリソース3は、セミスタティックFに該当しないので、端末20は2回目のHARQ-ACKの送信を行わない。
 図15は、上記の動作をまとめて示した図である。実施例7において、オプション2、3が適用される場合において、基地局10は、常にセミスタティックULシンボルでのPUCCHリソースで、K1値の選択に基づいて延期されたHARQ-ACKを受信することを期待するので、実施例6で説明したあいまいさが解消される。
 実施例7と実施例6との主な違いは下記のとおりである。
 ・実施例7では、利用可能なセミスタティックFシンボルを利用しようとするので、利用可能であれば、実施例6(オプション1/4)よりも遅延を減少できる。
 ・実施例7では、実施例6(オプション2/3)で生じていた認識のあいまいさを解消できる。
 ・実施例7では、HARQ-ACKを2回送信するので、信頼性を向上させることができる。
 なお、実施例7において、上述した2回のHARQ‐ACK送信を可能にするための新たなRRC設定が端末20になされることとしてもよい。
 (実施例8)
 実施例8における動作は、基本的に実施例7における動作と同じであるが、実施例8では、セミスタティックULシンボルのみからなるPUCCHリソースに対応する最初のK1値と、最初の適用可能なK1値との時間的な前後関係を考慮している。以下、ケース8-1、ケース8-2として説明する。
 <ケース8-1>
 端末20は、セミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソースに対応する「最初の適用可能なK1値」と、セミスタティックULシンボルのみからなるPUCCHリソースに対応する「最初のK1値」とを比較し、「最初のK1値」のほうが「最初の適用可能なK1値」よりも小さい場合に、端末20は、「最初のK1値」に対応する、セミスタティックULシンボルのみからなるPUCCHリソースでHARQ-ACKを送信する。
 図16に、ケース8-1の例を示す。図16の例では、SPS PDSCH1に対するK1のセットが{k1,1;K1,2;K1,3}である。
 このケースでは、端末20はSFIを受信し、オプション2、3を適用しているとする。端末20は、SPS PDSCH1に対するHARQ-ACKのPUCCHリソースとして、K1,1で示されるスロットのPUCCHリソース1は有効でないと判断する。
 端末20は、セミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソース3に対応する「最初の適用可能なK1,32」と、セミスタティックULシンボルのみからなるPUCCHリソース2に対応する「最初のK1,3」とを比較し、「最初のK1,3」のほうが「最初の適用可能なK1,2」よりも小さいと判断するので、端末20は、「最初のK1,3」に対応する、セミスタティックULシンボルのみからなるPUCCHリソース2でHARQ-ACKを送信する。
 <ケース8-2>
 端末20は、セミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソースに対応する「最初の適用可能なK1値」と、セミスタティックULシンボルのみからなるPUCCHリソースに対応する「最初のK1値」とを比較し、「最初のK1値」のほうが「最初の適用可能なK1値」よりも大きい場合に、端末20は、「最初の適用可能なK1値」に対応するセミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソースでHARQ-ACKを送信し、更に、「最初のK1値」に対応する、セミスタティックULシンボルのみからなるPUCCHリソースでHARQ-ACKを送信する。ケース8-2は、実施例7と同じである。
 図17に、ケース8-2の例を示す。図17の例でも、SPS PDSCH1に対するK1のセットが{k1,1;K1,2;K1,3}である。
 このケースでも、端末20はSFIを受信し、オプション2、3を適用しているとする。端末20は、SPS PDSCH1に対するHARQ-ACKのPUCCHリソースとして、K1,1で示されるスロットのPUCCHリソース1は有効でないと判断する。
 端末20は、セミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソース2に対応する「最初の適用可能なK1,2」と、セミスタティックULシンボルのみからなるPUCCHリソース3に対応する「最初のK1,3」とを比較し、「最初のK1,3」のほうが「最初の適用可能なK1,2」よりも大きいと判断するので、「最初の適用可能なK1,2」に対応するセミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソース2でHARQ-ACKを送信し、更に、端末20は、「最初のK1,3」に対応する、セミスタティックULシンボルのみからなるPUCCHリソース3でHARQ-ACKを送信する。
 上記のような動作をまとめたものを図18に示す。実施例8では、HARQ-ACKを1回のみ送信するケースがあるという点が実施例7と異なる。端末20に対して、実施例7の動作と、実施例8の動作のいずれを実行するかをRRCシグナリングで基地局10から設定してもよい。
 (実施例9)
 実施例9における動作は、基本的に実施例8における動作と同じであり、セミスタティックULシンボルのみからなるPUCCHリソースに対応する最初のK1値と、最初の適用可能なK1値との時間的な前後関係を考慮している。ただし、実施例9では、実施例4で説明した通知用のDCIと同様のDCIを採用している。以下、ケース9-1、ケース9-2として説明する。
 <ケース9-1>
 端末20は、セミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソースに対応する「最初の適用可能なK1値」と、セミスタティックULシンボルのみからなるPUCCHリソースに対応する「最初のK1値」とを比較し、「最初のK1値」のほうが「最初の適用可能なK1値」よりも小さい場合に、端末20は、「最初のK1値」に対応する、セミスタティックULシンボルのみからなるPUCCHリソースでHARQ-ACKを送信する。ケース9-1はケース8-1と同じである。
 <ケース9-2>
 端末20は、セミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソースに対応する「最初の適用可能なK1値」と、セミスタティックULシンボルのみからなるPUCCHリソースに対応する「最初のK1値」とを比較し、「最初のK1値」のほうが「最初の適用可能なK1値」よりも大きい場合に、端末20は、「最初の適用可能なK1値」に対応するセミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソースでHARQ-ACKを送信する。
 その後、端末20が、基地局10から、基地局10が上記HARQ-ACKを受信したことを通知するDCIを受信し、かつ、タイムラインを満足すれば、端末20は、「最初のK1値」に対応する、セミスタティックULシンボルのみからなるPUCCHリソースでのHARQ-ACK送信を行わない。端末20が、基地局10から、基地局10がHARQ-ACKを受信したことを通知するDCIを受信しない、又は、タイムラインを満足しない場合、端末20は、「最初のK1値」に対応する、セミスタティックULシンボルのみからなるPUCCHリソースでHARQ-ACKを送信する。
 基地局10がHARQ-ACKを受信したことを通知するDCIは、例えば、通知目的の新たなDCIフィールドを持つ既存のUE固有DCIであってもよいし、通知目的の既存のDCIフィールド(例:HPNフィールド)を持つ既存のUE固有DCIであってもよい。当該UE固有DCIは、DL/ULデータのスケジューリング情報を有してもよいし、有していなくてもよい。基地局10がHARQ-ACKを受信したことを通知するDCIは、通知用の新たなDCIフォーマットでもよい。
 なお、実施例9において、上述した2回のHARQ‐ACK送信を可能にするための新たなRRC設定が端末20になされることとしてもよい。また、上述したDCIのモニタを可能にするための新たなRRC設定が端末20になされることとしてもよい。
 (実施例10)
 実施例10における動作は、基本的に実施例8における動作と同じであり、セミスタティックULシンボルのみからなるPUCCHリソースに対応する最初のK1値と、最初の適用可能なK1値との時間的な前後関係を考慮している。ただし、実施例10では、実施例5で説明したトリガ用のDCIと同様のDCIを採用している。以下、ケース10-1、ケース10-2として説明する。
 <ケース10-1>
 端末20は、セミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソースに対応する「最初の適用可能なK1値」と、セミスタティックULシンボルのみからなるPUCCHリソースに対応する「最初のK1値」とを比較し、「最初のK1値」のほうが「最初の適用可能なK1値」よりも小さい場合に、端末20は、「最初のK1値」に対応する、セミスタティックULシンボルのみからなるPUCCHリソースでHARQ-ACKを送信する。ケース10-1はケース8-1と同じである。
 <ケース10-2>
 端末20は、セミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソースに対応する「最初の適用可能なK1値」と、セミスタティックULシンボルのみからなるPUCCHリソースに対応する「最初のK1値」とを比較し、「最初のK1値」のほうが「最初の適用可能なK1値」よりも大きい場合に、端末20は、「最初の適用可能なK1値」に対応するセミスタティックF上でダイナミックULが指示されたシンボルを有するPUCCHリソースでHARQ-ACKを送信する。
 もしも基地局10が、上記HARQ-ACKを検出できなかった場合、基地局10は、HARQ-ACKの再送をトリガするDCIを端末20に送信する。
 端末20は、上記DCIを受信すると、当該DCIで指示されるK1値に対応するスロットのHARQリソース(PUCCHリソース)で、又は、「最初のK1値」に対応する、セミスタティックULシンボルのみからなるPUCCHリソースで、HARQ-ACKの再送を行う。端末20が、基地局10からトリガ用のDCIを受信しなければ、端末20は、HARQ-ACKの再送を行わない。
 また、もしも、端末20が、SFIの受信をミスしたために、上記の「最初の適用可能なK1値」に対応するPUCCHリソースでHARQ-ACKを送信しなかった場合、基地局10は、当該HARQ-ACKを検出できないので、基地局10は、HARQ-ACKの送信をトリガするDCIを端末20に送信する。
 端末20は、上記DCIを受信すると、当該DCIで指示されるK1値に対応するスロットのHARQリソース(PUCCHリソース)で、又は、「最初のK1値」に対応する、セミスタティックULシンボルのみからなるPUCCHリソースで、HARQ-ACKの送信を行う。端末20が、基地局10からDCIを受信しなければ、端末20は、「最初のK1値」に対応する、セミスタティックULシンボルのみからなるPUCCHリソースで、HARQ-ACKの送信を行う。
 再送をトリガするDCIは、例えば、トリガ目的の新たなDCIフィールドを持つ既存のUE固有DCIであってもよいし、トリガ目的の既存のDCIフィールドを持つ既存のUE固有DCIであってもよい。当該UE固有DCIは、DL/ULデータのスケジューリング情報を有してもよいし、有していなくてもよい。基地局10がHARQ-ACKを受信したことを通知するDCIは、トリガ用の新たなDCIフォーマットでもよい。
 なお、実施例10において、上述した2回のHARQ‐ACK送信を可能にするための新たなRRC設定が端末20になされることとしてもよい。また、上述したDCIのモニタを可能にするための新たなRRC設定が端末20になされることとしてもよい。
 (その他の例)
 実施例1で説明したオプション1~4のうち、どのオプションを適用するかについて、基地局10から端末20に対して上位レイヤパラメータで設定されてもよいし、端末20から基地局10に対してUE能力情報として報告されてもよいし、端末20の能力情報と上位レイヤパラメータの設定に基づき、端末20(及び基地局10)が決定してもよい。また、実施例1で説明したオプション1~4のうち、どのオプションを適用するかについて、仕様書等で規定され、基地局10と端末20が予め保持しておいてもよい。
 また、実施例2~9のうち、どの実施例の動作を適用するかについて、基地局10から端末20に対して上位レイヤパラメータで設定されてもよいし、端末20から基地局10に対してUE能力情報として報告されてもよいし、端末20の能力情報と上位レイヤパラメータの設定に基づき、端末20(及び基地局10)が決定してもよい。また、実施例2~9のうち、どの実施例の動作を適用するかについて、仕様書等で規定され、基地局10と端末20が予め保持しておいてもよい。
 (UE能力情報について)
 少なくとも1つの「DLシンボル又はFシンボル」とPUCCHリソースとの衝突によるSPS HARQ-ACKのドロップを回避するために、端末20が次の機能をサポートするかどうかを示すUE能力情報が使用されてもよい。当該UE能力情報は端末20から基地局10に通知され、基地局10は、当該UE能力情報に基づいて、例えば、適切なSPSの受信周期等を端末20に設定できる。
 ・最初と延期後の有効なPUCCHリソースを使用した2回のHARQ-ACK送信を行うことができるかどうかを示すUE能力情報。
 ・異なるK1値による、最初と延期後の有効なPUCCHリソースを使用した2回のHARQ-ACK送信を行うことができるかどうかを示すUE能力情報。
 ・HARQ-ACKの延期(あるいは再送)を停止するための、DCIにおける新たなフィールド(又は新たなDCI)をサポートしているかどうかを示すUE能力情報。
 ・HARQ-ACKの再送をトリガするための、DCIにおける新たなフィールド(又は新たなDCI)をサポートしているかどうかを示すUE能力情報。
 (実施の形態に係る技術の効果について)
 以上説明した技術により、データを受信した端末が、データ受信に対するフィードバック情報を適切に基地局に送信することが可能となる。
 より詳細には、例えば、前述した課題1が解消され、端末20は、PUCCHリソースが有効であるかを明確に判断できる。また、前述した課題2が解消され、端末20と基地局10との間の認識のあいまいさが解消される。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例1~10を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例1~10のうちのいずれかの実施例の機能のみを備えることとしてもよい。
 <基地局10>
 図19は、基地局10の機能構成の一例を示す図である。図19に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図19に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。また、送信部110は、実施例1~10で説明した設定情報等を送信する。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。制御部140は、例えば、リソース割り当て、基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。
 <端末20>
 図20は、端末20の機能構成の一例を示す図である。図20に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図21に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、送信部210はHARQ-ACKを送信し、受信部220は、実施例1~10で説明した設定情報等を受信する。
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、端末20全体の制御等を行う。なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。
 端末20、基地局10は、例えば下記の各項に記載された端末、基地局として構成される。
(第1項)
 基地局から受信したデータに対するフィードバック情報を送信するための有効なアップリンクリソースが存在する時間位置まで前記フィードバック情報の送信を延期する制御部と、
 前記有効なアップリンクリソースで前記フィードバック情報を送信し、更に、別の有効なアップリンクリソースで前記フィードバック情報を送信する送信部と
 を備える端末。
(第2項)
 前記フィードバック情報を送信した後、前記端末が前記基地局から第1の制御情報を受信した場合に、前記送信部は、前記別の有効なアップリンクリソースでの前記フィードバック情報の送信を行わない、又は、
 前記フィードバック情報を送信した後、前記端末が前記基地局から第2の制御情報を受信した場合に、前記送信部は、前記別の有効なアップリンクリソースでの前記フィードバック情報の送信を行う
 第1項に記載の端末。
(第3項)
 端末において、受信したデータに対するフィードバック情報を送信するための有効なアップリンクリソースが存在する時間位置まで前記フィードバック情報の送信が延期された後に、前記有効なアップリンクリソースにより送信される前記フィードバック情報の受信を監視する制御部と、
 前記フィードバック情報を受信した場合に、別の有効なアップリンクリソースで前記フィードバック情報を送信させないための第1の制御情報を前記端末に送信する、又は、
 前記フィードバック情報を受信しない場合に、前記別の有効なアップリンクリソースで前記フィードバック情報を送信させるための第2の制御情報を前記端末に送信する送信部と
 を備える基地局。
(第4項)
 基地局から受信したデータに対するフィードバック情報を送信するための有効なアップリンクリソースに対応する時間位置を示す指示値を、指示値のセットの中から選択する制御部と、
 前記有効なアップリンクリソースで前記フィードバック情報を送信し、更に、別の指示値に対応する別の有効なアップリンクリソースで前記フィードバック情報を送信する送信部と
 を備える端末。
(第5項)
 前記フィードバック情報を送信した後、前記端末が前記基地局から第1の制御情報を受信した場合に、前記送信部は、前記別の指示値に対応する前記別の有効なアップリンクリソースでの前記フィードバック情報の送信を行わない、又は、
 前記フィードバック情報を送信した後、前記端末が前記基地局から第2の制御情報を受信した場合に、前記送信部は、前記別の指示値に対応する別の有効なアップリンクリソースでの前記フィードバック情報の送信を行う
 第4項に記載の端末。
(第6項)
 端末において、受信したデータに対するフィードバック情報を送信するための有効なアップリンクリソースに対応する時間位置を示す指示値が指示値のセットの中から選択されることにより、前記有効なアップリンクリソースで送信される前記フィードバック情報の受信を監視する制御部と、
 前記フィードバック情報を受信した場合に、別の指示値に対応する別の有効なアップリンクリソースで前記フィードバック情報を送信させないための第1の制御情報を前記端末に送信する、又は、
 前記フィードバック情報を受信しない場合に、前記別の指示値に対応する前記別の有効なアップリンクリソースで前記フィードバック情報を送信させるための第2の制御情報を前記端末に送信する送信部と
 を備える基地局。
 上記のいずれの項に記載された構成によっても、データを受信した端末が、データ受信に対するフィードバック情報を適切に基地局に送信することを可能とする技術が提供される。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図19及び図20)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)あるいは送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図21は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図19に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図20に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。補助記憶装置1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUSCH、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「端末(user terminal)」、「端末(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述の端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa,an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 なお、本開示において、SSブロック又はCSI-RSは、同期信号又は参照信号の一例である。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (6)

  1.  基地局から受信したデータに対するフィードバック情報を送信するための有効なアップリンクリソースが存在する時間位置まで前記フィードバック情報の送信を延期する制御部と、
     前記有効なアップリンクリソースで前記フィードバック情報を送信し、更に、別の有効なアップリンクリソースで前記フィードバック情報を送信する送信部と
     を備える端末。
  2.  前記フィードバック情報を送信した後、前記端末が前記基地局から第1の制御情報を受信した場合に、前記送信部は、前記別の有効なアップリンクリソースでの前記フィードバック情報の送信を行わない、又は、
     前記フィードバック情報を送信した後、前記端末が前記基地局から第2の制御情報を受信した場合に、前記送信部は、前記別の有効なアップリンクリソースでの前記フィードバック情報の送信を行う
     請求項1に記載の端末。
  3.  端末において、受信したデータに対するフィードバック情報を送信するための有効なアップリンクリソースが存在する時間位置まで前記フィードバック情報の送信が延期された後に、前記有効なアップリンクリソースにより送信される前記フィードバック情報の受信を監視する制御部と、
     前記フィードバック情報を受信した場合に、別の有効なアップリンクリソースで前記フィードバック情報を送信させないための第1の制御情報を前記端末に送信する、又は、
     前記フィードバック情報を受信しない場合に、前記別の有効なアップリンクリソースで前記フィードバック情報を送信させるための第2の制御情報を前記端末に送信する送信部と
     を備える基地局。
  4.  基地局から受信したデータに対するフィードバック情報を送信するための有効なアップリンクリソースに対応する時間位置を示す指示値を、指示値のセットの中から選択する制御部と、
     前記有効なアップリンクリソースで前記フィードバック情報を送信し、更に、別の指示値に対応する別の有効なアップリンクリソースで前記フィードバック情報を送信する送信部と
     を備える端末。
  5.  前記フィードバック情報を送信した後、前記端末が前記基地局から第1の制御情報を受信した場合に、前記送信部は、前記別の指示値に対応する前記別の有効なアップリンクリソースでの前記フィードバック情報の送信を行わない、又は、
     前記フィードバック情報を送信した後、前記端末が前記基地局から第2の制御情報を受信した場合に、前記送信部は、前記別の指示値に対応する別の有効なアップリンクリソースでの前記フィードバック情報の送信を行う
     請求項4に記載の端末。
  6.  端末において、受信したデータに対するフィードバック情報を送信するための有効なアップリンクリソースに対応する時間位置を示す指示値が指示値のセットの中から選択されることにより、前記有効なアップリンクリソースで送信される前記フィードバック情報の受信を監視する制御部と、
     前記フィードバック情報を受信した場合に、別の指示値に対応する別の有効なアップリンクリソースで前記フィードバック情報を送信させないための第1の制御情報を前記端末に送信する、又は、
     前記フィードバック情報を受信しない場合に、前記別の指示値に対応する前記別の有効なアップリンクリソースで前記フィードバック情報を送信させるための第2の制御情報を前記端末に送信する送信部と
     を備える基地局。
PCT/JP2020/040012 2020-10-23 2020-10-23 端末、及び基地局 WO2022085202A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040012 WO2022085202A1 (ja) 2020-10-23 2020-10-23 端末、及び基地局

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040012 WO2022085202A1 (ja) 2020-10-23 2020-10-23 端末、及び基地局

Publications (1)

Publication Number Publication Date
WO2022085202A1 true WO2022085202A1 (ja) 2022-04-28

Family

ID=81290273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040012 WO2022085202A1 (ja) 2020-10-23 2020-10-23 端末、及び基地局

Country Status (1)

Country Link
WO (1) WO2022085202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114872052A (zh) * 2022-06-06 2022-08-09 吉林农业科技学院 一种远程自动控制智能工厂机械臂的方法及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on PUSCH resource collision and DL SPS enhancement", 3GPP DRAFT; R1-1912174, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823252 *
HUAWEI, HISILICON: "Maintenance on HARQ-ACK enhancement", 3GPP DRAFT; R1-2005811, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917738 *
VIVO: "HARQ-ACK enhancements for Rel-17 URLLC", 3GPP DRAFT; R1-2005374, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917399 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114872052A (zh) * 2022-06-06 2022-08-09 吉林农业科技学院 一种远程自动控制智能工厂机械臂的方法及系统
CN114872052B (zh) * 2022-06-06 2023-01-06 吉林农业科技学院 一种远程自动控制智能工厂机械臂的方法及系统

Similar Documents

Publication Publication Date Title
WO2021172228A1 (ja) 端末及び通信方法
US20220201768A1 (en) Base station apparatus and user equipment
WO2020222281A1 (ja) ユーザ装置
WO2021033246A1 (ja) 端末
WO2022130645A1 (ja) 端末、基地局及び通信方法
WO2021172337A1 (ja) 端末及び通信方法
WO2021149159A1 (ja) 端末、基地局及び通信方法
WO2021149231A1 (ja) 端末及び通信方法
WO2021149110A1 (ja) 端末及び通信方法
JP7170842B2 (ja) ユーザ装置及び基地局装置
WO2022085202A1 (ja) 端末、及び基地局
WO2021065016A1 (ja) 端末及び通信方法
WO2021171995A1 (ja) 端末、通信方法及び基地局
WO2022149286A1 (ja) 端末、基地局及び通信方法
WO2022029947A1 (ja) 端末、基地局装置、及びフィードバック方法
JP7301957B2 (ja) 端末、通信システム及び通信方法
WO2021065011A1 (ja) 端末及び通信方法
WO2021090438A1 (ja) 端末及び通信方法
WO2022091561A1 (ja) 端末、及び基地局
WO2022102632A1 (ja) 端末及び通信方法
WO2022091556A1 (ja) 端末、基地局、及び通信方法
WO2022137472A1 (ja) 端末及び通信方法
WO2022130644A1 (ja) 端末、基地局及び通信方法
WO2022220028A1 (ja) 端末、及び無線通信システム
WO2023276164A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP