WO2021149231A1 - 端末及び通信方法 - Google Patents
端末及び通信方法 Download PDFInfo
- Publication number
- WO2021149231A1 WO2021149231A1 PCT/JP2020/002413 JP2020002413W WO2021149231A1 WO 2021149231 A1 WO2021149231 A1 WO 2021149231A1 JP 2020002413 W JP2020002413 W JP 2020002413W WO 2021149231 A1 WO2021149231 A1 WO 2021149231A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- base station
- extension
- transmission
- value
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 64
- 238000000034 method Methods 0.000 title claims description 41
- 239000013256 coordination polymer Substances 0.000 claims abstract description 117
- 230000005540 biological transmission Effects 0.000 claims abstract description 88
- 230000011664 signaling Effects 0.000 description 36
- 230000006870 function Effects 0.000 description 20
- 230000008569 process Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 12
- 125000004122 cyclic group Chemical group 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 238000013507 mapping Methods 0.000 description 7
- 101100392078 Caenorhabditis elegans cat-4 gene Proteins 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 238000013468 resource allocation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 101100208039 Rattus norvegicus Trpv5 gene Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 101100494773 Caenorhabditis elegans ctl-2 gene Proteins 0.000 description 1
- 101100112369 Fasciola hepatica Cat-1 gene Proteins 0.000 description 1
- 101100005271 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cat-1 gene Proteins 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 208000028626 extracranial carotid artery aneurysm Diseases 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/2605—Symbol extensions, e.g. Zero Tail, Unique Word [UW]
- H04L27/2607—Cyclic extensions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2666—Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a terminal and a communication method in a wireless communication system.
- NR New Radio
- LTE Long Term Evolution
- the frequency band licensed by the telecommunications carrier (operator) (the frequency band different from the licensed band (unlicensed band), unlicensed”.
- the use of carriers (also called unlicensed carriers) and unlicensed CCs (also called unlicensed CCs) is supported.
- unlicensed bands for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark) can be used2. .4 GHz band, 5 GHz band, 6 GHz band, etc. are assumed.
- Rel-13 supports carrier aggregation (CA) that integrates licensed band carriers (CC) and unlicensed band carriers (CC). Communication performed using the unlicensed band together with the license band in this way is referred to as License-Assisted Access (LAA).
- CA carrier aggregation
- LAA License-Assisted Access
- a base station device downlink
- a user terminal uplink
- another device for example, a base
- Channel sensing carrier sense
- LBT Listen Before Talk
- an LBT gap based on CP extension is being considered for UL transmission of terminals.
- the CP extension may be placed at the first symbol of the PUSCH allocation notified by SLIV (Start and Length Indicator) at least for the CP extension before the dynamically scheduled PUSCH (Physical Uplink Shared Channel) transmission. ..
- the CP extension period time length
- RRC Radio Resource Control
- DCI downlink control information
- the present invention has been made in view of the above points, and an object of the present invention is to determine a CP extension (Cyclic Prefix extension) value in a wireless communication system and apply it to communication.
- CP extension Cyclic Prefix extension
- a terminal having a control unit that determines a CP extension value and a transmission unit that applies the determined CP extension value to execute the uplink transmission is provided.
- the CP extension (Cyclic Prefix extension) value can be determined and applied to communication in the wireless communication system.
- FIG. 1 It is a figure which shows the structural example of the wireless communication system in embodiment of this invention. It is a figure for demonstrating the wireless communication system in embodiment of this invention. It is a figure for demonstrating the multi-TTI grant. It is a sequence diagram for demonstrating an example of signaling in Embodiment of this invention. It is a flowchart for demonstrating the operation example (1) of the terminal 20 in embodiment of this invention. It is a flowchart for demonstrating the operation example (2) of the terminal 20 in embodiment of this invention. It is a flowchart for demonstrating the operation example (3) of the terminal 20 in embodiment of this invention. It is a figure for demonstrating the example of CP extension in embodiment of this invention.
- LTE Long Term Evolution
- LTE-Advanced LTE-Advanced and later methods (eg, NR) unless otherwise specified.
- SS Synchronization signal
- PSS Primary SS
- SSS Secondary SS
- PBCH Physical broadcast channel
- PRACH Physical
- PDCCH Physical Downlink Control Channel
- PDSCH Physical Downlink Shared Channel
- PUCCH Physical Uplink Control Channel
- PUSCH Physical Uplink Shared Channel
- NR corresponds to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH and the like. However, even if it is a signal used for NR, it is not always specified as "NR-".
- the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other system (for example, Flexible Duplex, etc.). Method may be used.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- Method may be used.
- "configuring" the radio parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station 10 or The radio parameter notified from the terminal 20 may be set.
- FIG. 1 is a diagram showing a configuration example of a wireless communication system according to the embodiment of the present invention.
- the wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20 as shown in FIG.
- FIG. 1 shows one base station 10 and one terminal 20, this is an example, and there may be a plurality of each.
- the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
- the physical resources of the radio signal are defined in the time domain and the frequency domain, the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain is defined by the number of subcarriers or the number of resource blocks. May be good.
- the base station 10 transmits a synchronization signal and system information to the terminal 20. Synchronous signals are, for example, NR-PSS and NR-SSS.
- the system information is transmitted by, for example, NR-PBCH, and is also referred to as broadcast information. As shown in FIG.
- the base station 10 transmits a control signal or data to the terminal 20 by DL (Downlink), and receives the control signal or data from the terminal 20 by UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell: Secondary Cell) and a primary cell (PCell: Primary Cell) by CA (Carrier Aggregation). Further, the terminal 20 may perform communication via the primary cell of the base station 10 by DC (Dual Connectivity) and the primary secondary cell (PSCell: Primary Secondary Cell) of another base station 10.
- SCell Secondary Cell
- PCell Primary Cell
- CA Carrier Aggregation
- the terminal 20 is a communication device having a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, and a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives a control signal or data from the base station 10 on the DL and transmits the control signal or data to the base station 10 on the UL, thereby providing various types provided by the wireless communication system. Use communication services.
- M2M Machine-to-Machine
- FIG. 2 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
- FIG. 2 shows a configuration example of a wireless communication system when NR-DC (NR-Dual connectivity) is executed.
- a base station 10A serving as an MN (Master Node) and a base station 10B serving as an SN (Secondary Node) are provided.
- the base station 10A and the base station 10B are each connected to the core network 30.
- the terminal 20 communicates with both the base station 10A and the base station 10B.
- the cell group provided by the MN base station 10A is called an MCG (Master Cell Group), and the cell group provided by the SN base station 10B is called an SCG (Secondary Cell Group).
- MCG Master Cell Group
- SCG Secondary Cell Group
- the above-mentioned LBT is executed.
- the base station 10 or the terminal 20 acquires COT (Channel Occupancy Time) when the LBT result is idle (when the LBT is successful), performs transmission, and when the LBT result is busy (LBT-busy). , Do not send.
- COT Channel Occupancy Time
- the wireless communication system in the present embodiment may perform a carrier aggregation (CA) operation using an unlicensed CC and a licensed CC, or perform a dual connectivity (DC) operation using the unlicensed CC and the licensed CC.
- CA carrier aggregation
- DC dual connectivity
- SA stand-alone
- CA, DC, or SA may be performed by any one system of NR and LTE.
- DC may be performed by at least two of NR, LTE, and other systems.
- the terminal 20 uses a signal (for example, a Reference Signal (RS) such as Demodulation Reference Signal (DMRS)) in the PDCCH or the group common PDCCH (group common (GC) -PDCCH) for detecting the transmission burst from the base station 10. ) May exist.
- RS Reference Signal
- DMRS Demodulation Reference Signal
- group common PDCCH group common (GC) -PDCCH)
- the base station 10 may transmit a specific PDCCH (PDCCH or GC-PDCCH) including a specific DMRS notifying the start of the COT at the start of the COT triggered by the base station apparatus.
- a specific PDCCH (PDCCH or GC-PDCCH) including a specific DMRS notifying the start of the COT at the start of the COT triggered by the base station apparatus.
- At least one of the specific PDCCH and the specific DMRS may be referred to as a COT start notification signal.
- the base station 10 transmits a COT start notification signal to one or more terminals 20, and the terminal 20 can recognize the COT when the specific DMRS is detected.
- FIG. 3 is a diagram for explaining a multi-TTI grant.
- Release 16NR-U is expected to use a multi-TTI (Transmission Time Interval) grant that schedules multiple PUSCHs across multiple slots / multiple minislots with a single DCI (Downlink Control Information).
- DCI Downlink Control Information
- scheduling or scheduling
- the multi-TTI grant schedules a plurality of consecutive PUSCHs that transmit different TBs (Transport blocks).
- One TB is mapped to one slot or one minislot and transmitted in one PUSCH.
- One HARQ (Hybrid automatic repeat request) process is assigned to one PUSCH that transmits the one TB.
- one DCI For multiple PUSCHs scheduled by one DCI, one DCI signals each NDI (New data indicator) and RV (Redundancy version) PUSCH. Further, the HARQ process ID notified by the DCI is applied to the first scheduled PUSCH, and the HARQ process ID of the subsequent PUSCHs is applied with a value incremented by 1 in the order of PUSCH.
- NDI New data indicator
- RV Redundancy version
- FIG. 3 is a diagram showing an example of the operation of the terminal 20 that has received the multi-TTI grant.
- the multi-TTI grant schedules PUSCH for 4 slots.
- the terminal 20 executes the LBT before the slot in which the first PUSCH indicated by A is scheduled, and if the LBT is OK, the terminal 20 transmits data in four consecutive PUSCHs. If the first LBT is NG, the PUSCH indicated by B executes the LBT before the scheduled slot, and if the LBT is OK, data is transmitted in three consecutive PUSCHs. After that, the same processing is performed. If the last PUSCH indicated by D executes LBT before the scheduled slot and it is NG, no transmission is performed.
- PUSCH scheduling may include multiple slots or minislots containing multiple contiguous PUSCHs, which may include multiple separated TBs, with a single DCI.
- the DCI signaling a plurality of PUSCHs may include NDI and RV.
- CBG (Code block group) based retransmission may be supported in a plurality of PUSCH schedulings, and depending on the DCI field, signaling is performed for each one or a plurality of PUSCHs to be retransmitted, for each PUSCH, or for each fixed number of PUSCHs. You may.
- the HARQ process ID signaled by DCI may be applied to the first scheduled PUSCH or may be incremented by 1 in subsequent PUSCHs.
- the resource allocation in the time domain in which PUSCH is scheduled may be expanded.
- the range of the start symbol position and the end symbol position may be expanded, the resource allocation in the continuous time domain may be expanded, a plurality of PUSCHs may be arranged in the first slot, or the terminal may be driven. Multiple start symbol positions may be supported in the COT.
- an LBT gap based on CP extension (Cyclic Prefix extension) is being studied for UL transmission of terminals. For example, at least because of the CP extension before the dynamically scheduled PUSCH (Physical Uplink Shared Channel) transmission, even if the CP extension is placed in the symbol preceding the PUSCH allocation notified by SLIV (Start and Length Indicator). good.
- the supported CP extension period may be any of the following 1) -4).
- SCS SubCarrier spacing
- the value N2 used in the calculation of the minimum delay from the UL grant to the PUSCH transmission may be relaxed in consideration of the CP extension.
- the CP extension in a certain SCS may be limited to one symbol or less, or may exceed one symbol.
- the above CP extension may be applied to other UL transmissions.
- the number of CP extension periods dynamically signaled by the terminal 20 may be set.
- C2 and C3 may be set uniquely to the terminal 20 by RRC signaling.
- C2 and C3 need not limit the maximum TA used in the cell.
- C2 and C3 may be set to values from 1 to 28 when the SCS is 30 kHz by RRC signaling.
- C2 and C3 may be set to a value from 2 to 28 when the SCS is 60 kHz by RRC signaling. The other specifications may not be changed by the settings related to C2 and C3.
- the non-fallback DCI format is, for example, DCI format 1-11 and DCI format 0_1 in the NR system.
- the non-fallback DCI format is, for example, a DCI format having a size larger than the fallback DCI formats DCI format 1_0 and DCI format 0_0, and unlike the fallback DCI format, the size is changed depending on the setting. NS.
- "*" indicates multiplication.
- the LBT type, CP extension value and CAPC may be joint-encoded (that is, an index is associated with a combination thereof) and included in the UL grant.
- the combination of LBT type, CP extension value and CAPC may be set in the terminal 20 by the RRC signaling peculiar to the terminal 20.
- LBT type ⁇ Cat1-16 ⁇ s, Cat2-16 ⁇ s, Cat2-25 ⁇ s, Cat4 ⁇ , CP extension ⁇ 0, C1 * symbol length-25 ⁇ s, C2 * symbol length-16 ⁇ s-TA, C3 * symbol length-25 ⁇ s-TA ⁇ , CAPC ⁇ 1,2,3,4 ⁇ , (Cat2-25 ⁇ s, C2 * symbol length-16 ⁇ s-TA), (Cat1-16 ⁇ s, C3 * symbol length-25 ⁇ s-TA), and (Cat2).
- the combination of -16 ⁇ s, C3 * symbol length -25 ⁇ s-TA) and (Cat 2-16 ⁇ s or Cat 2-16 ⁇ s, C1 * symbol length -25 ⁇ s) may not be supported by the RRC configuration.
- the corresponding DCI bit field may be up to 6 bits in length. The length of the bit field may be determined depending on the number of combinations set by RRC signaling for the terminal 20.
- the operation shown in 1) -5) below may be performed.
- the LBT type and CP extension value may be joint-encoded and included in the DL allocation. 2) The highest CAPC may always be assumed. 3) The combination of the LBT type and the CP extension value may be set in the terminal 20 by the RRC signaling peculiar to the terminal 20.
- LBT type ⁇ Cat1-16 ⁇ s, Cat2-16 ⁇ s, Cat2-25 ⁇ s, Cat4 ⁇ , CP extension ⁇ 0, C1 * symbol length-25 ⁇ s, C2 * symbol length-16 ⁇ s-TA, C3 * symbol length-25 ⁇ s-TA ⁇ Of the combinations of (Cat2-25 ⁇ s, C2 * symbol length -16 ⁇ s-TA), (Cat1-16 ⁇ s, C3 * symbol length -25 ⁇ s-TA), and (Cat2-16 ⁇ s, C3 * symbol length -25 ⁇ s-TA). ) And (Cat2-16 ⁇ s or Cat2-16 ⁇ s, C1 * symbol length -25 ⁇ s) may not be supported by the RRC setting. 5)
- the corresponding DCI bit field may be up to 4 bits in length. The length of the bit field may be determined depending on the number of combinations set by RRC signaling for the terminal 20.
- the LBT type, the CP extension value and the CAPC may be joint-encoded with a 2-bit length and included in the UL grant.
- the supported LBT type, CP extension value, and combination of CAPC may be specified in advance by specifications.
- the LBT type and the CP extension value may be joint-encoded with a 2-bit length and included in the DL allocation.
- the supported combination of LBT type and CP extension value may be specified in advance by specifications.
- FBE Framework Based Equipment
- LBE Land Based Equipment
- the transmission / reception configuration related to LBT has a fixed timing.
- the transmission / reception configuration related to LBT is not fixed in the time axis direction, and LBT is performed according to demand. Specifically, if the FBE has a fixed frame period and the channel can be used as a result of performing carrier sense for a fixed time (which may be called LBT duration) in a predetermined frame. Transmission is performed, but if the channel is unavailable, it waits without transmission until the carrier sense timing in the next frame.
- LBE extends the carrier sense time when the channel is unavailable as a result of performing carrier sense (initial Clear Channel Assessment: CCA), and continuously performs carrier sense until the channel becomes available.
- CCA Initial Clear Channel Assessment
- signaling of LBT type and CP extension value for both fallback DL allocation and fallback UL grant may be performed using, for example, Table 1.
- Cat1 shown in Table 1 corresponds to category 1
- Cat2 corresponds to category 2
- Cat4 corresponds to category 4.
- the CP extension value may be "C2 * symbol length -16 ⁇ s-TA”.
- the CP extension value may be "C3 * symbol length-25 ⁇ s-TA”.
- the CP extension value may be "C1 * symbol length -25 ⁇ s”.
- the CP extension value may be "0”.
- CAPC does not have to be explicitly notified.
- the mapping between the CAPC and the traffic class may be the same as the mapping defined for UL-CG (Configured Grant) transmission.
- the CAPC having the highest priority may be used for the PUCCH associated with the DL allocation.
- the terminal 20 notified that the LBT type is "Cat2-25 ⁇ s" or "Cat4" measures one 9 ⁇ s carrier sense slot within a period of 25 ⁇ s. May be good.
- the terminal 20 may use the same LBT type and CP extension value table (for example, Table 1) and the CAPC selection method as the UL grant by fallback DCI.
- 2 bits may be signaled via RAR (ie PDSCH).
- the mapping between CAPC and the traffic class may be the same as the mapping defined for UL-CG transmission. Further, the field indicating the resource allocation of the frequency domain included in the RAR is reduced to accommodate the two bits.
- Next [sec] is the CP extension period.
- Table 2 is an example in which the ext is shown as an index for each SCS.
- T symb corresponds to the symbol length of SCS ⁇ and symbol position l
- T TA corresponds to the timing advance value. ..
- the ext corresponding to index 0 is not defined.
- Index 1 corresponds to "symbol length -25 * 10-6 " for 15 kHz SCS, "symbol length -25 * 10 -6 " for 30 kHz SCS, and "2 * symbol length -25 * 10 -6 " for 60 kHz SCS. ..
- the index 2 corresponds to "C 2 * symbol length -16 * 10-6- T TA " in any case of 15 kHz SCS, 30 kHz and 60 kHz. That is, the CP extension is determined according to the timing advance value.
- the index 3 corresponds to "C 3 * symbol length -25 * 10-6- T TA " in any case of 15 kHz SCS, 30 kHz and 60 kHz. Similar to index 2, the CP extension is determined according to the timing advance value.
- C2 and C3 may be integer values from 1 to 28 in the case of 15 kHz SCS or 30 kHz SCS.
- C2 and C3 may be integer values from 2 to 28 in the case of 60 kHz SCS.
- the terminal 20 needs to determine the CP extension period before the RRC setting is executed.
- the communication status is at the time of RAR, UL grant by fallback DCI, and DL allocation by fallback DCI.
- the terminal 20 does not know the values of C2 and C3 used for UL transmission.
- the CP extension value may be appropriately determined even before the RRC setting is executed.
- FIG. 4 is a sequence diagram for explaining an example of signaling in the embodiment of the present invention.
- the base station 10 may instruct the terminal 20 to transmit the PUSCH and / or the PUCCH in steps S1 and S2, or may set a transmission opportunity.
- the terminal 20 may appropriately determine the CP extension value even before executing the RRC setting in step S1, for example.
- step S1 the base station 10 notifies the terminal 20 of the settings related to PUSCH and / or PUCCH via higher layer signaling.
- the setting related to CP extension may be notified.
- step S2 the base station 10 transmits the UL grant by DCI to the terminal 20 via the PDCCH. Subsequently, the terminal 20 transmits data to the base station 10 via the PUSCH determined based on the received DCI (S3). When the CP extension value is notified by the DCI, the terminal 20 may apply the CP extension to the PUSCH and transmit it.
- step S2 the base station 10 transmits the DL allocation by DCI to the terminal 20 via the PDCCH. Subsequently, the terminal 20 transmits uplink control information (UCI) to the base station 10 via the PUCCH determined based on the received DCI (S3).
- UCI uplink control information
- the terminal 20 may apply the CP extension to the PUCCH and transmit it.
- step S2 the base station 10 transmits RAR to the terminal 20 via the PDSCH. Subsequently, the terminal 20 transmits data to the base station 10 via the PUSCH determined based on the received RAR (S3). When the CP extension value is notified by the RAR, the terminal 20 may apply the CP extension to the PUSCH and transmit it.
- FIG. 5 is a flowchart for explaining an operation example (1) of the terminal 20 according to the embodiment of the present invention.
- the terminal 20 determines whether or not C2 and C3 are set by RRC signaling. If it is set (YES in S11), the process proceeds to step S12, and if it is not set (NO in S11), the process proceeds to step S13.
- step S12 the terminal 20 uses C2 and C3 by RRC signaling to determine the CP extension value.
- step S13 the terminal 20 determines the CP extension value on the assumption that C2 and C3 are predetermined fixed values.
- the fixed values of C2 and C3 may be selected from any of an integer value from 1 to 28 in the case of 15 kHz SCS or 30 kHz SCS, or an integer value from 2 to 28 in the case of 60 kHz SCS. You may choose from either.
- step S13 when the specified fixed value of C2 is assumed and “C2 * symbol length -16 ⁇ s-TA ⁇ 0”, the CP extension value may be assumed to be zero.
- step S13 when the specified fixed value of C3 is assumed and “C3 * symbol length -25 ⁇ s-TA ⁇ 0”, the CP extension value may be assumed to be zero.
- FIG. 6 is a flowchart for explaining an operation example (2) of the terminal 20 according to the embodiment of the present invention.
- the terminal 20 determines whether or not C2 and C3 are set by RRC signaling. If it is set (YES in S21), the process proceeds to step S22, and if it is not set (NO in S21), the process proceeds to step S23.
- step S22 the terminal 20 uses C2 and C3 by RRC signaling to determine the CP extension value.
- step S23 the terminal 20 determines C2 and C3 from the TA value applied to the corresponding UL transmission to determine the CP extension value.
- C2 may be the maximum value that satisfies "C2 * symbol length-16 ⁇ s-TA ⁇ symbol length”.
- C3 may be the maximum value satisfying "C3 * symbol length-25 ⁇ s-TA ⁇ symbol length”.
- C2 may be the minimum value satisfying "0 ⁇ C2 * symbol length-16 ⁇ s-TA”.
- C3 may be the minimum value satisfying "0 ⁇ C3 * symbol length-25 ⁇ s-TA”.
- FIG. 7 is a flowchart for explaining an operation example (3) of the terminal 20 according to the embodiment of the present invention.
- the terminal 20 determines whether or not C2 and C3 are set by RRC signaling. If it is set (YES in S21), the process proceeds to step S22, and if it is not set (NO in S21), the process proceeds to step S23.
- step S22 the terminal 20 uses C2 and C3 by RRC signaling to determine the CP extension value.
- step S23 the terminal 20 may assume that the CP extension values corresponding to C2 and C3 are not notified by DCI.
- Table 3 is an example of CP extension values notified by DCI.
- the terminal 20 may assume that the indexes “0” and “1” are not notified in the notification of the CP extension value by DCI. Further, the bit field length may be set to 1 bit to notify the index "2" or "3".
- the channel access type (LBT type) shown in Table 3 is a type of channel access method that uses a random period or a fixed period in which the terminal 20 determines that the sensed slot is idle before the UL transmission. ..
- Channel access type 1 corresponds to "Cat4"
- channel access type 2A corresponds to "Cat2-25 ⁇ s”
- channel access type 2C corresponds to "Cat1-16 ⁇ s”.
- FIG. 8 is a diagram for explaining an example of CP extension in the embodiment of the present invention (provided that 16 ⁇ s or 25 ⁇ s + TA is 1 symbol length or less).
- the CP extension value may be a value obtained by increasing the first term on the right side in units of one symbol.
- the terminal 20 determines C2 and C3 to determine the CP extension value even when C2 and C3 are not set by RRC signaling, and performs UL transmission to which the CP extension is applied. Can be executed. Further, the terminal 20 assumes that the CP extension value using C2 and C3 is not notified even when C2 and C3 are not set by RRC signaling, and sets the CP extension value to the base station 10 with a small bit length. Can be obtained from the notification by.
- a CP extension Cyclic Prefix extension
- the base station 10 and the terminal 20 include a function of carrying out the above-described embodiment.
- the base station 10 and the terminal 20 may each have only a part of the functions in the embodiment.
- FIG. 9 is a diagram showing an example of the functional configuration of the base station 10 according to the embodiment of the present invention.
- the base station 10 includes a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
- the functional configuration shown in FIG. 9 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
- the transmission unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. Further, the transmission unit 110 transmits a message between network nodes to another network node.
- the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring information of, for example, a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL / UL control signals and the like to the terminal 20. In addition, the receiving unit 120 receives a message between network nodes from another network node.
- the setting unit 130 stores preset setting information and various setting information to be transmitted to the terminal 20.
- the content of the setting information is, for example, a setting related to NR-U communication.
- the control unit 140 controls the UL grant as described in the embodiment.
- the function unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the function unit related to signal reception in the control unit 140 may be included in the reception unit 120.
- FIG. 10 is a diagram showing an example of the functional configuration of the terminal 20 according to the embodiment of the present invention.
- the terminal 20 has a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240.
- the functional configuration shown in FIG. 10 is only an example. Any function classification and name of the functional unit may be used as long as the operation according to the embodiment of the present invention can be executed.
- the transmission unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
- the receiving unit 220 wirelessly receives various signals and acquires a signal of a higher layer from the received signal of the physical layer. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL / UL / SL control signals and the like transmitted from the base station 10. Further, for example, the transmission unit 210 connects the other terminal 20 to PSCCH (Physical Sidelink Control Channel), PSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) as D2D communication. Etc., and the receiving unit 220 receives the PSCCH, PSCH, PSDCH, PSBCH, etc. from the other terminal 20.
- PSCCH Physical Sidelink Control Channel
- PSCH Physical Sidelink Shared Channel
- PSDCH Physical Sidelink Discovery Channel
- PSBCH Physical Sidelink Broadcast
- the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220.
- the setting unit 230 also stores preset setting information.
- the content of the setting information is, for example, a setting related to NR-U communication.
- control unit 240 controls to execute the transmission accompanied by the LBT based on the UL grant. Further, the control unit 240 controls UL transmission to which the CP extension is applied according to the setting.
- the function unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the function unit related to signal reception in the control unit 240 may be included in the reception unit 220.
- each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
- the functional block may be realized by combining the software with the one device or the plurality of devices.
- Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
- broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these.
- a functional block that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
- transmitting unit transmitting unit
- transmitter transmitter
- the base station 10, the terminal 20, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
- FIG. 11 is a diagram showing an example of the hardware configuration of the base station 10 and the terminal 20 according to the embodiment of the present disclosure.
- the above-mentioned base station 10 and terminal 20 are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be good.
- the word “device” can be read as a circuit, device, unit, etc.
- the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
- the processor 1001 For each function of the base station 10 and the terminal 20, the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the storage device 1002, and controls the communication by the communication device 1004. It is realized by controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
- Processor 1001 operates, for example, an operating system to control the entire computer.
- the processor 1001 may be composed of a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic unit, a register, and the like.
- CPU Central Processing Unit
- control unit 140, control unit 240, and the like may be realized by the processor 1001.
- the processor 1001 reads a program (program code), a software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
- a program program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
- the control unit 140 of the base station 10 shown in FIG. 9 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
- the control unit 240 of the terminal 20 shown in FIG. 10 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
- Processor 1001 may be implemented by one or more chips.
- the program may be transmitted from the network via a telecommunication line.
- the storage device 1002 is a computer-readable recording medium, for example, by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory) and the like. It may be configured.
- the storage device 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
- the storage device 1002 can store a program (program code), a software module, or the like that can be executed to implement the communication method according to the embodiment of the present disclosure.
- the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, Blu).
- -It may be composed of at least one of a ray® disc), a smart card, a flash memory (eg, a card, a stick, a key drive), a floppy® disc, a magnetic strip, and the like.
- the storage medium described above may be, for example, a database, server or other suitable medium containing at least one of the storage device 1002 and the auxiliary storage device 1003.
- the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). It may be composed of.
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the transmission / reception unit may be physically or logically separated from each other in the transmission unit and the reception unit.
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
- the base station 10 and the terminal 20 are hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include, and a part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the receiving unit that receives the information to which the uplink transmission is assigned from the base station and the parameter for calculating the CP extension value when the information is received are set.
- a terminal having a control unit for determining a CP extension value and a transmission unit for applying the determined CP extension value to execute the uplink transmission is provided.
- the terminal 20 determines C2 and C3 to determine the CP extension value and executes UL transmission to which the CP extension is applied even when C2 and C3 are not set by RRC signaling. can do. Further, the terminal 20 assumes that the CP extension value using C2 and C3 is not notified even when C2 and C3 are not set by RRC signaling, and sets the CP extension value to the base station 10 with a small bit length. Can be obtained from the notification by. That is, in the wireless communication system, the CP extension (Cyclic Prefix extension) value can be determined and applied to communication.
- the control unit determines the parameter and calculates a period obtained by subtracting the period based on the timing advance value and the predetermined period from the period obtained by an integral multiple of the symbol length based on the determined parameter as the CP extension value. good.
- the terminal 20 determines C2 and C3 to determine the CP extension value and executes UL transmission to which the CP extension is applied even when C2 and C3 are not set by RRC signaling. be able to.
- the control unit may determine the parameter to a predetermined value and calculate the CP extension value based on the parameter.
- the terminal 20 determines C2 and C3 to determine the CP extension value and executes UL transmission to which the CP extension is applied even when C2 and C3 are not set by RRC signaling. be able to.
- the control unit may determine the parameter based on the timing advance value and calculate the CP extension value based on the parameter.
- the terminal 20 determines C2 and C3 to determine the CP extension value and executes UL transmission to which the CP extension is applied even when C2 and C3 are not set by RRC signaling. be able to.
- the control unit may assume that the CP extension value corresponding to the parameter is not notified from the base station.
- the terminal 20 assumes that the CP extension value using C2 and C3 is not notified even when C2 and C3 are not set by RRC signaling, and notifies the CP extension value by the base station 10 with a small bit length. Can be obtained from.
- a reception procedure for receiving information for assigning uplink transmission from the base station and a parameter for calculating a CP extension value when the information is received are set from the base station. If not, a communication method is provided in which the terminal executes a control procedure for determining the CP extension value and a transmission procedure for applying the determined CP extension value to execute the uplink transmission.
- the terminal 20 determines C2 and C3 to determine the CP extension value and executes UL transmission to which the CP extension is applied even when C2 and C3 are not set by RRC signaling. can do. Further, the terminal 20 assumes that the CP extension value using C2 and C3 is not notified even when C2 and C3 are not set by RRC signaling, and sets the CP extension value to the base station 10 with a small bit length. Can be obtained from the notification by. That is, in the wireless communication system, the CP extension (Cyclic Prefix extension) value can be determined and applied to communication.
- the boundary of the functional unit or the processing unit in the functional block diagram does not always correspond to the boundary of the physical component.
- the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by a plurality of components.
- the processing order may be changed as long as there is no contradiction.
- the base station 10 and the terminal 20 have been described with reference to functional block diagrams, but such devices may be implemented in hardware, software, or a combination thereof.
- the software operated by the processor of the base station 10 according to the embodiment of the present invention and the software operated by the processor of the terminal 20 according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only memory, respectively. It may be stored in (ROM), EPROM, EEPROM, registers, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
- information notification includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, etc. Broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof may be used.
- RRC signaling may be referred to as an RRC message, for example, RRC. It may be a connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
- Each aspect / embodiment described in the present disclosure includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G (5th generation mobile communication).
- system FRA (Future Radio Access), NR (new Radio), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) )), LTE 802.16 (WiMAX®), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth®, and other systems that utilize suitable systems and have been extended based on these. It may be applied to at least one of the next generation systems. Further, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
- the specific operation performed by the base station 10 in the present specification may be performed by its upper node.
- various operations performed for communication with the terminal 20 are performed by the base station 10 and other network nodes other than the base station 10 (for example, it is clear that it can be done by at least one of (but not limited to, MME, S-GW, etc.).
- the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). ..
- the information, signals, etc. described in the present disclosure can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
- the input / output information and the like may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information and the like can be overwritten, updated, or added. The output information and the like may be deleted. The input information or the like may be transmitted to another device.
- the determination in the present disclosure may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example,). , Comparison with a predetermined value).
- Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
- Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- a transmission medium For example, a website that uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and wireless technology (infrared, microwave, etc.).
- wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
- wireless technology infrared, microwave, etc.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
- a channel and a symbol may be a signal (signaling).
- the signal may be a message.
- the component carrier CC: Component Carrier
- CC Component Carrier
- system and “network” used in this disclosure are used interchangeably.
- the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
- the radio resource may be one indicated by an index.
- base station Base Station
- radio base station base station
- base station device fixed station
- NodeB NodeB
- eNodeB eNodeB
- GNB gNodeB
- access point “ transmission point ”,“ reception point ”,“ transmission / reception point ”,“ cell ”,“ sector ”
- Terms such as “cell group,” “carrier,” and “component carrier” can be used interchangeably.
- Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
- the base station can accommodate one or more (for example, three) cells.
- a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH:)).
- Communication services can also be provided by Remote Radio Head).
- the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage. Point to.
- MS Mobile Station
- UE User Equipment
- Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
- the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
- at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
- at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be read by the user terminal.
- the communication between the base station and the user terminal is replaced with the communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- Each aspect / embodiment of the present disclosure may be applied to the configuration.
- the terminal 20 may have the function of the base station 10 described above.
- words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
- an uplink channel, a downlink channel, and the like may be read as a side channel.
- the user terminal in the present disclosure may be read as a base station.
- the base station may have the functions of the user terminal described above.
- determining and “determining” used in this disclosure may include a wide variety of actions.
- “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
- judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
- Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
- judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
- connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
- the connection or connection between the elements may be physical, logical, or a combination thereof.
- connection may be read as "access”.
- the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energies having wavelengths in the microwave and light (both visible and invisible) regions.
- the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot (Pilot) depending on the applicable standard.
- RS Reference Signal
- Pilot Pilot
- references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted, or that the first element must somehow precede the second element.
- the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
- the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
- Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, wireless frame configuration, and transceiver.
- SCS SubCarrier Spacing
- TTI Transmission Time Interval
- TTI Transmission Time Interval
- transceiver At least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
- the slot may be composed of one or more symbols in the time domain (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.). Slots may be in time units based on numerology.
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
- PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
- the PDSCH (or PUSCH) transmitted using the minislot may be referred to as the PDSCH (or PUSCH) mapping type B.
- the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
- the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
- one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI.
- TTI transmission time interval
- the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
- the base station schedules each terminal 20 to allocate radio resources (frequency bandwidth that can be used in each terminal 20, transmission power, etc.) in TTI units.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
- the time interval for example, the number of symbols
- the transport block, code block, code word, etc. may be shorter than the TTI.
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
- TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
- the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
- the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
- the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
- the number of subcarriers contained in the RB may be determined based on numerology.
- the time domain of the RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
- Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
- One or more RBs include a physical resource block (PRB: Physical RB), a sub-carrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, and the like. May be called.
- PRB Physical resource block
- SCG Sub-Carrier Group
- REG Resource Element Group
- PRB pair an RB pair, and the like. May be called.
- the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
- RE Resource Element
- 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
- Bandwidth part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks (RBs) for a certain neurology in a carrier.
- the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
- UL BWP UL BWP
- DL BWP DL BWP
- One or more BWPs may be set in one carrier for the UE.
- At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
- “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
- the above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples.
- the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs.
- the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and other configurations can be changed in various ways.
- the term "A and B are different” may mean “A and B are different from each other”.
- the term may mean that "A and B are different from C”.
- Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
- the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
- C2 or C3 is an example of a parameter for calculating the CP extension value.
- Base station 110 Transmission unit 120 Reception unit 130 Setting unit 140 Control unit 20 Terminal 210 Transmission unit 220 Reception unit 230 Setting unit 240 Control unit 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
端末は、上りリンク送信を割り当てる情報を基地局から受信する受信部と、前記情報を受信したとき、CP延長値を算出するためのパラメータを前記基地局から設定されていない場合、CP延長値を決定する制御部と、前記決定したCP延長値を適用して前記上りリンク送信を実行する送信部とを有する。
Description
本発明は、無線通信システムにおける端末及び通信方法に関する。
LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている。
また、既存のLTEシステムでは、周波数帯域を拡張するため、通信事業者(オペレータ)に免許された周波数帯域(ライセンスバンド(licensed band)とは異なる周波数帯域(アンライセンスバンド(unlicensed band)、アンライセンスキャリア(unlicensed carrier)、アンライセンスCC(unlicensed CC)ともいう)の利用がサポートされている。アンライセンスバンドとしては、例えば、Wi-Fi(登録商標)あるいはBluetooth(登録商標)を使用可能な2.4GHz帯又は5GHz帯、6GHz帯などが想定される。
具体的には、Rel-13では、ライセンスバンドのキャリア(CC)とアンライセンスバンドのキャリア(CC)とを統合するキャリアアグリゲーション(Carrier Aggregation:CA)がサポートされる。このように、ライセンスバンドとともにアンライセンスバンドを用いて行う通信をLicense-Assisted Access(LAA)と称する。
ライセンスバンドとともにアンライセンスバンドを用いて通信を行う無線通信システムでは、基地局装置(下りリンク)及びユーザ端末(上りリンク)は、アンライセンスバンドにおけるデータの送信前に、他の装置(例えば、基地局装置、ユーザ端末、Wi-Fi装置など)の送信の有無を確認するためにチャネルのセンシング(キャリアセンス)を行う。センシングの結果、他の装置の送信がないことを確認すると、送信機会を獲得し、送信を行うことができる。この動作はLBT(Listen Before Talk)と呼ばれる。また、NRにおいて、アンライセンスバンドをサポートするシステムはNR-Uシステムと呼ばれる。
3GPP TS 38.331 V15.8.0 (2019-12)
3GPP TS 38.212 V16.0.0 (2019-12)
3GPP TS 38.213 V16.0.0 (2019-12)
3GPP TS 37.213 V16.0.0 (2019-12)
NR-Uでは、端末のUL送信に対して、CP延長(Cyclic Prefix extension)に基づくLBTギャップが検討されている。例えば、少なくとも動的にスケジューリングされるPUSCH(Physical Uplink Shared Channel)送信前のCP延長のため、SLIV(Start and Length Indicator)により通知されたPUSCH割り当ての先頭シンボルに、CP延長は配置されてもよい。このとき、CP延長の期間(時間長)は、RRC(Radio Resource Control)シグナリングおよび下り制御情報(Downlink Control Information:DCI)で基地局から端末に通知される。一方で、通信状況によっては、RRC設定が実行される前に、端末はCP延長の期間を定める必要があった。
本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、CP延長(Cyclic Prefix extension)値を決定し、通信に適用することを目的とする。
開示の技術によれば、上りリンク送信を割り当てる情報を基地局から受信する受信部と、前記情報を受信したとき、CP延長値を算出するためのパラメータを前記基地局から設定されていない場合、CP延長値を決定する制御部と、前記決定したCP延長値を適用して前記上りリンク送信を実行する送信部とを有する端末が提供される。
開示の技術によれば、無線通信システムにおいて、CP延長(Cyclic Prefix extension)値を決定し、通信に適用することができる。
以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。
図1は、本発明の実施の形態における無線通信システムの構成例を示す図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるセカンダリセル(SCell:Secondary Cell)及びプライマリセル(PCell:Primary Cell)を介して通信を行ってもよい。さらに、端末20は、DC(Dual Connectivity)による基地局10のプライマリセル及び他の基地局10のプライマリセカンダリセル(PSCell:Primary Secondary Cell)を介して通信を行ってもよい。
端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。
図2は、本発明の実施の形態における無線通信システムを説明するための図である。図2は、NR-DC(NR-Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示されるように、MN(Master Node)となる基地局10Aと、SN(Secondary Node)となる基地局10Bが備えられる。基地局10Aと基地局10Bはそれぞれコアネットワーク30に接続される。端末20は基地局10Aと基地局10Bの両方と通信を行う。
MNである基地局10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。後述する動作は、図1と図2のいずれの構成で行ってもよい。
本実施の形態における無線通信システムでは、前述したLBTが実行される。基地局10あるいは端末20は、LBT結果がアイドルである場合(LBTに成功した場合)にCOT(Channel Occupancy Time)を獲得し、送信を行い、LBT結果がビジーである場合(LBT-busy)に、送信を行わない。
本実施の形態における無線通信システムは、アンライセンスCC及びライセンスCCを用いるキャリアアグリゲーション(CA)の動作を行ってもよいし、アンライセンスCC及びライセンスCCを用いるデュアルコネクティビティ(DC)の動作を行ってもよいし、アンライセンスCCのみを用いるスタンドアローン(SA)の動作を行ってもよい。CA、DC、又はSAは、NR及びLTEのいずれか1つのシステムによって行われてもよい。DCは、NR、LTE、及び他のシステムの少なくとも2つによって行われてもよい。
端末20は、基地局10からの送信バーストを検出するための、PDCCH又はグループ共通PDCCH(group common(GC)-PDCCH)内の信号(例えば、Demodulation Reference Signal(DMRS)などのReference Signal(RS))の存在を想定してもよい。
基地局10は、基地局装置契機のCOT開始時に、COT開始を通知する特定DMRSを含む特定PDCCH(PDCCH又はGC-PDCCH)を送信してもよい。特定PDCCH及び特定DMRSの少なくとも1つは、COT開始通知信号と呼ばれてもよい。基地局10は、例えば、COT開始通知信号を1以上の端末20へ送信し、端末20は、特定DMRSを検出した場合、COTを認識することができる。
図3は、マルチTTIグラントを説明するための図である。リリース16NR-Uでは、1つのDCI(Downlink Control Information)で複数スロット/複数ミニスロットに渡って複数のPUSCHをスケジューリングするマルチTTI(Transmission Time Interval)グラントを使用することが想定されている。なお、「スケジューリングする(あるいはスケジュールする)」を「割り当てる」に言い換えてもよい。
マルチTTIグラントにより、別々のTB(Transport block、トランスポートブロック)を送信する連続する複数のPUSCHがスケジューリングされる。1つのTBは、1つのスロット又は1つのミニスロットにマッピングされ、1つのPUSCHで送信される。当該1つのTBを送信する1つのPUSCHには1つのHARQ(Hybrid automatic repeat request)プロセスが割り当てられる。
1つのDCIによりスケジューリングされる複数PUSCHについて、1つのDCIにより、NDI(New data indicator)とRV(Redundancy version)PUSCH毎にシグナリングされる。また、当該DCIにより通知されたHARQプロセスIDについては、スケジュールされた最初のPUSCHに適用され、以降のPUSCHのHARQプロセスIDについては、PUSCHの順番で1ずつインクリメントされた値が適用される。
図3は、マルチTTIグラントを受信した端末20の動作の一例を示す図である。図3の例では、マルチTTIグラントにより、4スロット分のPUSCHがスケジューリングされる。
端末20は、Aで示す最初のPUSCHがスケジューリングされたスロットの手前でLBTを実行し、そのLBTがOKであれば4つの連続するPUSCHでデータを送信する。もしも最初のLBTがNGである場合、Bで示すPUSCHがスケジューリングされたスロットの手前でLBTを実行し、そのLBTがOKであれば3つの連続するPUSCHでデータを送信する。以降、同様の処理が行われる。もしも、Dで示す最後のPUSCHがスケジューリングされたスロットの手前でLBTを実行し、それがNGである場合、送信は行われない。
例えば、PUSCHスケジューリングは、分離された複数のTBを含んでもよい複数の連続したPUSCHを含む複数のスロット又はミニスロットが1つのDCIによってサポートされてもよい。また、例えば、複数のPUSCHをシグナリングするDCIは、NDI及びRVを含んでもよい。また、例えば、CBG(Code block group)ベースの再送が複数のPUSCHスケジューリングにおいてサポートされてもよく、DCIのフィールドによって、再送する1又は複数のPUSCHごと、PUSCHごと又は固定数のPUSCHごとにシグナリングされてもよい。また、例えば、DCIによりシグナリングされるHARQプロセスIDは、最初にスケジューリングされたPUSCHに適用されてもよく、続くPUSCHにおいて1ずつインクリメントされてもよい。
また、例えば、PUSCHがスケジュールされる時間領域のリソース割り当てが拡張されてもよい。例えば、開始シンボル位置及び終了シンボル位置の範囲が拡張されてもよいし、連続する時間領域のリソース割り当てが拡張されてもよいし、先頭スロットにおいて複数のPUSCHが配置されてもよいし、端末主導のCOTにおいて複数の開始シンボル位置がサポートされてもよい。
また、NR-Uでは、端末のUL送信に対して、CP延長(Cyclic Prefix extension)に基づくLBTギャップが検討されている。例えば、少なくとも動的にスケジューリングされるPUSCH(Physical Uplink Shared Channel)送信前のCP延長のため、SLIV(Start and Length Indicator)により通知されたPUSCH割り当てに先行するシンボルに、CP延長は配置されてもよい。サポートされるCP延長の期間は、以下の1)-4)のいずれかであってもよい。
1)0(すなわち、CP延長されない)
2)C1×シンボル長-25μs
3)C2×シンボル長-16μs-TA(Timing Advance)
4)C3×シンボル長-25μs-TA
2)C1×シンボル長-25μs
3)C2×シンボル長-16μs-TA(Timing Advance)
4)C3×シンボル長-25μs-TA
上記のC1、C2及びC3は、SCS(SubCarrier spacing)に応じて設定される値であってもよい。例えば、SCSが15kHz又は30kHzの場合、C1=1と固定的に設定されてもよい。また、例えば、SCSが60kHzの場合、C1=2と固定的に設定されてもよい。なお、C2又はC3は、SCSごとのTA値に基づいて固定的に設定されてもよいし、暗黙的に導出されてもよい。
なお、ULグラントからPUSCH送信までの最小遅延の計算に用いる値N2は、CP延長を考慮して緩和されてもよい。なお、あるSCSにおけるCP延長は、1シンボル以下を限度としてもよいし、1シンボルを超えてもよい。なお、上記のCP延長は、他のUL送信に対して適用されてもよい。なお、端末20が動的にシグナリングされるCP延長期間の数は設定可能であってもよい。
また、C2及びC3は、RRCシグナリングによって端末20固有に設定されてもよい。C2及びC3は、セルで使用される最大TAを制限しなくてもよい。なお、RRCシグナリングによって、C2及びC3は、SCSが30kHzの場合1から28までの値が設定されてもよい。また、RRCシグナリングによって、C2及びC3は、SCSが60kHzの場合2から28までの値が設定されてもよい。なお、上記C2及びC3に係る設定によって、他の仕様は変更されなくてもよい。
非フォールバックDCIによるULグラントに関して、以下1)-4)に示される動作を行ってもよい。なお、非フォールバックDCIフォーマットとは、例えば、NRシステムにおけるDCIフォーマット1_1及びDCIフォーマット0_1である。非フォールバックDCIフォーマットとは、例えば、フォールバックDCIフォーマットであるDCIフォーマット1_0及びDCIフォーマット0_0よりもサイズが大きいDCIフォーマットであり、フォールバックDCIフォーマットとは異なり、設定に依存してサイズが変更される。以下、「*」は乗算を示す。
1)LBTタイプ、CP延長値及びCAPC(Channel Access Priority Class)は、ジョイントエンコーディングされて(すなわちこれらの組み合わせに対してインデックスが対応付けられて)当該ULグラントに含まれてもよい。
2)LBTタイプ、CP延長値及びCAPCの組み合わせは、端末20固有のRRCシグナリングによって、端末20に設定されてもよい。
3)LBTタイプ{Cat1-16μs,Cat2-16μs,Cat2-25μs,Cat4}、CP延長{0,C1*シンボル長-25μs,C2*シンボル長-16μs-TA,C3*シンボル長-25μs-TA}、CAPC{1,2,3,4}の組み合わせのうち、(Cat2-25μs,C2*シンボル長-16μs-TA)と、(Cat1-16μs,C3*シンボル長-25μs-TA)と、(Cat2-16μs,C3*シンボル長-25μs-TA)と、(Cat2-16μs又はCat2-16μs,C1*シンボル長-25μs)との組み合わせは、RRC設定によりサポートされなくてもよい。
4)対応するDCIのビットフィールドは、6ビット長までであってもよい。端末20に対するRRCシグナリングで設定される組み合わせ数に依存してビットフィールドの長さが決定されてもよい。
2)LBTタイプ、CP延長値及びCAPCの組み合わせは、端末20固有のRRCシグナリングによって、端末20に設定されてもよい。
3)LBTタイプ{Cat1-16μs,Cat2-16μs,Cat2-25μs,Cat4}、CP延長{0,C1*シンボル長-25μs,C2*シンボル長-16μs-TA,C3*シンボル長-25μs-TA}、CAPC{1,2,3,4}の組み合わせのうち、(Cat2-25μs,C2*シンボル長-16μs-TA)と、(Cat1-16μs,C3*シンボル長-25μs-TA)と、(Cat2-16μs,C3*シンボル長-25μs-TA)と、(Cat2-16μs又はCat2-16μs,C1*シンボル長-25μs)との組み合わせは、RRC設定によりサポートされなくてもよい。
4)対応するDCIのビットフィールドは、6ビット長までであってもよい。端末20に対するRRCシグナリングで設定される組み合わせ数に依存してビットフィールドの長さが決定されてもよい。
UL送信(例えば、PUCCH)をスケジューリングする非フォールバックDL割り当てに関して、以下1)-5)に示される動作を行ってもよい。
1)LBTタイプ及びCP延長値は、ジョイントエンコーディングされて当該DL割り当てに含まれてもよい。
2)最も高いCAPCが常に想定されてもよい。
3)LBTタイプ及びCP延長値の組み合わせは、端末20固有のRRCシグナリングによって、端末20に設定されてもよい。
4)LBTタイプ{Cat1-16μs,Cat2-16μs,Cat2-25μs,Cat4}、CP延長{0,C1*シンボル長-25μs,C2*シンボル長-16μs-TA,C3*シンボル長-25μs-TA}の組み合わせのうち、(Cat2-25μs,C2*シンボル長-16μs-TA)と、(Cat1-16μs,C3*シンボル長-25μs-TA)と、(Cat2-16μs,C3*シンボル長-25μs-TA)と、(Cat2-16μs又はCat2-16μs,C1*シンボル長-25μs)との組み合わせは、RRC設定によりサポートされなくてもよい。
5)対応するDCIのビットフィールドは、4ビット長までであってもよい。端末20に対するRRCシグナリングで設定される組み合わせ数に依存してビットフィールドの長さが決定されてもよい。
2)最も高いCAPCが常に想定されてもよい。
3)LBTタイプ及びCP延長値の組み合わせは、端末20固有のRRCシグナリングによって、端末20に設定されてもよい。
4)LBTタイプ{Cat1-16μs,Cat2-16μs,Cat2-25μs,Cat4}、CP延長{0,C1*シンボル長-25μs,C2*シンボル長-16μs-TA,C3*シンボル長-25μs-TA}の組み合わせのうち、(Cat2-25μs,C2*シンボル長-16μs-TA)と、(Cat1-16μs,C3*シンボル長-25μs-TA)と、(Cat2-16μs,C3*シンボル長-25μs-TA)と、(Cat2-16μs又はCat2-16μs,C1*シンボル長-25μs)との組み合わせは、RRC設定によりサポートされなくてもよい。
5)対応するDCIのビットフィールドは、4ビット長までであってもよい。端末20に対するRRCシグナリングで設定される組み合わせ数に依存してビットフィールドの長さが決定されてもよい。
一方、フォールバックDCIによるULグラントでは、LBTタイプ、CP延長値及びCAPCは、2ビット長でジョイントエンコーディングされて当該ULグラントに含まれてもよい。なお、サポートされるLBTタイプ、CP延長値及びCAPCの組み合わせは、予め仕様により規定されてもよい。
また、UL送信(例えば、PUCCH)をスケジューリングするフォールバックDL割り当てでは、LBTタイプ及びCP延長値は、2ビット長でジョイントエンコーディングされて当該DL割り当てに含まれてもよい。なお、サポートされるLBTタイプ及びCP延長値の組み合わせは、予め仕様により規定されてもよい。
ここで、LBTのメカニズムとしては、FBE(Frame Based Equipment)及びLBE(Load Based Equipment)が検討されている。両者の違いは、送受信に用いるフレーム構成、チャネル占有時間等である。FBEは、LBTに係る送受信の構成が固定タイミングを有する。一方、LBEは、LBTに係る送受信の構成が時間軸方向で固定でなく、需要に応じてLBTが行われる。具体的には、FBEは、固定のフレーム周期をもち、所定のフレームで一定時間(LBT時間(LBT duration)等と呼ばれてもよい)キャリアセンスを行った結果、チャネルが使用可能であれば送信を行うが、チャネルが使用不可であれば次のフレームにおけるキャリアセンスタイミングまで送信を行わずに待機する。
一方、LBEは、キャリアセンス(初期Clear Channel Assessment:CCA)を行った結果チャネルが使用不可であった場合はキャリアセンス時間を延長し、チャネルが使用可能となるまで継続的にキャリアセンスを行うというECCA(Extended CCA)手順を実施する。LBEでは、適切な衝突回避のためランダムバックオフが必要である。
LBTが、LBEにて運用される場合、フォールバックDL割り当て及びフォールバックULグラントの双方に対するLBTタイプ及びCP延長値のシグナリングは、例えば表1を使用して実行されてもよい。
表1に示される「Cat1」はカテゴリ1、「Cat2」はカテゴリ2、「Cat4」はカテゴリ4に対応する。表1に示されるように、LBTタイプが「Cat1-16μs」の場合、CP延長値は「C2*シンボル長-16μs-TA」であってもよい。また、LBTタイプが「Cat2-25μs」の場合、CP延長値は「C3*シンボル長-25μs-TA」であってもよい。また、LBTタイプが「Cat2-25μs」の場合、CP延長値は「C1*シンボル長-25μs」であってもよい。また、LBTタイプが「Cat4」の場合、CP延長値は「0」であってもよい。
なお、CAPCは明示的に通知されなくてもよい。ULグラントに対して、端末20は、COを獲得するため基地局10に使用されたCAPC=4を想定してもよい。また、端末20が主導するCOTすなわちカテゴリ4の場合、端末20はCAPCを自身で選択してもよい。なお、CAPCとトラフィッククラスとのマッピングは、UL-CG(Configured Grant)送信のため定義されたマッピングと同様であってもよい。なお、カテゴリ4のLBTが使用される場合、DL割り当てに関連付けられたPUCCHに対して、最も高い優先度のCAPCが使用されてもよい。
LBTが、FBEにて運用される場合、LBTタイプが「Cat2-25μs」又は「Cat4」であると通知された端末20は、一つの9μsのキャリアセンス用スロットを25μsの期間内で測定してもよい。
また、RAR(Random access response)に関して、端末20はフォールバックDCIによるULグラントと同一のLBTタイプとCP延長値とのテーブル(例えば表1)及びCAPC選択方法を使用してもよい。上記動作のため、RAR(すなわちPDSCH)を介して2ビットがシグナリングされてもよい。端末20が、PUSCHにおいてユーザプレーンデータを多重する場合、端末20は、COを獲得するために基地局10がCAPC=4を使用したと想定してもよい。また、端末20が主導するCOTすなわちカテゴリ4の場合、端末20はCAPCを自身で選択してもよい。なお、CAPCとトラフィッククラスとのマッピングは、UL-CG送信のため定義されたマッピングと同様であってもよい。また、RARに含まれる周波数領域のリソース割り当てを示すフィールドが、前記2ビットを収容するように縮小される。
PUSCH送信に割り当てられた第1のOFDMシンボルlのCP延長の場合、Text[sec]がCP延長期間となる。表2は、TextをSCSごとにインデックスで示した例である。
表2に示されるμ=0は15kHzSCS、μ=1は30kHzSCS、μ=2は60kHzSCS、Tsymb,l
μはSCSがμ及びシンボル位置がlのシンボル長、TTAはタイミングアドバンス値に対応する。表2に示されるように、インデックス0に対応するTextは定義されない。
インデックス1は、15kHzSCSの場合「シンボル長-25*10-6」、30kHzSCSの場合「シンボル長-25*10-6」、60kHzSCSの場合「2*シンボル長-25*10-6」に対応する。
インデックス2は、15kHzSCS、30kHz及び60kHzのいずれの場合でも「C2*シンボル長-16*10-6-TTA」に対応する。すなわち、タイミングアドバンス値に応じて、CP延長が決定される。
インデックス3は、15kHzSCS、30kHz及び60kHzのいずれの場合でも「C3*シンボル長-25*10-6-TTA」に対応する。インデックス2と同様に、すなわち、タイミングアドバンス値に応じて、CP延長が決定される。
なお、C2及びC3は、15kHzSCS又は30kHzSCSの場合、1から28までの整数値であってもよい。C2及びC3は、60kHzSCSの場合、2から28までの整数値であってもよい。
ここで、上述のようにCP延長が適用される一方で、通信状況によっては、RRC設定が実行される前に、端末20はCP延長の期間を定める必要があった。例えば、RAR、フォールバックDCIによるULグラント、フォールバックDCIによるDL割り当て時が当該通信状況である。当該通信状況のとき、端末20は、UL送信に使用するC2及びC3の値を知らない。
そこで、NR-UにおけるUL送信において、RRC設定が実行される前であっても、適切にCP延長値を決定してもよい。
図4は、本発明の実施の形態におけるシグナリングの例を説明するためのシーケンス図である。基地局10は、端末20に対して、ステップS1及びステップS2によってPUSCH及び/またはPUCCHの送信を指示するか、又は送信機会を設定してもよい。端末20は、例えば、ステップS1によるRRC設定を実行する前であっても、適切にCP延長値を決定してもよい。
ステップS1において、基地局10は、上位レイヤシグナリングを介して、PUSCH及び/またはPUCCHに係る設定を端末20に通知する。例えば、CP延長に係る設定が通知されてもよい。
ステップS2において、基地局10は、PDCCHを介して、DCIによるULグラントを端末20に送信する。続いて、端末20は、受信したDCIに基づいて決定したPUSCHを介して基地局10にデータを送信する(S3)。当該DCIでCP延長値が通知されている場合、端末20は、当該PUSCHにCP延長を適用して送信してもよい。
また、他の例として、ステップS2において、基地局10は、PDCCHを介して、DCIによるDL割り当てを端末20に送信する。続いて、端末20は、受信したDCIに基づいて決定したPUCCHを介して基地局10に上り制御情報(UCI)を送信する(S3)。当該DCIでCP延長値が通知されている場合、端末20は、当該PUCCHにCP延長を適用して送信してもよい。
また、他の例として、ステップS2において、基地局10は、PDSCHを介して、RARを端末20に送信する。続いて、端末20は、受信したRARに基づいて決定したPUSCHを介して基地局10にデータを送信する(S3)。当該RARでCP延長値が通知されている場合、端末20は、当該PUSCHにCP延長を適用して送信してもよい。
図5は、本発明の実施の形態における端末20の動作例(1)を説明するためのフローチャートである。ステップS11において、端末20は、RRCシグナリングでC2及びC3が設定されているか否かを判定する。設定されている場合(S11のYES)、ステップS12に進み、設定されていない場合(S11のNO)、ステップS13に進む。
ステップS12において、端末20は、RRCシグナリングによるC2及びC3をCP延長値の決定に使用する。一方、ステップS13において、端末20は、C2及びC3を予め規定された固定値であると想定してCP延長値を決定する。
例えば、ステップS13において、C2及びC3の固定値は、15kHzSCS又は30kHzSCSの場合、1から28までの整数値のいずれかから選択されてもよいし、60kHzSCSの場合、2から28までの整数値のいずれかから選択されてもよい。
また、例えば、ステップS13において、規定されたC2の固定値を想定した場合に「C2*シンボル長-16μs-TA<0」である場合、CP延長値はゼロであると想定してもよい。例えば、ステップS13において、規定されたC3の固定値を想定した場合に「C3*シンボル長-25μs-TA<0」である場合、CP延長値はゼロであると想定してもよい。
図6は、本発明の実施の形態における端末20の動作例(2)を説明するためのフローチャートである。ステップS21において、端末20は、RRCシグナリングでC2及びC3が設定されているか否かを判定する。設定されている場合(S21のYES)、ステップS22に進み、設定されていない場合(S21のNO)、ステップS23に進む。
ステップS22において、端末20は、RRCシグナリングによるC2及びC3をCP延長値の決定に使用する。一方、ステップS23において、端末20は、C2及びC3を対応するUL送信に適用されるTA値から決定してCP延長値を決定する。
例えば、C2は、「C2*シンボル長-16μs-TA<シンボル長」を満たす最大の値であってもよい。C3は、「C3*シンボル長-25μs-TA<シンボル長」を満たす最大の値であってもよい。
また、例えば、C2は、「0<C2*シンボル長-16μs-TA」を満たす最小の値であってもよい。C3は、「0<C3*シンボル長-25μs-TA」を満たす最小の値であってもよい。
図7は、本発明の実施の形態における端末20の動作例(3)を説明するためのフローチャートである。ステップS21において、端末20は、RRCシグナリングでC2及びC3が設定されているか否かを判定する。設定されている場合(S21のYES)、ステップS22に進み、設定されていない場合(S21のNO)、ステップS23に進む。
ステップS22において、端末20は、RRCシグナリングによるC2及びC3をCP延長値の決定に使用する。一方、ステップS23において、端末20は、C2及びC3が対応するCP延長値は、DCIによって通知されないと想定してもよい。表3は、DCIによって通知されるCP延長値の例である。
表3に示されるように、C2及びC3が対応するCP延長値は、インデックス「0」及び「1」である。したがって、DCIによるCP延長値の通知において、インデックス「0」及び「1」は通知されないと端末20は想定してもよい。さらに、ビットフィールド長を1ビットにして、インデックス「2」又は「3」を通知するようにしてもよい。
なお、表3に示されるチャネルアクセスタイプ(LBTタイプ)は、端末20がUL送信の前に、センシングしたスロットがアイドルであると判定するランダム期間又は固定期間を使用するチャネルアクセス方法の種別である。チャネルアクセスタイプ1は「Cat4」に対応し、チャネルアクセスタイプ2Aは「Cat2-25μs」に対応し、チャネルアクセスタイプ2Cは「Cat1-16μs」に対応する。
図8は、本発明の実施の形態におけるCP延長の例を説明するための図である(ただし16μs又は25μs+TAが1シンボル長以下のとき)。図8に示されるようにCP延長値が設定された場合、16μs又は25μs+CP延長値+TAが1シンボル長となる。すなわち、CP延長値=1シンボル長-16μs又は25μs-TAとなる。さらに大きいCP延長値を設定する場合、CP延長値は上記右辺第1項を1シンボル単位で増加させた値であってもよい。
上述の実施例により、端末20は、RRCシグナリングでC2及びC3が設定されていない場合であっても、C2及びC3を決定してCP延長値を決定し、CP延長が適用されたUL送信を実行することができる。また、端末20は、RRCシグナリングでC2及びC3が設定されていない場合であっても、C2及びC3を使用するCP延長値が通知されないと想定し、少ないビット長でCP延長値を基地局10による通知から取得することができる。
すなわち、無線通信システムにおいて、CP延長(Cyclic Prefix extension)値を決定し、通信に適用することができる。
(装置構成)
次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
<基地局10>
図9は、本発明の実施の形態における基地局10の機能構成の一例を示す図である。図9に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図9に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
図9は、本発明の実施の形態における基地局10の機能構成の一例を示す図である。図9に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図9に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。また、送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。また、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。
設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を格納する。設定情報の内容は、例えば、NR-Uの通信に係る設定等である。
制御部140は、実施例において説明したように、ULグラントに係る制御を行う。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
<端末20>
図10は、本発明の実施の形態における端末20の機能構成の一例を示す図である。図10に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図10に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
図10は、本発明の実施の形態における端末20の機能構成の一例を示す図である。図10に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図10に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。
設定部230は、受信部220により基地局10から受信した各種の設定情報を格納する。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、NR-Uの通信に係る設定等である。
制御部240は、実施例において説明したように、ULグラントに基づいてLBTを伴う送信を実行する制御を行う。また、制御部240は、設定に応じてCP延長を適用したUL送信を制御する。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。
(ハードウェア構成)
上記実施形態の説明に用いたブロック図(図9及び図10)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
上記実施形態の説明に用いたブロック図(図9及び図10)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図9に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図10に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(実施の形態のまとめ)
以上、説明したように、本発明の実施の形態によれば、上りリンク送信を割り当てる情報を基地局から受信する受信部と、前記情報を受信したとき、CP延長値を算出するためのパラメータを前記基地局から設定されていない場合、CP延長値を決定する制御部と、前記決定したCP延長値を適用して前記上りリンク送信を実行する送信部とを有する端末が提供される。
以上、説明したように、本発明の実施の形態によれば、上りリンク送信を割り当てる情報を基地局から受信する受信部と、前記情報を受信したとき、CP延長値を算出するためのパラメータを前記基地局から設定されていない場合、CP延長値を決定する制御部と、前記決定したCP延長値を適用して前記上りリンク送信を実行する送信部とを有する端末が提供される。
上記の構成により、端末20は、RRCシグナリングでC2及びC3が設定されていない場合であっても、C2及びC3を決定してCP延長値を決定し、CP延長が適用されたUL送信を実行することができる。また、端末20は、RRCシグナリングでC2及びC3が設定されていない場合であっても、C2及びC3を使用するCP延長値が通知されないと想定し、少ないビット長でCP延長値を基地局10による通知から取得することができる。すなわち、無線通信システムにおいて、CP延長(Cyclic Prefix extension)値を決定し、通信に適用することができる。
前記制御部は、前記パラメータを決定し、決定した前記パラメータに基づくシンボル長の整数倍の期間から、タイミングアドバンス値による期間と所定の期間とを減じた期間を、CP延長値として算出してもよい。当該構成により、端末20は、RRCシグナリングでC2及びC3が設定されていない場合であっても、C2及びC3を決定してCP延長値を決定し、CP延長が適用されたUL送信を実行することができる。
前記制御部は、前記パラメータを予め規定された値に決定し、前記パラメータに基づいて、CP延長値を算出してもよい。当該構成により、端末20は、RRCシグナリングでC2及びC3が設定されていない場合であっても、C2及びC3を決定してCP延長値を決定し、CP延長が適用されたUL送信を実行することができる。
前記制御部は、前記パラメータをタイミングアドバンス値に基づいて決定し、前記パラメータに基づいて、CP延長値を算出してもよい。当該構成により、端末20は、RRCシグナリングでC2及びC3が設定されていない場合であっても、C2及びC3を決定してCP延長値を決定し、CP延長が適用されたUL送信を実行することができる。
前記制御部は、前記パラメータに対応するCP延長値が前記基地局から通知されないと想定してもよい。端末20は、RRCシグナリングでC2及びC3が設定されていない場合であっても、C2及びC3を使用するCP延長値が通知されないと想定し、少ないビット長でCP延長値を基地局10による通知から取得することができる。
また、本発明の実施の形態によれば、上りリンク送信を割り当てる情報を基地局から受信する受信手順と、前記情報を受信したとき、CP延長値を算出するためのパラメータを前記基地局から設定されていない場合、CP延長値を決定する制御手順と、前記決定したCP延長値を適用して前記上りリンク送信を実行する送信手順とを端末が実行する通信方法が提供される。
上記の構成により、端末20は、RRCシグナリングでC2及びC3が設定されていない場合であっても、C2及びC3を決定してCP延長値を決定し、CP延長が適用されたUL送信を実行することができる。また、端末20は、RRCシグナリングでC2及びC3が設定されていない場合であっても、C2及びC3を使用するCP延長値が通知されないと想定し、少ないビット長でCP延長値を基地局10による通知から取得することができる。すなわち、無線通信システムにおいて、CP延長(Cyclic Prefix extension)値を決定し、通信に適用することができる。
(実施形態の補足)
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
なお、本開示において、C2又はC3は、CP延長値を算出するためのパラメータの一例である。
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10 基地局
110 送信部
120 受信部
130 設定部
140 制御部
20 端末
210 送信部
220 受信部
230 設定部
240 制御部
1001 プロセッサ
1002 記憶装置
1003 補助記憶装置
1004 通信装置
1005 入力装置
1006 出力装置
110 送信部
120 受信部
130 設定部
140 制御部
20 端末
210 送信部
220 受信部
230 設定部
240 制御部
1001 プロセッサ
1002 記憶装置
1003 補助記憶装置
1004 通信装置
1005 入力装置
1006 出力装置
Claims (6)
- 上りリンク送信を割り当てる情報を基地局から受信する受信部と、
前記情報を受信したとき、CP延長値を算出するためのパラメータを前記基地局から設定されていない場合、CP延長値を決定する制御部と、
前記決定したCP延長値を適用して前記上りリンク送信を実行する送信部とを有する端末。 - 前記制御部は、前記パラメータを決定し、決定した前記パラメータに基づくシンボル長の整数倍の期間から、タイミングアドバンス値による期間と所定の期間とを減じた期間を、CP延長値として算出する請求項1記載の端末。
- 前記制御部は、前記パラメータを予め規定された値に決定し、前記パラメータに基づいて、CP延長値を算出する請求項2記載の端末。
- 前記制御部は、前記パラメータをタイミングアドバンス値に基づいて決定し、前記パラメータに基づいて、CP延長値を算出する請求項2記載の端末。
- 前記制御部は、前記パラメータに対応するCP延長値が前記基地局から通知されないと想定する請求項1記載の端末。
- 上りリンク送信を割り当てる情報を基地局から受信する受信手順と、
前記情報を受信したとき、CP延長値を算出するためのパラメータを前記基地局から設定されていない場合、CP延長値を決定する制御手順と、
前記決定したCP延長値を適用して前記上りリンク送信を実行する送信手順とを端末が実行する通信方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/758,842 US11855820B2 (en) | 2020-01-23 | 2020-01-23 | Terminal and communication method |
JP2021572225A JP7393440B2 (ja) | 2020-01-23 | 2020-01-23 | 端末、通信システム、及び通信方法 |
CN202080093656.6A CN114982338A (zh) | 2020-01-23 | 2020-01-23 | 终端和通信方法 |
PCT/JP2020/002413 WO2021149231A1 (ja) | 2020-01-23 | 2020-01-23 | 端末及び通信方法 |
EP20915795.7A EP4096317A4 (en) | 2020-01-23 | 2020-01-23 | TERMINAL DEVICE AND COMMUNICATION METHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/002413 WO2021149231A1 (ja) | 2020-01-23 | 2020-01-23 | 端末及び通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021149231A1 true WO2021149231A1 (ja) | 2021-07-29 |
Family
ID=76993158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/002413 WO2021149231A1 (ja) | 2020-01-23 | 2020-01-23 | 端末及び通信方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11855820B2 (ja) |
EP (1) | EP4096317A4 (ja) |
JP (1) | JP7393440B2 (ja) |
CN (1) | CN114982338A (ja) |
WO (1) | WO2021149231A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210368542A1 (en) * | 2020-05-22 | 2021-11-25 | Qualcomm Incorporated | Network controlled sidelink off-loading over unlicensed carrier |
CN115706957A (zh) * | 2021-08-13 | 2023-02-17 | 华硕电脑股份有限公司 | 无线通信系统中用于侧链路传送的先听后讲的方法和设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8774156B2 (en) * | 2008-01-29 | 2014-07-08 | Texas Instruments Incorporated | ACKNAK and CQI channel mapping schemes in wireless networks |
CN110417521B (zh) | 2018-04-28 | 2022-01-11 | 华为技术有限公司 | 异步上行传输的方法、设备和存储介质 |
US11121891B2 (en) * | 2019-02-28 | 2021-09-14 | Electronics And Telecommunications Research Institute | Method and apparatus for transmitting sounding reference signal |
WO2021104333A1 (en) | 2019-11-26 | 2021-06-03 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method and apparatus for determining cyclic prefix extentsion and user equipment |
-
2020
- 2020-01-23 US US17/758,842 patent/US11855820B2/en active Active
- 2020-01-23 CN CN202080093656.6A patent/CN114982338A/zh not_active Withdrawn
- 2020-01-23 JP JP2021572225A patent/JP7393440B2/ja active Active
- 2020-01-23 EP EP20915795.7A patent/EP4096317A4/en not_active Withdrawn
- 2020-01-23 WO PCT/JP2020/002413 patent/WO2021149231A1/ja unknown
Non-Patent Citations (6)
Title |
---|
3GPP TS 37.213 |
3GPP TS 38.212 |
3GPP TS 38.213 |
3GPP TS 38.331 |
QUALCOMM INCORPORATED: "Summary of NR-U agreements till RAN1 #99", 3GPP DRAFT; R1-1913599, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 January 2020 (2020-01-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051843030 * |
See also references of EP4096317A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210368542A1 (en) * | 2020-05-22 | 2021-11-25 | Qualcomm Incorporated | Network controlled sidelink off-loading over unlicensed carrier |
US11711849B2 (en) * | 2020-05-22 | 2023-07-25 | Qualcomm Incorporated | Network controlled sidelink off-loading over unlicensed carrier |
CN115706957A (zh) * | 2021-08-13 | 2023-02-17 | 华硕电脑股份有限公司 | 无线通信系统中用于侧链路传送的先听后讲的方法和设备 |
Also Published As
Publication number | Publication date |
---|---|
EP4096317A4 (en) | 2023-10-04 |
JP7393440B2 (ja) | 2023-12-06 |
EP4096317A1 (en) | 2022-11-30 |
US11855820B2 (en) | 2023-12-26 |
JPWO2021149231A1 (ja) | 2021-07-29 |
US20230051403A1 (en) | 2023-02-16 |
CN114982338A (zh) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021172228A1 (ja) | 端末及び通信方法 | |
WO2021024440A1 (ja) | 端末 | |
JPWO2020170405A1 (ja) | ユーザ装置及び基地局装置 | |
WO2021172337A1 (ja) | 端末及び通信方法 | |
WO2021033246A1 (ja) | 端末 | |
WO2021149231A1 (ja) | 端末及び通信方法 | |
WO2022153548A1 (ja) | 端末及び通信方法 | |
WO2022130645A1 (ja) | 端末、基地局及び通信方法 | |
WO2021149159A1 (ja) | 端末、基地局及び通信方法 | |
WO2021149110A1 (ja) | 端末及び通信方法 | |
WO2021065016A1 (ja) | 端末及び通信方法 | |
WO2021171995A1 (ja) | 端末、通信方法及び基地局 | |
JP7482907B2 (ja) | 端末、基地局、通信システム、及び通信方法 | |
WO2021065011A1 (ja) | 端末及び通信方法 | |
WO2021090438A1 (ja) | 端末及び通信方法 | |
WO2021090440A1 (ja) | 端末、及び送信方法 | |
WO2021090462A1 (ja) | 端末及び通信方法 | |
WO2021070396A1 (ja) | 端末及び通信方法 | |
WO2020217366A1 (ja) | ユーザ装置 | |
WO2020222282A1 (ja) | ユーザ装置及び基地局装置 | |
JP7572107B2 (ja) | 端末、基地局、通信システム及び通信方法 | |
WO2021095246A1 (ja) | 端末及び通信方法 | |
WO2022102632A1 (ja) | 端末及び通信方法 | |
WO2022153546A1 (ja) | 端末及び通信方法 | |
WO2022153464A1 (ja) | 端末及び通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915795 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021572225 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020915795 Country of ref document: EP Effective date: 20220823 |